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Abstract. In the formulation of both classical and quantum theories, time is taken

as an independent parameter rather than as a dynamical variable. This is in contrast

with the way general relativity treats space-time which is dynamical and interacting

with matters. If time and space are to be treated on the same footing as required in

relativity, can time play a more dynamical role in a quantum field? Taking time as

a dynamical variable, we study a wave with 4-vector amplitude that has vibrations

of matter in space and time. By analyzing its Hamiltonian density equation, we find

that the system has the same physical structures of a zero-spin bosonic field. This

quantized real scalar field obeys the Klein-Gordon equation and Schrödinger equation.

The possibility that matter has vibrations in time can lead to the quantization of a

bosnoic field. Time can play a more dynamical role in a quantum field.
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1. Introduction

In the formulation of classical and quantum theories, time is principally treated as a

parameter in the equation of motion. The theories postulate a time parameter with

respect to which the dynamics unfold. Time and space are treated separately. On the

other hand, space-time in general relativity is dynamical interacting with matter and

radiation. There is no globally defined time in the theory. Space-time is weaved as

unity. Thus, the treatment of time in quantum theory and general relativity is rather

different. The problems created by these differences in approach are striking especially

when one tries to reconcile the two basic theories from a single framework [1, 2].

The conundrum that time shall be treated as a parameter in quantum theory can

be traced back to Pauli’s era. Unlike position and momentum which are operators in the

quantum theory, Pauli argued that time cannot be assigned as a self-adjoint operator [3]

for any bounded, semi-bounded or discrete Hamiltonian. As he concluded [4], ”the

introduction of a time operator t must be abandoned fundamentally and that the time

t in quantum mechanics has to be regarded as an ordinary real number.” This assertion

has remained a major influence in the development of quantum theory. However, against

this orthodoxy, there are many examples in quantum theory where time seems to play

a dynamical role, e.g. dwell time of a particle in a region of space, tunneling time or

decay time of an unstable particle [5–15]. In most of these cases, time can be associated

with operators through the use of positive operator valued measures (POVMs) instead

of self-adjoint operators. Apart from these extensive efforts dedicated to resolve the

dynamical nature of time, various classical and quantum models have also been proposed

by T.D. Lee that suggest time can be considered as a fundamentally discrete dynamical

variable [16,17].

As there are compelling reasons why time shall play a more dynamical role, we

ask a few fundamental questions: in classical theory, the amplitude, X, of a wave with

vibrations in space can be defined as the maximum displacement of matter in the wave

from its equilibrium coordinate. Since matter can have vibrations in the x coordinates,

can it also has vibrations in the time coordinate t? In fact, if space and time are to

be treated on same footing, it is plausible to define an amplitude T for vibration in

time [18]. Although it is feasible to construct a wave that has vibrations in both space

and time, can its properties have something to do with our real physical world?

Here, we investigate the possibility that time can have a more dynamical role in a

quantum field. Instead of taking the typical approach by treating time as an operator,

we construct a plane wave with a 4-vector (T,X) amplitude that has vibrations in

space and time. We define the amplitude in time of a plane wave as the maximum

difference between the ’internal time” of matter within the wave and the ’external time’

measured by a stationary inertial observer outside the wave; its meaning will be further

elaborated in Section 2. By studying the Hamiltonian density equation of this planes

wave in Section 3, we find that a harmonic oscillating system with vibration of matter in

proper time can be the generator for the energy of mass. In Section 4, we show that an
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oscillator with vibration in proper time can only have one unique amplitude. This leads

to our subsequent reasoning that a real scalar field describing the vibrations of matter

in space and time shall be quantized; it has no classical description. Furthermore, this

quantized real scalar field obeys the Klein-Gordon equation and has the properties of a

zero-spin bosonic field as shown in Section 5. Basic properties of the system in the non-

relativistic limit will be further demonstrated in Section 6. The system with vibrations

of matter in space and time can produce the familiar structures of a real physical system.

2. Plane Wave with Vibrations in Space and Time

Consider the background coordinates (t,x) for the flat space-time as observed in an

inertial frame ’O’. Time in this background is the ’external time’ as measured by clocks

that are not coupled to the system under investigation [19–21]. We will first study a

plane wave with matter that has vibrations in space and time relative to this background

coordinate system.

