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Abstract

How best to think about quantum systems under permutation invariance is a
question that has received a great deal of attention in the literature. But very little
attention has been paid to taking seriously the proposal that permutation invariance
reflects a representational redundancy in the formalism. Under such a proposal, it is
far from obvious how a constituent quantum system is represented. Consequently, it
is also far from obvious how quantum systems compose to form assemblies, i.e. what
is the formal structure of their relations of parthood, overlap and fusion.

In this paper, I explore one proposal for the case of fermions and their assemblies.
According to this proposal, fermionic assemblies which are not entangled—in some
heterodox, but natural sense of ‘entangled’—provide a prima facie counterexample
to classical mereology. This result is puzzling; but, I argue, no more unpalatable
than any other available interpretative option.
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1 Introduction

The fact that quantum mechanics forces a revision of many of our dearly held metaphys-
ical beliefs is by now familiar. In this article, I aim to provide one more example of such
a metaphysical belief; namely that classical mereology—Dby which I mean the formal the-
ory of parts and wholes developed by, amongst others, Leswenski (1916), Tarski (1929)
and Leonard & Goodman (1940)—gives a true account of the structure of composition
for physical objects.

One might suppose that the culprit responsible for the failure of mereology in the
quantum domain is entanglement. As is well known, any entangled state fails to super-
vene on (i.e. be determined by) the states of the joint system’s constituents—supposing
that we happy attributing the constituents with states at all.! This has prompted some
(e.g. Maudlin (1998)) to claim that a certain strong version of reductionism fails for
quantum systems.

Could this failure of reductionism lead to a failure of mereology? Surely not. For the
failure of reductionism is merely a failure of the joint system’s properties (as encapsu-
lated by its state) to supervene on the constituents’ properties (as encapsulated by their
states). And the possibility that there may be irreducible relations was countenanced at
least as far back as Russell (1918). Thus, entanglement merely demands that we accept
irreducible relations into our ontology of quantum mechanics. (A point also argued by
Ladyman & Ross (2007, 149-50).)

An more pressing problem for quantum mereologists is raised for those who take
quantum particles to be indiscernible in a sense stronger than can be articulated in the
framework of classical logic and set theory. This stronger sense is explicated by ‘quasi-
set” theory, developed by da Costa (1980), Krause (1990, 1996), Dalla Chiara, Giuntini
and Krause (1998) and pursued in further detail by French and Krause (2006, Chs. 7 &
8). According to quasi-set theory, it may be said of certain individuals—or rather “non-
individuals”, called ‘m-atoms’—that they are either discernible or indiscernible, but not
that they are identical, nor that they are distinct. As French and Krause (2006, 278-281)
note, although quasi-set theory defines the containment relation between quasi-sets, no
theory yet exists which describes how their ur-elements, the m-atoms, compose.?

While it is far from unanimous that quasi-set theory can offer the right account of
quantum particles, the conviction that motivates the theory’s application to quantum
particles enjoys near universal assent: namely, that elementary quantum particles of the

T am picking up here on the fact that, in any entangled state, the constituents’ states, as calculated
by performing a partial trace on the joint state, are improper, i.e. not ignorance-interpretable, mixtures.
2T am grateful to George Darby for correspondence on these matters.



same species are indiscernible in some important sense. The precise sense of this indis-
cernibility has been honed in the recent literature (see French and Krause (2006, §4.2.1),
Muller and Saunders (2008), Muller and Seevinck (2009)). But these indiscernibility
results are underpinned by an interpretative assumption that I wish here to deny—or,
at least, the cogency of whose denial I wish here to investigate.?

The interpretative assumption regards an important constraint in quantum mechan-
ics, known as permutation invariance. The assumption is that, while states of elemen-
tary particles obey permutation invariance, still sense can be given to the permutations:
specifically, they represent a literal swapping of the particles. On the view I wish to pur-
sue here, permutation invariance is not a feature of states that has anything to do with
the physical swapping of particles, but rather reflects a representational redundancy in
the standard formalism of quantum mechanics. This redundancy is somewhat analogous
to the representational redundancy that counterpart theorists see in standard Tarskian
semantics, in which two distinct models can differ purely as to which object plays which
role in the pattern of instantiation of properties and relations.

The problem posed for mereology that I wish to present here arises just for those, like
me, who wish to take the hard line that permutation invariance reflects representational
redundancy in the standard tensor product Hilbert space formalism. The problem arises
specifically for fermions, which include the particles which “make up” all stable matter—
in some sense of “make up”! We shall see that the hard line interpretation of permutation
invariance prompts a revision to some common quantum concepts, most importantly for
us here, what counts as an entangled state. On this revision, some joint states of fermions
count as not entangled. The contradiction with mereology will be proven for these states
alone: thus the failure of mereology has nothing do with entanglement. (Whether the
contradiction between mereology and the hard line on permutation invariance speaks
more against the latter than the former is a question I shall address in due course.)

The argument will run as follows. Upon interpreting the permutation invariance of
fermionic joint states in the correct way, we shall see that these states may be repre-
sented naturally by subspaces of the single-system Hilbert space. More specifically, a
non-entangled joint state of N fermions will correspond to an IN-dimensional subspace.
A natural definition of parthood will emerge, which is then represented by the rela-
tion of subspacehood. The associated notion of mereological fusion between fermionic
assemblies—which can be defined using parthood alone—will then be shown not to
match the structure that smaller fermionic assemblies (i.e. assemblies containing fewer
fermions) bear to larger ones (i.e. assemblies containing more fermions).

Some strategies to save mereology in the face of this result will be considered. As
I will argue, one successful strategy exists, in the sense that the truth of the axioms of
mereology may be preserved. However, it will remain the case that the operation which
unifies many fermions into one fermionic assembly is not mereological fusion.

The title of this article is intended to reference the famous discussion of quantum

31 return to the issue of indiscernibility in Section 4.1, following Corollary 4.7.



logic, inspired by the work of Birkhoff and von Neumann (1936), in Putnam (1968,
1974) and Dummett (1976), and continued by Maudlin (2005) and Baciagaluppi (2009).
Indeed we shall see that the analogy here is exact: fermionic composition is to quantum
logic as mereological composition is to classical logic. That is, while it is well-known
that the mathematical structures used to describe the relationship between objects in
mereology or propositions in classical logic are the same (namely, Boolean algebras), so
too the the mathematical structures used to describe the relationship between fermions
or propositions in quantum logic are the same (namely, Hilbert lattices).

The structure of the article is as follows. In Section 2, I discuss briefly the issue of
permutation invariance in quantum mechanics. In Section 3, I outline classical mereology
and offer a means to “translate” the states of quantum mechanics into Tarskian models,
so that the question of whether mereology holds of them can meaningfully be put. Section
4 contains the main results, and considers one saving strategy for mereology.

2 Permutation-invariant quantum mechanics

In this Section I will introduce the key formal and interpretative basics for our discussion
of fermionic composition. The main motivation is to define (or redefine) entanglement in
a permutation-invariant setting in a physically salient way, particularly for fermions. I
will argue that, under the most appropriate definitions of these terms, there are fermionic
states that are not entangled; these states will be the focus of the results of Section 4.

