
The origins of Schwinger’s Euclidean Green’s functions

Michael E. Miller†

This paper places Julian Schwinger’s development of the Euclidean Green’s function
formalism for quantum field theory in historical context. It traces the techniques employed
in the formalism back to Schwinger’s work on waveguides during World War II, and his
subsequent formulation of the Minkowski space Green’s function formalism for quantum
field theory in 1951. Particular attention is dedicated to understanding Schwinger’s physical
motivation for pursuing the Euclidean extension of this formalism in 1958.

Introduction. Schwinger’s introduction of the Green’s function formalism

for characterizing quantum field theories constitutes one of the most influen-

tial of his numerous contributions to the physics of elementary particles. He

originally developed his Green’s function method for waveguide problems dur-

ing World War II, and then exported it into quantum field theory in a series

of papers in 1951. His Minkowski space Green’s functions allowed for a more

general characterization of the theory than had previously been possible us-

ing perturbative techniques. In 1958 Schwinger published On the Euclidean

Structure of Relativistic Field Theory, in which he introduced a technique

for characterizing quantum field theories in Euclidean space rather than in

Minkowski space.1 Both Mehra and Milton2 and Schweber3 have provided

significant insight into the connection between Schwinger’s war work and his

introduction of the Minkowski space Green’s function formalism. In a ret-

rospective lecture delivered late in his life Schwinger explicitly acknowleged

this connection and showed how Green’s function methods influenced his work

throughout his career (Schwinger, 1993). While Schwinger is also widely cred-

ited for producing the first Euclidean formalism for field theory, the historical

literature has neglected his motivations for introducing this extension of the

formalism. My aim in this paper is to articulate a more complete account of

this development.

Schwinger’s previous work on Green’s functions uniquely prepared him to

make this contribution at the technical level.4 The motivation for establish-

ing the Euclidean extension also contains novel physical reasoning. Aspects
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1Schwinger (1958b)
2Mehra and Milton (2000)
3Schweber (1994)
4Late in his life Schwinger acknowledged this when he claimed that “. . . although it could
have appeared any time after 1951, it was 1958 when I published The Euclidean Structure
of Relativistic Field Theory” (Schwinger, 1993, p. 7). This is a reference to the fact
that the 1951 Green’s functions papers provided the technical framework for the 1958
Euclidean Green’s function paper.



of Schwinger’s motivation can be inferred from the publication in which he

introduced the formalism. However, Schwinger had considered transforma-

tions to Euclidean space in several contexts before using them as the basis

for a novel formulation of field theory, and these provide further insight into

his reasoning about the role of imaginary time transformations. In this paper

I provide evidence that one of these contexts, a talk he delivered in 1957 on

dispersion relations to determine the structure of Green’s functions, contains

the earliest articulation of the central physical insight that motivated the

development of a formulation of quantum field theory in Euclidean space.

Schwinger was certainly not the first to transform field theoretic quan-

tities into Euclidean space. Both Dyson and Wick had transformed to Eu-

clidean space during calculations before him. Moreover, during the period

in which Schwinger was developing the Green’s function formalism, math-

ematical physicists working in the axiomatic approach to field theory had

also become interested in rigorously determining the region of analyticity of

Green’s functions. In fact, an influential paper of Wightman’s demonstrates

that the analyticity region of the Green’s functions includes the Euclidean

region as a special case.5 The novel aspect of Schwinger’s contribution was to

provide a complete formalism for field theory which emphasized the impor-

tance of the Euclidean region in particular. The characterization of quantum

field theories in terms of Euclidean Green’s functions, which have come to

be known as Schwinger functions, is an important technique for the devel-

opment of constructive models of the theory. Of the few rigorous models of

field theory that have been constructed, many have existence proofs which

rely critically on the Schwinger functions. The Euclidean formalism is also

the basis for the enormously productive analogy between quantum field the-

ory and statistical mechanics. Despite its eventual importance, the initial

reception of the Euclidean formalism was not enthusiastic. Schwinger’s char-

acterization of the theory in terms of Minkowski space Green’s functions was

already widely viewed as abstract and overly formal in comparison to Feyn-

man’s graphical techniques. Moreover, the move from an underlying manifold

of Minkowski space to a Euclidean space was unintuitive, given that what was

being represented in the theory was fields in Minkowski space. For these rea-

sons, Schwinger’s motivation for developing the Euclidean formalism calls for

explanation.

Understanding the origins of Schwinger’s Euclidean Green’s functions re-

quires not only an understanding of how he developed the technical apparatus

used to capture the formalism, but also his physical motivation for extending

it to Euclidean space. The following section discusses the work of Mehra

and Milton, and Schweber, on the developments which led to Schwinger’s

Minkowski space Green’s function formalism for quantum field theory. In

5Wightman (1956)
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particular, it includes discussion of Schwinger’s novel application of Green’s

function methods during World War II, and how he exported the technique

into quantum field theory in a series of 1951 papers. In the third section I

identify aspects of the motivation that led him to generalize the formalism

developed in 1951 to the Euclidean formulation in his work on the CPT theo-

rem and in a talk on dispersion relations delivered in 1957. I present evidence

that this was the first context in which Schwinger articulated a critical piece

of the motivation for developing the Euclidean formalism. In the fifth section

I discuss Schwinger’s introduction of the Euclidean formalism in 1958, and

connect it to the broader context discussed in the third section. I conclude

by reviewing the argument and connecting Schwinger’s contribution to two

later developments.

Green’s functions for waveguides and field theory. The development

of quantum field theory stalled during World War II as many theoretical

physicists left their research positions to work on projects for the war. A

small group of theorists spent the war working on radar technology at the

MIT Radiation Laboratory. Hans Bethe produced the initial work on the

project and, in 1942, invited several other physicists including Schwinger to

collaborate with him. As a graduate student at Columbia, Schwinger’s earli-

est work focused primarily on phenomenological problems in nuclear physics.

