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Abstract

This article focuses on three themes concerning determinism and indeter-
minism. The first theme is observational equivalence between deterministic
and indeterministic models. Here I discuss several results about observational
equivalence and present an argument on how to choose between deterministic
and indeterministic models involving indirect evidence. The second theme is
whether Newtonian physics is indeterministic. I argue that the answer depends
on what one takes Newtonian mechanics to be, and I highlight how contem-
porary debates on this issue differ from those in the nineteenth century. The
third major theme is how the method of arbitrary functions can be used to
make sense of deterministic probabilities. I discuss various ways of interpreting
the initial probability distributions and argue that they are best understood
as physical, biological etc. quantities characterising the particular situation at
hand. Also, I emphasise that the method of arbitrary functions deserves more
attention than it has received so far.

Keywords: determinism, indeterminism, observational equivalence, indirect
evidence, Newtonian physics, method of arbitrary functions, probability
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1 Introduction

Determinism reigns when the state of the system at one time fixes the past
and future evolution of the system. The question of determinism can be asked
about real systems (i.e. whether the state of a real system at one time fixes the
state of the system at all times) or about models of real systems (i.e. whether
the state of a model at one time fixes the state of the model at all times).
Indeterminism amounts simply to the negation of determinism. Of course,
one usually uses models to arrive at claims about the deterministic characters
of real systems, but, as we will see, the relationship between deterministic sys-
tems and models is not at all straightforward.

This article will focus on three major themes in the recent debate on de-
terminism in the philosophy of science. Throughout the article, emphasis will
not be just on summarising the debates, but also on presenting some novel
criticism and arguments. The first major theme will be determinism, inde-
terminism and observational equivalence. Here I will critically discuss various
notions of observational equivalence between deterministic and indeterministic
systems, and whether there is underdetermination between deterministic and
indeterministic models (Section 2). The second major theme will be whether
Newtonian mechanics is indeterministic and how scientists’ debate in the nine-
teenth century differs from the contemporary debate (Section 3). The third
major theme will be how probabilities can arise in deterministic systems. Here
I will stress the usefulness of the method of arbitrary functions for under-
standing deterministic probabilities (Section 4). The paper will end with a
conclusion (Section 5).

2 Determinism, indeterminism and obser-

vational equivalence

2.1 Deterministic and indeterministic models

Consider the evolution of the temperature in London (which is assumed to take
values between 0 and 30 degrees). A meteorologist measures the temperature
over nine days and obtains a sequence of observations as shown in Figure 1.
Meteorologists aim to find a model which reproduces these observations and
correctly predicts the future temperature values. In this context, the question
arises whether the temperature evolution is best described by a deterministic
or an indeterministic model, and one might think that the observations only
allow for one or the other. However, in several cases including the example of
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Figure 1: Observed temperature in London over nine days

the evolution of the temperature, both a deterministic and an indeterministic
model is possible (i.e. there is observational equivalence between deterministic
and indeterministic models). This raises the question which model is prefer-
able and whether there is underdetermination. To tackle these questions, let
me first introduce deterministic and indeterministic models.

The deterministic models we focus on are measure-theoretic deterministic
models (M,Tt, p).

1 Here M is the set of possible states (the phase space),
where m ∈ M represents the state of the system. The functions Tt : M → M
are the evolution equations, telling one that a state m ∈ M evolves to Tt(m)
after t time steps (t ∈ Z). p is a probability measure, assigning a probabil-
ity to regions of M .2 The solution through m represents a possible path of
the deterministic system over time. Formally, it is the bi-infinite sequence
(...T−2(m), T−1(m),m, T1(m), T2(m)...). Clearly, because Tt are functions, the
models (M,Tt, p) are deterministic: the initial state m fixes the past and fu-
ture evolution of the system. These deterministic models are among the most
important models in science (e.g., including all Newtonian models of energy-
conserving systems).

In the observation of a deterministic system, a value is observed that is
dependent on, but usually different from, the actual value (since observations
cannot be done with infinite precision). Formally, an observation corresponds

1For technical details see Werndl (2009a, 2011). For simplicity, I focus on models with discrete
time, but all that will be said carries over to models with continuous time (cf. Werndl 2011).

2There are various interpretations of this probability measure from being a physical quantity
that describes the probability of finding a system in a certain region of phase space to the long-run
average of the proportion of time a solution spends in a certain region (cf. Lavis 2011).
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Figure 2: (a) the logistic map T (m); (b) the observation function Φ8

to an observation function, i.e. a function Φ : M → MO, where Φ(m) rep-
resents the observed value (MO is the set of all possible observation values).
Since we can only make observations with finite precision, in what follows it
is assumed that observation function take only finitely many values.

Lorenz (1964) used the logistic map to model the evolution of the temper-
ature. Since this is a very simple model, I will use it for illustration purposes.
More specifically, the phase space M of the logistic map is [0,30] (representing
the temperature values between 0 and 30). The temperature at day t + 1 is
obtained from the temperature m at day t by the equation (cf. Figure 2):

T (m) = 4m(1− m

30
). (1)

Hence the evolution equations are given by Tt(m) := T t(m) (where T t is the
t-th iterate of m).3 The probability measure assigns to a region A of [0, 30]
the value:

p(A) =

∫
A

30

π
√

m
30(1− m

30)
dm. (2)

Consider the observation function Φ8 of the logistic map with eight values
Φ8(m) = o1 = 0.570905 for 0 ≤ m < 1.14181, Φ8(m) = o2 = 2.767605 for
1.14181 ≤ m < 4.3934, Φ8(m) = o3 = 6.82605 for 4.3934 ≤ m < 9.2587,
Φ8(m) = o4 = 12.12935 for 9.2587 ≤ m < 15, Φ8(m) = o5 = 17.87015 for
15 ≤ m < 20.7403, Φ8(m) = o6 = 23.17345 for 20.7403 ≤ m < 25.6066,

3The logistic map is only forward deterministic. That is, the state of the model at one time
determines all the future states but not the past states. Nothing hinges on this and all the results
presented in this section carry over to systems that are only forward deterministic.
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Φ8(m) = o7 = 27.2324 for 25.6066 ≤ m < 28.8582 and Φ8(m) = o8 = 29.4291
for 28.8582 ≤ m ≤ 30. Figure 2(b) shows this observation function. Suppose
that the initial temperature is 0.3355. Then the first nine iterates coarse-
grained by the observation function Φ8 are: o4, o7, o4, o8, o1, o1, o2, o4, o8.
This is the sequence shown in Figure 1. Consequently, the time series of Figure
1 can be derived from observations of the logistic system.