2.1 Permutation invariance and its interpretation

Permutation-invariant quantum mechanics is standard quantum mechanics with the ad-
ditional condition of permutation invariance. We begin with the single-system Hilbert
space H. From this we define the N-fold tensor product ®VH, the prima facie state
space for N “indistinguishable” systems (their indistinguishability is expressed by the
fact that any two factor Hilbert spaces are unitarily equivalent). The joint Hilbert space
®NH carries a natural unitary representation U : Sy — U(®NH) of the group Sy of
permutations on N symbols. For example, the permutation (ij), which swaps systems
i and 7, is represented by the unitary operator U(ij) defined on basis states (having
chosen an orthonormal basis {|¢x)} on H) by

U(ij)or)® .. . ®dr)® ... ®[dr,) ® ... ® |dry)
= [0r)® ... ®lPr,) R ... ®|Pr,)® ... @ |dry) (1)
and then extended by linearity. Permutation invariance, otherwise known as the In-

distinguishability Postulate (Messiah & Greenberg 1964, French & Krause 2006), is the
condition on any operator Q € B(®"VH), that it be symmetric;* i.e. for all permutations

4This use of ‘symmetric’ is not to be confused with the condition that ()|Q¢> = (Qv|¢) for all
%), |¢) € dom(Q).



7 e Sy and all states [¢) € @VH),

WU (m)QU () by = (¥|Q[w) (2)

The representation U is reducible, and decomposes into several copies of inequivalent
irreducible representations, each irreducible representation corresponding to a different
symmetry type; namely bosonic states, fermionic states and (if N > 3) a variety of
paraparticle states (see e.g. Tung 1985, Ch. 5). If we consider only the information
provided by the symmetric operators, we treat permutation invariance as a superselection
rule, and each superselection sector corresponds to one of these symmetry types.

What does it mean to “impose” permutation invariance? Isn’t it rather that per-
mutation invariance holds of some operators and not others? I propose that imposing
permutation invariance means to lay it down as a necessary condition on any operator’s
receiving a physical interpretation. This justifies, and is justified by, treating the factor
Hilbert space labels—i.e. the order in which single-system operators and states lie in the
tensor product—as nothing but an artefact of the mathematical formalism of quantum
mechanics. That is a heterodox position and, as we shall see (Section 4.1), it leads to
the overturning of many commonly held beliefs in the quantum philosophy literature.

So what is the justification for interpreting the factor Hilbert space labels in this
heterodox way? Of course, the ultimate justification is that it leads to an empirically
adequate theory. And while it is an empirical fact that elementary particles exhibit
statistics consistent with their being either bosons or fermions, this fact is logically
weaker than the claim that factor Hilbert space labels represent nothing. It could be, as is
commonly assumed, that factor Hilbert space labels represent (or name) the elementary
constituent systems, and that the joint state of any assembly of elementary particles
remains in the fermionic or bosonic sector under all actual physical evolutions due only
to the fact that the corresponding Hamiltonian happens to be permutation-invariant.
Indeed, this interpretative gloss is offered by many authors (e.g. French & Redhead
1988; Butterfield 1993; Huggett 1999, 2003; French & Krause 2006; Muller & Saunders
2008; Muller & Seevnick 2009; Caulton 2013).

However, I wish to suggest that the physical emptiness of the factor Hilbert space
labels offers the best explanation of the empirical fact that permutation invariance al-
ways holds true. This suggestion is in line with a more general interpretative stance in
physics: that any exact symmetry is a symptom of representational redundancy in the
corresponding theory’s formalism.

My claim to offering the ‘best explanation’ of permutation invariance is need of some
elaboration.’ Of course, I am not claiming that the interpretative line that permutation-
invariance reflects representational redundancy is empirically better supported than its
rivals: the relevant empirical predictions (namely, Bose-Einstein and Fermi-Dirac statis-
tics) are identical under any interpretation and not at issue. Moreover, it must be
admitted that any proposed explanation is to be judged according to the commitments

5Thanks are due to an anonymous referee for pressing me on this point.



it entails. Given the results of Section 4.1, if mereology is held sacred, this (modulo
Section 4.2’s considerations) will be an overriding consideration against the interpreta-
tion of permutation invariance proposed here. With this in mind, I will now articulate
two theoretical considerations which, all else being equal, favour the representational re-
dundancy interpretation over the orthodox interpretation. I will then address quasi-set
theory separately.

The first consideration is Ockham’s razor, according to which, all else being equal,
simpler explanations are to be preferred over less parsimonious ones. In this case, Ock-
ham’s razor is to be applied to the ontology required for each explanation of permutation
invariance; specifically, the state-independent properties one takes quantum particles to
possess. According to the orthodox line, aside from the familiar properties (mass, charge,
spin) and the state-dependent properties (represented by projectors on the single-particle
Hilbert space) each particle must have one other thing: whatever is represented by the
factor Hilbert space labels. According to the heterodox line, each particle has only
mass, charge, spin, and whatever state-dependent properties. It will not help to clarify,
in defence of the orthodox line, that a factor Hilbert space label does not represents
any property (except perhaps ‘z = a’ for each particle a), but rather the particle itself,
and so no extra ontological commitments are incurred. For it still follows, under the or-
thodox line, that particles may be individuated independently of their state-dependent
properties. There is no call for such ‘transcendental individuality’ (to use French and
Redhead’s (1988) phrase), as the heterodox line shows.

The second consideration is the injunction that one’s explanations should minimize,
as much as possible, the facts one needs to take as brute. According to the orthodox line,
permutation invariance is just a contingent feature of the assembly’s Hamiltonian, and
so must be posited as a brute fact alongside the existence of the particles themselves.
According to the heterodox line, this feature of the Hamiltonian is mandated at the
outset: since factor Hilbert space labels represent nothing at all, any physical quantity
(such as the Hamiltonian) must be invariant under their arbitrary permutation.

These two considerations are related, since a more parsimonious ontology allows for
fewer possibilities, and consequently fewer unrealised possibilities that one must rule out
by positing brute facts. Similar considerations motivate a variety of existence-denying
moves in the history of physics: e.g. Ptolemy’s epicycles (why do they always lead to
elliptical orbits?); the luminiferous ether (why does length contraction and time dilation
conspire so as to prevent us from identifying the ether rest frame?); and gravity, as
separate from geometrical-inertial structure (why are inertial mass and gravitational
charge always equal?).

So much for the orthodox interpretation of permutation invariance. But there is a
significant rival heterodox interpretation that I have so far failed to mention: the “non-
individuals” approach, as explicated by quasi-set theory. If quantum particles are quasi-
set-theoretical m-atoms, then they do not possess transcendental individuality, and they
presumably cannot be described in anything other than a permutation-invariant theory.
So the heterodox interpretation I wish to urge here cannot claim the edge over the “non-



individuals” interpretation on the basis of the above considerations. However, there is
an additional consideration. My heterodox line preserves classical logic—specifically,
the law that every object is self-identical (Vo x = x)—while quasi-set theory suspends
this law for m-atoms (French and Krause (2006, 5)). And while I wish to suggest that
empirical considerations may bring the sanctity of mereology into question, I demur from
suggesting the same of logic.

2.2 Fermionic states and GMW-entanglement

The focus of this paper is fermionic states and their compositional structure. Picking
some orthonormal basis {|¢;)} in H, these states are spanned by states of the form

1
W Z (_1)degﬂ|¢)iﬁ(1)> ® |¢iﬂ<2)> ®...Q |¢iﬂ-(N)> (3)

* meSN

and carry the alternating irreducible representation of Sp; i.e. any permutation 7 is
represented by multiplication by (—1)487 where deg 7 is the degree of the permutation
7 (i.e. the number of pairwise swaps into which = may be decomposed).