He had already obtained his first professorship at Purdue when Bethe re-

cruited him to come to the Radiation Laboratory. Before going to MIT,

Schwinger was invited to Los Alamos by Oppenheimer. It would have been

a natural position for him as much of his early work had been dedicated

to nuclear physics.6 However, Schwinger declined Oppenheimer’s offer and

spent the years of the war working on waveguide problems for radar equip-

ment at MIT. Schwinger’s decision to go to the Radiation Lab instead of Los

Alamos had an important effect on the trajectory of his research. His work

on waveguide problems influenced his work on field theory after the war in

a number of important ways. The applied physics and engineering problems

that Schwinger solved at the Radiation Lab were the origin of a calculational

technique that he directly imported into quantum field theory after the war.

This section briefly explains how Schwinger’s work at the Radiation Lab led

to the development of his modern use of Green’s functions in field theory.

Detailed treatments of these developments can be found in work by Mehra

and Milton7 and Schweber8.9

6In an interview with Schweber he explained that “I would like to think that I had a gut
reaction against [going]. I was probably the only active theoretical nuclear physicist who
wasn’t there. There must have been some deep instinct to stay” (Schweber, 1994, p. 295).

7Mehra and Milton (2000)
8Schweber (1994, 2005)
9Though it will not be discussed further in this paper, it is worth noting that his work
at the Radiation Lab seems to have influenced his perspective on the nature of physical
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Before the war the Radiation Lab was staffed almost exclusively with

electrical engineers. The directors of the lab looked to theoretical physicists

with the onset of the war because a more complete theoretical understanding

of the systems being used could save time in the development process. Unlike

the systems that the engineers were accustomed to, microwave radio devices

had a size on the order of the wavelength of the radiation they produced.

Because of this they had to be engineered to transfer energy through metallic

waveguides rather than wires. Understanding the properties of such systems

required dealing directly with the electromagnetic fields rather than currents

and voltages. Solving Maxwell’s equations for the fields was complicated by

the fact that realistic applications contained many different obstacles to the

propagation of the radiation through the waveguides.10

Schwinger’s task at the Radiation Lab was to develop a framework for

understanding the propagation of the radiation through complex geometries

involving many obstacles. The method Schwinger developed was based cen-

trally on the use of Green’s functions to describe the propagation of the modes

in the radiation. Green’s theorem provides a connection between volume in-

tegrals and surface integrals over volumes. Even before Schwinger’s work

on waveguides it was commonplace to use Green’s functions to solve elec-

trodynamic problems. Schwinger’s method was different in that he treated

Green’s functions as functional operators that define a linear relation between

a field inside a region and the boundary conditions for the field on the surface

around that region. According to Mehra and Milton, the oldest record of this

approach is contained in the 1943 MIT Radiation Laboratory Report 43-44,

of which Schwinger was the sole author.11 He modeled the systems with a

modified form of Maxwell’s equations.12 To solve these equations Schwinger

defined an electric field Green’s function and a magnetic field Green’s func-

tion, in terms of which the fields could be expressed. This allowed for the

calculation of the fields outside of a region for any boundary conditions, by

surface integrals over the surface bounding the region. The method could be

applied to many different systems by selecting different boundary conditions.

Mehra and Milton explain that with this strategy, “. . . Schwinger rewrote the

equations of classical field theory in a form that later served him as a template

theorizing in a way that informed his unique perspective on renormalization theory. For
further discussion of this connection see (Kaiser, 2009, pp. 41-42), (Galison, 1997, pp.
820-827), and Schwinger (1983). This perspective lead him to reject operator field theory
for his own source theory later in his career. This aspect of Schwinger’s thinking has been
discussed in Cao (1998), Cao and Schweber (1993), Mehra and Milton (2000), and Mehra
et al. (2003).

10For further discussion of the general theoretical project at the Radiation Lab see Mehra
and Milton (2000, pp. 105-106). For a comprehensive account see Brown (1999).

11Mehra and Milton (2000, p. 119)
12Levine and Schwinger (1950)
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for the future relativistic quantum field theory.”13

Following the war, Schwinger took a job at Harvard, where his work turned

back to nuclear physics and quantum field theory. In 1947 he developed the

first covariant formulation of quantum electrodynamics, work for which he

would eventually be awarded the Nobel Prize. Schwinger spent much of

the next decade growing increasingly focused on the general formalism for

quantum field theory. This turn is first evident in On Gauge Invariance

and Vacuum Polarization, which contains his first use of Green’s functions in

the field theory context.14 Later in 1951, Schwinger published a series of two

papers, On the Green’s Functions of Quantized Fields, in which he established

the Green’s function framework for quantum field theory in detail.15 His work

on applied physics and engineering problems during the war played a critical

role in motivating certain aspects of this work on the physics of elementary

particles.

The introductory paragraph of the first paper provides a clear statement

of Schwinger’s intention for the introduction of this new formalism. The

characterization of the theory in terms of Green’s functions allowed for the

particle nature of field excitations to be made manifest. Moreover, he empha-

sizes that while in the case of interacting fields the calculation of Feynman

propagators typically relied on perturbation theory, this was not necessary.16

He notes that “Although [perturbation theory] may be resorted to for de-

tailed calculations, it is desirable to avoid founding the formal theory of the

Green’s functions on the restricted basis provided by the assumption of ex-

pandability in powers of coupling constants.”17 Schwinger’s motivation was

to provide a characterization of interacting quantum field systems in which

the non-perturbative structure was evident.

