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Abstract

Say that an agent is epistemically humble if she is less than fully confident
that her opinions will converge to the truth, given appropriate evidence.
Is such humility rationally permissible? According to the orgulity argument
(Belot 2013): the answer is “yes” but long-run convergence-to-the-truth
theorems force Bayesians to answer “no.” That argument has no force
against Bayesians who reject countable additivity as a requirement of ratio-
nality. Such Bayesians are free to count even extreme humility as rationally
permissible. Furthermore, dropping countable additivity does not render
Bayesianism more vulnerable to the charge that it is excessively subjective.

1 Introduction

Presented with Bayesian confirmation theory, it is easy to feel cheated. One might
have hoped for a substantive, detailed account of what sorts of evidence support
what sorts of scientific hypotheses. Instead one is told how one’s evidence
determines reasonable attitudes toward such hypotheses given a prior (an initial
probability function). And one is told that different priors deliver different
outputs, even for the same batch of total evidence.

One might worry that given this dependence, Bayesianism is ill-placed to
explain the significant agreement observed among reasonable scientists, or to
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deliver an objective account of confirmation in science.1,2

In the face of this worry it is natural to seek comfort from some remarkable
long-run “convergence-to-the-truth” and “washing out” theorems. These theo-
rems show that unless priors differ radically, differences between them become
negligible in the long run, under the impact of a stream of common evidence.
This is sometimes thought to take the sting out of the above worry, by showing
that many differences between priors don’t end up mattering.

But Belot (2013) argues that rather than helping Bayesianism, such conver-
gence theorems are a liability to it. The argument is that the theorems preclude
Bayesians from counting as rational “a reasonable modesty” about whether one’s
opinions will approach the truth in the long run.

I will argue:

1. Long-run convergence theorems are no liability to finitely additive Bayesian-
ism, a version of Bayesianism that rejects countable additivity as a require-
ment of rationality.3 Defenders of finitely additive Bayesianism are free
to count any amount of humility about convergence to the truth—even
extreme pessimism—as rationally permissible.4

2. Long-run convergence theorems are of no help to Bayesians responding
to concerns about scientific agreement. In contrast, short-run convergence
theorems (Howson and Urbach 2006, 238; Hawthorne 2014, §5) are of some
help. Those theorems do not require countable additivity.

Let me take these points in turn, starting with a brief explanation of long-run
convergence theorems, and an assessment of the charge that such theorems count
against Bayesianism.

1For expressions (but not always endorsements) of this worry, see Chalmers (1999, 133) as
cited in Vallinder (2012, 8), Easwaran (2011, §2.6), Earman (1992, 137), Howson and Urbach (2006,
237), Hawthorne (2014, §3.5).

2Note that for present purposes, a confirmation theory may count as Bayesian even if it
imposes constraints on priors more restrictive than mere coherence. Thanks here to Cian Dorr.

3Here I apply observations from Juhl and Kelly (1994, 186) and Howson and Urbach (2006,
28–29).

4Weatherson (2014) convincingly argues that unsharp Bayesians (who hold that states of graded
opinion should be represented not by probability functions, but rather by sets of probability
functions) are also free to count humility about convergence to the truth as rationally permissible.
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2 Long-run Convergence Theorems

To introduce the long-run convergence theorems that are wielded in Belot (2013),
consider an immortal investigator whose evidence consists of successive digits
from a countably infinite binary sequence (a sequence consisting of 0s and 1s).
The investigator receives one digit of the sequence per day, and is interested
in H, a fixed hypothesis about the whole sequence. For example, H might be
the proposition that after a certain point, the sequence consist of all 1s. (For
convenience I treat interchangeably a proposition about the sequence, and the
corresponding set of sequences for which that proposition holds.) From here on,
I will assume that this setup is in place unless otherwise noted.

Now apply Bayesian confirmation theory to this setup. In particular, suppose
that the investigator starts with a prior probability function P defined over an
appropriate domain that includes H, updates by conditionalization each time
she receives a digit, and is certain of all of the above.

Formal construction Let C denote {0, 1}N, the collection of all functions from N

to {0, 1}. Thus each element of C is a (countably) infinite binary sequence.
For any finite or infinite binary sequence x and any positive integer i, we
write x(i) to denote the ith term of x—that is, the binary digit that x assigns
to i—and we write xi to denote the set {y ∈ C : x(i) = y(i) for 1 ≤ i ≤ n}
of sequences from C whose first i digits match x. By “string” we shall mean
“finite binary sequence”, and for convenience we count the null sequence—
the sequence of length 0—as a string. Given string s, let [s] denote the set
of sequences from C that start with s.