The amplitude for vibration in space, X, of a classical plane wave is well defined;

it is the maximum displacement of matter in the wave from its equilibrium coordinate

such as in the case for a flexible string under tension. Similarly, let us define a plane

wave’s amplitude for vibration in time, T , as the maximum difference between the time

of matter inside the wave, tf , and the external time, t. Therefore, if matter inside the

plane wave carries a clock measuring its internal time, an inertial observer outside will

see the matter’s clock vibrates with time, tf , as related to his own clock measuring

time, t. In other words, we have assumed the matter’s internal clock is running at a

varying rate relative to the inertial observer’s clock. The ’internal time’ tf is an intrinsic

property of matter‡. The amplitude (T,X) is a 4-vector such that T 2 = T 2
0 +|X|2, where

T0 is an amplitude with vibration in proper time.

The vibrations in space and time can be written as

tf = t+ T sin(k · x− ωt) = t+ Re(ζ+t ), (1)

xf = x + X sin(k · x− ωt) = x + Re(ζ+x ), (2)

where

ζ+t = −iTei(k·x−ωt), (3)

ζ+x = −iXei(k·x−ωt), (4)

and ω2 = ω2
0 + |k|2. Thus, time of matter inside the plane wave has this temporal

vibration when observed with respect to the external time. This internal time, tf , is a

function of the external time, t, and a dynamical variable for the system.

‡ Unlike the ’intrinsic time’ [19, 20] suggested as a dynamical variable of the studied system (e.g.

position of a clock’s dial or position of a classical free particle [22]) that can function to measure time,

the ’internal time’ defined here is an intrinsic property of matter that has vibration in time.
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For a plane wave with proper time vibrations only, matter has no vibration in space.

In this case, ω = ω0, |k| = 0, T = T0, and |X| = 0 with

ζ+0t = −iT0e−iω0t, (5)

and

tf = t− T0 sin(ω0t), (6)

xf = x. (7)

The internal time passes at the rate 1− ω0T0 cos(ω0t) with respect to the external time

and has an average value of 1. Matter in this plane wave is stationary in space and will

still appear to travel along a time-like geodesic when averaged over many cycles. The

nature of this internal time will be further elaborated in Section 4.

We can further define a plane wave,

ζ+ =
T0
ω0

ei(k·x−ωt), (8)

such that ζ+t and ζ+x in Eqs.(3) and (4) can be obtained from ζ+ as ζ+t = ∂ζ+/∂t and

ζ+x = −∇ζ+ respectively. Therefore, the vibrations of matter in space and time for a

plane wave can be described by ζ+.

3. Hamiltonian Densities

Let us investigate the properties of a system in a cube with volume V that can have

multiple particles with mass m vibrating in space and time. We will impose periodic

boundary conditions at the box walls. Instead of carrying out our analysis in terms of

the plane wave ζ+ and its complex conjugate ζ−, we make the following ansätze

ϕ+ = ω0

√
m

2V
ζ+ = T0

√
m

2V
ei(k·x−ωt), (9)

ϕ− = ω0

√
m

2V
ζ− = T ∗0

√
m

2V
e−i(k·x−ωt), (10)

where T0 here is taken as a complex amplitude and periodic boundary conditions are

imposed on the wave vector k.

The plane wave ϕ± satisfies the equation of motion:

∂u∂
uϕ± + ω2

0ϕ
± = 0. (11)

The corresponding Hamiltonian density is

H± = (∂0ϕ
±∗)(∂0ϕ

±) + (∇ϕ±∗) · (∇ϕ±) + ω2
0ϕ
±∗ϕ±. (12)

Let us look at each term on the right hand side (r.h.s.) of this Hamiltonian density

equation. From Eqs. (9) and (10), the first term of Eq.(12): H±1 = (∂0ϕ
±∗)(∂0ϕ

±) =

mω2
0T
∗T/(2V ), is a Hamiltonian density for vibrations of matter in time. Indeed,

mω2
0/2 is an usual term that appears in the Hamiltonian of a harmonic oscillator

with mass m except the vibration is in time and not in space. (Note that we have
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not taken into account the order of multiplication between complex conjugates here

but shall be considered when the field is quantized.) Similarly, the second term:

H±2 = (∇ϕ±∗) · (∇ϕ±) = mω2
0X
∗ · X/(2V ), has the familiar form of a Hamiltonian

density with harmonic oscillation in space.