In order to accomplish this goal Schwinger used the dynamical principle

that he had introduced earlier the same year in The Theory of Quantized

Fields I.18 The principle gives a differential characterization of the function

that generates the transformation from the the eigenvalues of a complete

set of commuting operators, ζ ′′2 , on one spacelike hypersurface, σ2, to the

eigenvalues, ζ ′1, on another hypersurface, σ1. Using it, Schwinger is able to

derive simultaneous differential equations for the two point Green’s function.

The same procedure can be used to construct the higher Green’s functions,

and the first paper ends by illustrating this fact.

The second paper appears in the same issue immediately following the

13Mehra and Milton (2000, p. 121)
14Schwinger (1951a)
15Schwinger (1951b,c)
16For details of the connection between Schwinger’s Green’s functions and Feynman’s per-

turbative techniques see Schweber (2005).
17Schwinger (1951b, p. 452)
18Schwinger (1951d)
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first.19 It begins by explaining an incompleteness in the preceding discussion.

In particular, Schwinger notes that throughout the first paper he did not give

an explicit construction of the states on σ1 and σ2 that are included in the

definition of the Green’s functions. This information is included in the bound-

ary conditions for the differential equations that define the them. It was thus

necessary to find boundary conditions for the Green’s functions associated

with the vacuum states on σ1 and σ2. The second paper is dedicated to ac-

complishing this task. In producing the modern real space Green’s function

formalism, Schwinger followed the same pattern that he used in resolving

waveguide problems. First he determined a set of simultaneous functional

differential equations for Green’s functions, and then he turned to the task

of determining boundary conditions which would allow him to express their

solution in closed form.

Schwinger continues his argument by determining a boundary condition

for the Green’s functions which ensures that they correspond to the phys-

ical propagation of excitations in the field. The Dirac one-particle Green’s

function is given in terms of vacuum expectation values by:

G(x, x′) = i〈ψ(x)ψ̄(x′)〉, x0 > x′0, (1)

= −i〈ψ̄(x′)ψ(x)〉, x0 < x′0,

and the variation of ψ(x) in the region around σ1 is represented by,

ψ(x) = eiP0(x0−X0)ψ(X)e−iP0(x0−X0), (2)

for P0 the energy operator and X a fixed point. Thus, when x ∼ σ1,

G(x, x′) = i〈ψ(X)e−i[(P0−P vac
0 )(x0−X0)]ψ̄(x′)〉, (3)

where P vac
0 is the energy eigenvalue of the vacuum. Since the vacuum is

the state of lowest energy, P0 − P vac
0 has no negative eigenvalues, and thus

in the region around σ1, G(x, x′) is a function which contains only positive

frequencies. He explains that these frequencies correspond to the energies of

states of unit positive charge. Similarly, when x ∼ σ2,

G(x, x′) = −i〈ψ̄(x′)ei[(P0−P vac
0 )(x0−X0)]ψ(X)〉 (4)

This, of course, contains only negative frequencies, which correspond to the

energies of unit negative charge states. Schwinger then claims that, “We thus

encounter Green’s functions that obey the temporal analog of the boundary

condition characteristic of a source radiating into space” and he notes that

19Schwinger (1951c)
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both Stückelberg20 and Feynman21 had already considered such functions.22

He argues that the boundary condition characterizing the Green’s function

for the vacuum states on σ1 and σ2 are only dependent on those surfaces in

that they need to be in the region of outgoing waves. For this reason he could

treat the entire spacetime manifold as the domain of the functions. Upon in-

troducing this simplification, the equations defining the Green’s function can

be rewritten incorporating the boundary condition corresponding to outgoing

waves.

Using this technique Schwinger obtained a system of simultaneous func-

tional differential equations for the vertex function and the polarization func-

tions, as well as the electron and photon one-particle Green’s functions.23

Schwinger concludes the paper with the note that “The details of this theory

will be published elsewhere, in a series of articles entitled ‘The Theory of

Quantized Fields.”’24 He began a third paper for the Green’s Function series

but it was never completed.25 The two papers in the Green’s function series

that did appear established a solid foundation for the use of Green’s functions

to characterize quantum field theories in Minkowski space.

The path to the Euclidean formalism. In the last section I reviewed

how Schwinger used the framework he had established in his work on waveg-

uides to develop the Green’s function formalism for quantum field theory.

In this section I will consider Schwinger’s path to the Euclidean formalism.

Dyson and Wick had already used the technique of transforming to imaginary

time, developments which Schwinger certainly would have been aware of. In

fact, before developing the Euclidean formalism Schwinger had on at least

two previous occasions transformed to Euclidean space for calculations. In

particular, imaginary time calculations had arisen in his work on the CPT

20Stückelberg (1946)
21Feynman (1949)
22Schwinger (1951c, p. 456)
23Additional discussion of the details of this paper can be found in Schweber (2005), and

Mehra and Milton (2000).
24Schwinger (1951c, p. 459)
25It survives as an undated manuscript in the Schwinger archive in the Special Collections

at UCLA (Schwinger, b). Much of the paper is dedicated to constructing the n-particle
interaction operators by repeated application of a functional differential operator. This
manuscript appears to have been used as a first draft for another more polished, yet
still incomplete and undated manuscript entitled Coupled fields. This paper begins as
follows: “This note gives a preliminary account of some aspects of the general theory
for a B(ose-Einstein) field coupled with a D(irac-Fermi) field, which is to be published
in the series of articles The theory of quantized fields” (Schwinger, a, p. 1). Much of
the contents of these unpublished manuscripts do appear in this series of papers which
Schwinger published between 1951 and 1954 (Schwinger, 1951b,c, 1953a,b, 1954a,b). In
these papers Schwinger uses his new Green’s function formalism to generate a number
of important new results, though they are not central to the development of Euclidean
Green’s functions and thus will not be discussed here.
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theorem and on the use of dispersion relations to determine the structure of

Green’s functions. This section describes these early applications of trans-

formations to Euclidean space, and presents evidence that a crucial aspect

of the motivation for the Euclidean formalism can be traced to Schwinger’s

work on dispersion relations.