The indeterministic models we will focus on are stochastic models {Zt}
with a finite number of outcomes E (representing systems that evolve accord-
ing to probabilistic laws). Here Zt represents the outcome of the system at
time t. Probability distributions characterise the probabilistic behaviour of the
stochastic system: e.g., the probability distribution P (Zt = e) gives one the
probability that the outcome of the system is e at time t; joint probability dis-
tributions P (Zs = e and Zt = f) tell one the probabilities of outcomes at differ-
ent times; conditional probability distributions P (Zs = e given that Zs = f)
tell one the probability that the outcome is e at s given that it was f at t (for
any s and t). A realisation represents a possible evolution of the stochastic sys-
tem over time. Formally, it is a bi-infinite sequence (...Z−2, Z−1, Z0, Z1, Z2...).
A stochastic model is indeterministic in the sense that given the initial out-
come, there are several outcomes that might follow (and these possibilities
are measured by probabilities). Most indeterministic models in science are
stochastic models. For stochastic systems observations are also modelled by
observation functions, i.e., functions Γ : E → EO, where Γ(e) represents the
observed value (EO is the set of all possible observed values).

Probably the best-known stochastic models are Bernoulli models (repre-
senting a sequence of identically distributed random experiments, where the
outcomes are independent of each other, like for a sequence of coin tosses or
a sequence of throwing dice). Widely used in science are also Markov models
(representing a sequence of identically distributed random experiments, where
the next outcome only depends on the previous outcome). Consider the follow-
ing specific Markov model {Vt}: there are eight possible states o1 = 0.570905
o2 = 2.767605, o3 = 6.82605, o4 = 12.12935, o5 = 17.87015, o6 = 23.17345,
o7 = 27.2324, o8 = 29.4291, which each have probability 1/8. Each state can
be followed by two other states, and the probability that a state is followed
by any the two other states is 1/2. More specifically, o1 can be followed by o1
or o2, o2 by o3 or o4, o3 by o5 or o6, o4 by o7 or o8, o5 by o7 or o8, o6 by
o5 or o6, o7 by o3 or o4, o8 by o1 or o2. For one of the realisations of {Vt}
the entries from time 0 to 9 are: o4, o7, o4, o8, o1, o1, o2, o4, o8. This is the
sequence shown in Figure 1. Therefore, the time series shown in Figure 1 can
also derive from a Markov model. Recall that the very same time series can
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also arise from the logistic system. This raises the question of observational
equivalence, to which we now turn.

2.2 Observational equivalence

There is observational equivalence when the deterministic model, relative to
an observation function Φ, and the stochastic model, relative to an observation
function Γ give the same predictions (formally, this kind of observational equiv-
alence is called manifest isomorphism – cf. Werndl 2009a). What it means to
give the same predictions needs further elaboration. The predictions obtained
from a stochastic model are the probability distributions over its realisations
coarse-grained by Γ. Recall that a probability measure p is defined on the phase
space of a deterministic model. Therefore, the predictions derived relative to
an observation function Φ are the probability distributions over the solutions
coarse-grained by Φ. Therefore ‘give the same predictions’ means that (i)
the possible values of the observation function Γ of the stochastic model and
of the observation function Φ of the deterministic model are the same, and
(ii) the probability distributions over the realisations of the stochastic model
coarse-grained by Γ and the probability distributions over the solutions of the
deterministic model coarse-grained by Φ are the same.

Given a deterministic model (M,Tt, p) and an observation function Φ :
M →MO, can an observationally equivalent stochastic model be found? Yes:
{Zt} := {Φ(Tt)} is a stochastic model, constructed by applying the observa-
tion function to the deterministic model. The possible values of {Φ(Tt)} are
the same as the possible observed values of (M,Tt, p). Further, the realisations
of {Φ(Tt)} and the solutions of (M,Tt, p) coarse-grained by Φ have the same
probability distributions. Hence there is observational equivalence between the
stochastic model {Φ(Tt)} (assuming that all values can be observed, i.e. that
Γ is the identity function) and the deterministic model (M,Tt, p), relative to
Φ. One might wonder whether {Φ(Tt)} has only trivial probabilities (0 and
1) because it derives from applying an observation function to a deterministic
model. However, importantly, this is not so. It can be shown that in several
cases the stochastic model {Φ(Tt)} is nontrivial (i.e., there are probabilities
assigned to outcomes that are strictly between 0 and 1) (Werndl, 2009a, 2011).

This result can be illustrated with the example of the evolution of the tem-
perature. We know that we can describe the evolution of the temperature by
the logistic map (equation 1). The set of possible values of the observation
function Φ8 is the same as the set of all possible outcomes of the stochas-
tic model {Vt} = {Φ8(Tt)}. The probability distributions of this stochas-
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tic model are determined by applying Φ8 to the logistic map and hence are
identical to those of {Φ8(Tt)}. Instances of these identical probability distri-
butions are: p(Φ8(Tt) = o1) = P (Zt = o1) or p(Φ8(Tt+1) = o2 given that
Φ8(Tt) = o1) = P (Zt+1 = o2 given that Zt = o2) for all t ∈ N. Hence the
conclusion is that the logistic map, relative to Φ8, and the stochastic model
{Φ8(Tt)} (when all values are observed) are observationally equivalent. Indeed,
{Φ8(Tt)} is the Markov model {Vt}. Thus the logistic map, relative to Φ8, and
the Markov model {Vt} are observationally equivalent. So we have found an
explanation of why the time series of Figure 1 can arise from both the logistic
map and the {Vt}.

In an insightful paper Berlanger (2013) investigates whether manifest iso-
morphism can serve as a purely mathematical notion of observational equiva-
lence. He concludes that the answer is negative because the specific choice of
the observation function will depend on the context and the physical situation
at hand. While I agree with his conclusion, I do not think that this shows that
there is anything wrong about manifest isomorphism. Observational equiva-
lence is about observations. Hence it is only desirable that manifest isomor-
phism is not a purely mathematical notion and that the physical situation at
hand will influence the choice of the observation function. What is important
is that there are investigations of physical phenomena that can be regarded as
instances of manifest isomorphism. This is certainly the case. For instance,
chaos theory is about deterministic systems that are nevertheless unpredictable
and show irregular and random behaviour (cf. Werndl, 2009b). And in the
context of chaos theory many scientists reported that they first described a
physical phenomenon with a stochastic model only to find later that the data
can also be regarded as deriving from a deterministic system (e.g. Shaw, 1984).

The results I have presented so far only show that there can be obser-
vational equivalence between deterministic and stochastic models. Yet one
might still doubt that stochastic models arising in scientific theorising (in
short: stochastic models in science) can be observationally equivalent to deter-
ministic models arising in scientific theorising (in short: deterministic models
in science). If such doubts were justified, then one could divide the proba-
bility distributions found in science into two groups: the ones deriving from
observations of deterministic systems in science, and the ones deriving from
observations of stochastic systems in science. Then one might argue that if
the observed probability distributions are of the type of stochastic models in
science, this amounts to evidence for a stochastic model, and if they are of the
type of deterministic models, this provides evidence for an underlying deter-
ministic system. Clearly, such an argument only works if stochastic models in

8



science cannot be observationally equivalent to deterministic models in science.