Following Ladyman, Linnebo and Bigaj (2013), we may use the mathematical appara-
tus of Grassmann or exterior algebras to represent fermionic states. The exterior algebra
A(V') over the vector space V' (over the field of complex numbers C) is obtained by quo-
tienting the tensor algebra T'(V) := @), TH(V) =CaVa(VV)®(VoVeV)a®...
with the equivalence relation ~ defined so that a ~ 3 iff & and 8 have the same anti-
symmetrization;® i.e.

A(V) = T(V)/ ~ . (1)

For example, [zt ®y] = [~y ®z] and [z ® z] = [0]. We may set V = H, then there is a
natural isomorphism ¢ from the elements of A(#) onto the vectors of the fermionic Fock
space F_(H) := (—D?\}rﬁg{ A(@VH). ¢ simply takes any ~-equivalence class of degree-r
vectors of T"(H) to the anti-symmetric degree-r vector in A(®"H) that is their common
anti-symmetrization. Therefore we may pick out any N-fermion state in A(®VH) by
specifying its pre-image under ¢ in AN (#) (i.e. the subalgebra of A(H) containing only
degree-N vectors).

Elements of A(V') are called decomposable iff they are equivalence classes [z, ® z;, ®
...®z;, | containing product vectors. Not all elements are decomposable; an example is

given in Section ?7. The product on the exterior algebra is the exterior or wedge product
A, defined by its action on decomposable elements as follows:

['1:7;1 ® '1:7:2 ® ct ® xi?‘] A [$i7‘+1 ® :Uir'+2 ® cte ® :Uir+s] = [:Eil ® ':UiZ ® ct e ® mir-f—s] Y (5)

where {z1,z2,...Zqimy} is an orthonormal basis for V' and each ix € {1,2,...,dim V'}.
We then extend the definition of A to non-decomposable elements by bilinearity. (Note

SEquivalently, A(V) is the quotient algebra T(V)/D(V?) of T(V) by the two-sided ideal D(V?)
generated by all 2-vectors of the form z ® z. See e.g. Mac Lane & Birkoff (1991, §XVIL.6).



that if there is a pair i; = i for j # k, then the righthand side of (5) is [0].) For any
aeAN"(V)and any Be A5(V),an B =(—-1)"B raeAN5(V).
In the following, I will, like Ladyman, Linnebo and Bigaj (2013), make use of a

harmless abuse of notation by referring to anti-symmetric states by their corresponding
wedge product. In particular, given an orthonormal basis {|¢;)} on H,

Di) A Din) Ao A iy (6)
will be used as a shorthand for
1 egm
T 2 D 16,0) @191,y ® - B i) ™)

: 71'€SN

The distinction between decomposable and non-decomposable fermionic states has a
clear analogy with the distinction between product and non-product states. However,
decomposable fermionic states have the property, unlike product states, that there are
(up to a possible factor of —1) invariant under arbitrary permutations in their factor
space indices. Therefore the wedge product offers a permutation-invariant way of con-
structing joint states of, say IV fermions, out of N fermion states, much as the tensor
product offers a permutation non-invariant way of constructing joint states for “distin-
guishable” systems.

The analogies between the tensor product in the permutation-non-invariant case
and the wedge product in the fermionic case suggest a redefinition of entanglement for
fermionic states. The standard definition, which which we do not take issue in the
permutation-non-invariant case, is that an assembly’s state is entangled iff it is non-
separable, i.e. it cannot be written as a product state (see e.g. Nielsen & Chuang 2010,
96). This suggests redefining entanglement for fermions so that a fermionic joint state
1s entangled iff it is not decomposable, in the sense given above.

In fact this redefinition has been suggested already, by Ghirardi, Marinatto and
Weber in a series of papers (Ghirardi, Marinatto & Weber 2002, Ghirardi & Marinatto
2003, 2004, 2005), and endorsed by Ladyman, Linnebo & Bigaj (2013).7 Therefore I call
the proposed notion GMW-entanglement. Further discussion of the physical salience of
this notion is taken up in Caulton (2015).

The important fact for Section 4 is that decomposable fermionic states have a feature
that is not shared by non-entangled states under the standard definition. That is that
decomposable fermionic states, corresponding as they do to decomposable elements of
the exterior algebra on H, correspond to subspaces of H. More specifically the state

1) A ld2) Ao A |dN) (8)

where {(¢;|¢;) = d;j, corresponds to the N-dimensional subspace spanned by the degree-1
vectors |¢1), |¢2), . .. |¢pn). This offers a glimpse of two of our main results in Section 77,

"The definition that Ghirardi, Marinatto & Weber actually offer is equivalent to the one above.



namely: (i) parthood between fermionic assemblies is represented by subspacehood; and
(ii) the state of a larger assembly is given by the span of the states of its constituents.
The tension between the two notions of fusion implicit in (i) and (ii) embodies the tension
between classical mereology and the quantum mechanics of fermions.

3 Setting up quantum mechanics for mereology

3.1 Classical mereology

There are several axiomatizations of classical mereology available (see Hovda (2009) and
Varzi (2014) for a discussion); for the purposes of this paper, I have chosen the one that
allows the most perspicuous discussion of its troubles for fermionic systems. Classical
mereology requires only one primitive term, = (parthood). From this we define proper
parthood:

VaVy(zcy o (z Sy & z #y)), (9)

the overlap relation x oy (‘x overlaps y’) in terms of common parthood:
VaVy(z oy & Jz(zE 2z & 2 E y)) (10)
and the disjointness relation x Ly as the contrary of overlap:
VaVy(z Ly < —xoy) (11)

Finally, given any 1-place formula ¢, something is a fusion of the ¢s iff all and only its
overlappers overlap some ¢. So we define Fy(x) (‘z is a fusion of the ¢s’) as follows:

Va(Fy(z) < Vy(y oz < F2(¢(2) & z0y))) (12)

With these definitions, we may now present the two axioms and one axiom schema. I
also include a third axiom, Aziomicity, which is not essential to classical mereology, but
which will hold in all of the theories discussed here.

1. Partial Order. E is a partial order (i.e. it is reflexive, anti-symmetric and transi-
tive).

2. Strong Supplementation. If something is not a part of a second thing, then some
part of the first thing is disjoint from the second thing:

VaVy(z £y — 3z(z =2 & 27Ly)) (13)

Or, equivalently (and perhaps more elegantly), if every part of some thing overlaps
a second thing, then the first thing is a part of the second thing:

VaVy(Vz(: S 2 — zoy) >z C y) (14)



3. Atomicity. Everything has a part that has no proper parts.

Vedy(y Sz & —Jzz = y) (15)

4. Unrestricted Fusion. If there are some ¢s, then there is a fusion of the ¢s:
(Fzd(x) — JuFy(z)) (16)

This is imposed for all substitution instances of ¢.

3.2 Finding the subsystems in the quantum formalism

It will be key to proving the results in Section 4 that we have some way of identifying in
the quantum formalism when the joint system has subsystems in particular states. This
requires giving some physical interpretation to that formalism. In this we are constrained
by the requirements of permutation-invariance to give a physical interpretation only to
those quantities which are permutation invariant.

