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1 Introduction

A number of models of general relativity seem to contain “holes” which are
thought to be “physically unreasonable”. One seeks a condition to rule out
these models. We examine a number of possibilities already in use. We then
introduce a new condition: epistemic hole-freeness. Epistemic hole-freeness
is not just a new condition — it is new in kind. In particular, it does not
presuppose a distinction between spacetimes which are “physically reasonable”
and those which are not.

2 Preminilaries

We begin with a few preliminaries concerning the relevant background formal-
ism of general relativity.1 An n-dimensional, relativistic spacetime (for n ≥ 2)
is a pair of mathematical objects (M, gab). M is a connected n-dimensional
manifold (without boundary) that is smooth (infinitely differentiable). Here,
gab is a smooth, non-degenerate, pseudo-Riemannian metric of Lorentz signa-
ture (+,−, ...,−) defined on M . Note that M is assumed to be Hausdorff; for
any distinct p, q ∈ M , one can find disjoint open sets Op and Oq containing p
and q respectively. We say two spacetimes (M, gab) and (M ′, g′ab) are isometric
if there is a diffeomorphism ϕ : M →M ′ such that ϕ∗(gab) = g′ab.

For each point p ∈ M , the metric assigns a cone structure to the tangent
space Mp. Any tangent vector ξa in Mp will be timelike if gabξ

aξb > 0, null if
gabξ

aξb = 0, or spacelike if gabξ
aξb < 0. Null vectors create the cone structure;

timelike vectors are inside the cone while spacelike vectors are outside. A time

∗Thanks to Jeff Barrett, Thomas Barrett, Erik Curiel, David Malament, Chris Smeenk,
Jim Weatherall, and Chris Wüthrich for helpful suggestions on previous drafts.

1The reader is encouraged to consult Hawking and Ellis (1973), Wald (1984), and Malament
(2012) for details. An outstanding (and less technical) survey of the global structure of
spacetime is given by Geroch and Horowitz (1979).
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orientable spacetime is one that has a continuous timelike vector field on M . A
time orientable spacetime allows one to distinguish between the future and past
lobes of the light cone. In what follows, it is assumed that spacetimes are time
orientable.

For some open (connected) interval I ⊆ R, a smooth curve γ : I → M is
timelike if the tangent vector ξa at each point in γ[I] is timelike. Similarly, a
curve is null (respectively, spacelike) if its tangent vector at each point is null
(respectively, spacelike). A curve is causal if its tangent vector at each point is
either null or timelike. A causal curve is future directed if its tangent vector at
each point falls in or on the future lobe of the light cone.

An extension of a curve γ : I → M is a curve γ′ : I ′ → M such that I is a
proper subset of I ′ and γ(s) = γ′(s) for all s ∈ I. A curve is maximal if it has
no extension. A curve γ : I →M in a spacetime (M, gab) a geodesic if ξa∇aξb =
0 where ξa is the tangent vector and ∇a is the unique derivative operator
compatible with gab. Let γ : I → M be a timelike curve with tangent vector
ξb. The acceleration vector is αb = ξa∇aξb and the magnitude of acceleration is
a = (−αbαb)1/2. The total acceleration of γ is

∫
γ
a ds where s is elapsed proper

time along γ.
For any two points p, q ∈M , we write p << q if there exists a future directed

timelike curve from p to q. We write p < q if there exists a future directed causal
curve from p to q. These relations allow us to define the timelike and causal
pasts and futures of a point p: I−(p) = {q : q << p}, I+(p) = {q : p << q},
J−(p) = {q : q < p}, and J+(p) = {q : p < q}. Naturally, for any set S ⊆ M ,
define J+[S] to be the set ∪{J+(x) : x ∈ S} and so on. A set S ⊂M is achronal
if S∩I−[S] = ∅. A spacetime satisfies chronology if, for each p ∈M , p /∈ I−(p).

A point p ∈ M is a future endpoint of a future directed causal curve γ :
I → M if, for every neighborhood O of p, there exists a point t0 ∈ I such
that γ(t) ∈ O for all t > t0. A past endpoint is defined similarly. A causal
curve is future inextendible (respectively, past inextendible) if it has no future
(respectively, past) endpoint.