We assume that C is a Cantor space. That is, we assume that C is endowed
with the product topology. In this context, the family of all sets [s] (for
strings s) is a denumerable topological basis for the Cantor Space C. Now
let B denote the Borel σ-algebra generated by this topology. The pair
〈C, B〉 accordingly forms a measurable space. In this paper we restrict
attention to probability functions on the Borel σ-algebra B over C.5

We represent the prior beliefs of an ideal Bayesian-rational investigator
by a probability function P on B: a nonnegative, finitely additive set
function on B satisfying P(C) = 1. We assume throughout that P is finitely
additive: P(A1 ∪ · · · ∪ An) = P(A1) + · · ·+ P(An) whenever {A1, . . . , An}

5Thanks here to an anonymous reviewer, whose suggested exposition I adopt almost verbatim.

3 of 23



ELGA BAYESIAN HUMILITY

is a finite set of pairwise disjoint members of B. We will sometimes but
not always make the stronger assumption that P is countably additive:
P(A1 ∪ A2 ∪ · · · ) = P(A1) + P(A2) + · · · whenever {A1, A2, . . .} is a finite
or countably infinite set of pairwise disjoint members of B.

For every string s such that P([s]) > 0, we assume that when the investiga-
tor sees s as the first digits of the observed sequence, her new probability
function is P(· | [s]), the result of conditionalizing P on [s]. For the pur-
poses of this paper, we needn’t specify what happens when an investigator
observes a string to which she had previously assigned probability 0.

Now return to our investigator. Before seeing any digits, she might wonder:
in the limit of seeing more and more digits, how likely is it that I will arrive at
the truth about H? In other words, how likely is it that my probability for H will
converge to 1 if H is true and to 0 otherwise?

A pessimistic answer to that question is: I am unlikely to converge to the
truth (about H). A more confident answer is: I will probably converge to the
truth. A maximally confident answer is: my probability that I will converge to
the truth equals 1.

A celebrated long-run convergence theorem entails that if the investigator’s
probability function is countably additive, then she is committed to the maximally
confident answer:

Theorem For any countably additive probability function P on B and any hy-
pothesis H ∈ B,

P({x : 1H(x) = limi→∞P(H | xi)}) = 1,

where 1H is the indicator function for H (taking value 1 or 0 according to
whether its argument is or is not a member of H).

Proof This is an immediate consequence of the Lévy zero-one law (Lévy 1937).6

So: countably additive Bayesian confirmation theory entails that in the above
situation, rationality requires investigators to have full confidence that their
opinions will converge to the truth.

6For a fairly accessible proof, see Halmos (1974, Theorem 49B, p. 213). For an explanation
emphasizing the role that countable additivity plays in a similar proof, see Kelly (1996, 325–327).
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But Belot (2013) gives an ingenious argument that rationality requires no such
thing.

3 The Orgulity Argument

Here is a stripped-down exposition of what I shall call “the orgulity argument”—
the argument from Belot (2013) that poses the strongest challenge to Bayesian-
ism.7

Explaining the argument will require a bit of setup. As before, let H be a
hypothesis about the infinite binary sequence that is in the domain of the investi-
gator’s probability function. Examples of such hypotheses include: that the se-
quence eventually becomes periodic, that it ends with the pattern “01010101 . . .”,
that it is computed by a Turing Machine (that the function x : N→ {0, 1} giving
successive digits of the sequence is a computable function) or that it contains
infinitely many 0s. (Note that H is not required to be countable. Cf. Belot (2013,
n. 32).)

Say that an investigator is open-minded with respect to H if for every finite
batch of evidence, there is a finite extension of it that would lead her to assign
probability greater than 1/2 to H, and also a finite extension of it that would
lead her to assign probability less than 1/2 to H.8 An open-minded investigator
commits to never irrevocably making up her mind about whether H or not-H is

7Besides putting forward the orgulity argument, Belot (2013) has another main goal: to show
that in certain contexts, convergence to the truth by Bayesian investigators is much harder
to achieve than is commonly supposed. In particular, suppose that an investigator observes
independent draws from a fixed chance process. It is well known that if the chance process
has only a finite set of possible outcomes, then provided that the investigator’s prior is suitably
spread out over the space of such processes, there is chance 1 that her prior will weakly converge
to the probability function that assigns all probability to the true process. (For an explanation of
the relevant sort of convergence, see Belot (2013, 489, n. 14, n. 17).) In this sense, there is chance 1
that the investigator will converge to the truth. In contrast, Belot (2013) notes that there is no
such assurance of convergence to the truth if the chance process has a countably infinite set of
positive-probability outcomes, and argues that in that setting, convergence to the truth is in a
certain sense atypical (Belot 2013, 492).

These observations are not—and Belot (2013) does not mean them to be—criticisms of Bayesian-
ism. (Bayesians are in no way committed to thinking that convergence to the truth is typical
when sampling from a chance process with infinitely many outcomes.) Rather, the observations
are presented “by way of stage setting and because I suspect that the results in question are not
as widely known among philosophical Bayesians as they might be” (Belot 2013, 484).

8Here I adopt the suggestion from Weatherson (2014) to modify the definition of “open-
minded” given in Belot (2013, 496) to introduce a pleasing symmetry. Nothing of substance
hinges on this.
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more likely.
Formally, we say that a probability function P is open-minded with respect to a

hypothesis H ∈ B if for every string s, there are strings t and t′, each of which is
an extension of s, such that P(H | [t]) > 1/2 and P(H | [t′]) < 1/2. (A string t is
said to be an extension of a length-n string s when t is at least as long as s and
s(i) = t(i) for i ∈ {1, . . . , n}.)