Indeed, this is what Kolmogorov believed. More specifically, Kolmogorov
introduced the Kolmogorov-Sinai entropy to measure the amount of infor-
mation produced by a stochastic model and a deterministic model, and he
expected that deterministic models in science have positive entropy and that
stochastic models in science have zero entropy. But when Kolomogorov tried
to prove this conjecture, he failed. A few years later it was found that many
deterministic systems in science including Newtonian systems have positive
Kolmogorov-Sinai entropy (cf. Sinai 1989, 835–837; Werndl 2011). In conclu-
sion, Kolmogorov’s attempt of separating deterministic models in science from
stochastic models in science failed. Indeed, many deterministic models in sci-
ence including Newtonian models are observationally equivalent (i.e. manifestly
isomorphic) to stochastic models in science. To come back to our example of
the evolution of the temperature, the logistic map (a deterministic model in
science) relative to the observation function Φ8 is observationally equivalent
to the Markov model {Vt} (Markov models are widely used in science). Rel-
ative to the coarser observation function Φ4(m), where Φ4(m) = 2.1967 for
0 ≤ m < 4.3934, Φ4(m) = 9.6967 for 4.3934 ≤ m < 15, Φ4(m) = 20.3033 for
15 ≤ m < 25.6066, Φ4(m) = 27.8033 for 25.6066 ≤ m ≤ 30, the logistic map is
even observationally equivalent to a Bernoulli model with two outcomes (i.e.
to a series of coin tosses) (Werndl, 2009a, 2011).

One might think that only if certain coarse observation functions are ap-
plied to deterministic models in science, one obtains stochastic models in sci-
ence and that fine-enough observations of deterministic systems in science
should yield probability distributions that do not derive from stochastic mod-
els in science. In other words, one might doubt that deterministic models in
science are observationally equivalent to stochastic models in science at every
observation level.

The idea of observational equivalence at every observation level can be
spelled out in various ways (cf. Werndl, 2011). Here I will only discuss re-
sults about the most commonly used notion referring to (ε1, ε2)-congruence,
which was introduced by the mathematician Ornstein (for technical details,
see Ornstein and Weiss, 1991; Werndl, 2009a, 2011). For a sufficiently small
ε1 ≥ 0, one will not be able to distinguish states of the deterministic system
which are less than the distance ε1 apart. Further, suppose that for sufficiently
small ε2 ≥ 0 one will not be able to distinguish differences in probabilities of
less than ε2. Then a deterministic model and a stochastic model are (ε1, ε2)-
congruent (i.e. give the same predictions at level (ε1, ε2)) iff there is a one to
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one correspondence between the solutions of the deterministic model and the
realisations of the stochastic model such that the state of the deterministic
model and the outcome of the stochastic model are at all time points within
distance ε1 except for a set of probability smaller than ε2.

The following can be shown for many deterministic models in science, in-
cluding our example of the logistic map (the evolution of the temperature)
and several Newtonian models: for any arbitrary ε1 > 0 and ε2 > 0 there is a
Markov model which is (ε1, ε2)-congruent to the deterministic model (Ornstein
and Weiss, 1991; Werndl, 2009a). From this the conclusion is drawn that the
doubts raised above cannot be substantiated: deterministic models in science
can indeed be observationally equivalent at every observation level to stochas-
tic models in science.

Berlanger (2013) has argued that (ε1, ε2)-congruence is not sufficient for ob-
servational equivalence because the set of points where the models differ by ε2
(henceforth called the ε2-set) is only restricted in its probability measure and
not in its distribution. He goes on to construct examples of (ε1, ε2)-congruent
models which differ at regular time intervals and argues that they are not ob-
servationally equivalent because they differ systematically and detectably.

Berlanger’s argument is spot on. It shows that in order to arrive at a
valuable notion of observational equivalence, (ε1, ε2)-congruence needs to be
strengthened by adding the condition that the ε2-set is distributed randomly
(to match our expectations of random experimental noise). Indeed, for the
examples discussed by Ornstein and Weiss (1991) and Werndl (2009, 2011) it
is easy to see that they cannot differ at regular time intervals as in Berlanger’s
counterexample.4 Still, there remains the question whether for the examples of
(ε1, ε2)-congruence discussed in the literature, the ε2-set is really distributed
in a way that matches our expectations of random noise.

In our context it is important that it can be shown that several deter-
ministic models in science (including the logistic map) are (ε1, 0)-congruent
to Markov models for every ε1 ≥ 0. Here Berlanger’s concerns do not arise
because there is no exceptional set of positive measure ε2 where the models
differ. To conclude, there are indeed deterministic models in science that are
observationally equivalent at every observation level to stochastic models in
science.

4These examples are chaotic (strongly mixing), which implies that regular differences as in
Berlanger’s counterexample are impossible.
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2.3 Choice and underdetermination

As shown above, there are cases where deterministic and stochastic models are
observationally equivalent. Let one of the cases be given where the determinis-
tic model (M,Tt, p) relative to Φ and the stochastic model {Ψ(Tt)} relative to
Γ are observationally equivalent. Here there is a choice between different mod-
els and the question arises: is the deterministic model or the stochastic model
preferable relative to evidence? If the data equally supports the deterministic
and the stochastic model, there is underdetermination. To illustrate this with
our example: here the question arises whether to choose the logistic map or
the Markov model {Φ8(Tt)} to describe the evolution of the temperature in
London.

Suppes (1993) and Suppes and de Barros (1996) argue that there is under-
determination in these cases. Yet more care is needed. In particular, in order
to answer the question which model is preferable, one needs to specify the class
of observations under consideration. The two main cases are (i) the currently
possible observations given the available technology (which is the kind of choice
arising in practice), and the (ii) the observations which are possible in princi-
ple (where it is assumed that there are no limits, in principle, on observational
accuracy) (cf. Werndl, 2013a).

Let me first consider case (ii), i.e. the observations which are possible in
principle. Here one quickly sees that there is no underdetermination. If al-
ways finer observations can be made, then the deterministic model is preferable
(since only the deterministic model allows that always finer observations can
be made). On the other hand, suppose the possible observations show that
there are no other states apart from those corresponding to the values of a
certain observation function Ψ. Then the stochastic model {Zt} = {Ψ(Tt)} is
preferable because only this model does not have more states. Hence there is
no underdetermination. Winnie (1998) and Wüthrich (2011) also present an
argument along these lines to argue against Supper’s (1993) underdetermina-
tion thesis.