The application of transformations to imaginary time go back at least

to Dyson’s 1949 work on scattering problems in quantum electrodynamics.26

In this paper, Dyson analytically continues from real to imaginary energies,

which amounts to a transformation from Minkowski to Euclidean space. The

motivation for this transformation was simply to avoid the singularities in

the propagators that occur on the mass shell. That is, Dyson introduced

the transformation as a calculational strategy to improve the behavior of

otherwise troublesome expressions. Similar motivations for transforming to

Euclidean space can be found in Wick’s 1954 paper where he introduces the

Wick rotation.27 The idea of the Wick rotation is to transform the Minkowski

space metric,

ds2 = −dt2 + dx2 + dy2 + dz2, (5)

into the Euclidean metric,

ds2 = dτ 2 + dx2 + dy2 + dz2, (6)

by allowing the Minkowski time coordinate, t, to take on complex values. In

this case, the Minkowski metric becomes the Euclidean metric when the time

is restricted to the imaginary axis. Problems in Minkowski space can be trans-

formed into problems in Euclidean space by making the substitution t→ iτ .

Wick explains that the wave equation obtained by making such a transforma-

tion results in an eigenvalue problem which “. . . presents several advantages

in that many of the ordinary mathematical methods become available.”28

Again, Wick’s motivation for moving to Euclidean space seems primarily fo-

cused on producing mathematical expressions that are more convenient and

well behaved for calculations.

The first context in which Schwinger had investigated the transformation

of field theoretic quantities to Euclidean space was his paper on the CPT the-

orem.29 Mehra and Milton trace this paper back to a priority dispute with

Pauli over the first version of the CPT theorem for the case of interacting

fields.30 This may be the first context in which Schwinger introduced imag-

26Dyson (1949)
27Wick (1954)
28Wick (1954, p. 1124)
29Schwinger (1958c)
30Though the first proofs are typically credited to Lüders and Pauli for Lüders (1954) and

Pauli (1955), Schwinger felt he had already provided an equivalent result in Schwinger
(1951d). See Mehra and Milton (2000, p. 382) for discussion.
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inary time in a calculation. He did so while introducing the transformation

properties of a Hermitian field under the Lorentz group. Because the Lorentz

group does not possess a finite dimensional unitary matrix representation, the

matrices involved in the transformation equation cannot be Hermitian. It is

only when Schwinger introduces imaginary time that the matrices become

Hermitian. This marked a step toward the Euclidean formalism in that it

was one of the first occasions on which Schwinger was lead to consider the

connections between representations of the Lorentz and Euclidean groups.31

The other context in which Schwinger had considered an imaginary time

transformation in field theory was work that he did on dispersion relations

for understanding the structure of Green’s functions. He presented this

work at a Rochester conference in April of 1957, and what appears to be a

mimeographed transcript of the talk survives in the Schwinger Papers at the

Special Collections of the UCLA library.32 As Mehra and Milton have noted,

this work was the subject of a dispute with Pauli and Källén.33 They suggest

that perhaps because of this negative reaction Schwinger never published a

paper on this work. While Schwinger never did publish, this mimeographed

transcript contains the earliest articulation of one of central physical insights

leading to the Euclidean Green’s function paper.

Schwinger began his talk at the Rochester conference by explaining that

he was going to demonstrate an approach for finding the structure of Green’s

functions for quantum field systems. He reiterated the physical significance of

these functions, emphasizing that they contain all of the physical information

about a system, its energy values, and its scattering properties. He proceeds

using his characterization of Green’s functions in terms of simultaneous dif-

ferential equations, and he sets out to determine a boundary condition on

those differential equations that properly reflects that the Green’s functions

correspond to the vacuum expectation value of a time ordered product of field

operators. To determine a concrete expression for such a boundary condition

he considers a definite time ordering, and reasons as follows. Let x0 be the

time coordinate in the ordering that is greater than all of the others. Then,

according to the definition of a time ordered product, a Green’s function in-

volving a field operator at that time coordinate must contain the field at x0

to the left of the field operators at any of the other points in the ordering.

He argues that for this to be satisfied, the dependence of the Green’s func-

tion on the latest of all times must depend only on positive frequencies. He

summarizes this reasoning as follows:

31Schwinger (1958c, pp. 224-225)
32Schwinger (1957a). A lightly edited version of the transcript later appeared in the con-

ference proceedings (Schwinger, 1957b).
33Källén, whose talk immediately followed Schwinger’s at the conference, did not agree

that Schwinger had given the most general form for the dispersion relations. For an
account of the dispute see (Mehra and Milton, 2000, pp. 380-381).
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“We have, therefore, the boundary condition that the Green’s

function, in its dependence upon the latest of all times, contains

only positive frequencies, and in its dependence upon the earliest

of all times, contains only negative frequencies. In effect we have

a description in terms of waves which can be considered as moving

in the space-time region in such a way that if we have a number of

such points in space-time, the waves are moving always out of the

region in question. When we are on the boundary of the region

in the sense of considering the time coordinate that is later than

all the others, the frequencies are positive and the waves move

out; if it is the earliest of all times, the frequencies are negative,

and the waves move out again. In short, we are dealing with

a generalization of the Green’s function originally introduced by

Feynman which corresponds precisely to the boundary condition

of outgoing waves. The waves are in a time sense, running out of

the region in question.”34

Schwinger then turns to replacing the boundary condition corresponding to

outgoing waves with a regularity requirement on the Green’s functions. In

other words, he wanted to find a condition on the regularity of the Green’s

functions that obtained only in those solutions to the equations characteriz-

ing the Green’s functions in the case of the boundary condition of outgoing

waves. What he found was that the boundary condition of outgoing waves

was equivalent to the imposition of the requirement that the Green’s func-

tion, “. . . should remain a regular function when you make the time coordinate

complex in a specific way, and that you never find an exponential that be-

comes unlimitedly large.”35 The regularity requirement that has this effect is

that when all of the time coordinates are multiplied by the complex number:

