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Abstract
In this paper two accounts of Reichenbachian Common Cause Systems are compared. Examples are provided which show that Hofer-Szabó, Rédei and Szabó’s account (2004, 2006, and 2013) is compatible, with but not equivalent, to Mazzola’s (2012). Moreover, the difference of the two accounts with respect to their explanatory adequacy is discussed, in the light of Salmon’s Statistical-Relevance Approach to Statistical Explanation.
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0. Introduction
Hume in his celebrated Enquiry Concerning Human Understanding (4.4) claims that the causal relation between two events is either direct, i.e. one event is the cause of the other - or both events are collateral effects of some common cause.[footnoteRef:1] Matching this idea with the demand that statistical correlations - manifested whenever two events occur more or less frequently together than if they were independent - are due to causal relations, or that causal relation is a necessary condition for the manifestation of statistical correlation, one would get the principle of common cause: A statistical correlation between two events is either produced by direct causal relation between these events or by a common cause of both the correlated events. [1:  The same analysis is found in Reichenbach’s definition of causal connection between two events (1956:29).] 

Statistical correlation is a probabilistic concept and acquires meaning only if defined within a probability space. Hence, given a probability space, , the quantity 
,		(1)
for two events  describes a statistical correlation of  in  if and only if . In addition,  are said to be positively (negatively) statistically correlated if and only if, ,  (, respectively). 
Having thus defined statistical correlations one might go on and try to explicate causal relation in terms of probabilistic regularities. The general intuition behind such treatments is that the presence of the cause either increases or decreases the probability of the effect to take place; hence, it produces statistical correlations. In addition, Reichenbach proposed a statistical model of the common cause that produces a correlation, the conjunctive fork, stressing that “[i]t will be advisable to treat the principle of common cause as a statistical problem” (1956: 158).
But not all philosophers agree with this line of thought. Salmon, for instance, keeping an eye on probabilistic causality claimed that “causal relations are not appropriately analyzable in terms of statistical relevance relations.”(1984:185-6). He proposed, instead, a characterization of causation in terms of spatiotemporal entities, causal interactions and causal processes, which have the ability to produce and propagate causal influence. Regarding common causes, he stated that “[t]here is another, basically different, sort of common cause situation that cannot appropriately be characterized in terms of conjunctive forks…” (1984:168). Interactive forks, while producing correlations, do not satisfy Reichenbach’s model and the best way to consider them is in terms of space-time intersection of processes. Thus, the probabilistic explication of common cause and the statistical treatment of the respective principle do not cover all common cause situations which lead to the production of statistical correlations.[footnoteRef:2] Nevertheless, in what follows I delimit myself in the discussion of a probabilistic treatment of the problem, in agreement with the Reichenbachian view.[footnoteRef:3] [2:  Reichenbach was aware of the fact that there are common cause situations not describable in terms of conjunctive forks, but in these situations there is no statistical correlation. ]  [3:  Notice that in Salmon’s analysis of causation in terms of causal processes and causal interactions, reference to particular events is made whereas Reichenbach’s probabilistic treatment of the problem of common cause refers to types of events. I would like to emphasize that from this point onwards whenever I refer to events in the context of statistical explanations of correlations in terms of common causes or systems of common causes, I mean types of events and not event tokens.] 