Let me turn to case (i), i.e. the currently possible observations. To avoid
a trivial answer, assume that Φ is at least as fine as the currently possi-
ble observations and that hence it is not possible to find out whether there
are more states than the ones corresponding to the values given by Ψ. In
other words, the predictions of the deterministic model and stochastic model
{Zt} = {Ψ(Tt)} agree at all currently possible observation levels. To provide
an example, if Ψ := Φ8 corresponds to an observation at least as fine as the
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currently possible observations, then the logistic map and {Ψ8(Tt)} will give
the same predictions at all currently possible observation levels.

Werndl (2013a) argues that underdetermination can still be avoided in
the case most commonly discussed in the literature, i.e. the choice between
deterministic models derived from Newtonian theory and stochastic models
obtained by applying observation functions to these deterministic models. Her
argument involves the idea of indirect evidence, which is best explained with
an example. Galileo’s theory is only about the motion of bodies on Earth
and Kepler’s theory is only about the motion of planets. So data about plan-
ets cannot be derived from Galileo’s theory (with help of standard auxiliary
assumptions). Still, data about planets support Kepler’s theory and, with
Newtonian mechanics as a bridge, they provide indirect evidence for Galileo’s
theory. As emphasised by Laudan and Leplin (1991), indirect evidence can
block underdetermination. For instance, suppose there is a hypothesis H from
which the same predictions are derivable than from Galileo’s theory but which
does not follow from Newtonian mechanics (or another general theory). In this
case there is no underdetermination because only Galileo’s theory (but not H)
is supported by indirect evidence. Along these lines Werndl (2013) argues that
for deterministic models derived from Newtonian mechanics there is indirect
evidence from other similar Newtonian models. Yet, for the stochastic models
there is no indirect evidence. Hence the deterministic models are preferable,
and there is no underdetermination. To illustrate this argument with our sim-
ple example of the evolution of the temperature: suppose that the logistic map
were derivable from the generally well-confirmed theory of fluid dynamics but
the stochastic model not. Then the deterministic model would receive indirect
evidence from other similar models of fluid mechanics but the stochastic model
would not. Hence in this case the deterministic model would be preferable.

Let us now turn to the second main theme of this article, where the concern
is an altogether different version of indeterminism that does not involve any
probability distributions.

3 Indeterminism in Newtonian physics

3.1 Examples of indeterminism

In the past decades the question whether the equations of Newtonian physics
are deterministic or not has received much interest in the philosophy of science
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Figure 3: The mass sitting at the highest point on Norton’s dome

community. Contra to popular belief that Newtonian physics is deterministic,
the answer to this question is not clear cut.

Two kinds of examples have been discussed in the literature that are taken
to show that Newtonian mechanics is indeterministic. The first class of exam-
ples are systems where the initial conditions of the bodies do not uniquely fix
their solutions. For example, Norton (2003, 2008) discusses a system where a
point particle of unit mass is moving on a dome of the shape shown in Figure 3.
The dome is rotationally symmetric about the origin r = 0, which corresponds
to the highest point of the dome. The shape of the dome is specified by

h(r) =
2

3g
r

3
2 , (3)

describing how far the surface of the dome lies below the highest point, where
r is the radial distance coordinate at the surface of the dome. The mass is
accelerated by the gravitational force along the surface. At any point of the
surface the gravitational force tangential to the surface is directed radially
outward and is assumed to be given by

F =
d(gh)

dr
= r

1
2 (4)

(there is no tangential force at r = 0). Recall Newton’s second law of motion:
F = m.a (i.e. the force equals the mass times the acceleration). When this
law is applied to the radial acceleration d2r/dt, one obtains

d2r

dt
= r

1
2 . (5)

If the mass sits initially (at t = 0) at the highest point of the dome, there is
an obvious solution given by r(t) = 0 for all times t. Yet, unexpectedly, there
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is another class of solutions given by:

r(t) =
1

144
(t− T )4 for t ≥ T (6)

r(t) = 0 for t ≤ T, (7)

where T ≥ 0 is an arbitrary constant.5 Hence the evolution of the mass sitting
initially at the highest point of the dome is not determined: it can stay on the
highest point forever or start moving down the surface at an arbitrary point
of time.

Mathematicians have of course investigated under what conditions unique
solutions exist for differential equations. In this context, a crucial condition
is local Lipschitz continuity. Intuitively speaking, a local Lipschitz continuous
function is limited in how fast it can change. More formally: a function F (r)
is locally Lipschitz continuous when, for every initial state x in the domain,
there is a neighbourhood U of x such that for the restriction of F to U it holds
that for all r, s in U :

|F (r)− F (s)| ≤ K|r − s|. (8)

The Picard-Lindelöf theorem from the theory of ordinary differential equations
is a key theorem about the existence and uniqueness of differential equations.
It states that if the force F is locally Lipschitz continuous on its domain, then
there is a unique maximally extended solution to the equation of motion (cf.
Arnol’d, 1992). Most differential equations used in science fulfill the conditions
of the Picard-Lindelöf theorem. Since for Norton’s dome there is a failure of
uniqueness, Norton’s dome is not locally Lipschitz continuous. More specifi-
cally, for Norton’s dome F (r) = r

1
2 (cf. equations 4 and 5), and for F (r) = r

1
2

condition (8) fails for x = 0 when the particle is at rest at the highest point of
the dome.

The second kind of examples that are taken to show that Newtonian me-
chanics is indeterministic concern space invaders. There is no upper bound to
the speed of particles in Newtonian mechanics. Hence there is the possibility of
space invaders, i.e. particles zooming in from spatial infinity in a finite amount
of time. For instance, Xia (1992) proved that there can be space invaders for
n ≥ 5 particles where each of the n particles is subject to the gravitational
influence of the other n − 1 particles and there are no other forces present.
Hence for an universe that it empty at t0 there are the following two possibil-
ities. First, obviously, it is possible that the universe remains empty forever.

5(6) and (7) solve Newton’s second law (5) because d2r
dt =

d2( 1
144 (t−T )4)

dt = 4∗3
144 (t− T )2 = 1

12 (t−
T )2 = ( 1

144 (t− T )4)
1
2 = r

1
2 for t ≥ T , and d2r

dt = d20
dt = 0 = 0

1
2 = r

1
2 for t ≤ T .
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However, second, it is also possible that after t0 there are, say, five particles
in the universe with interactions as discussed in Xia (1992). Hence Newtonian
particle mechanics is an indeterministic theory: the fate of the universe after
t0 is not determined: it can stay empty forever or be occupied by five particles.