We assume that we are dealing with an N-fermion assembly, so the joint state lies
in A (®N H), where H is the single-system Hilbert space. We expect any subsystem’s
state to lie in A (®"H), where 1 < r < N. I will categorise projectors according to the
Hilbert space they act on. A projector is of degree-r iff it acts on A (®"H) (where r = 1
corresponds to the single-system Hilbert space H).

Choose any degree-1 projector P. Its orthocomplement is P := 1 — P. From P we
may define a family of projectors {o3(P) |1 <r <s< N}:

US(P) = PI®...QP

T
U‘f(P) = PP ®..QP +P ®PR..®P, + ... + PP R..®P ®P

~1 —2 ~1
JS(P) = PRIPRP ®..QP +PRIP  ®XPR...QP,
-2 -3
+ ...+ P®..QP PR P
—2

o5(P) = P®..®P (17)

—_——

s

These projectors will be the most important ones below. Each of(P) is a symmetric
projector, and so may be interpreted as corresponding to a physical property. I propose
the following interpretation:

02(P) corresponds to the property ‘Exactly r of s degree-1 constituents have

property P’.

10



This interpretation can obviously be justified in the context in which permutation in-
variance is not imposed. In that case, each summand of o7 (P), which acts on exactly
r of s factor Hilbert spaces with P and on the remaining s — r with P, can itself be
given a physical interpretation, according to which some selection of r named degree-1
systems have property P and the remaining degree-1 systems do not. The sum over all
summands can then be interpreted as a (quantum) disjunction over all possible selections
of r named degree-1 systems.

However, when permutation invariance is imposed, this justificatory story is not
available to us. For the individual summands of ¢7(P) are typically not themselves
permutation-invariant, and so, as per our discussion in Section 2, cannot receive a phys-
ical interpretation. Instead, the physical interpretation offered above must be taken as
primitive.

It is worth pointing out some formal properties of o7 (P), which are consistent with
the interpretation offered. First, it must be emphasised that the domain of oZ(P) is

restricted to A (®°H): so, in particular, if d := dim(P) = s, then dim (o2 (P)) = CSZ ;
otherwise o%(P) = 0, due to Pauli exclusion. Second, we have that o;(P) = o5_,.(PL),
so exactly r of s degree-1 constituents have the property P iff exactly s — r degree-1
constituents have the property P,, which is the quantum negation of P. Third, due to
Pauli exclusion, ¢2(P) = 0 if dim(P) < r, or, since ¢3(P) = o5_.(P.), if dim(P,) =
d — dim(P) < s — r, where d := dim(#). So a non-vanishing o(P) requires r <
dim(P)<d—s+r.

An important result for later will be

Proposition 3.1 For any degree-1 projectors P,Q: P < Q iff 05(Q) < o3(P), where
r:=dim(P) and s := dim(Q).

Proof.
(Left to Right.) Since Y )_,0f(P) = o3(1), which is the identity on A(®°H), we can
multiply 02(Q) on the right with the identity to obtain

s

03(Q) = 3(Q) (Z Uf(P)> = D, 53(Q)oi(P). (18)
=0

=0

Now dim(P) = r, so o (P) = 0 for ¢ > r; so at most the first r terms of this sum are
non-vanishing. Now decompose @ into Q = P + R, where R := P, QQ = QP,. Then
o3(Q)o(P) = 03(Q)05_i(PL) = 03(Q)o5_,(R). But dim(R) = s — 1, s0 03_(R) = 0
for s — 1 > s —r, ie., i < r; so at most the last s — r terms of the sum in (18)
are non-vanishing. It follows that the only non-vanishing term in (18) is for i = r;

so 03(Q) = 02(Q)os(P). By multiplying 0%(Q) on the left with the identity, we can

S T

similarly show that o%(Q) = o3(P)c$(Q). It follows that o3(Q) < o3(P).

(Right to Left.) o%(Q) < oi(P) means that o2(P)ci(Q) = oi(Q)oi(P) = 03(Q). It

follows that P and ) commute, and that either P > Q) or P < Q. Define S := QP = PQ.

11



Assume for reductio that P > @); then, since dim(P) = r, it must be that dim(S) < r.
In that case o2(S) = 0, due to Pauli exclusion. But o%(Q)c:(S) = 03(Q)o:(P) = 02(Q)

s T

and dim(c$(Q)) = 1; so dim(o;(S)) = 1. Contradiction. So we must have P < Q. [

The physical interpretation of this result is as follows: for any two degree-1 projectors
P and @, P < @ is equivalent to the condition that, if a number dim(Q) of elementary
constituents satisfy @, then exactly dim(P) of them satisfy P. We can understand this
as a result of Pauli exclusion.

3.3 Translation rules

The question whether mereology holds true or not for quantum mechanics is prima facie
ill-formed: mereology is a theory axiomatised in a first-order formal language, while
quantum mechanics has no first-order axiomatisation and is instead presented in the
mathematics of linear operators on Hilbert spaces. Therefore we require some way to
“translate” the claims of one theory into the framework of the other. It will be simplest
to run the direction of translation from quantum mechanics to mereology.

More specifically, we will set up a correspondence between the states of fermionic
assemblies, which are normalised vectors in some Hilbert space, and Tarskian models.
This correspondence will be constrained by what I call “translation rules”. I hasten to
add that the goal is not to do quantum mechanics in first-order logic! The goal is simply
to represent the states of quantum mechanics in a form appropriate for comparison with
mereology.

First some general remarks regarding the objects and properties of the “translated”
quantum states:

Objects. The domain of any model will contain only two kinds of objects: quantum
systems and projectors. In the following, I will use lower case variables to range over
quantum systems and upper case variables to range over projectors. (This is just a
notational convenience: our models are first-order, and both kinds of object are objects
in the Frege-Quine sense of belonging to the first-order domain.) Any model will have
the total system in its domain.

Predicates. There will only be two primitive predicates. The first is =, denoting the
mereological parthood relation, already discussed. For our purposes, we may stipulate
that this relation holds (if at all) only between quantum systems. The second primitive
predicate is E(z, P), which denotes a certain dyadic relation between a quantum system
z and projector P. We stipulate that F never holds between two quantum systems
(e.g. E(z,y)) or two projectors (e.g. E(P,Q)), or between a projector and a system
in the wrong order (e.g. E(P,z)). E(x,P) has the following interpretation: x has the
property associated with P.

The translation rules are now presented as follows:

1. (Total System).
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The total system €, whose state is represented by a ray in A(@VH), exists.

2. (Ezistence and Completeness of Projectors).

All and only symmetric projectors of rank r, where r € {1,2,..., N}, exist.

3. (Eigenstate-Eigenvalue Link).
For any system z and any projector P: E(x, P) iff 2’s state is an eigenstate of P

with eigenvalue 1.

4. (Emistence of Subsystems).
For any degree-1 projector P and all r =1,2,...,N: E (Q,Zi]\ir alN(P)) iff there

is some system x such that E(z, o] (P)).

5. (Uniqueness of Subsystems).
For any degree-1 projector P and all r = 1,2,... ,N: E (Q,U,J,V(P)) iff there is
some unique system z such that E(z, o) (P)).

6. (Non-GMW-Entangled Systems).
For all systems x, there is some r € {1,2,..., N} and some degree-1 projector P
with dim(P) = r such that E(z, o] (P)).

7. (Definition of Parthood).