Remark If a hypothesis fails to be dense in C, or if its complement C \H fails to be
dense, then some initial segment of the observed sequence decisively settles
whether H is true. As a result, no probability function is open-minded with
respect to such a hypothesis—and hence, no probability function is open-
minded with respect to every H ∈ B. For example, no probability function
is open-minded with respect to the universal hypothesis C, since for any
probability function P and any string s, P(C | [s]) = 1 whenever that
conditional probability is well defined. Similarly, no probability function is
open-minded with respect to the hypothesis H111 that the sequence contains
at least three 1s, since for any probability function P and any extension t
of the string 111, P(H111 | t) = 1 whenever that conditional probability is
well defined.

In contrast, there are many countably additive probability functions that
are open-minded with respect to hypotheses H that are both dense in C
and have dense complements. This is true even if H is uncountable.

For an example of a countably additive prior that is open-minded with
respect to a countably infinite hypothesis, see Belot (2013, n. 34, n. 37).
For an example of a countably additive prior P that is open-minded with
respect to an uncountable hypothesis H, let H be the set L2/3 of sequences in
which 1 occurs with limiting relative frequency 2/3. (The limiting relative
frequency of 1s in a sequence is defined to be limn→∞ n−1Σn

i=1x(i).) Now
let P be (B1/3 + B2/3)/2, where Bp is the Bernoulli measure with bias p (the
countably additive probability function on B that treats the digits of the
sequence as independent random quantities, each with probability p of
taking value 1).

To show that P is open-minded with respect to H, let s be any string of
length n. We must show that there exist finite extensions t and t′ of s so that
P(H | [t]) < 1/2 and P(H | [t′]) > 1/2. We can do that by letting t be the
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result of appending many 0s to s, and letting t′ be the result of appending
many 1s to s.9

With the above setup in place, here is the first premise of the orgulity argument:

Premise 1 It is rationally permissible to be open-minded with respect to some
hypothesis H.

Now take any Bayesian investigator with a countably additive prior who
is open-minded about a hypothesis H, and consider the set T of sequences
that get her to converge to the truth about H. Formally, consider a countably
additive probability function P that is open-minded with respect to H, and let
T =

{
x ∈ C : 1H(x) = limi→∞P(H | xi)

}
.

We noted above that convergence theorems entail that this investigator must
assign probability 1 to T. We will now see that T is in one sense a “tiny” set.

Start by defining the Banach-Mazur game. In this game two players generate an
infinite binary sequence together, starting with the empty sequence. The players
alternate moves; at each move a player extends the sequence by appending
whatever finite block of digits she wishes. The goal of the player who moves
second is to have the resulting infinite sequence fall outside of some fixed set
G.10

G is said to be meager if there exists a winning strategy for the second player
in this game—in other words, if the second player can force the generated

9The details: Let t be the result of appending 2n 0s to s, and let t′ be the result of appending
2n 1s to s. We now have that:

P(H | [t]) < 1/2 ⇐⇒ P(H ∩ [t])/P([t]) < 1/2 (1)
⇐⇒ P(H ∩ [t]) < (1/2)P([t])
⇐⇒ (1/2)(B1/3(H ∩ [t]) + B2/3(H ∩ [t])) <

(1/2)(1/2)(B1/3([t]) + B2/3([t]))
⇐⇒ B2/3([t]) < (1/2)(B1/3([t]) + B2/3([t])) (2)
⇐⇒ B2/3([t]) < B1/3([t]), (3)

where (1) follows from the definition of conditional probability because P([t]) > 0, and (2)
holds because by the strong law of large numbers, B1/3(H) = 0 (hence B1/3(H ∩ [t]) = 0) and
B2/3(H) = 1 (hence B2/3(H ∩ [t]) = B2/3([t])). The right-hand side of (3) is true because the
proportion of 1s in t is closer to 1/3 than it is to 2/3. Dual reasoning shows that P(H | [t′]) > 1/2
⇐⇒ B2/3([t′]) > B1/3([t′]), the right hand side of which is true because the proportion of 1s in
t′ is closer to 2/3 than it is to 1/3.

10This is actually the special case of the Banach-Mazur game appropriate to the present context.
For a general discussion, see Oxtoby (1980).
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sequence to avoid G. When a set of sequences is meager, it is “tiny” in one sense—
it is easy to avoid. (This is just one of several equivalent characterizations of the
meager sets.) It is sometimes said that sequences “typically” have a property if
the set of sequences that fail to have the property is meager.