3.2 Is Newtonian physics indeterministic?

Based on these examples, various authors such as Earman (1986) and Norton
(2003, 2008) have argued that Newtonian physics is indeterministic. Others
objected to this conclusion and defended the claim that Newtonian physics is
deterministic. For instance, Korolev (2007) argues for local Lipschitz conti-
nuity as an implicit assumption of Newtonian physics. In Korolev (2007) one
also finds the idea that it is improper idealizations that lead to indetermin-
ism and that once these improper idealizations are abandoned, the resulting
systems will be deterministic. For instance, if the dome were not completely
rigid (and in reality it certainly is not completely rigid), then it would deform
in a way that guarantees local Lipschitz continuity and hence would prevent
indeterminism. Zinkernagel (2010) claims that Norton’s dome arises from an
incorrect application of the first law. In essence, what Zinkernagel requires is
that the first law is understood in a way that every force has a first “cause”
and that forces are not turned on smoothly from zero to non-zero magnitude.
Applied to Norton’s dome this yields the conclusion that the particle at rest
at the top of the dome must stay at rest because for the other solutions the
forces are turned on smoothly from zero to non-zero magnitude.

While there is much that has been learned from this debate, I would agree
with Fletcher (2012) that the question “Is Newtonian mechanics indeterminis-
tic” is too simplistic. The answer to this question depends on what one takes
Newtonian mechanics to be, and there is no unequivocal answer to this question
(cf. Malament, 2008; Wilson, 2009). There are various different conceptions of
Newtonian physics, which are all useful in their own way and none of them is
a priori privileged over the others. For instance, while an applied mathemati-
cian may only consider forces with certain continuity properties, a physicist
may focus on a class of properties of models that can be investigated through
experiments. There are still interesting scientific and philosophical questions
about determinism to be answered, for instance, whether a certain configura-
tion of matter allows for space invaders or what role Lipschitz indeterminism
plays in fluid dynamics. Yet these questions will be about precisely specified
versions of Newtonian physics rather than about “the Newtonian physics”.

This does not mean that there is little that has been learnt from this
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debate. On the contrary, the analysis of the various indeterministic systems
and the detailed investigations into the reasons why determinism obtains or
fails has been highly insightful. To provide a few examples, we have learned
that the violation of Lipschitz continuity is benign in the sense that the force
on a ball rolling off the table is not Lipschitz at the point where it looses
contact (Fletcher, 2012). Zinkernagel’s (2010) analysis has shown us that are
two different understandings of Newton’s first law (one where it is required
that every force has a first “cause” and one where this is not the case) and
that some cases of indeterminism can be avoided by requiring that every force
has a first “cause”. Furthermore, we have learned that trying to exclude the
indeterministic examples by forbidding certain kinds of idealizations is unlikely
to succeed as virtually all of the idealizations are used elsewhere without any
complaint (Fletcher 2012; Wilson 2009).

3.3 Determinism and indeterminism: past and present

Although examples of indeterminism in Newtonian physics have attracted
much attention in the philosophy community in the past decades, these ex-
amples are nothing new. They have already been discussed in the nineteenth
century by scientists such as Poisson, Duhamel and Bertrand. In an inter-
esting paper van Strien (2014) compares the current debates to those in the
nineteenth century and argues:

[...] nineteenth century conceptions of determinism were essentially
different from the contemporary conception of determinism in clas-
sical physics. Contemporary philosophers of physics largely regard
determinism as a property of the equations of physics, specically as
the statement that for each system there are equations of motion
with unique solutions for given initial conditions. However, I show
that in the nineteenth century, this claim was not strongly estab-
lished, and that the authors that I discuss from this period treated
determinism in an essentially different way. Specifically, from their
arguments it appears that they thought that determinism could
hold even in cases in which the equations of physics did not have
a unique solution for given initial conditions. [...] Apparently, for
these nineteenth century authors, whether or not there was deter-
minism in physical reality did not necessarily depend on whether
the equations of physics had unique solutions. This indicates that
for them, determinism was not an idea based on the properties of
the equations of physics, but rather an a priori principle that was
possibly based on metaphysical considerations about causality or
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the principle of sufficient reason; rather than a result derived from
science, determinism was a presupposition of science, that had to
be upheld even if it was not reflected in the equations (van Strien
2014, 168).

There are two main claims made by van Strien. The first claim is that nine-
teenth century conceptions of determinism were essentially different from those
in use today. The second claim is that determinism was not a result derived
from science but an a priori principle possibly based on metaphysical consid-
erations about causality or the principle of sufficient reasons. Let me discuss
these claims in turn.

I agree with van Strien that the nineteenth century discussion has a very
different focus, but I would not say that their conceptions of determinism were
different. As discussed in the introduction, determinism is the idea that the
state of the system at one time determines the future and past evolution of
the system, and this idea can be applied either to models and equations or to
physical systems. So I would rather say that while all had the same idea of
determinism in mind, the focus is different: the debate in the nineteenth cen-
tury centres on determinism in real physical systems, but the current debate
focuses on determinism in equations or models (as opposed to real systems).

About the second claim: van Strien is right to emphasise that metaphysi-
cal considerations about causality or the principle of sufficient reason possibly
(even likely) influenced the thinking of scientists in the nineteenth century.
Still, I would not go so far to claim that determinism was an a priori princi-
ple. It seems likely that part of scientists’ reason in the nineteenth century
to upheld determinism was the empirical success of deterministic equations.
In other words, there was (and still is no) evidence that the indeterminism
showing up in examples such as Norton’s dome or the space invaders is a real
feature of physical systems (cf. Fletcher 2012; Wilson 2009). Instead, there was
a vast amount of evidence confirming deterministic equations, and it is likely
that this contributed to the general belief that physical systems are governed
by deterministic laws.6

Let me finally turn to the third main topic of this article: the question of
deterministic probabilities.

6As Wilson (2009) describes in detail, physicists coming across indeterministic equations often
find that there are gaps in the mathematical description of the physical system, and that once these
gaps are closed, determinism is regained.
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Figure 4: Conversion of initial velocities v into grey and white outcomes

4 Deterministic probabilities

4.1 The method of arbitrary functions

Philosophers often puzzle how stable ontic probabilities, i.e. probabilities that
are real features of the world, can arise out of deterministic equations. The
method of arbitrary functions is philosophically important because it shows
how this is possible. It has an illustrious history and has been advocated,
amongst others, by Hopf, Poincare, Reichenbach and von Kries (cf. von Plato,
1983).