Hofer-Szabó, Rédei and Szabó, in a recently published book, present the following explication of the Reichenbach’s Common Cause Principle (2013:13). Given a probability space , if  is a non-degenerate correlation - i.e.  , if  - then either the events  and  stand in a direct causal relation, or, if  and  are causally independent, that is a relation  holds, then there exists a third event, the so-called Reichenbachian common cause, causally affecting both  and . And, in Def. 2.4 the authors proceed to define that  is a common cause of the correlation (1) if the following independent conditions hold:
                          (2) 
                    (3) 
                          	              (4)
                                          (5) 
where   denotes the conditional probability of  on condition , and it is assumed that none of the probabilities  ( is equal to zero. 
Over the years, especially with the advent of quantum mechanics, many philosophers have tried to challenge the principle of common cause by providing instances of correlations that cannot be traced back to a common cause origin.[footnoteRef:4] Although Hofer-Szabó, Rédei and Szabó criticize these counterexamples as not being cases properly defined within the probabilistic framework, they reveal a problem which may be couched in terms of existence of common cause incomplete probability spaces. A probability space  is common cause incomplete if there exist events  such that   but  does not contain a common cause of the correlation  (Hofer-Szabó et al. 2013:18; Def. 3.1). If such probability spaces exist then there might be a correlation which lacks a common cause and this, in turn, might endanger the principle of common cause as explicated in terms of conjunctive forks.[footnoteRef:5]  [4:  Among the most famous counterexamples is Sober’s bread-sea levels correlation counterexample, in his paper:  E. Sober, “Venetian Sea Levels, British Bread Prices, and the Principle of the Common Cause”   Brit. J. Phil. Sci. 52 (2001): 331-346 – and van Fraassen's example, in his paper B.C. van Fraassen: "The Charybdis of realism: Epistemological implications of Bell’s inequalities” Synthese 52 (1982): 25-38.]  [5:   Of course, one should point out that this is not the same problem as the one raised by Salmon. In the case just mentioned there is a correlation lacking a common cause whereas in Salmon’s case there is an intuitively plausible common cause which does not satisfy the statistical model of a conjunctive fork.] 

To cope with this problem and safeguard the principle of common cause, Hofer-Szabó, Rédei and Szabó suggested two strategies. The first one rests on the fact that the principle does not specify the probability space in which the common cause of the statistical correlation is to be found. Hence, if one were able to extend the probability space in which the statistical correlation is described in such a way that the extended space is not common cause incomplete anymore, at least concerning the given correlation, then the counterexample would be neutralized and the principle would escape the risk of being refuted. This result is established by the following proposition: Every probability space  is strongly common cause extendable with respect to any finite set of correlated events (Hofer-Szabó et al. 2013:24; Prop. 3.9). Thereby the moral is that for any set of correlated events attested in a probability space, the common causes might remain ‘hidden’ in some extension of that space.
The second strategy suggested is related to the introduction of a new concept that generalizes the notion of common cause, the Reichenbachian Common Cause System (RCCS). Instead of searching for a common cause, a single event, that explains the given correlation, it is suggested to consider the correlation as the cumulative result of a large number of different “partial common causes” that form a partition of the probability space and explain the correlation, in the sense of entailing it. Hence, the absence of the common cause from a given probability space might be due to the fact that the given correlation is the result of more than one partial causes. However, it is obvious that with this second strategy it is not the principle of common cause in its original form that is saved. Rather a generalized version of the principle of common cause needs to be formulated which would claim the existence of a Reichenbachian Common Cause System whenever a correlation between causally independent events is attested.
1. Reichenbachian Common Cause Systems
The concept appeared initially in the work of Hofer-Szabó and Rédei (2004) and was later revisited by Mazzolla (2012).
According to the first definition (Hofer-Szabó et al. 2013:81; Def. 7.1), for a probability space and two events in , the partition  of  is said to be a Hofer-Szabó, Rédei and Szabó Reichenbachian Common Cause System (HRS-RCCS)[footnoteRef:6] for the pair  if the following two conditions are satisfied  [6:  In the original definition, of course, one cannot find the names of the philosophers. I add them here to avoid confusion between the two accounts of RCCS. ] 

  for all         (6)
 for all . (7)
Condition (6) stipulates that the correlation is screened off in each cell of the partition while (7) is a generalization of (4) and (5) for a partition of  having size greater than or equal to two; (7) covers also the case of a weaker definition of the common cause.[footnoteRef:7] [7:  According to the weaker definition, apart from the screening off relations (2) and (3), a common cause must either increase the probability of the correlated events to take place, (4) and (5), or decrease it consistently:   and  (Hofer-Szabó et al. 2013:16; Def. 2.10).  ] 