For any quantum systems x and y, x E y iff: for any degree-1 projector P and all
se{l,2,...,N}, if E(y,o%(P)), then there is some r < s such that E(x, o). (P)).

Some discussion about these rules is in order. I take each one in turn.

1. (Total System).

This rule ensures that the total system 2 belongs to the domain.

2. (Ezistence and Completeness of Projectors).

This rule expresses two essential interpretative assumptions. The first is that the
quantum formalism is complete, so that no physical facts are left unrepresented
by the quantum state. The second assumption is none other than the interpreta-
tion of permutation invariance as underpinned by representational redundancy, as
discussed in Section 2.

3. (Eigenstate-Eigenvalue Link).

This rule also expresses the completeness of the quantum formalism. It has a
controversial element, which is that it applies not only to the total system 2, but
also all subsystems; see below.
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4. (Ezistence of Subsystems).

This is the only rule which introduces systems other than € into the domain. The
guiding idea, following from the discussion in Section 3.2, is that at least r of the
total system’s N degree-1 constituents have some property P iff there is at least
one system all r of whose degree-1 constituents have property P. However, we
will see later that this interpretation cannot quite be correct, if by ‘constituent’
we mean atomic part.

5. (Uniqueness of Subsystems).

The guiding idea here is that exactly » of N degree-1 constituents of the total
system have property P iff there is a unique system all r of whose degree-1 con-
stituents have property P. The existence-entailing component is redundant, given
(Existence of Subsystems), but is included here for expedience.

This rule permits us to extend (FEigenstate-Eigenvalue Link) to subsystems, in the
following way. Given a unique x such that E(x, o) (P)), we may infer that = has
a state whose corresponding density operator has its domain and range in the
range of o] (P) (which is a projector). For any (degree-r) projector @) such that
Qo) (P)Q = o).(P), we may infer F(z, Q).

6. (Non-GMW-Entangled Systems).

Since dim(P) = r, dim(o; (P)) = 1. In fact the range of o] (P) is the ray spanned
by the degree-r non-GMW-entangled state |p1) A [¢p2) A ... A |¢r), where {|¢i)} is
any family of orthonormal degree-1 states which span the range of P. So this rule
entails that all systems occupy decomposable, i.e. non-GMW-entangled, states.

This rule is problematic if N > 4. For, in that case, it is not true that any non-
GMW:-entangled state can be decomposed only into states that are themselves
decomposable. This corresponds to the well known result for exterior algebras
that the non-decomposable degree-2 vector & := %(a Ab+c A d) satisfies E A € =
a AnbAacad However, we may take this rule as a restriction of the domain to
those systems which are non-GMW-entangled. All future reference to systems is
then to be taken as implicitly concerning only non-GMW-entangled systems.

7. (Definition of Parthood).

This connecting principle can only be justified for non-GMW-entangled fermionic
systems. The idea is that x is a part of y iff all the degree-1 constituents of x are
also constituents of y, so if all of y’s degree-1 constituents have some property P,
then a fortiori all of x’s degree-1 constituents have that same property.

4 Composition for fermions

We are now in a position to establish the main results of this paper. They are presented
in Section 4.1. Section 4.2 contains a concluding discussion.
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4.1 Main results

Proposition 4.1 (Unique Degree) FEvery system has a unique degree in {1,2,...N};
i.e. if E(z, P) and E(x,Q), then deg(P) = deg(Q).

Proof. Given (Non-GMW-Entangled of Systems), for system x there is some r € {1,2,..., N}
and some degree-r projector P such that dim(P) = r and E(z, 0] (P)). By (Figenvector-
Figenvalue Link), we can therefore attribute to x the state |¢1) A [p2) A ... A |dr), where
span({|¢;) | i € {1,2,...,7r}}) = ran(P). This state is an eigenstate only of projectors

of degree-r; so by (Eigenvector-FEigenvalue Link) again, if E(x,Q) for any projector @,
then @ has degree r. []

Definition 4.1 (Degree of Systems) For any system x, deg(x) is the unique degree
of any projector P such that E(z, P).

Proposition 4.2 (Reflexivity of =) For any system z, x E x.
Proof. This follows straightforwardly from (Definition of Parthood). []

Proposition 4.3 (Transitivity of =) For any systems x,y,z, if t & y and y E z,
then x & z.

Proof. This follows straightforwardly from (Definition of Parthood). []

Proposition 4.4 (State-System Uniqueness 1) For any degree-1 projector P, if there
is some system x such that E(x, o] (P)), where r = dim(P), then x is unique.

Proof. Let P be any degree-1 projector with dim(P) = r. Assume that there is an x
such that E(z, 0" (P)). By (Existence of Subsystems), E(Q, o (P)). Since dim(P) = r,
Zﬁir oN(P) = oM (P); so E(Q,Zij\ir oN(P)). By (Uniqueness of Subsystems), there is

a unique system y such that E(y, o) (P)); so x = y and z is unique. []

Proposition 4.5 (State-System Uniqueness 2) For any system x, the degree-1 pro-
jector P such that E(x,o0).(P)), where r = dim(P), is unique.

Proof. Let x be any system. By (Non-GMW-Entangled Systems), there is some degree-1
projector P such that E(x, o] (P)), where r = dim(P). Suppose for reductio that there
is some other degree-1 projector @ with dim(Q) = r such that E(z,07.(Q)). Q £ P and
P £ @, since P # @ and dim(P) = dim(Q). So by (Definition of Parthood), x & x,
which contradicts Proposition 4.2 (Reflexivity of =) [

This allows us to attribute to each system a pure state, as follows:
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Definition 4.2 (Subsystem States) For any system x, the state of x is the unique
projector o). (P) such that r = dim(P) = deg(z) and E(x,o).(P)).

With this definition we can extend application of (Eigenstate-Eigenvalue Link) to sys-
tems other than €.

Proposition 4.6 (Anti-Symmetry of =) For any two systems z,y, if © = y and
yE x, then x = y.

Proof. (Definition of Parthood) and Proposition 4.1 (Unique Degree) entail: if x = y
and y = z, then for all degree-1 projectors P and all r € {1,2,..., N}, E(x,0](P)) iff
E(y,o](P)). From (Non-GMW-Entangled Systems), there is some degree-1 projector
@ such that E(x,0,(Q)) and dim(Q) = r. So also E(y,0,(Q)). By Proposition 4.4
(State-System Uniqueness 1), x = y. []

Propositions 4.2, 4.3 and 4.6 entail that parthood for fermions is a partial ordering
relation, thereby satisfying the first mereological axiom.

Corollary 4.7 (Criterion of Identity) For any systems x,y, x = y iff: for all pro-
jectors P and all v € {1,2,...,N}, E(x,0.(P)) iff E(y,o(P)).

Proof. Left to Right: This follows from the indiscernibility of identicals. Right to Left:
From (Definition of Parthood), If for all projectors P and all r € {1,2,... N}, E(z,0).(P))
iff E(y,o](P)), then = y and y = z. From Proposition 4.6 (Anti-Symmetry of £) it
follows that =z = y. [

In the particular case in which deg(xz) = deg(y) = 1, i.e. for elementary fermions,
this entails a satisfyingly straightforward statement of the Pauli Exclusion Principle:

x =y iff for all degree-1 projectors P: E(x, P) iff E(y, P).