The plane wave ϕ± is a function of T0 as shown in Eqs. (9) and (10). The third

term on r.h.s. of Eq.(12) is a Hamiltonian density related to vibrations of matter in

proper time, H±3 = ω2
0ϕ
±∗ϕ± = mω2

0T
∗
0 T0/(2V ). After combining the second and third

terms, the total Hamiltonian density is

H± = H±1 +H±2 +H±3 =
mω2

0

V
T ∗T. (13)

The energy generated by the vibration of matter in proper time is of special

importance in our study. To better understand its properties, we consider the simple

plane waves

ϕ+
0 = T0

√
m

2V
e−iω0t, (14)

ϕ−0 = T ∗0

√
m

2V
eiω0t. (15)

Matter inside this plane wave ϕ±0 has vibrations in proper time only, i.e. |k| = 0 and

xf = x. Substitute Eqs.(14) and (15) into Eq.(12), the Hamiltonian density is

H±0 =
mω2

0T
∗
0 T0

V
. (16)

The energy generated inside volume V is E = mω2
0T
∗
0 T0 of a simple harmonic oscillating

system in proper time. As discussed in the previous section, the vibration in proper

time is an intrinsic property of matter. Energy E shall therefore correspond to certain

energy intrinsic to matter. However, we have only consider matter with mass m in this

simple harmonic oscillating system without involving any of the various charges or force

fields. No other energy is present in this system except the energy of mass m. Here, we

will consider this energy as the internal energy of mass.

4. Proper Time Oscillator

The vibration of matter in proper time generates energy. If this energy is the internal

energy of mass m, it is necessary on shell. For a single particle system, we have

E = mω2
0T
∗
0 T0 = m, (17)

or simply

ω2
0T
∗
0 T0 = 1. (18)

In addition to the classical concepts of mass [23], we advocate the possibility that

internal energy of a point mass m can be generated by the oscillation with a proper

time amplitude of |T̃0| = 1/ω0. Only an oscillator with such amplitude is observable in

this single particle system.
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Let us first consider the point mass in the plane wave ϕ+
0 . A point mass m at

rest in space with angular frequency ω0 and amplitude T̃0 = 1/ω0 will have vibration

in proper time relative to the external time. The internal time t̃+f of the point mass’s

internal clock observed in frame O is:

t̃+f (t) = t− sin(ω0t)

ω0

. (19)

We will assume the point mass observed is located at the origin of coordinate x0,

x̃+
f (t) = x0. (20)

From Eq. (19), the internal time rate relative to the external time for this oscillator

is ∂t̃+f /∂t = 1 − cos(ω0t). The average of this time rate is 1. Its value is bounded

between 0 and 2 which is positive. Thus, the internal time of a point mass moves only

in the forward direction. It cannot move back to its past. If we assume this point

mass is a typical particle that has high vibration frequency, e.g. ω0 = 7.6 × 1020s and

|T̃0| = 1.32 × 10−21 for an electron, the particle will appear to travel along a smooth

time-like geodesic if the inertial observer’s clock is not sensitive enough to detect the

high frequency and small amplitude of the vibration. In fact, as the angular frequency

increases and approaching infinity (ω0 → ∞), the amplitude of oscillation becomes

negligible (T0 → 0). Such particle will travel along a near time-like geodesic with no

vibration observed.

The internal clock of the particle with angular frequency ω0 → ∞ is a clock

suitable for the observer at spatial infinity. Its near time-like geodesic nature is sensitive

enough to detect the varying internal time rate of another particle with lower frequency.

However, this clock’s mass is infinite (m = ω0 → ∞). As pointed out by Salecker

and Wigner [24], to obtain infinite accuracy in measuring a clock’s time means infinite

uncertainty in the clock’s mass, and thus the clock’s mass needs to reach infinity. Some of

the studies regarding quantum clocks in the context of time-energy uncertainty relation

can be found in references [20,21,25–29].