For any set S ⊆ M , we define the past domain of dependence of S, written
D−(S), to be the set of points p ∈M such that every causal curve with past end-
point p and no future endpoint intersects S. The future domain of dependence
of S, written D+(S), is defined analogously. The entire domain of dependence
of S, written D(S), is just the set D−(S) ∪ D+(S). The edge of an achronal
set S ⊂M is the collection of points p ∈ S such that every open neighborhood
O of p contains a point q ∈ I+(p), a point r ∈ I−(p), and a timelike curve
from r to q which does not intersect S. A set S ⊂ M is a slice if it is closed,
achronal, and without edge. A spacetime (M, gab) which contains a slice S such
that D(S) = M is said to be globally hyperbolic.

3 A Condition to Disallow Holes?

Consider the following example (see Figure 1).
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Example 1. Let (M, gab) be Minkowski spacetime and let p be any point
in M . Consider the spacetime (M − {p}, gab).

Figure 1: Minkowski spacetime with a point removed from the manifold.

The spacetime seems to have an artificial “hole”. One seeks to find a (sim-
ple, physically meaningful) condition to disallow the example. (The condition
need not be a sufficient condition for “physical reasonableness”; it need only be
necessary.) But “although one perhaps has a good intuitive idea of what it is
that one wants to avoid, it seems to be difficult to formulate a precise condition
to rule out such examples” (Geroch and Horowitz 1979, 275).

Many of the conditions used to rule out the “hole” in Example 1 require that
certain regions of (or curves in) spacetime be “as large as they can be”. For ex-
ample, geodesic completeness requires every geodesic to be as large as it can be
in a certain sense. Hole-freeness essentially requires the domain of dependence
of every spacelike surface to be as large as it can be. Inextendibility requires
the entirety of spacetime to be as large as it can be. Let us examine each of
these three conditions in more detail. First, consider geodesic completeness.

Definition . A spacetime (M, gab) is geodesically complete if every maximal
geodesic γ : I → M is such that I = R. A spacetime is geodesically incomplete
if it is not geodesically complete.

If an incomplete geodesic is timelike or null, there is a useful distinction one
can introduce (which we will need later on). We say that a future directed time-
like or null geodesic γ : I → M without future endpoint is future incomplete if
there is an r ∈ R such that s < r for all s ∈ I. A past incomplete timelike or
null geodesic is defined analogously. Next, consider inextendibility.

3



Definition A spacetime (M, gab) is extendible if there exists a spacetime
(M ′, g′ab) and an isometric embedding ϕ : M →M ′ such that ϕ[M ] is a proper
subset of M ′. Here, the spacetime (M ′, g′ab) is an extension of (M, gab). A
spacetime is inextendible if it has no extension.

Finally, consider hole-freeness. Initially, one defined (Geroch 1977) a space-
time (M, gab) to be hole-free if, for every spacelike surface S ⊂ M and every
isometric embedding ϕ : D(S) → M ′ into some other spacetime (M ′, g′ab), we
have ϕ(D(S)) = D(ϕ(S)). The definition seemed to be satisfactory. But sur-
prisingly, it turns out the definition is too strong; Minkowski spacetime fails
to be hole-free under this formulation (Krasnikov 2009). But one can make
modifications to avoid this consequence (Manchak 2009).

Let (K, gab) be a globally hyperbolic spacetime. Let ϕ : K → K ′ be an
isometric embedding into a spacetime (K ′, g′ab). We say (K ′, g′ab) is an effec-
tive extension of (K, gab) if, for some Cauchy surface S in (K, gab), ϕ[K] (
int(D(ϕ[S])) and ϕ[S] is achronal. Hole-freeness can then be defined as follows.

Definition. A spacetime (M, gab) is hole-free if, for every set K ⊆ M such
that (K, gab|K) is a globally hyperbolic spacetime with Cauchy surface S, if
(K ′, gab|K′) is not an effective extension of (K, gab|K) where K ′ = int(D(S)),
then there is no effective extension of (K, gab|K).

What is the relationship between the three conditions? There are only two
implication relations between them (Manchak 2014).

Proposition 1. Any spacetime which is geodesically complete is hole-free
and inextendible.