Mazzolla, although keen on generalizing common causes to common cause systems, criticized the above definition claiming that HRS-RCCS do not display all relevant properties of a common cause: (a) HRS-RCCS might fail to be systems of sole common causes; (b) HRS-RCCS might happen to exclude arbitrarily some causally relevant factors. In order to render objection (a) obvious, let me rewrite (7) in the following equivalent form:
 for all .                                          (8)
One can easily notice that it is possible, without any violation of the inequality (8), for a single factor  to be statistically irrelevant to  and for another factor, say , not necessarily distinct from , to be statistically irrelevant to . Thus, concludes Mazzolla, HRS-RCCS might include some non-causally relevant factors. In addition, an HRS-RCCS might also include some factor  that is both positively statistically (respectively, causally) relevant to and negatively statistically (respectively, causally) relevant to . Nevertheless, this factor cannot by itself be a common cause since it violates (4) and (5).[footnoteRef:8] Therefore, HRS-RCCS do not need to be systems of sole causes for  and .  [8:  It violates also the weakened definition of a common cause proposed by Hofer-Szabó et al (2013:16).] 

Notice, though, that objection (a) presupposes that a necessary condition for an event to be a cause of another event is statistical relevance. However, this idea, unqualifiedly stated, does not have many adherents any more, since it has been criticized extensively by means of well-known counterexamples.[footnoteRef:9] Such counterexamples illustrate possibilities of positive causally relevant factors that are either statistically irrelevant or exhibit negative statistical relevance and, thus, show that positive statistical relevance is not a necessary condition for positive causal relevance. The existence of such possibilities is known in the literature as Simpson’s paradox (Eells 1996: 72).       [9:  Such as the graduate admission at Berkeley counterexample, cited by N. Cartwright in her paper: Cartwright, N., “Causal Laws and Effective Strategies”, Noȗs 13 (1979):419-437. Consult (Eells 1996:62). ] 

On the other hand, Mazzolla claims, firstly, that there is no need to prevent any two equiprobable members of a common cause system, and , from influencing equally the probability of their effects,  and ; thus, one should allow  – in contrast to what  (7) stipulates.[footnoteRef:10] Secondly, he claims that factors  and  influencing the overall probability of  and  asymmetrically should not be a priori excluded. On these grounds he supports his second objection, (b) above.    [10:  In what follows I try to show that this objection is not correct since an adequate explanation of a correlation must be an objectively homogeneous partition of the event space, in Salmon’s sense.] 

On the basis of this criticism, Mazzolla proposed a different account of Reichenbachian Common Cause systems which avoid the presumed pitfalls of HRS-RCCS. Thus, for a probability space  and two events  in , a partition  of  is said to be a Mazzolla Reichenbachian Common Cause System (M-RCCS) for the pair  if the following two conditions are satisfied 
  for all         (9)
  for all         (10)
provided   for all .
Despite their difference, both accounts of Reichenbachian common cause systems can be seen as natural generalizations of Reichenbachian common causes, since  (7) and (10) lead to equivalent inequalities for common cause systems of size 2, i.e. for partitions of the statistical ensemble defined in terms of a pair of orthogonal events ( and ). 
In addition, both accounts explain the statistical correlation in analogous ways, satisfying, thus, the conditions suggested by Hofer-Szabó, Rédei and Szabó (2013:81):[footnoteRef:11] (i) both require that the correlation disappears in each of the subensembles; (ii) both generalize naturally, although differently, inequalities (4) and (5) by stipulating (7) and (10) respectively; and, finally, (iii) in both accounts the partial common causes explain the correlation in the sense of entailing it. The latter claim, (iii), is the content of Prop. 7.2 in Hofer-Szabó et al. (2013:81) for HRS-RCCS and of  Prop. 3 in Mazzolla (2012) for M-RCCS. In these propositions it is proved that given a probability space , if a partition  of  is an RCCS (of any of the two types) for the pair  then . In the last section of this paper I challenge the adequacy of this account of explaining correlations and discuss an important difference between HRS-RCCS and M-RCCS. [11:  Mazzolla explicitly says that his account is “capable of emulating the explanatory efficacy of its original counterpart” (2012). ] 