Eqs. (19) and (20) can be Lorentz transformed to another frame of reference O′

with background coordinates (t′,x′) where the the particle will have vibrations in time

and space with amplitudes T̃ = ω/ω2
0 and X̃ = k/ω2

0 respectively. (We have assumed

frame O is traveling with velocity v = k/ω relative to frame O′ and the particle begins

at origin of the x′ coordinates at t′ = 0). The vibrations in time and space are

t̃
′+
f (t′) = t′ − ω

ω2
0

sin(
ω2
0t
′

ω
), (21)

x̃
′+
f (t′) = vt′ − k

ω2
0

sin(
ω2
0t
′

ω
). (22)

The internal time t̃
′+
f is measured with respect to the external time in frame O′ and is

not the internal proper time of the particle’s internal clock. In frame O′, the particle

travels with a velocity. The internal proper time measured by the particle’s clock is

t̃+f =
√

(t̃
′+
f )2 − (x̃

′+
f )2 = t− sin(ω0t)/ω0 as shown in Eq. (19).
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Eq. (22) is the trajectory of the particle observed in frame O′. The particle travels

with a velocity

ṽ+
f =

∂x̃
′+
f

∂t′
= v[1− cos(

ω2
0t
′

ω
)]. (23)

Apart from this variation in velocity, the internal time rate also varies. From Eq. (21),

the internal time rate relative to the clock of the inertial observer is

∂t̃
′+
f

∂t′
= 1− cos(

ω2
0t
′

ω
). (24)

We can calculate the amplitudes of vibration for a particle. For example, we can

estimate the amplitude of spatial vibration for an electron:

|v| = 0.99999⇒ |X̃| = 8.6× 10−9cm, (25)

|v| = 0.001⇒ |X̃| = 3.9× 10−14cm. (26)

In the second, non-relativistic example, the amplitude of the spatial vibration is

approximately equal to the diameter of a nucleus which is tremendously larger than

the Planck length. However, this vibration also has a very short time scale (≈ 10−21s

for electron).

Comparing Eqs. (14) and (15), the plane wave ϕ+
0 with a particle traveling forward

in time is mathematically equivalent to plane wave ϕ−0 with a particle traveling backward

in time - time reversal symmetry, a property of an antiparticle [30, 31]. The internal

clock of this antiparticle shall read

t̃−f (t) = −t+
sin(ω0t)

ω0

. (27)

Thus, the internal time rate relative to the external time for the oscillator with amplitude

T̃ ∗0 = 1/ω0 is ∂t̃−f /∂t = −1 + cos(ω0t). The average of this time rate is -1. Its value is

bounded between 0 and -2 which is negative. Thus, the internal time of this antiparticle

moves only in the backward direction.

5. Field Quantization

The amplitude of a classical harmonic oscillator with a point mass vibrating in space

can take on different values. This is unlike the case for a simple harmonic oscillator

with vibration in proper time. The condition that mass is on shell imposes a constraint

allowing only an oscillator with proper time amplitude |T̃0| = 1/ω0 to be observed. The

classical harmonic oscillator has no such constraint.

As shown in Eq. (16), the amplitude T0 of plane wave ϕ±0 determines the amount of

energy in volume V . In the above analysis for a plane wave with proper time vibrations,

we have assumed a system with only one particle (antiparticle). For a many-particle

system, it can have n integer number of oscillators. We can generalize condition (18) as

ω2
0T
∗
0 T0 = n, (28)
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which is a Lorentz invariant. The number of particles observed in the system shall remain

same under Lorentz transformations. Taking the point mass as a particle(antiparticle)

with de Broglie’s mass/energy (m = ω0) in Eq.(16) is H±0 = nω0/V . The energy in this

plane wave with vibrations in proper time is quantized with n = 0, 1, 2, ...

Under a Lorentz transformation, ϕ±0 → ϕ±. Instead, let us consider a plane wave

ϕ±n which is normalized in volume V when n = 1,

ϕ±n = γ−1/2ϕ±, (29)

where γ = (1 − |v|2)−1/2 = ω/ω0. Replace ϕ± with ϕ±n in Eq. (12), the Hamiltonian

density for plane wave ϕ±n is H±n = γH±0 = nω/V . The energy in this plane wave ϕ±n is

quantized with n particles (antiparticles) of angular frequency ω in volume V .

We can obtain a real scalar field by superposition of plane waves,

ϕ(x) =
∑
k

ϕ+
nk(x) + ϕ−nk(x) =

∑
k

(2V ω)−1/2(ω0T0ke
−ikx + ω0T

∗
0ke

ikx), (30)

which satisfies the Klein-Gordon equation. The corresponding Hamiltonian density

equation is H = 1/2[(∂0ϕ)2 + (∇ϕ)2 + ω2
0ϕ

2]. Since ϕ is the superposition of plane

waves ϕ±nk, the energy observable in this real scalar field is necessary quantized.