The following fact, which is a consequence of Belot’s mathematical observa-
tions, drives the orgulity argument:

Fact (Belot 2013, 498–499) Consider a Bayesian investigator who is open-minded
with respect to a hypothesis. The set of sequences that get the investigator
to converge to the truth about the hypothesis is meager. In other words:
“typical” sequences prevent the investigator from converging to the truth
about the hypothesis. Formally: for every countably additive probability
function P on B and hypothesis H ∈ B, if P is open-minded with respect
to H, then T is meager. (Recall that T is the set of sequences for which P
converges to the truth about H.)

Proof In the Banach-Mazur game, player 2 can force the generated sequence to
be one that prevents the investigator from converging to the truth about H
by at each of her turns appending “a string of bits that causes P to [assign
probability greater than 1/2 to H] followed by a string of bits that causes P
to [assign probability less than 1/2 to H].” (Belot 2013, n. 41) Player 2 can
implement this strategy because P is open-minded.

Since we can see the truth of this fact, so can a reasonable open-minded
investigator. She can see that typical sequences prevent her from converging to
the truth about H. Given this, it seems permissible for her to have less than full
confidence that she will converge to the truth about H. That is the next premise
of the argument:

Premise 2 If it is rationally permissible to be open-minded about a hypothesis,
then it is rationally permissible to have less than full confidence that one
will converge to the truth about that hypothesis.

From Premises 1 and 2 we get the conclusion of the orgulity argument:

Conclusion It is rationally permissible to have less than full confidence that one
will converge to the truth about some hypothesis.

We saw in §2 that countably additive Bayesianism entails the negation of this
conclusion. So if the argument is sound, then that theory stands refuted.
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4 The Premises of the Orgulity Argument

Before advocating a reaction to the orgulity argument, let me address the plausi-
bility of its premises.

A defender of countably additive Bayesianism might try to reject Premise 1
by claiming that open-mindedness is always irrational. That proposal is unap-
pealing because (in the presence of countable additivity), it entails:

MaxCon For every hypothesis and every rational cautious investigator, there is
some finite sequence of evidence that would get the investigator to become
maximally confident about that hypothesis.

In the above statement, to say that an investigator is cautious is to say that no
finite sequence of digits would get her to be maximally confident about whether
the next digit is 0 or 1. And to say that an investigator is maximally confident
about a claim is to say that her probability for that claim is either 0 or 1. For a
proof that (assuming countable additivity) denying Premise 1 entails MaxCon,
see Appendix A.

To see why MaxCon is false, consider an example. Suppose that H is the
claim that the sequence contains infinitely many 0s. MaxCon entails that if a
Bayesian investigator is cautious and rational, some finite sequence of digits
would get her to assign probability 0 or 1 to H. But that is absurd. It is absurd
that rationality in every case requires cautious investigators to count some finite
string of digits as decisively settling whether the whole string contains infinitely
many 0s.

So Premise 1 cannot reasonably be resisted.
What about Premise 2? Belot (2013, 500) considers an opponent who rejects

Premise 2 for the following reason: sequences of evidence digits that prevent an
open-minded investigator from converging to the truth are skeptical scenarios,
and the investigator may therefore reasonably assign them total probability zero.
Belot responds that such sequences are not skeptical scenarios. Whatever one
thinks of that response, however, an additional response is available: Even grant-
ing that the scenarios in question are skeptical scenarios, it does not immediately
follow that they deserve zero probability.

As an example, consider a regularity that is very well confirmed: that gravity
is an attractive. Here is a skeptical scenario: one year from now, gravity will
suddenly turn repulsive. Given our evidence, that scenario deserves only a
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miniscule amount of probability. But that the scenario is a skeptical one does not
immediately show that it deserves absolutely no probability. So simply calling
failure-to-converge scenarios “skeptical scenarios” does not on its own make it
reasonable to reject Premise 2.

Furthermore, the Fact gives at least some initial support to Premise 2. It is
unsettling to think that to be rational one must have full confidence that one will
converge to the truth, given that “typical” sequences prevent one from doing so.

That said, there is at least one objection to Premise 2 that is worth taking
seriously. One might follow de Finetti (1970, 34–35) and argue that there is no
reason to treat as unlikely or epistemologically negligible those hypotheses that
are “small” from a topological or set-theoretic point of view. In the present case,
one might affirm that open-minded agents should be fully confident that they
will converge to the truth. When it is pointed out that this means assigning
probability zero to a property of sequences that is “typical” in the topological
sense, one might simply reply: “So what? That notion of typicality has no
relevance to this case.”

What would advance the orgulity argument against this objection is an inde-
pendent reason for thinking that topological notions of size are relevant in the
present case.11

Bottom line: the orgulity argument has some force as an objection to countably
additive Bayesianism, though there is at least one defensible line of resistance to
its second premise.