Now, any of the three conditions can be used to rule out the “hole” in Ex-
ample 1. But due to the singularity theorems (Hawking and Penrose 1970),
geodesic completeness is now considered to be much too strong a condition; it
seems to be violated by “physically reasonable” spacetimes. In what follows, let
us focus on the remaining two conditions which are usually taken to be satisfied
by all “physically reasonable” spacetimes. Indeed, these two conditions are still
in use (see Earman 1995). Might hole-freeness or inextendibility (or their con-
junction) be the condition we are looking for? Consider the following example.

Example 2. Let (M, gab) be Minkowski spacetime and let p be any point
in M . Let Ω : M − {p} → R be a smooth positive function which approaches
zero as the point p is approached. Now consider the spacetime (M−{p},Ω2gab).

The spacetime in Example 2 is inextendible and hole-free. Nonetheless, it
seems there is still an artificial “hole” in the spacetime. (The spacetime is
geodesically incomplete.) One seeks a (simple, physically meaningful) condition
to rule out even these holes.
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4 A New Condition

Consider the following definition form.

Definition. A spacetime (M, gab) has an epistemic hole if there are two
future inextendible timelike curves γ and γ′ with the same past endpoint and
which such that I−[γ] is a proper subset of I−[γ′].

The physical significance of the definition form is this: Suppose two observers
are both present at some event. Now suppose (subject to the restrictions in the
blank) they go their separate ways. If it is the case that one observer can
eventually know everything the other can eventually know and more, then there
is a kind of epistemic “hole” preventing the latter observer from knowing the
extra bit. One might require the region of spacetime which an observer can
eventually know to be “as large as it can be”. In other words, one might require
spacetime to be free of epistemic holes.

γ
1

γ
2

Figure 2: Observers γ1 and γ2 in Minkowski spacetime. The set I−[γ2] (the
shaded area) is a proper subset of I−[γ1] (the entire manifold).

If no restrictions are given in the blank, Examples 1 and 2 count as hav-
ing epistemic holes as we would hope. But, unfortunately, this version of the
condition is too strong; it rules out spacetimes which are usually thought to be
“physically reasonable” in some sense. Take Minkowski spacetime, for exam-
ple. It counts as having epistemic holes. (Consider any point in the Minkowski
spacetime. Now consider any observer at the point who, with infinite total ac-
celeration, reaches “null infinity” and another observer at the point who does
not. See Figure 2.)

In order to not count Minkowski spacetime as having epistemic holes, one
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seeks to fill the blank with reasonable restrictions. Let’s consider two natural
possibilities: “are geodesics” and “have finite total acceleration”. Let EH(g) and
EH(f) respectively denote these two versions of the epistemic hole definition. In
addition, if a spacetime fails to have an EH(g), let us say it is EH(g)-free (and
respectively for the EH(f) case).

γ
1

γ
2

Figure 3: Geodesic observers γ1 and γ2 in Minkowski spacetime with one point
removed. The set I−[γ2] (the shaded area) is a proper subset of I−[γ1] (the
entire manifold).

Clearly, if a spacetime is EH(f)-free, then it also EH(g)-free.2 And as we
would hope, Examples 1 and 2 each have an EH(g) and therefore an EH(f) (see
Figure 3). Indeed, acausal examples aside, it seems almost every artificially
mutilated spacetime will have an epistemic hole of some type. Now, Minkowski
spacetime is EH(f)-free and EH(g)-free by construction. What about other
“physically reasonable” spacetimes? The Schwarzchild solution is a good test
case; its future inextendible timelike curves have event horizons which might
allow for epistemic holes.3 But this is not the case; it and its Kruskal extension
count as EH(f)-free and EH(g)-free (see Figure 4).

One can also show that the de Sitter, anti-de Sitter, and Gödel models all
count as both EH(f)-free and EH(g)-free as well. On the other hand, Misner
spacetime is neither EH(f)-free nor EH(g)-free (see Figure 5). However, Misner
spacetime harbors “naked singularities” thought to be physically unreasonable.
Consider the following influential definition (Geroch and Horowitz 1979, Ear-
man 1995).4

2One wonders if the converse is also true. We conjecture that, due to its peculiar timelike
geodesic structure, Reissner-Nordström spacetime is EH(g)-free but not EH(f)-free.

3For a complete treatment of event horizons, see Rindler (1956).
4The concept of terminal indecomposable past sets (TIPs), which can be shown to be
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γ
2

Figure 4: Conformal diagram of Kruskal-Schwarzchild spacetime. Any observers
γ1 and γ2 with finite total acceleration are such that if I−[γ2] and I−[γ1] (shaded
regions) are distinct, then they do not fully overlap.