x0 → x0(1− iε), (7)

where ε > 0, the Green’s function remains regular as a function of the time

coordinate. Schwinger explains that this requirement “. . . is fully equivalent

to the particular choice of boundary conditions of outgoing waves.”36 He

illustrates this with the example of two points,

x1, x2; x01 > x02; e−iP
0(x01−x02) → e−iP

0(x01−x02)(1−iε), (8)

and explains that:

You recognize that this substitution, which multiplies equally well

34Schwinger (1957a, pp. 2-3)
35Schwinger (1957a, pp. 4-5)
36Schwinger (1957a, pp. 4-5)
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the time interval by 1− iε, forces me, if I am to deal with a quan-

tity that remains bounded no matter how great this positive time

difference is, to choose these numbers to be positive only, so that

the real part is negative. In short, with this sequence of time

differences, the substitution above forces me to pick positive fre-

quencies. On the other hand, it is clear that if the time interval

were negative, then I should have to take negative frequencies.

So the distinction between positive and negative frequencies, in

accordance with the sign of the time difference, is equally well ex-

pressed by the requirement of regularity of these Green’s functions

under the substitution x0 → x0(1− iε).”37

Schwinger then considers how this impacts the invariance properties of Green’s

functions under Lorentz transformations. He argues that since G(x, x′) is a

function defined for arbitrary x and x′, the only invariant function that can be

produced must be produced from the space-time distance between the points,

(x− x′)2, so that,

G(x, x′) = G((x− x′)2). (9)

He wanted to determine the function of the space-time interval that remains

regular when x0 → x0(1 − iε), and x0
′ → x0

′
(1 − iε). When these transfor-

mations are made the square of the interval is:

(x− x′)2 = (X −X ′)2 − (x0 − x0′)2 → (x− x′)2 + iε (10)

Thus he concludes that: “. . . the statement is that G is to be a function of

the invariant distance which remains regular when the argument is extended

into the upper half plane. That’s the boundary condition that accompanies

the physical choice of outgoing waves.”38 The next section shows how the

determination of this regularity requirement marked a critical step toward

the Euclidean formulation of field theory that Schwinger produced in the

year following the Rochester talk.

Before proceeding to the next section it is interesting to note that Schwinger

retrospectively attributed part of the inspiration for this regularity require-

ment and the Euclidean formalism to his work on waveguides. In an interview

with Mehra he explained the physical problem he was trying to solve was to

determine which members of the infinite set of boundary conditions to the dif-

ferential equations characterizing the Green’s functions determined physically

relevant solutions.39 He went on to say that:

37Schwinger (1957a, pp. 4-5)
38Schwinger (1957a, pp. 5-6)
39He explained that by the physical solutions he meant solutions that capture “. . . the fact

that the vacuum is the ground state of the system and the lowest state has energy zero,
momentum zero, and is a relativistic invariant thing” (Mehra and Milton, 2000, p. 386).
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I recognized somewhere along the line that the condition that the

waves move outward could be expressed by an extension into com-

plex space. That is, if you rotated the time axis into a complex

space, then the boundary conditions are such that the Green’s

functions... [are] decreasing exponentials. ... I simply recognized

that by moving from real time into complex time in a certain

way that would select just the physically acceptable states of the

Green’s function. In fact it must go back to the electrical engi-

neering days of waveguide stuff because ... in a waveguide if you

have a high enough frequency the wave propagates. If the fre-

quency gets too low, it exponentially attenuates. And if you have

a general solution, you must always choose the right sign of the

square root so it goes down and not up.40

Schwinger directly attributes the inspiration for the regularity condition to

his work on waveguides. This section has presented evidence that the first

place Schwinger explicitly articulated the realization that physical propoga-

tion could be captured with the regularity requirement was in his 1957 talk

at the Rochester conference.

Euclidean Green’s functions. This section provides analysis of the 1958

paper in which Schwinger introduced the Euclidean formalism for quantum

field theory.41 It also connects the argument in the 1958 paper to the insight

from the Rochester conference talk discussed in the last section. In addition

to the publication where Schwinger introduced the Euclidean formalism, he

gave a talk on the same subject at a conference at CERN. A transcript of

that talk is published in the conference proceedings.42 It is identical to the

published version with the exception of the addition of an extended opening

paragraph. This introduction lays out the novel perspective that leads to the

developments in the paper:

We are all accustomed to the idealization that accompanies the

quantum theory of fields in its representation of physical phenom-

ena, i.e. the characteristic quantum mechanical feature of the use

of abstract vectors and operators to symbolize physical quanti-

ties. But in one respect, at least, the quantum field theory has

been conservative. It continues to make use of a classical space-

time background, upon which the quantum description is super-

imposed. I would like to suggest a slight deepening of the abstract

basis for the representation of physical phenomena, which is the

40Mehra and Milton (2000, p. 386)
41Schwinger (1958b)
42Schwinger (1958a)
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replacement of the Lorentz or Minkowski space by a Euclidean

space.43

This departure from the use of a realistic underlying manifold is even more

drastic because in quantum mechanical theories the class of admissible states

is determined by the underlying spacetime symmetry group. The Lorentz

group and the Euclidean group are however, completely different, making

Schwinger’s proposal quite radical. His insight was that the differences be-

tween the groups could be used to select the class of physical states. In

particular he notes that:

. . . while you can certainly take a representation of the Euclidean

group and from it derive a representation of the Lorentz group,

you will not get all possible representations in this way. What

I would like to assert is that while one does not get all of the

representations of the Lorentz group, all the representations of

physical interest are actually obtained. The essential point to

be made is that this possibility of a correspondence between the

quantum theory of fields with its underlying Lorentz space, and

a mathematical image in a Euclidean space – if one adopts a

postulate that one should be able to do this in detail – gives

results which go beyond what can be obtained from the present

theory of fields.44

Schwinger thought that the Euclidean formalism allowed for the selection of

the physical solutions to the equations that determine the Green’s functions.