5 Finitely Additive Bayesianism Permits Humility

Happily, the orgulity argument has no force at all against finitely additive
Bayesianism, a version of Bayesianism that rejects countable additivity as an
across-the-board requirement of rationality.12 That is because finitely additive
Bayesians—those Bayesians who reject countable additivity as a requirement of
rationality—can comfortably accept the conclusion of the argument. They can
accept that it is rationally permissible for an open-minded investigator in the
sequence situation to be less than fully confident that she will converge to the

11Thanks here to an anonymous reviewer, whose comments I draw on.
12Juhl and Kelly (1994, 185–188) and Howson and Urbach (2006, 28–29) make similar points

in response to the concern that the long-run convergence theorems yield implausibly strong
constraints on rationality.
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truth.13

Indeed, they can (if they wish) accept something much stronger. Let us say
that an investigator in the sequence situation is completely pessimistic if she is fully
confident that she will “converge to the false” — that her probability for H will
converge to 0 if H is true and to 1 otherwise. It turns out that some open-minded
investigators with finitely additive priors are completely pessimistic. (For a
proof, see Appendix B.)

It follows that finitely additive Bayesians are free to count even complete pes-
simism as being rationally permissible. That is as much humility as anyone can
demand. Furthermore, finitely additive Bayesianism has significant independent
appeal.14,15

Moral: the orgulity argument has no force against finitely additive Bayesian-
ism, a viable alternative to countably additive Bayesianism.

6 Long-Term Convergence Theorems do Not Address the Charge of Excessive Subjec-
tivity

Recall from §1 the motive given for appealing to long-run convergence theorems:
The deliverances of Bayesianism depend on a choice of prior probability function.
As a result, Bayesianism faces the charge of being excessively subjective, and of
not sufficiently explaining agreement among reasonable scientists.

In response to those charges, it is tempting to appeal to long-run convergence

13Note that for an important class of finitely additive probability functions—“strategic” func-
tions (Dubins and Savage 1965, Chapter 2; Purves and Sudderth 1976, §2)—generalizations exist
for the convergence result described in §2 (Purves and Sudderth 1983, Theorem 1; Chen 1977;
Zabell 2002, §2; Seidenfeld 1985, Appendix). So to in general avoid the convergence conclusions,
it is not enough to merely give up countable additivity as a requirement of rationality. One must
hold that it is rationally permissible to have a probability function that fails to be strategic (and
thereby fails to be coherent according to the notion of coherence proposed in Lane and Sudderth
(1985)—for further discussion see Zabell 2002, §3). Thanks here to an anonymous reviewer.

14See, for example, de Finetti (1970), Savage (1954) and Levi (1980). Works that at least take
very seriously the hypothesis that countable additivity should be rejected include Seidenfeld and
Schervish (1983), Dubins and Savage (1965), Kelly (1996), and Juhl and Kelly (1994).

15Of course there are objections to rejecting countable additivity as well; an assessment of the
costs and benefits of doing so is beyond the scope of this discussion. Such an assessment would
need to address concerns about susceptibility to infinite Dutch Books (Bartha 2004; Seidenfeld
and Schervish 1983), the possibility of paradoxical-seeming failures of conglomerability (Kadane
et al. 1986; Schervish et al. 1984), the possibility of uniform distributions over countably infinite
spaces (de Finetti 1970, 122), violations of intuitive comparative dominance principles (Easwaran
2013), as well as considerations of general mathematical utility (Dubins and Savage 1965).
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theorems in order to show that differences between rational priors eventually
disappear. Bayesians who reject countable additivity in response to the orgulity
argument cannot appeal to those theorems for that purpose, since those theorems
assume countable additivity.16 So it might seem that such Bayesians give up a
valuable defense against charges of excessive subjectivity.

But in fact, they do not. For the long-run convergence theorems are red
herrings. The theorems provide Bayesians with no defense against charges of
excess subjectivity. To see why, let me distinguish two versions of the charge
of excess subjectivity, and explain why long-run convergence theorems do not
address either of them.

First let us pin down a target. Let Core Bayesianism be the conjunction of the
following claims:

1. Ideally rational agents have personal probability functions which represent
their degrees of belief.

2. Conditionalization on new evidence is a rational way of updating one’s
probability function.

Now for the first version of the charge, posed in characteristically trenchant
fashion in Earman (1992, 137):

if in the face of currently available evidence you assign a high de-
gree of belief to the propositions that Velikovsky’s Worlds in Collision
scenario is basically correct, that there are canals on Mars, that the
earth is flat, etc., you will rightly be labeled as having an irrational
belief system. And if you arrived at your present beliefs within the
framework of Bayesian personalism, then the temptation is to say
that at worst there is something rotten at the core of Bayesian person-
alism and at best there is an essential incompleteness in its account of
procedural rationality.

The argument is this: (1) starting with a bizarre prior and conditionalizing
on available evidence will result in irrational opinions, but (2) Core Bayesianism

16As described in n. 13, versions of the convergence theorems exist that replace the assump-
tion of countable additivity with the strictly weaker assumption of being a strategic measure.
However, such theorems are of no use to Bayesians who wish to avoid the orgulity argument
by rejecting countable additivity. For the measures that are modest about whether they will
converge to the truth must of course fail to be strategic.
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does not entail that those opinions are irrational, and (3) a true and complete
theory of scientific inquiry would entail this, so (4) Core Bayesianism is false or
incomplete.