γ
1

γ
2

Figure 5: Unrolled Misner spacetime. Geodesic observers γ1 and γ2 are such
that the set I−[γ2] (the shaded area) is a proper subset of I−[γ1] (the entire
manifold).

Definition. A spacetime (M, gab) is nakedly singular if there is a point
p ∈M and a future incomplete timelike geodesic γ such that γ ⊂ I−(p).

What is the relationship between naked singularities and epistemic holes?
Consider the following examples.

Example 3. Let (M, gab) be Minkowski spacetime and let p be any point in
M . Let Ω : M − {p} → R be a smooth positive function which approaches in-
finity as the point p is approached. Now consider the spacetime (M−{p},Ω2gab).

Example 4. Let (M, gab) be two dimensional Minkowski spacetime in stan-
dard t, x coordinates which is “rolled up” along the t direction. Let p be any
point in M . Consider the spacetime (M − {p}, gab).

precisely the timelike pasts of future inextendible timelike curves, have been used to formu-
late a type of naked singularity definition. The definition turns out to be equivalent to the
failure of global hyperbolicity (Penrose 1999). For details on the relationship between global
hyperbolicity and epistemic holes, see below.
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Example 3 is geodesically complete (and therefore contains no naked singu-
larities). But it has both an EH(f) and an EH(g). On the other hand, Example
4 contains naked singularities but is EH(f)-free and EH(g)-free. Now, Exam-
ple 4 is not causally well-behaved. If one were to limit attention to spacetimes
satisfying chronology, can one still find examples with naked singularities and
without epistemic holes? At least in the case of EH(f), no.5

Proposition 2. Any EH(f)-free, chronological spacetime is not nakedly sin-
gular.

Proof. Let (M, gab) be a chronological, nakedly singular spacetime. Let γ
be a future incomplete timelike geodesic with past endpoint q ∈ M such that
γ ⊂ I−(p) for some p ∈M . Let γ′ be any timelike curve with finite total accel-
eration with past endpoint q which runs through p and is future inextendible.
Clearly, I−[γ] ⊆ I−[γ′]. Suppose I−[γ] = I−[γ′]. Since p ∈ I−[γ′], we have
p ∈ I−[γ]. So, there is a point r ∈ γ such that p ∈ I−(r). But r ∈ I−(p). It
follows that p ∈ I−(p) which is a violation of chronology: a contradiction. So,
I−[γ] 6= I−[γ′]. Thus, I−[γ] is a proper subset of I−[γ′]. So, there is an EH(f)
in (M, gab). �

The proposition shows that, if one takes EH(f)-freeness as a necessary condi-
tion of physical reasonableness, then the weak causality assumption of chronol-
ogy rules out naked singularities. Contrast this result with one (Geroch and
Horowitz 1979) which shows that the strong causality assumption of global hy-
perbolicity is, by itself, enough to exclude naked singularities.6 Now, what is
the relationship between global hyperbolicity and epistemic holes? Consider the
following example.

Example 5. Let (M, gab) be Minkowski spacetime and let p be any point
in M . Let M ′ be the set I−(p). Let Ω : M ′ → R be a smooth positive function
which approaches infinity as the boundary of I−(p) is approached. Now con-
sider the spacetime (M ′,Ω2gab). (See Figure 6.)

Example 5 shows that a globally hyperbolic spacetime, indeed even a globally
hyperbolic spacetime which is geodesically complete, can nonetheless fail to
be EH(f)-free and EH(g)-free. On the other hand, Example 4 shows that a
spacetime which is non-globally hyperbolic, indeed even a non-chronological
spacetime which fails to be inextendible and hole-free, can nonetheless be EH(f)-
free and EH(g)-free. In sum: epistemic holes are very different from “holes” and
“singularities” of various kinds.

5It is an open question whether the result holds for the EH(g) case as well.
6We know from anti-de Sitter spacetime that global hyperbolicity is neither equivalent

to the conjunction of chronology and EH(f)-freeness nor equivalent to the conjunction of
chronology and EH(g)-freeness.
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Figure 6: Geodesic observers γ1 and γ2 in a portion of conformal Minkowski
spacetime. The set I−[γ2] (the shaded area) is a proper subset of I−[γ1] (the
entire manifold).