An important consequence of this is that in any non-GMW-entangled joint state, any
two individual fermions are discernible by monadic predicates (a phenomenon which
Muller & Saunders (2008) call absolute discernibility). This is contrary to the orthodoxy
in the quantum literature, in which bosons and fermions are taken to be either merely
weakly discernible or utterly indiscernible (French & Redhead 1988; Butterfield 1993;
Huggett 2003; French & Krause 2006; Muller & Saunders 2008; Muller & Seevinck 2009;
Caulton 2013).

This break with the orthodoxy comes down to the hard line I wish to urge regarding
permutation invariance, according to which the invariance is to be construed as an
indication of “gauge” (i.e. representationally redundant) quantities in the formalism.
Here the “gauge” quantities in question are the single-particle factor Hilbert space labels
(or, the order in which the single-particle Hilbert spaces appear in the tensor product).
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On the view that they represent nothing at all, permutation invariance follows as a
compulsory requirement for any quantity’s being genuinely physical.

According to the opposing, orthodox interpretative line in the quantum identity liter-
ature, these labels represent or denote the constituent elementary (i.e. rank-1) systems.
Guided by this interpretation, one may recover the state of an elementary system x by
performing a partial trace on the total system (2’s density operator, over all states of
rank-1 systems disjoint to . Given permutation invariance, one obtains the same re-
duced density operator for each elementary system; hence the celebrated indiscernibility
results (see French & Redhead (1988, 240-2)).

However, this partial trace operation can have no direct physical meaning on the
hard line interpretation, since it requires identifying each rank-1 system by its corre-
sponding factor Hilbert space label. If the hard line interpretation is right, we cannot
identify rank-1 systems this way.® Instead, given Corollary 4.7, the rank-1 systems may
be identified according to their qualitative properties, represented in the formalism by
degree-1 projectors; i.e. projectors which act on the single-particle Hilbert space. This
method for identifying constituent systems is discussed by French and Krause (2006,
§4.2.1), though rejected in the light of the indiscernibility results just mentioned. The
rejection is sensible if, but only if, one takes the orthodox interpretative line on permuta-
tion invariance. The qualitative individuation strategy is pursued in detail by Ghirardi,
Marinatto and Weber (2002), Ghirardi and Marinatto (2003, 2004, 2005), Dieks and
Lubberdink (2011) and Caulton (2015).

Proposition 4.8 (2 is Maximal) Every system is a part of the total system Q.

Proof. Take Q. Its state is [¢)1) A |[th2) A ... A [UN). By (Figenstate-FEigenvalue Link),
it follows that E(Q,o¥(P)), where ran(P) = span({|1;)}). Since dim(c¥(P)) = 1
and because of (Eigenstate-Eigenvalue Link), any other degree-1 projector () such that
E(Q,0¥(Q)) must satisfy o (P)) < o¥(Q), and so P < Q.

Now take any system x. From (Non-GMW-Entangled Systems), there is some r €
{1,2,..., N} and some degree-1 projector R such that E(x, o0, (R)) and dim(R) = r. By
Proposition 4.4 (State-System Uniqueness 1), x is unique. We may now use ( Uniqueness
of Subsystems) to infer E(Q, oY (R)). But from the previous paragraph, we must have
o (P) < oY (R). So, by Proposition 3.1, R < P. From this and (Eigenstate-Eigenvalue
Link), it follows that E(x,o).(P)). And by (FEigenstate-Eigenvalue Link) again, for any
degree-1 projector @ such that P < Q, E(z,0](Q)).

From the two preceding paragraphs it follows that, for any degree-1 projector @) such
that E(2, o¥(Q)), we also have E(x,0%(Q)). So, by Proposition 4.1 (Unique Rank) and
(Definition of Parthood), x € Q. []

8Since one obtains the same reduced density operator for each Hilbert space label, the result is
permutation-invariant. Shouldn’t there therefore be some physical meaning to the reduced density
operator so obtained? Indeed there is: it can be interpreted as the average state of all the rank-1
systems. See Caulton (2015) for more details.
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Definition 4.3 (System-Spaces) For any system x, the system-space s(x) associated
with x is the range of the unique degree-1 projector P such that dim(P) = deg(x) =: r
and E(z, 0] (P)).

So, as anticipated in Section 2.2, any system z is associated with a subspace of the
single-particle Hilbert space . Moreover, for any system x, dim(s(x)) = deg(x). In
general, for any system z, we may write x’s state as |¢1) A |p2) A ... A |@), where
r := deg(z) and the {|¢;)} are orthonormal; then s(x) = ran(}>;_; i ){¢i)-

Proposition 4.9 (Subspacehood Represents Parthood) For any systems x,y, s(z)
s(y) iff r=y.

Proof. Left to Right: Assume s(z) € s(y). Given Proposition 4.5 (State-System Unique-
ness 2), let P be the unique degree-1 projector such that dim(P) = deg(z) =: r and
E(x,07(P)) and @ be the unique degree-1 projector such that dim(Q) = deg(y) =: s
and F(y,0:(Q)). Since s(x) € s(y), P < Q and r < s. dim(c3(Q)) = 1, so any degree-1
projector R such that E(y,o:(R)) must be such that Q) < R, whence E(z, o). (R)). From
(Definition of Parthood), it follows that z = y.

Right to Left: Assume x = y. Given Proposition 4.5 (State-System Uniqueness 2), let
P be the unique degree-1 projector such that dim(P) = deg(z) =: r and E(z,0).(P)) and
@ be the unique degree-1 projector such that dim(Q) = deg(y) =: s and E(y,0%(Q)).
From (Definition of Parthood) and Proposition 4.1 (Unique Degree), it follows that
E(z,00(Q)). But dim(o)(P)) = 1, so P < Q; whence s(z) € s(y). [J

Corollary 4.10 (System-Subspace Link) For any systems z,y, s(z) = s(y) iff z =
Y.

Proof. The Right to Left direction is trivial. Left to Right: Assume s(x) = s(y). Then

s(x) € s(y) and s(y) < s(x). It follows from Proposition 4.9 (Subspacehood Represents
Parthood) and Proposition 4.6 (Anti-Symmetry of £) that x = y. []

Proposition 4.11 (Each System-Space is a Subspace of s(Q2)) For any system x,
s(z) < s().

Proof. This follows straightforwardly from Proposition 4.8 (£ is Mazimal) and Propo-
sition 4.9 (Subspace Represents Parthood). []

Proposition 4.12 (Each Subspace of 5({2) is a System-Space) For any non-zero
space t < §(S2), there is a unique x such that s(x) = r.

Proof. Take any non-zero space r  s(€2). This defines the degree-1 projector P for which
ran(P) =r. Let r := dim(P). s(Q2) similarly defines the degree-1 projector @) for which
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ran(Q) = s(2) and dim(Q) = N. We know from Definition 4.3 (System-Spaces) that
E(Q,08(Q)). And, since r € (), P < @; and so, by Proposition 3.1, o¥(Q) < oV (P).
Using (Eigenstate-Eigenvalue Link) we may infer that E(S2, oN(P)). From (Uniqueness
of Subsystems) it follows that there is a unique system x such that E(z,o)(P)). From

Definition 4.3 (System-Spaces) it follows that s(z) = r. [

The foregoing results show that, given our non-GMW-entangled N-fermion assembly
Q, the totality of all non-GMW-entangled systems in existence correspond one-to-one
to the subspaces of s(12), i.e. the elements of the exterior algebra A(s(2)) (except for
the zero subspace). Using the fact that parthood is represented by subspacehood, we
can infer the representations of the other mereological notions: overlap, product. Two
objects overlap iff they possess a common part; so two systems overlap iff their systems
spaces have a non-zero intersection. The mereological product z my of any two systems
x and y (if it exists), is then a system whose system-space is the intersection of the
two corresponding system-spaces. this greatly clarifies the compositional structure of
non-GMW-entangled fermionic states.