This argument—call it the problem of deviant priors—is a fair challenge. Various
replies are possible. One might, for example, embrace pure subjectivism and
admit that it can be rational to believe that the Earth is flat, based on current
evidence. Or one might adopt an objective Bayesianism of one kind or another,
and endorse or seek constraints on priors that rule out the deviant ones as
irrational.

However, in no case does it help the Bayesian to appeal to long-term conver-
gence theorems. For the most such theorems might show is that in the limit of
infinite inquiry, the opinions of a scientist starting with a deviant prior would
likely to approach those of an ordinary scientist. And that conclusion would do
nothing to answer the problem of deviant priors, which concerns a single time
(now) at which an agent has opinions alleged to be irrational (Earman 1992, 148).

A less extreme challenge to Bayesianism is to explain the significant amount
of agreement among actual scientists. One might pointedly ask the Bayesian:
assuming the truth of Bayesianism, what explains scientific consensus about
the basic structure of matter, the rough characteristics of the solar system, the
boiling points of various liquids, the mechanism of photosynthesis, and so on? Is
it merely a coincidence that the scientific method often gets scientists to rapidly
agree? Call this the problem of scientific agreement.

In answering this problem, long-term convergence theorems are again of no
help. For again, the most they could hope to show is that in the limit of infinite
inquiry, scientists would likely approach agreement. That would not touch the
question of why scientist have reached so much agreement already (Howson
and Urbach 2006, 238).

7 Short-Term Convergence Theorems Help Address the Problem of Scientific Agreement

The previous section argued that long-term convergence theorems do not help
the Bayesian answer charges of excessive subjectivity. One might wonder: do
any convergence theorems help the Bayesian address those charges?

When it comes to the problem of deviant priors, the answer is “no”. All
convergence theorems place some constraints on priors, and opponents will
always be able to ask about priors that violate the constraints.
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But when it comes to the problem of scientific agreement, the answer is
“at least a bit”. The remainder of this section describes some short-run conver-
gence theorems, and explains how they partly address the problem of scientific
agreement.

As a toy example of such a theorem, consider two Bayesian agents who
are about to observe what they both regard to be independent random draws
from an urn containing 100 red and green balls in an unknown proportion.
Straightforward calculations show that unless the agents start out with radically
different opinions about what the proportion is, they will be confident that their
opinions about the urn’s composition will become extremely similar—not just
in the limit of infinite draws, but soon (after a small number of draws). This
result holds because the assumption of independent sampling is so powerful: it
is easy for a small number of samples to vastly confirm one hypothesis about the
composition of the urn over another. As a result, it is easy for initial differences
of opinion about that composition to get swamped.

This toy theorem addresses a toy instance of the problem of scientific agree-
ment. It explains why in the urn setup, unless scientists have extreme differences
in priors, observing even a small number of samples from the urn will bring
them into significant agreement. That gives the Bayesian a satisfying explanation
of why agreement in such cases is so common.

The above story can be generalized to many situations in which scientists
start with similar statistical models, and use repeated experiments to estimate
the value of certain model parameter. For example, suppose that a particular
team all agrees on the likely behavior of an apparatus designed to measure the
speed of light, conditional on hypotheses about that speed. Then the above story
might explain why those team members rapidly come to agree about the speed of
light, as they observe the behavior of the apparatus. (For short-run convergence
results for cases of roughly this kind, see Savage (1954, §3.6), Edwards et al.
(1963, 541–545), Earman (1992, 142–143), Howson and Urbach (2006, 239), and
Hawthorne (2014, §4.1).)

That shows that short-run convergence theorems are of at least some help
in addressing the problem of scientific agreement. But there is more work to be
done. For in most cases, scientists do not start with similar statistical models.
What then? Here the Bayesian may appeal to short-run convergence results that
rely on weaker assumptions.

I won’t address this strategy in detail, but will briefly say why it is promising.
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Start by adapting the setup from Hawthorne (1993, Theorem 6): consider ideal
Bayesian agents who initially disagree about a finite set of hypotheses. Suppose
that the agents are exposed to a common stream of observations relevant to
those hypotheses. Crucially, do not assume that the agents regard successive
observations as independent random draws. Instead impose a much weaker
condition: that the agents expect successive observations to be, on average, at
least slightly informative about the hypotheses in question.17

Given these conditions, we may pick one hypothesis H and ask the following
question. Supposing that H is true, how many observations would it take to
make it at least 99% likely that the observations confirm H over its rivals to
some given degree? Remarkably, the proof of Hawthorne (1993, Theorem 6)
supplies answers to such questions.18 And the answers to such questions can be
parlayed into explicit bounds on how fast we may expect the agents to converge
on the truth, given the truth of each competing hypothesis. If convergence
is sufficiently fast in some particular domain, that would provide a satisfying
Bayesian explanation for scientific agreement in that domain. It remains for
future work to fill out the details of this approach.

The bottom line is that short-run convergence theorems provide a worked-out
and convincing answer to the problem of scientific agreement in certain special
cases, and there is reason to think that this answer can be extended to include
many additional cases.