The imposition of the regularity requirement introduced in the last section

was developed to accomplish precisely that purpose.45

Another motivation that is suggested in the introduction is that Schwinger

viewed the Euclidean formalism as a response to the mathematical problems

of field theory. In the paper he explains that:

. . . by freeing ourselves from the limitations of the Lorentz group,

which has produced all the well known difficulties of quantum field

theory, one has here a possibility – if this is indeed necessary – of

43Schwinger (1958a, p. 134)
44Schwinger (1958a, p. 134)
45A related but distinct form of this motivation can be seen later in the paper when

Schwinger suggests that “...to permit the complete transformation from the Lorentz to
the Euclidean metric, every half-integer spin (F.D.) field must carry a charge. Just such a
general fermionic charge property, under the name of nucleonic charge or leptonic charge,
is either well established experimentally, or has been conjectured on other grounds. The
Euclidean formulation may be the proper basis for comprehending this general attribute
of F.D. fields” (Schwinger, 1958b, p. 136).
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producing new theories. That is, one has the possibility of con-

structing new theories in the Euclidean space and then translating

them back into the Lorentz system to see what they imply.46

This comment suggests a connection to a conference that Schwinger had at-

tended the year before in Lille on ‘Les Problèmes Mathématique de la Théorie

Quantique des Champs,’ which was one of the first to bring together math-

ematicians and physicists to discuss the problems of quantum field theory.47

Wightman’s talk at the conference reviewed the mathematical problems of

field theory and discussed the fact that unlike Euclidean space, whose in-

variant domains are bounded, Minkowski space has unbounded invariant

domains. Schwinger’s own contribution to the conference was not entirely

successful.48 Despite this, Schwinger does seem to have been motivated by

some of the mathematical concerns about the state of the theory expressed

at the conference. In the introduction to his talk at CERN he also noted

that “. . . when one finds formulations that are equivalent, one of these will be

distinguished as the one that makes contact with the future theory. All we

can do at the moment is to look at all the possible ways of formulating the

present theory.”49 Schwinger viewed the Euclidean formalism as empirically

equivalent to, but better mathematically behaved, than the Minkowski space

theory.

The first task he takes up in the paper is to show that a field theory

in Minkowski space can be transformed into a theory in Euclidean space.

The Green’s functions are the objects of correspondence that allow him to

accomplish this. Since the Green’s functions contain all of the physical infor-

mation about the theory, by establishing a connection between the Minkowski

space Green’s functions and the Euclidean space Green’s functions, he is able

to capture all physical information about the Euclidean formulation of the

theory. He considers a generic Hermitian field, χ, which decomposes into a

Bose-Einstein fields, Φ, and a Fermi-Dirac field, Ψ. The Green’s functions

are defined by the relations:

G+(x1, . . . , xp) = 〈(χ(x1) · · ·χ(xp))+〉ε+(x1 · · ·xp), (11)

46Schwinger (1958b, p. 134)
47Michel and Deheuvels (1959)
48In an interview with Mehra he recalled that “I gave a lecture on whatever I was thinking

about the formulations of field theory at the time. I don’t think it was the action
principle, but I think I wrote down some symbolic solutions of the field equations involving
exponentials of a product of a couple of functional operators and the mathematicians in
the audience burst into laughter. That was outrageous, disgraceful. I was a little stunned,
so that was not very successful. But the audience was wrong” (Mehra and Milton, 2000,
p. 381). Interestingly, a transcript of Schwinger’s talk does not appear in the published
conference proceedings (Michel and Deheuvels, 1959).

49Schwinger (1958a, p. 134)
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G−(x1, . . . , xp) = 〈(χ(xp) · · ·χ(x1))−〉ε−(xp · · ·x1). (12)

These definitions are limited in generality because they are valid only for

fields whose components are all kinematically independent at a given time.50

Schwinger closed this gap in generality in a subsequent paper in which he pro-

duced a Euclidean formulation of quantum electrodynamics.51 He proceeds

by stipulating that the Green’s functions are invariant under proper homoge-

neous orthochronus Lorentz transformations and observes that their depen-

dence on the space-time coordinates is determined by the energy-momentum

vector:

χ(x) = e−iPxχeiPx. (13)

The vacuum is invariant in the sense that

〈0| = e−iPx = 〈0| and eiPx|0〉 = |0〉. (14)

Let x(1) · · ·x(p) be the time ordering of x1 · · ·xp. Then,

G+(x) = 〈χeiP (x(1)−x(2))χ · · · eiP (x(p−1)−x(p))χ〉ε+(x1 · · ·xp), (15)

and,

G−(x) = 〈χeiP (x(p)−x(p−1))χ · · · eiP (x(2)−x(1))χ〉ε+(xp · · ·x1). (16)

Since the time dependence of G+ is generated by the operators,

e−iP
0(t(a)−ta+1), (17)

it can be seen to contain only positive frequencies. Similarly, G− is generated

by,

eiP
0(t(a)−ta+1), (18)

so it contains only negative frequencies. Up to this point the existence of the

real space Green’s functions was simply assumed. He notes that they can

be seen to be absolutely convergent expressions when the positive frequency

operators in G+ are replaced with,

e−iP
0(t(a)−ta+1)(1−iε), (19)

50More specifically, he notes that “In more general situations additional terms are necessary,
the function of which is to maintain the non-dependence of the Green’s functions on the
particular time-like direction employed in the time-ordering, which is otherwise assured
by the commutativity or anti-commutativity of fields at points in space-like relation”
(Schwinger, 1958a, p. 135).