5 A New Kind of Condition

Stepping back, one may ask: what justifies the use of epistemic hole-freeness?
As we have seen, the condition rules out many intuitively “physically unrea-
sonable” spacetimes (including those, like Example 2, which inextendibility and
hole-freeness fail to rule out). On the other hand, no model with epistemic holes
has yet been found which is clearly “physically reasonable”. It is our position
that this alone provides sufficient justification for the condition. In any case, the
proper sorting of the intuitively “physically reasonable” and “physically unrea-
sonable” examples is, at root, the justification for the widely used conditions of
inextendibility and hole-freeness (Earman 1995, Manchak 2011). And, as with
these other two conditions, one can hope to put epistemic hole-freeness to work
in proving theorems of interest (such as Proposition 2).

In addition, we wish to highlight an important way in which the condition
of epistemic hole-freeness is far superior to the conditions of inextendibility and
hole-freeness. The definitions of the latter two conditions make reference to
(and are functions of) the entire class of relativistic spacetimes; they require
that certain regions of spacetime be “as large as they can be” in the sense that
one compares them, from a God’s eye point of view, to similar regions in all
possible spacetimes. And whether or not a spacetime counts as inextendible or
hole-free depends crucially on the makeup of this class of all possible space-
times. But what is this class? We would like to emphasize that whatever the
answer winds up being depends upon assumptions concerning what “physically
reasonable” spacetimes are. (Surely, the “possible” here cannot be merely log-
ical or mathematical.) And the fact that we have yet to pin down the class of
“physically reasonable” spacetimes should give us pause. In essence, the fact
implies that we have yet to pin down the class of inextendible spacetimes and
the class of hole-free spacetimes.

An example might serve to illustrate the point. Following standard practice,
we have assumed in the preceding that all manifolds are Hausdorff. Under this
assumption, Minkwowski spacetime counts as inextendible. The spacetime is
“as large as it can be” in the sense that it cannot be properly and isometrically
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Figure 7: A non-Hausdorff extension of Minkowski spacetime.

embedded into another spacetime. But note that if the Hausdorff assumption
is dropped, Minkowski spacetime now counts as extendible (see Figure 7). The
example shows that, whatever else is the case, the class of “possible” spacetimes,
as standardly interpreted, is not a class of merely logically or mathematically
possible spacetimes; non-Hausdorff spacetimes are logically and mathematically
well-defined (Earman 2008) and Minkowski spacetime is standardly interpreted
as inextendible. Thus, the use of the condition of inextendibility has, all along,
presupposed a distinction between spacetimes which are “physically reasonable”
and those which are not. Once this important fact is clear, one is naturally
“tempted to revise the principle of inextendibility” (Geroch 1970, 278). But
how should one revise? Any revision is dubious given that we do not know, and
arguably cannot know (Manchak 2011), the makeup of the class of “physically
reasonable” spacetimes.

To see why this might be, consider another example: the bottom half of Mis-
ner spacetime (see Figure 5). It is globally hyperbolic and counts as extendible
in the preceding. But suppose the cosmic censorship conjecture of Penrose
(1979) is correct and all “physically reasonable” spacetimes are globally hyper-
bolic. Then the bottom half of Misner spacetime now counts as inextendible;
it cannot be embedded properly and isometrically into a globally hyperbolic
spacetime; the spacetime is “as large as it can be” if the possibility space is
limited in just the way some experts think it is. It follows that whether or not
the bottom half of Misner spacetime counts as inextendible depends crucially
on the outcome of the cosmic censorship conjecture – a conjecture which is far
from settled (Earman 1995, Penrose 1999). One is seemingly forced to conclude
that the very content of the condition of inextendibility is unavoidably murky.
(A similar argument can be given for the case of hole-freeness.)
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Now consider epistemic hole-freeness. It requires that certain regions of
spacetime be “as large as they can be” in the sense that one compares them to
similar regions within the very same spacetime. The condition does not make
reference to the class of all “possible” spacetimes. And thus, the condition does
not presuppose that a distinction has been made between spacetimes which are
“physically reasonable” and those which are not.7 The content of the condition
is perfectly clear. Among conditions used to rule out “holes” in spacetime,
epistemic hole-freeness appears to be alone in possessing this desirable quality.8
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