Happily, none of the short-run convergence theorems mentioned above rely
on countable additivity. So finitely additive Bayesians can freely appeal to them.

17I give here only the barest sketch of the wonderful Hawthorne (1993, Thm. 6), which is
explained in a simplified form in Hawthorne (2014, §5).

18The answer depends on such quantities as the degree to which the agents expect the observa-
tions to be informative about the hypotheses, for a particular technical notion of informativeness
defined in Hawthorne (1993, §3.2).
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Appendix

A Proof That Countably Additive, Cautious Investigators Are Either Decisive or
Extremely Open-Minded

In §4 it is claimed that under the assumption of countable additivity, the
falsity of Premise 1 entails MaxCon. Here we prove a slightly stronger claim
from which the above claim easily follows.

Say that an investigator with prior P is decisive with respect to H ∈ B if for
some string s, P(H | [s]) equals 0 or 1.

Say that an investigator with prior P is extremely open-minded with respect
to H if for every ε > 0 and for every evidence string, there is a finite extension
of that evidence that would lead her to assign probability less than ε to H, and
also a finite extension of it that would lead her to assign probability greater than
1− ε to H.

Recall that an investigator with prior P is said to be cautious if for no string s,
P([s0] | [s]) ∈ {0, 1}), where s0 denotes the concatenation of s and the string 0.

Note that a cautious investigator assigns strictly positive probability to every
string. For suppose that a probability function P assigns probability 0 to some
string. Then there must be strings s and sd such that sd is the result of appending
a single digit d to s, and P([s]) > 0 while P([sd]) = 0. (Recall that the length-0
sequence z counts as a string, and so P([z]) = 1.) So P([sd] | [s]) = 0, hence
P([s0] | [s])) ∈ {0, 1}, and an investigator with prior P is not cautious.

Now for the main claim:
Claim: Suppose that an investigator is cautious and has a countably
additive prior P, and let H be any member of B. Then the investigator
is decisive with respect to H, or extremely open-minded with respect
to H, or both.

Proof: Consider a cautious investigator with countably additive prior P who is
not decisive with respect to H. We will show that she is extremely open-minded
with respect to H.

Take any string s. Note that P([s]) > 0 (since the investigator is cautious)
and 0 < P(H | [s]) < 1 (since she is not decisive about H). Let P′(·) = P(· | [s])
be the result of conditionalizing P on [s]. For any p ∈ R, let Mp be the set of
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sequences x for which limi→∞ P′(H | xi) = p. By the long-run convergence
theorem described in §2,

P′(P′ converges to the truth about H) = 1.

So P′((H ∩M1) ∪ (H ∩M0)) = P′(H ∩M1) + P′(H ∩M0) = 1. But 1 > P(H |
[s]) = P′(H) ≥ P′(H ∩M1), so 0 < P′(H ∩M0) ≤ P′(M0). So M0 is nonempty
and hence there exists a sequence x such that limi→∞ P′(H | xi) = 0. So for
any ε > 0 there exists an n such that P′(H | xn) < ε. It follows that for any
ε > 0, there is a finite extension s′ of s such that P(H | [s′]) < ε. A similar
argument shows that for any ε > 0 there is a finite extension s′ of s such that
P(H | [s′]) > 1− ε. So the investigator is extremely open-minded.

B Proof of The Existence of an Open-Minded, Completely Pessimistic Finitely Additive
Probability Function:

In the following definitions, p ranges over reals in the open unit interval (0, 1)
and i ranges over N.

Let Lp denote the set of infinite binary sequences whose limiting relative
frequency of 1 equals p:

Lp =
{

x ∈ C : p = lim
n→∞

n−1Σn
i=1x(i)

}
.

Given the formal setup of this paper, the Bernoulli measure with bias p is the
unique countably additive probability function Bp on B such that for each x ∈ C
and each n ∈N:

Bv(xn) = pΣn
k=1x(k) · (1− p)n−Σn

k=1x(k).

Thus Bp treats the unknown digits of the successive terms of the true but un-
known infinite binary sequence as independent and identically distributed binary
random quantities, each with probability p of taking the value 1 (and probability
1− p of taking the value 0). Observe that by the Strong Law of Large Numbers it
follows that Bp(Lp) = 1.

In the following, the Bernoulli flip-flopper with bias p up to trial i is the unique
countably additive probability function Bi

p on B such that for each x ∈ C and
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n ∈N:
Bi

p(xn) = Bp(xmin(i,n)) · B1−p(xn | xi).

Thus Bp treats the first i digits of x as independent and identically distributed
binary random quantities, each with probability p of taking the value 1, and
any remaining digits as independent and identically distributed binary random
quantities, each with probability 1− p of taking the value 1. Observe that since
Bi

p applies Bp only up to trial i and thereafter applies B1−p, it follows from the
Strong Law of Large Numbers that Bi

p(L1−p) = 1.19

The proof to follow depends on the notion of a Banach limit, which is in-
troduced here in a way that closely follows Rao and Rao (1983, 39-40). Let l∞
be the space of bounded sequences of reals. A Banach limit T : l∞ → R is a
non-negative linear functional on l∞ such that T(〈1, 1, . . .〉 ) = 1 and for any
〈y1, y2, . . .〉 ∈ l∞, T(〈y1, y2, y3, . . .〉 ) = T(〈y2, y3, y4, . . .〉 ).