51Schwinger (1959)
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and the negative frequency operators in G− are replaced with,

eiP
0(t(a)−ta+1)(1+iε), (20)

where he explains that “. . . the limit ε→ +0 is to be eventually performed.”52

This also ensures the absolute convergence of the expressions for the Green’s

functions under the more general time substitution:

G+ : ta → τae
−iθ sin θ > 0 (21)

G− : ta → τae
iθ

for 0 < θ < π. The new time variables τa have the same ordering as the ta.

This more general transformation establishes the desired connection to field

theory in Euclidean space:

We adopt a special notation to accompany the particular choice

θ = 1/2π which asserts the existence of the functions G+(t →
−ix4) and G−(t→ +ix4). In this way there emerges a correspon-

dence between the Green’s functions in space-time and functions

defined on a four-dimensional Euclidean manifold. To the extent

that the two Euclidean functions thus obtained are related, there

also appears an analytical continuation that connects the two dis-

tinct types of space-time Green’s functions, G±. Conversely, given

one of the Euclidean functions, the substitutions x4 → ei(π/2−ε)t

and x4 → e−i(π/2−ε)t will yield functions having the space-time

character of G+ and G−, respectively, in the limit as ε→ +0.53

Schwinger then turns to the task of supplying “... an independent basis

for the Euclidean Green’s functions, from which has disappeared all reference

to the space and time distinctions of the Lorentz metric.”54 His strategy is

to take the system of differential equations characterizing a set of Green’s

functions and then to convert them to the Euclidean metric. He considers

the theory defined by the Lagrangian:

L =
1

4
[χAµ∂µχ− ∂µχAµχ] +

1

2
χBχ− h1, (22)

which yields the field equations,

Aµ∂µχ+Bχ =
∂lh1
∂χ

. (23)

52Schwinger (1958a, p. 135)
53Schwinger (1958a, pp. 135-136)
54Schwinger (1958a, p. 136)
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The commutation relations on a spacelike surface are given by,[
A0χ(x), χ(x′)

]
± = iδ0(x− x′). (24)

By combining the field equations and the commutation relations he obtains

the differential equations for the Green’s functions:

(Aµ∂µ +B)1G+(x1 · · ·xp) + . . . = iδ(x1 − x2)G+(x3 · · ·xp) (25)

±iδ(x1 − x3)G+(x2 · · ·xp) + . . .

The terms missing from the left hand side of the equation are those that rep-

resent the interaction effects in the field equations. The differential equations

for G− can be constructed in the same way.

Schwinger concludes the paper by indicating a way to replace the charac-

terization of the Euclidean Green’s functions in terms of differential equations

with a more explicit construction involving a generating function. He notes

that “A large variety of equivalent forms can now be devised for the Green’s

functions, based primarily upon the well-established transformation and rep-

resentation theory for canonical variables of the first and second kind.”55

However, Schwinger explicitly defers any further application of this technique

to particular systems to a later paper.56 This passage also contains a footnote

which promises a more extended discussion of the relevant representation the-

ory in “Quantum Theory of Fields, in: Handbuch der Physik; volume V/2,

Berlin, Springer (to be published).”57 This article never appeared.58 However,

55Schwinger (1958a, p. 134)
56In the later paper Schwinger uses the formalism that he had developed to cast quantum

electrodynamics in Euclidean form. See Schwinger (1959).
57(Schwinger, 1958a, p. 134)
58Schwinger was invited to contribute an article to the Handbuch der Physik, by the editor

of the project, Flugge, in February of 1955 (Flugge, 1955b). He was asked to contribute
an article on “Quantum Theory of Wave Fields” to volume 5 of the Handbuch. This
volume was also scheduled to include a contribution from Pauli, “Prinzipien der Quan-
tenmechanik,” as well as from Källén on “Quantenelektrodynamik” (Flugge, 1955a).
Schwinger was apparently slow to produce his manuscript, and in March of 1957, Flugge
wrote to him to explain that Pauli and Källén’s contributions were already prepared
for print. In November of the same year Flugge wrote again and noted that Pauli and
Källén “... are angry with me that I held up publication of their articles by waiting
for yours. I again had to face a rather unpleasant pressure from these two authors who
firmly demanded to have volume 5 published right now without your contribution and
who also made an indication (to put it mildly) that I never would get a manuscript from
you at all” (Flugge, 1957). He goes on to suggest that he publish Pauli and Källén’s con-
tributions as volume 5 part I and that Schwinger’s contribution appear later as volume
5 part II. Given the citation that Schwinger gave, it seems that he must have agreed to
this plan, however, while volume 5 part I did eventually appear with Pauli and Källén’s
contributions, volume 5 part II never appeared. I have been unable to identify evidence
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with this, Schwinger had already introduced a complete Euclidean extension