In quantum field theory, the transition to a quantum field can be done via canonical

quantization. Similarly, we can treat ϕ(x) and H as operators. Condition (28) can be

extended to the quantized field with Nk = ω2
0T
†
0kT0k as the particle number operator.

Ordering between T0k and T †0k shall be taken into account. We can also define the

annihilation operator ak and creation operator a†k as ak = ω0T0k and a†k = ω0T
†
0k such

that Nk = a†kak. Comparing these results with quantum field theory, the real scalar

field with vibrations in space and time has the same physical structures of a zero-spin

bosonic field.

6. Wave Function

To study the case in the non-relativistic limit, we make the ansatz:

ψk =
ω0T0k√
V

ei(k·x−ωct+χ) ≈
[
ω2
0√
V
ei(ω0t+χ)

]
ζ+k , (31)

where

ωc =
k · k
2m

≈ ω − ω0, (32)

and eiχ is an arbitrary phase factor. Periodic boundary conditions for a cube with

volume V are imposed on the wave vector k. Here, T0k is considered as a function and

not an operator. We will show that ψk has properties of the wave function in quantum

mechanics.

Schrödinger equation - ψk is a solution for the Schrödinger equation of a free

particle, −i∂ψk/∂t = (2m)−1∇2ψk. The superposition principle holds such that

ψ = eiχ
∑
k

ω0T0k√
V

ei(k·x−ωct), (33)



Can time have a more dynamical role in a quantum field? 9

is also a solution for the linear and homogeneous Schrödinger equation.

Probability density - The product of ψk and its complex conjugate ψ∗k,

ψ∗kψk =
ω2
0T
∗
0kT0k
V

=
nk

V
, (34)

is a particle number density. In a quantum wave, the location where a particle can be

observed is indeterminate. Only a probability can be assigned. For a plane wave, the

probability density has an uniform distribution which is also the particle number density

from Eq. (34). The amplitude αk = ω0T0k/
√
V in Eq. (31) is a probability amplitude.

Unobservable overall phase - It is commonly believed that a matter wave can

only have a probabilistic interpretation because the overall phase of a wave function

is unobservable. As we have shown, the introduction of the arbitrary phase factor eiχ in

Eqs. (31) and (33) does not change the the probability density ψ∗ψ or the result that

ψ satisfies the Schrödinger equation. In fact, the theory developed with wave functions

ψ shall be invariant under global phase transformation χ but the relative phase factors

are physical. Thus, the overall phase of ψ is unobservable. Function ψ is not required

to have the same phase as ζ that describes the physical vibrations in space and time.

7. Conclusions and Discussions

In this paper, we treat time as a dynamical variable. Instead of considering proper time

as an operator, for example in references [26, 29], we study the possibility that matter

not only can have vibrations in space but can also have additional degrees of freedom

with vibrations in time. We show that the harmonic oscillator in proper time can be

the generator for the energy of mass. However, the energy of a mass is necessary on

shell meaning only one unique amplitude for the proper time harmonic oscillator can

be observed, |T̃0| = 1/ω0. This is unlike a classical harmonic oscillator with vibration

in space that can take on different values as its amplitude. (There is no condition

analogous to mass on shell that restrict amplitude of vibration in space to an unique

value.) The Hamiltonian of the system is quantized and can only correspond to those

generated by n integer number of oscillators. The real scalar field ϕ does not have a

classical description but rather shall be treated as a quantized field. In addition, this

real scalar field satisfies the Klein Gordon equation and has the properties of a zero

spin bosonic field. The possibility that matter has vibrations in time can lead to the

quantization of a bosnoic field. Time can play a more dynamical role in a quantum

field.

As shown in Section 4, a particle traveling with velocity v has vibrations in space

and time. A particle in the plane wave with angular frequency ω and wave vector

k will have fluctuations in time and space with amplitudes T̃ = ω/ω2
0 and X̃ = k/ω2

0

respectively. These vibrations are the results when time is taken as a dynamical variable

by treating space and time on the same footing. Although the amplitude of the vibration

in space is small (size of a nucleus in the non-relativistic example given in Section 4), its
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effect may be observable if nature has something to do with these vibrations of matter

in space and time.
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