Let me give a simple example introducing the method of arbitrary func-
tions (cf. Strevens, 2011). Consider a very simple wheel of fortune, i.e. a wheel
painted in equal numbers of small equal-sized white and grey sections. The
wheel is spun with a certain initial velocity and when it comes to rest a fixed
pointer indicates the outcome (white or grey). Our immediate judgement is
that the probability of the outcome ‘grey’ is 1/2, even though the wheel is
governed by deterministic equations.7

This judgement can be substantiated by analysing the wheel of fortune in
more detail. The first component we have to look at is how the dynamics of
the wheel converts initial velocities into outcomes. Figure 4 shows the conver-
sion of initial velocities into grey and white outcomes. The crucial feature that
emerges here is what Strevens (2003) calls microconstancy, i.e. that for small
ranges of initial velocities the proportion of initial velocities leading to the
outcome ‘grey’ is 1/2 and, likewise, the proportion of initial velocities leading
to the outcome ‘white’ is 1/2. The second component we have to look at is
the preparation of the wheel of fortune in a certain initial velocity. This prepa-
ration is modelled by a probability distribution p over initial velocities. Of
course, we usually know very little about this initial distribution, and different

7If quantum effects crop up, the wheel will be governed by equations which are approximately
deterministic (everything that will be said in this paper carries over to this case).
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Figure 5: Probabilities of ‘grey’ and ‘white’ for two different initial probability den-
sities

ways of spinning the wheel (by different persons or the same person in differ-
ent contexts) will correspond to different initial probability distributions. Yet
this does not matter. All we need is the plausible assumption that the class of
probability densities p we might possibly employ are what Strevens (2003) calls
macroperiodic, i.e. do not fluctuate drastically on a very small region. Then,
as illustrated by Figure 5 for two different initial probability densities, the
probabilities for the outcomes ‘grey’ and ‘white’ will approximately be 1/2.8

To sum up, there are stable probabilities for the wheel of fortune even though
the wheel is governed by deterministic equations. What explains these stable
probabilities is that (i) the dynamics is microconstant, and that (ii) the class
of possible probability distributions describing the preparation of the wheel
are macro-periodic.

The method of arbitrary functions is particularly relevant when there is
a class of possible initial densities (e.g., because the method of preparation
differs from scientist to scientist9). It is not meant to apply to all situations
where there are ontic probabilities but only to certain cases. The prime exam-
ples to which the method of arbitrary functions has been successfully applied
are games of chance (cf. Strevens, 2003; von Plato, 1983). It has also been sug-
gested to apply this method to probabilities in statistical mechanics, ecology
and the social sciences (the method has not been proven to apply to realistic
systems of these disciplines since the relevant mathematics is extremely diffi-

8The name ‘arbitrary functions’ is fitting in the sense that a large class of initial probability
densities assigns probability 1/2 to the outcomes ‘grey’ and ‘white’. Yet it is also misleading in the
sense that only certain initial densities lead to these probabilities. Hence at least some plausibility
arguments need to be given for the assumption that the initial densities are macroperiodic.

9Of course, the class of possible densities can also arise from purely natural processes.

19



cult) (Abrams, 2012; Strevens, 2003; Werndl, 2010). In particular, although
occasionally discussed (e.g. Myrvold 2012, forthcoming), the method of arbi-
trary functions deserves more attention in statistical mechanics. A common
complaint in statistical mechanics has been that different ways of preparing,
say, a gas, result in different initial probability distributions, and that thus
identifying the microcanonical measure (restricted to a macroregion) with the
initial probability density is besides the point (Leeds, 1989; Maudlin, 2007;
Werndl, 2013). Clearly, the method of arbitrary functions is ideally suited to
make sense of the idea that there is a class of possible initial probability dis-
tributions which all lead to (approximately) the same macroscopic behaviour.

Let us now turn to the question of how to interpret the probabilities that
arise by applying the method of arbitrary functions and, related to this, how
to interpret the initial probability distributions.

4.2 Interpretational issues

Myrvold (2011, 2014) suggests applying the method of arbitrary functions
to statistical mechanics. He interprets the initial probability distributions as
representing agents’ possible rational credences about finding the system in a
certain initial state. He argues that the resulting probabilities of outcomes that
arise out of the dynamics are approximately equal to the measure assigned to
these outcomes by the microcanonical measure. Hence the probabilities ob-
tained by the method of arbitrary functions combine epistemic (credences) and
physical considerations (the deterministic dynamics). To reflect this, Myrvold
(2011, 2014) calls these probabilities ‘epistemic chances’. Myrvold’s discus-
sion is insightful. In particular, his point that all that is needed is that the
standard probability measures in statistical mechanics assign probabilities to
outcomes that are effectively the same as the correct probabilities (but need
not be exactly the same) cannot be stressed enough.

The only concern I have is that credences cannot be invoked to explain how
systems behave as they do. Myrvold (2014, 33) anticipates this concern when
he writes:

There is a connection, however, between the epistemic considera-
tions we have invoked, and what would be required of an explana-
tion of relaxation to equilibrium. The processes that are respon-
sible for relaxation to equilibrium are also the processes that are
responsible for knowledge about the system’s past condition of non-
equilibrium becoming useless to the agent.
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There certainly is this link. Despite this, in my view, the initial probability
distributions of the method of arbitrary functions should be primarily under-
stood not as credences but as ontic probabilities describing the preparation
of the system (since there is a fact of the matter in which states a system is
prepared) (cf. Rosenthal, 2012). The probabilities of the method of arbitrary
functions arise from these ontic initial probability distributions, while the epis-
temic chances arising from credences as propounded by Myrvold are derivative.

Rosenthal (2010, 2012) explores the intriguing idea that for the method
of arbitrary functions probability is defined in terms of the phase space struc-
ture (various small contiguous regions, on each of which the proportion of the
outcomes is the same). The idea is that for such a phase space structure the
probability of an outcome simply amounts to the proportion of initial condi-
tions of phase space that lead to this outcome. To illustrate this idea with
the wheel of fortune: the probability of ‘grey’ is 1/2 because half of the initial
conditions lead to the outcome ‘grey’ (cf. Figure 2). This idea is doomed to
failure because the phase space structure plus certain initial probability dis-
tributions are needed to arrive at stable probabilities (Rosenthal also seems
to acknowledge this). For instance, it is possible to construct a machine that
prepares the wheel of fortune with an initial speed that always leads to the
outcome ‘grey’. Hence in this case the probability of ‘grey’ will not be 1/2.