of the formalism for quantum field theory.59

Having produced the Euclidean formalism, Schwinger noted that “...the

utility of introducing a Euclidean metric has frequently been noticed in con-

nection with various specific problems, but an appreciation of the complete

generality of the procedure has been lacking.”60 Recall that Dyson and Wick

had already considered similar transformations for other reasons, and that

Schwinger had also already considered what amount to Euclidean transfor-

mations on at least two occasions. This remark emphasizes that Schwinger

viewed his central contribution in On the Euclidean Structure of Relativistic

Field Theory as providing a complete Euclidean formalism. Following the

development of the Euclidean formalism Schwinger did make one immediate

application. In particular, he showed that quantum electrodynamics could

be cast in Euclidean form.61 This was his final contribution on the topic.62

Conclusion. Two further developments were critical for establishing the

modern status of the Euclidean formalism. One is due to Symanzik, who

produced a purely Euclidean formulation of quantum field theory.63 This

work secured the firm connection between Euclidean field theory and clas-

sical statistical mechanics. The other development concerns the completion

of the connection between field theory in Minkowski space and in Euclidean

space. More specifically, it remained to be shown when an arbitrary Euclidean

space theory determined a physical Minkowski space theory. Schwinger an-

ticipated this problem,64 which was approached and solved by Osterwalder

and Schrader in the context of Wightman’s axiomatic formalism nearly ten

years after Schwinger introduced the Euclidean extension of his own formal-

ism. They found necessary and sufficient conditions for a field theory defined

that Schwinger ever started preparing as article specifically for the Handbuch. However,
Schwinger’s 1955 lectures at the Les Houches summer school contain an extended discus-
sion of canonical transformations (Schwinger, 1955). They do not contain the Euclidean
connection but this may be what Schwinger had in mind for the Handbuch article.

59During the question and answer period, Yamaguchi noted that Nakano was working
on a very similar connection between Euclidean field theory and the standard theory.
Nakano’s paper appeared the following year (Nakano, 1959).

60Schwinger (1958a, p. 134)
61Schwinger (1959)
62In fact, not long after this work Schwinger grew discontented with the operator field

formalism in general and produced his own source theory as a candidate replacement.
See Cao (1998), Cao and Schweber (1993), and Mehra and Milton (2000) for discussion.

63Symanzik (1966)
64The discussion period of Schwinger’s talk at CERN ended with him noting that, “The

question of to what extent you can go backwards, remains unanswered, i.e. if one begins
with an arbitrary Euclidean theory and one asks: when do you get a sensible Lorentz
theory? This I do not know. The development has been in one direction only; the
possibility of future progress comes from the examination of the reverse direction, and
that is completely open” (Schwinger, 1958c, p. 140).
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in terms of Euclidean Green’s functions to have an analytic continuation to

a quantum field theory in Minkowski space, defined in terms of Wightman

distributions.65 This development completed the connection that Schwinger

had begun to develop, and established a permanent place for Schwinger’s

Euclidean Green’s functions in the constructive field theory literature.

The transformation to Euclidean space now seems quite natural because

it has assumed such a central place in modern approaches to quantum field

theory. It is perhaps for this reason that the historical literature has not

focused on the use of such transformations for defining quantum field theo-

ries. However, at the time Schwinger introduced the Euclidean formalism, the

move to an underlying Euclidean manifold was a radical one. In this paper

I have provided an account of the origins of Schwinger’s Euclidean Green’s

functions. While his development of Minkowski space Green’s functions was

an important step in this direction, the Euclidean extension did not follow

inevitably from this formalism. Instead, the regularity requirement capturing

the boundary condition of outgoing waves was an essential aspect of the moti-

vation for considering Euclidean space. I have provided evidence that the first

explicit articulation of the regularity condition occurred in Schwinger’s 1957

Rochester conference talk. The development of Euclidean space quantum

field theory is better understood when viewed in this context.

Acknowledgments. I am grateful to the Wesley Salmon Fund for provid-

ing funding for a visit to the Julian Schwinger Papers at the special collections

of the UCLA library. I am also thankful to Bob Batterman and John Norton

for helpful discussion. Finally, I would like to thank two anonymous referees

for critical commentary that significantly improved the paper.

65Osterwalder and Schrader (1973, 1975)

-19-



References

Brown, L. (1999). A Radar History of World War 2: Technical and Military

Imperatives, Volume 4. CRC Press.

Cao, T. Y. (1998). Conceptual Developments of 20th Century Field Theories.

Cambridge University Press.

Cao, T. Y. and S. Schweber (1993). The conceptual foundations and the

philosophical aspects of renormalization theory. Synthese 97 (1), 33–108.

Dyson, F. (1949, June). The S Matrix in Quantum Electrodynamics. Physical

Review 75 (11), 1736–1755.

Feynman, R. (1949, September). The Theory of Positrons. Physical Re-

view 76 (6), 749–759.

Flugge, S. (1955a). Letter of 21 December. Box 21, Folder 9, Julian Sey-

mour Schwinger Papers (Collection 371). Department of Special Collec-

tions, Charles E. Young Research Library UCLA.

Flugge, S. (1955b). Letter of 25 January. Box 21, Folder 9, Julian Sey-

mour Schwinger Papers (Collection 371). Department of Special Collec-

tions, Charles E. Young Research Library UCLA.

Flugge, S. (1957). Letter of November 4. Box 21, Folder 9, Julian Sey-

mour Schwinger Papers (Collection 371). Department of Special Collec-

tions, Charles E. Young Research Library UCLA.

Galison, P. (1997). Image and Logic: A Material Culture of Microphysics.

University of Chicago Press.

Kaiser, D. (2009). Drawing Theories Apart: The Dispersion of Feynman

Diagrams in Postwar Physics. University of Chicago Press.

Levine, H. and J. Schwinger (1950, December). On the theory of electromag-

netic wave diffraction by an aperture in an infinite plane conducting screen.

Communications on Pure and Applied Mathematics 3 (4), 355–391.
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