Proposition 4.13 (Parthood Obeys Atomicity) FEvery system has some part that
has no proper parts.

Proof. We use Propositions 4.9 (Subspacehood Represents Parthood), 4.11 (Each System-
Space is a Subspace of §(§)) and 4.12 (Each Subspace of s(2) is a System-Space). Take
any system x. x has a system-space s(z) which is a subspace of §(2). s(x) is spanned
by deg(z)-many 1-dimensional subspaces of §(£2); each one corresponds to a degree-
1 system. Since parthood is represented by subspacehood, degree-1 systems have no
proper parts. []

Proposition 4.14 (Parthood Obeys Strong Supplementation) For any systems
x and y, if x is not a part of y, then some part of x is disjoint from vy, i.e. there is some
system z such that z C x and s(z) N s(y) = .

Proof. Assume that x &= y. So by Proposition 4.9 (Subspacehood Represents Parthood),
s(x) € s(y). Then there is some subspace 3 of s(z) such that 3 N s(y) = . By
Proposition 4.12 (Fach Subspace of 5() is a System-Space), 3 = s(z) for some system
z. By (Subspacehood Represents Parthood) again, z and y are disjoint. []

Thus we have proven all of our mereological axioms, except the axiom schema Unre-
stricted Fusion. The correspondence between systems and the elements of the exterior
algebra A(s(€2)) leads to a surprising result:

Proposition 4.15 (Continuum-Many Atomic Parts) For any system x, if deg(z) =
2, then x has continuum-many atomic parts.

Proof. If deg(z) = 2, then dim(s(x)) = 2. So there are continuum-many 1-dimensional
subspaces y  s(z). Each one corresponds to a degree-1 (and therefore atomic) system.

OJ
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A vivid example is provided by the 2-fermion system {29 in the spin-singlet state

DAl = = (Do — el (19)

V2
It is well-known that this state is spherically symmetric, in that [1)A|]) = |<)A|—) =
..., for any pair of oppositely-pointing spin—% states. In our framework, this spherical
symmetry reflects the fact that 2 possesses a continuum-multitude of atomic parts: one
of which is spin-up, one is spin-down, one is spin-left, etc.

We are now ready to see the conflict with classical mereology. For simplicity, I use
the example of degree-1 systems.

Proposition 4.16 (Non-Existence of Mereological Fusions 1) For any two degree-
1 systems x and y: if x # y, then there does not exist a system z which is the mereological
fusion x Ly of x and y, i.e. which is such that Yw(w oz < (wox v woy)).

Proof. Since x and y are degree-1 systems and therefore atomic, x # y entails that x
and y are disjoint. Since all systems’ states are represented by subspaces, z’s state is
represented by a subspace. So we seek a subspace 3 < §(€2) such that

Forallmcs(Q), wni#g iff (wns(z)# T or wns(y) # ). (20)

3 must have dimension at least 2, since it must overlap both s(z) and s(y). But now
consider some 1-dimensional subspace o € 3 which is skew to (i.e. neither coincident
with nor orthogonal to) both s(z) and s(y); such a subspace will always exist (take
e.g. the normalised sum proportional to s(x) + s(y)). wg overlaps 3, yet overlaps neither
s(z) nor s(y). So no 3 exists such that (20) is satisfied. [

Proposition 4.17 (Non-Existence of Mereological Fusions 2) There are some sat-
isfied 1-place formulas ¢ such that there is no system x for which Fy(x).

Proof. Let x and y be any two distinct degree-1 systems, and let P and () be the degree-1
projectors such that dim(P) = dim(Q) = 1 and E(z, P) and E(y, Q). Recall that, for
any ¢, the fusion of the ¢s is defined by

V2(Fy(z) < Yw(wo z « Jt(¢(t) & tow))) (21)

We now set ¢(t) := (E(t,P) v E(t,Q)). ¢(t) is satisfied by = and y only: for all systems
are individuated by their states, given Corollary 4.7 (Criterion of Identity). So ¢(t) is
equivalent to (t = =z vt = y). By (21), the fusion z of the ¢s satisfies Yw(w o z <
(wox vwoy)). By Proposition 4.16 (Non-Ezistence of Mereological Fusions 1), no such
2z exists. []

It is worth emphasising that the failure of (Unrestricted Fusion) entailed by the
above proposition is particularly extreme. For any two distinct degree-1 systems, no
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system exists which is their fusion. This result may be generalised to higher-degree
systems: in general, no fusion of x and y exists if the union of their subspaces s(x) Us(y)
is not itself a subspace; i.e., if x & y and y & x. This is inconsistent not only with
(Unrestricted Fusion), but also with any plausible substitute which would allow fusions
under restricted conditions. Let an axiom for the existence of fusions count as ‘trivial’
iff it permits the existence of the fusion of x and y only when x = y or y = = (in which
case x Ly = x or x Ly =y). Then the above result is inconsistent with any non-trivial
existence axiom for mereological fusions.”

This extreme failure of (Unrestricted Fusion) might seem surprising, since we have a
way of producing a fermionic joint state out of any collection of degree-1 fermion states:
this is given by the wedge product, as discussed in Section 2.2. What is going on here is
that the corresponding notion of composition is not mereological.

Take any systems x and y. There are two degree-1 projectors P and () such that
dim(P) = deg(x) =: r, dim(Q) = deg(y) =: s, E(z,0,.(P)) and E(y,c%(Q)). Now let
Y (P, Q) be the degree-1 projector whose range is the span of the ranges of P and Q.
Then we may define

Definition 4.4 (Fermionic Fusion) For any systems x andy and associated degree-1
projectors P and (), the fermionic fusion of v and y, denoted x+ ;y, is the unique system
z such that E(z,0t(2(P,Q))), where t = dim %(P, Q).

The existence and uniqueness of fermionic fusion is guaranteed by Propositions 4.12
(Each Subspace of §(2) is a System-Space) and 4.4 (State-System Uniqueness 1). This
constitutes a fermionic analogue to Unrestricted Fusion.

To better understand fermionic fusion, we note that x +; x = x, and, denoting the
vector-state of any system z by v(x),

Proposition 4.18 (Wedge product and fermionic fusion) Ifz andy are degree-1
systems such that v(x) L v(y), then v(z 4+ y) = v(z) A v(y).

Proof. Since v(x) L v(y), v(x) A v(y) corresponds to a correctly normalised anti-
symmetric vector, corresponding to the space spanned by v(z) and v(y). [J

Proposition 4.19 (Failure of Distributivity) For not all systems x,y,z: v 1 (y +¢
z2)=(xny)+s(zxnz).