Instead, what seems promising is the idea that the initial probability distri-
butions are negligible in the following sense: whenever there are stable proba-
bilities at the macroscopic level arising for various different ways of preparing
the system, then one can expect that the probabilities derive from the phase
space structure. The underlying reasoning is that if the same probabilities arise
for various ways of preparing a system, then one can expect that the initial
probability distributions are macroperiodic. If the initial probability distribu-
tions were not macroperiodic, slight changes in the way the system is prepared
would lead to different macroscopic probabilities, contradicting the existence
of stable probabilities.10

Let me make the side remark that whenever the structure of phase space
is discussed, the assumption is that the phase space is composed of various
small contiguous regions, on each of which the proportion of the outcomes is
the same (e.g. Abrams, 2012; Rosenthal, 2010, 2012; Strevens, 2003). How-

10As Rosenthal (2010, 2012) remarks, this argument assumes that our usual phase spaces and
their metric properties are privileged (in the sense that probabilities over distorted representations
of standard physical quantities cannot be expected to be macroperiodic).
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ever, for stable probabilities to arise, various small contiguous regions are not
necessary. Indeed, there are cases where there is just one such region. For
instance, consider a funnel located precisely above a central nail (i.e. a Galton
board with just one level). When the ball is poured into the funnel, the ball
either bounces to the left or to the right of the nail. Assuming that there
is only a vertical velocity component when pouring the ball into the funnel,
the phase space consists of just one contiguous region with initial conditions
corresponding to two outcomes (landing ‘right’ and landing ‘left’ of the nail).
Still, there are stable probabilities for the outcomes ‘right’ and ‘left’ (both
1/2) because the class of initial probability distributions describing the var-
ious ways of preparing the system contains only (approximately) symmetric
distributions.

Strevens (2011) takes a different route. He claims that for nearly all long
series of trials of the system the initial conditions form macroperiodically dis-
tributed sets. As Strevens stresses, this means that the initial distributions
just represent actual occurrences of initial states and have nothing to do with
probabilities. He regards this as desirable because then under his interpretation
of probability based on the method of arbitrary functions probabilities arise
from non-probabilistic facts. At the same time, by appealing to a robustness
condition (that nearly all long series of trials produce macroperiodically dis-
tributed sets), he avoids the major pitfalls of finite frequentism.

Streven’s proposal is worthwhile. Still, there are some problems. First,
Strevens makes the ‘nearly all’-condition more precise by stating that the ac-
tual distributions are macro-periodic in nearly all relevantly close possible
worlds, and he appeals to the Lebesgue measure to quantify this claim. There
is the worry that it is nontrivial to justify the Lebesgue measure as the cor-
rect measure over close possible worlds (cf. Rosenthal, 2010, 2012). Further,
it is not clear to me whether it is formally possible to assign a measure to
‘ways of altering the actual world’ (the exact formal details are not spelled
out by Strevens). Also, consider again the initial velocities of the wheel of for-
tune. When the wheel is spun by the same person in a specific context again
and again, the frequency distribution of the initial velocities approximates the
shape of a certain density. For these reasons scientists usually postulate a
probability density describing the probability of preparing the wheel with a
certain initial velocity. This probability density is predictively useful: it is
(usually) found to give accurate predictions about the future frequencies of
initial velocities produced by the person. However, because under Strevens’
account the initial velocities are nothing more than actual occurrences of ini-
tial states, there cannot be any such predictive power.
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In my view, there is a way to avoid these problems. Namely, I suggest
to interpret the initial distributions simply as probability distributions that
are physical, biological etc. quantities characterising the particular situation
at hand (as suggested by Szabò, 2007; see also Sober, 2010). That is, the
concept of probability reduces to ordinary physical, biological etc. quantities,
and the word “probability” is a collective term whose precise meaning depends
on the context of its application. Accordingly, the probabilities arising from
the method of arbitrary functions also correspond to physical, biological etc.
quantities that characterise particular situations.These probabilities are ontic
and, as desired, they support counterfactuals about future predictions.11

A final remark: Werndl (2013b) put forward an account of how to under-
stand typicality measures in statistical mechanics. The main idea is that there
is a class of initial probability distributions of interest, which corresponds to the
possible ways of preparing a system (elements of this class are assumed to be
translation-continuous or translation-close). The typicality measure can then
be used to make claims about all initial probability distributions of interest.
E.g. if the claim is that typical initial conditions show thermodynamic-like be-
haviour, this implies that for all initial probability distributions of interest the
probability of thermodynamic-like behaviour is close to one. Werndl (2013b)
does not mention the method of arbitrary functions. Still, formally, the jus-
tification of the typicality measures involves (next to other ingredients) the
application of the method of arbitrary functions to outcomes that have proba-
bility close to one. The slogan ‘typicality is not probability’ is correct here in
the sense that the typicality measure is a measure at the microlevel and does
not amount to a probability over the initial states (such as the probability of
finding the system in a certain state).

4.3 Puzzles about deterministic probabilities resolved

Philosophers have often doubted that there can be ontic probabilities in a de-
terministic world (see, e.g., Schaffer, 2007, for a recent paper expressing such
doubts). As our discussion has shown, the method of arbitrary functions pro-
vides an explanation of how probabilities can arise out of determinism.

11If the initial distributions are understood as summarising actual frequencies, the method of
arbitrary functions is also compatible with an account of probabilities as Humean chances (Frigg
and Hoefer, 2010, 2014). As for all Humeans, it is not trivial to say what it means to strike the
best balance between simplicity, strength and fit. The account I propose does not have to deal with
such difficulties.
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A prominent worry about deterministic probabilities is that they lead to
a violation of the Principal Principle, which establishes a connection between
credences and chances (e.g. Schaffer, 2007). According to this principle, a
rational agent’s credence in the occurrence of an event E should equal the
chance of E as long as the agent has no inadmissible knowledge about the
truth of E. Formally: for all events E, all P and all K

crt(E |P&K) = p (9)

where ‘crt’ stands for the credence of the agent at time t, P is the proposition
that the chance of E is p and K is any admissible proposition. The crucial
question here is what an ‘admissible proposition’ amounts to. Lewis (1986)
suggested that historical information about the exact state of a system up to
time t as well as information about the laws of nature are always admissible.
But given deterministic laws, this implies that the exact future state of the
system can be predicted. Hence the credences in equation (9) can only be 0
and 1 and for nontrivial deterministic probabilities p this leads to a violation
of the Principal Principle. Commonly, the conclusion drawn from this is that
there exist no nontrivial deterministic probabilities (since a violation of the
Principal Principle is deemed to be unacceptable).

This argument is too quick and there are better ways to characterise an
admissible proposition. Following Frigg and Hoefer (2014, 4) let a proposition
K be admissible with respect to event E and chance setup S iff “K contains
only the sort of information whose impact on reasonable credence about E,
if any, comes entirely by way of impact on credence about the chances of
those outcomes”. With this modified notion of admissability, as desired, the
Prinicipal Principle (equation 9) comes out as true. As Glynn (2010) stresses,
when making rational decisions, it would be a real loss if we could not rely on
macroscopic probabilities such as those of the outcome ‘Tail’ for a coin toss,
the outcome ‘Black’ for a wheel of fortune etc. Glynn argues that chances are
level-relative and that only the initial history and laws at the specific level of
reality should count as admissible (this amounts to a special case of Frigg and
Hoefer’s general definition of ‘admissibility’).