It can be shown that for any Banach limit T and any y ∈ l∞, if limi→∞ y(i)
exists, then T(y) = limi→∞ y(i). For that reason, one may think of a Banach limit
as generalizing the notion of the limit of a sequence of reals. When emphasiz-
ing this connection, we sometimes write blim∞

i=1 f (i) for a Banach limit of the
sequence 〈 f (1), f (2), . . .〉 .

Banach limits are not unique, and we are guaranteed of their existence only
nonconstructively, by way of the Axiom of Choice or a weaker axiom such as the
Ultrafilter Lemma. Dependence on Banach limits is what makes the proof below
nonconstructive.

Claim: There exists an open-minded, completely pessimistic finitely
additive probability function. That is, there exists an open-minded
finitely additive probability function P on B and a hypothesis H ∈ B

such that
P({x : 1H(x) = limi→∞P(H | xi)}) = 0.

Proof: Let blim be a Banach limit. Now define P0 and P1 as follows. For any
H ∈ B, let P0(H) = blim∞

i=1 Bi
.9(H), and let P1(H) = blim∞

i=1 Bi
.1(H).

It is easy to check that P0 and P1 are finitely additive probability mea-
sures. For example, whenever H and H′ are disjoint sets of sequences, P0(H ∪
H′) = blim∞

i=1 Bi
.9(H ∪ H′) = blim∞

i=1 (Bi
.9(H) + Bi

.9(H′)) = blim∞
i=1 Bi

.9(H) +

blim∞
i=1 Bi

.9(H′) = P0(H) + P0(H′).

19Thanks here to an anonymous reviewer, whose suggested exposition I adopt almost verbatim.
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(Informally, we can think of P0 and P1 in the following way: P0 treats the
sequence as if a large initial segment of it is generated by tosses of a coin biased
toward “1”, and the rest by a coin biased toward “0”. P1 treats the sequence
in exactly the opposite way. In each case, the initial segment is expected to be
extremely long, in the following sense: for every n, however large, P0 and P1

treat the first n digits as if they are part of the initial segment. That is what forces
P0 and P1 to be merely finitely additive.)

Let P = (P0 + P1)/2. P is clearly a finitely additive probability function. We
will now complete the proof by showing that P is open-minded and completely
pessimistic with respect to the hypothesis L.9. Note that for any x ∈ L.9 and for
any i,

P(L.9 | xi) =
P(L.9 ∩ xi)

P(xi)
=

(1/2)(P0(L.9 ∩ xi) + P1(L.9 ∩ xi))

(1/2)(P0(xi) + P1(xi))
(4)

=
(1/2)(0 + P1(xi))

(1/2)(P0(xi) + P1(xi))
(5)

=
P1(xi)

P0(xi) + P1(xi)
=

1
1 + P0(xi)/P1(xi)

(6)

=
1

1 + B.9(xi)/B.1(xi)
. (7)

(4) holds by definition. (5) holds because P1(L.9) = 1 and P0(L.9) = 0, since for
each i, Bi

.1(L.9) = 1 and Bi
.9(L.9) = 0 by the strong law of large numbers. (6) is

simple algebra. (7) holds because for any binary sequence x and any natural
number i, P0(xi) = B.9(xi) and P1(xi) = B.1(xi). To see why, note that P0(xi) =

blim∞
j=1Bj

.9(xi) = blim∞
j=iB

j
.9(xi) = blim∞

j=iB.9(xi) = B.9(xi).20

Now consider what happens to (7) as i approaches infinity: The propor-
tion of 1s in the first i digits of x approaches .9 (since x ∈ L.9). As a result,
B.9(xi)/B.1(xi) grows without bound, and hence (7) approaches 0. So when
x ∈ L.9, limi→∞ P(L.9 | xi) = 0. A similar argument shows that when x ∈ L.1,
limi→∞ P(L.1 | xi) = 0.

It follows that P is open-minded, since for any initial segment of digits,
appending a large enough finite block consisting of 90% 1s will force P to assign
a probability to L.9 that is arbitrarily close to 1, and appending a large enough

20Note that even though P was defined by way of Banach limits, it is indeed a probability
function. As a result, we are free to calculate using conditional probabilities as usual, even though
the product of two Banach limits need not equal the Banach limit of the corresponding product.
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finite block consisting of 90% 0s will force P to assign a probability to L.9 that is
arbitrarily close to 0.

It also follows that P is completely pessimistic, since P(L.9 ∪ L.1) = 1, and the
above argument shows that P converges to the wrong verdict about L.9 for any
sequence in L.9 ∪ L.1.
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