Proof. It suffices to give an example of three degree-1 systems all of whose states are
coplanar; see Figure 1. [J

At this point we see a strong analogy between the structure of fermionic composition
and the quantum logic of Birkoff and von Neumann (1936). For a fuller discussion

T am grateful to Matteo Morganti for this observation.
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Figure 1: Three coplanar vectors, corresponding to degree-1 fermionic systems in the
states [ 1), | |) and | —) := \%ﬂ 1>+11)). The plane corresponds to a degree-2 fermionic
system in the state | 1) A | |), which is the fermionic fusion of any pair of the three
degree-1 systems. Mereological product does not distribute over fermionic fusion; in this
example represented by the fact that the intersection of | —) with the span of | 1) and
|1) (=|—)) is not equal to the span of the intersections of |—) with | 1) and |]) (= 0).

of quantum logic (particularly subtleties involving infinite-dimensional Hilbert space),
see Dalla Chiara, Giuntini & Rédei (2007). Here it will suffice to draw the following
analogies between relations between and operations on objects and propositions, both
classical and quantum:
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Classical composition ‘ Classical logic H Fermionic composition ‘ Quantum logic

Classical system Classical Fermionic Quantum
proposition system proposition
Total system Tautology Total system €2 Tautology
Parthood = Classical Parthood = Quantum
entailment entailment
Mereological Classical Mereological Quantum
product m conjunction A product m conjunction
Mereological Classical Fermionic Quantum
fusion disjunction v fusion + disjunction
Classical Classical Fermionic Quantum
complement negation — complement negation (ortho-
complement) L

In each row, analogies between columns 1 and 2 and columns 3 and 4 respectively are
exact insofar as they receive the same mathematical representation, in Boolean algebras
and Hilbertian lattices, respectively. Analogies between columns 1 and 3 or between
columns 2 and 4 are looser.

A final comment. For those of us who wish to think of the middle-sized dry goods of
everyday life as “made up” of fermions, it might appear at first blush as something of
a mystery how to reconcile the Hilbertian structure of fermionic composition with the
Boolean structure of our heuristic understanding of the composition of middle-sized dry
goods. In fact there need be no mystery here: macroscopic objects are individuated (at
least approximately) by their spatial boundaries. This picks a preferred orthobasis in
the Hilbertian lattice of fermionic states, and the subspaces spanned by the rays in this
basis have the familiar structure of a Boolean algebra.

4.2 Can mereology be saved?

The idea that quantum mechanics might prompt a revision in logic, a view argued by
Putnam (1969, 1974), has received rather short shrift. For example, here is Jauch (1968),
quoted in Dalla Chiara, Guintini and Rédei (2007):

The propositional calculus of a physics system has a certain similarity to the
corresponding calculus of ordinary logic. In the case of quantum mechanics,
one often refers to this analogy and speak of quantum logic in contradis-
tinction to ordinary logic. ... The calculus introduced here has an entirely
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different meaning from the analogous calculus used in formal logic. Our cal-
culus us the formalization of a set of empirical relations which are obtained
by making measurements on a physical system. It expresses an objectively
given property of the physical world. It is thus the formalization of empirical
facts, inductively arrived at and subject to the uncertainty of any such fact.
The calculus of formal logic, on the other hand, is obtained by making an
analysis of the meaning of propositions. It is true under all circumstances
and even tautologically so. Thus, ordinary logic is used even in quantum
mechanics of systems with a propositional calculus vastly different from that
of formal logic. The two need have nothing in common.

One might wish to say the same of mereological and fermionic composition. That is, al-
though the mathematical theory associated with fermions suggests a particular calculus
with similarities to—but crucial differences from—classical mereology, the option seems
to be open simply to deny that anything other than mereological composition is compo-
sition worthy of the name. Such a strategy will be friendly, if not downright essential, to
anyone who takes classical mereology to be ‘perfectly understood, unproblematic, and
certain’ (Lewis (1991, 75)).

In fact this strategy is possible, and could proceed by simply admitting the existence
of the mereological fusions currently ruled out. That is, we expand the domain to include
not only the fermionic systems, but also arbitrary fusions thereof. A typical such fusion
will not be a system in the sense that its state, if one can be attributed to it at all, will
not be representable as a vector in A(®R"H), for any 7.

To get a better idea of these non-system objects, recall that, following Kibble (1979)
and Ashtekar & Schilling (1999), we may describe the possible states of a degree-1 quan-
tum system not with the unit-vectors of the single-system Hilbert space H, but rather
by the points of the projective Hilbert space P(H). Given the correspondence proven
above between non-GMW-entangled N-fermion states and N-dimensional subspaces of
‘H, and the well-defined map between rays of H and points of P(H), we may carry over
the above results to represent arbitrary non-GMW-entangled fermion states as regions
of P(H)—indeed they will be regions that are also subspaces of P(H).

The (singletons of) points and subspaces of P(#), connected by relations of subset-
hood, do not constitute a Boolean algebra: this is the mathematical expression of the
failure of classical mereology. But we can add more subsets of P(H) until we achieve
a Boolean algebra. For example, for any two singletons {1}, {4}, where ¢, € P(H),
we add their union {1, ¢}. We associate this union with the mereological fusion of the
degree-1 systems whose states are given by ¥ and ¢. Given the fact that the mereological
axioms we have been considering are first-order, we may recover (Unrestricted Fusion)
without having to admit the full power set of P(H); in fact arbitrary finite unions of
(singletons of ) points and subspaces will do.

It is hardly any objection that these non-system objects are somehow unnatural or
that we have no practical use for them in any scientific theory: that is a familiar feature
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of arbitrary mereological fusions. However, the stubborn mereologist must still accept
that a rival notion of something like composition, i.e. what I have called ‘fermionic
composition’; still applies alongside the classical one; and whether or not we consider
this a type of composition worthy of the name, it is unobjectionably the operation that
produces familiar fermionic states from familiar fermionic states of lower rank. The
bizarre non-system objects may be admitted or they may not; there is just no getting
around that fact that the compositional structure of the fermionic systems is Hilbertian,
rather than Boolean.

5 Conclusion

The foregoing arguments can be summarised as follows: at least one of the following
three claims must be rejected:

1. Permutation invariance reflects representational redundancy.
2. Fusions of fermionic systems are always fermionic systems.

3. Fermions compose (i.e. fuse) mereologically.

Premise 1 was crucial to our new way of thinking of entanglement for fermionic
systems. By rejecting the hard line on permutation-invariance as representational re-
dundancy, we may retrench to an identification of systems with factor Hilbert spaces.
That way we avoid the permutation-invariant method for identifying subsystems, and
the resulting failure of mereology. (We also must embrace the celebrated absolute in-
discernibility results.) Rejecting premise 1 means giving up on an understanding of
permutation invariance that, in Section 2.1, I claimed best explains it. That claim must
be weighed against the unpalatability of giving up on premise 2 or 3.

Premise 2 may be held by anyone who is sanguine about the possibility that our best
theory of composition might be informed by empirical science. By rejecting it, we may
take the saving strategy discussed in Section 4.2, and hang on to both our strong reading
of permutation-invariance and our conviction that mereological composition is the only
composition worth the name. But rejecting it is unpalatable, since it entails admitting
new, strange objects into our ontology in whose existence we have no independent reason
to believe.

We have seen that the natural mathematical structure of fermionic states poses a
threat to premise 3. This threat is not compelling, insofar as premises 1 and 2 are not
compelling. And rejecting premise 3 will be intolerable to anyone who takes mereology
to be ‘perfectly understood, unproblematic, and certain’. The question of whether our
traditional understanding of composition is immune to the deliverances of quantum
mechanics hangs on which unpalatable claim one is prepared to accept.
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