Probabilities arising from deterministic equations for games of chance, in
statistical mechanics etc., are often said to be epistemic in the sense that if
we had precise knowledge about the initial conditions and the deterministic
laws, then we would not need them. Our discussion puts these claims into the
right perspective. The probabilities of the method of arbitrary functions are
not epistemic in the sense that they are credences. The only sense in which
they are epistemic is that they are relative to a certain level of reality. If the
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system were described at the level where determinism reigns, we would indeed
not need any probabilities (cf. Frigg and Hoefer, 2010; Glynn, 2010; Rosenthal,
2011).

5 Conclusion

This article centred on three major themes in the recent discussion on de-
terminism in philosophy of science. The first major theme was determinism,
indeterminism and observational equivalence. Here I first critically discussed
various notions of observational equivalence and then presented results about
the observational equivalence between deterministic and indeterministic mod-
els. I also put forward an argument on how to choose between deterministic
and indeterministic models involving the idea of indirect evidence. The second
major theme concerned the question whether Newtonian physics is indeter-
ministic. I argued that the answer to this question depends on what one takes
Newtonian mechanics to be. Further, I discussed how contemporary debates
on this issue differ from those of scientists in the nineteenth century. In par-
ticular, I pointed out that the focus of scientists in the nineteenth century was
on investigating whether determinism holds for real systems rather than just
for certain equations or models. The third major theme was how the method
of arbitrary functions can be used to make sense of deterministic probabilities.
Here I discussed various ways of interpreting the initial probability distribu-
tions and I argued that they are best understood as physical, biological etc.
quantities characterising the particular situation at hand. I also emphasised
that the method of arbitrary functions deserves more attention than it has
received so far and that it is among the most promising contenders for under-
standing probabilities in certain fields, e.g. classical statistical mechanics.

The topic of determinism is a very old one, but it is still very much alive:
There is a lot that has to be learnt in the recent decades and there is a lot
that still remains to be discovered.

References

Abrams, M. (2012). “Mechanistic probability.” Synthese 187 (2): 343-375.

Arnol’d, V.I. (1992). Ordinary differential equations (Berlin: Springer).

Berlanger, C. (2013). “On two mathematical definitions of observational equiv-

25



alence: manifest isomorphism and epsilon-congruence reconsidered.” Studies
in History and Philosophy of Science Part B 44 (2): 69-76.

Earman, J. (1986). A primer on determinism (Berlin and New York: Springer).

Frigg, R., and Hoefer, C. “Determinism and chance from a Humean perspec-
tive.” In The Present Situation in the Philosophy of Science, edited by F.
Stadler, pp. 351-372. Dordrecht: Springer, 2010.

Frigg, R. and Hoefer, C. (2014). “The Best Humean System for Statistical
Mechanics.” Forthcoming in: Erkenntnis.

Fletcher, S. (2012). “What counts as Newtonian system – the view from Nor-
ton’s dome.” European Journal for the Philosophy of Science 2 (3): 275-297.

Glynn, L. (2010). “Deterministic chance.” The British Journal for the Phi-
losophy of Science 61 (1): 51-80.

Korolev, A.V. (2007). “Indeterminism, asymptotic reasoning, and time irre-
versibility in classical physics.” Philosophy of Science 74 (5): 943-956.

Laudan, L. and Leplin, J. (1991) Empirical equivalence and underdetermina-
tion”. The Journal of Philosophy 88, 449-472.

Leeds, S. (1989). “Malament and Zabell on Gibbs phase space averaging.”
Philosophy of Science 56: 325-340.

Lewis, D. (1986). “A subjectivit’s guide to objective chance”. In Studies in
Inductive Logic and Probability, Volume 2, edited by R.C. Jeffrey, pp. 83-132.
Berkeley: University of California Press.

Lorenz, E. (1964). “The problem of deducing the climate from the governing
equations.” Tellus 16 (1): 1-11.

Malament, D. (2008). “Norton’s slippery slope.” Philosophy of Science 75 (5):
799-816.

Maudlin, T. (2007). “What could be objective about probabilities?” Studies
in History and Philosophy of Modern Physics 38: 275-291.

Myrvold, W. “Deterministic laws and epistemic chances.” In Probability in

26



Physics, edited by Y. Ben-Menahem and M. Hemmo, pp. 73-85. New York:
Springer, 2012.

Myrvold, W. “Probabilities in statistical mechanics” Forthcoming in Oxford
Handbook of Probability and Philosophy, edited by C. Hitchcock and A. Hajek.
Oxford: Oxford University Press.

Norton, J. (2003). “Causation as folk science.” Philosopher’s Imprint 3(4):
1-22.

Norton, J. (2008). “The dome: An unexpectedly simple failure of determin-
ism.” Philosophy of Science 75 (5): 786-798.

Ornstein, D. and Weiss, B. (1991). “Statistical Properties of Chaotic Sys-
tems.” Bulletin of the American Mathematical Society 24: 11-116.

Rosenthal, J. “The natural-range conception of probability.” In Time, Chance
and Reduction, Philosophical Aspects of Statistical Mechanics, edited by G.
Ernst and A. Httemann, pp. 71-91. Cambridge: Cambridge University Press,
2010.

Rosenthal, J. (2012). “Probabilities as ratios of ranges in initial state spaces.”
Journal of Logic, Language and Information 21: 217-236.

Schaffer, J. (2007): “Deterministic Chance?” The British Journal for the Phi-
losophy of Science 58: 113-40.

Shaw, R. (1984). The Dripping Faucet (Santa Cruz: Aerial Press).

Sinai, Y.G. (1989). “Kolmogorov’s Work on Ergodic Theory.” The Annals of
Probability 17: 833–839.

Sober, E. “Evolutionary theory and the reality of macro probabilities.” In
Probability in Science, edited by E. Eells and J. Fetzner, pp. 133-162. Heidel-
berg: Springer, 2010.

Strevens, M. (2003). Bigger than chaos (Cambridge (Mass.): Harvard Univer-
sity Press).

Strevens, M. (2011). “Probability out of determinism.” In Probabilities in
physics, edited by C. Beisbart and S. Hartmann, pp- 339-364. Oxford: Oxford

27



University Press, 2011.

Suppes, P. (1993). “The transcendental character of determinism.” Midwest
Studies in Philosophy 18: 242–257.

Suppes, P. and de Barros, A. “Photons, billiards and chaos.” In: Law and
Prediction in the Light of Chaos Research, edited by P. Weingartner and G.
Schurz, pp. 189-201. Springer, Berlin, 1996.
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