Although the present section is dedicated to Reichenbachian Common Cause Systems, it would be an omission not to mention that in the literature concerning the explanation of the EPR correlations in terms of stochastic hidden variables only condition (i), explicated by (6) or (9), is stipulated, providing, thus, the grounds for replacing HRS-RCCS and M-RCCS with a weaker concept of ‘common cause system’ dubbed Common Cause System (CCS) by Hofer-Szabó et al. (2013:146; Def. 9.5). This weaker notion seems to fit better to the physicists’ intuition that a complete specification of the state of a quantum system, in terms of the value that some hidden variable might take, makes the EPR correlation between measurements in the two wings of the experiment disappear, given that there is no direct causal link connecting the correlated events due to their spacelike separation. In this context, a CCS for the given correlation is a partition of the range of a hidden variable - in other words, an exhaustive collection of mutually excluded possible specifications of the state of a quantum system, having a certain degree of probability to be realized - satisfying conditions similar to (6) or (9).[footnoteRef:12] Obviously, this account of explaining a correlation does not demand the deducibility of the latter; a fact that for some scholars might render less clear the way in which a CCS is said to explain the correlation. But this is not its only weakness. As it will become evident in the last section of the paper, this account of explanation suffers similar problems to the M-RCCS concerning explanatory adequacy, namely, it allows the inclusion of irrelevant factors in the explanatory scheme.  [12:  This interpretation might be easily turned to a statistical one couched in terms of ensembles of quantum systems. In any case, here I do not wish to commit myself to any particular interpretation of quantum mechanics.] 

But now it’s time to turn to the examination of the compatibility and the inequivalence of the two notions of Reichenbachian Common Cause Systems, HRS-RCCS and M-RCCS.
2. Are the two conceptions compatible?
In order to answer the question in the positive, firstly, I provide an example of a finite size HRS-RCCS that is M-RCCS and, secondly, I show that the infinitely countable HRS-RCCS, proposed by Marczyk and Wronski (2010), is an M-RCCS as well. 
The first example concerns statistical correlations manifested between consecutive tosses of coins. In particular, suppose that from a collection of coins one chooses randomly a coin and tosses it twice. This process is repeated and the statistical ensemble of tossing results is formed. Now, suppose that a correlation between the following events is manifested,                         
: “the coin  results ‘head’ in the first trial”,
: “the coin  results ‘head’ in the second trial”,
that is, 
                                   .                             (11)
The correlation can be explained by the fact that the collection comprises three types of coins,  having different probabilities to yield ‘head’ in a toss. Hence, for each subensemble consisting of a single type of coins, one has
                                 for  ,	       (12)
where , , .
Now, consider the numerical model shown in Table 1 below.
	Table 1

	
	
	

	  for  

	
	



It is easy to verify that the two events  are statistically independent in each subensemble consisting of a single type of coin, i.e.
                  for  .      (13)
and that, 
  ,
     (14)
In addition, 
,
 ,
                           .                        (15)

On the basis of (13) and (14), one concludes directly that the partition of the statistical ensemble of tossing results in terms of the type of the coin tossed, , is an HRS-RCCS, while by combining (13) and (15), one derives that the same partition is also an M-RCCS.
Putting random experiments aside for a while, let’s turn to a different example. Let  be the probability space defined by the set of Lebesgue measurable subsets of  with  the Lebesgue measure over . According to Wronski, and Marczyk (2010), the partition   with
                                                                             (16)
is a countably infinite HRS-RCCS for the correlated events  that are defined as follows:
                                              ,                                (17)
                                                 (18)
where  . 
Now, one can show that this partition is also an M-RCCS by means of a simple calculation, 


which, in turn, shows that for 
                                                           (19)
                                                             (20)
As a final comment, it is worth noting that one can argue for the non-existence of uncountably infinite M-RCCS on the basis of the same argument Marczyk and Wronski put forth against the existence of uncountably infinite HRS-RCCS.[footnoteRef:13]  [13:  In order to have an RCCS, the conditional probability  should be defined in every cell of the partition and a necessary condition for that is  to be non-zero and, as a consequence, the probability measure to be σ-finite. But if a measure  is σ-finite on , then  cannot contain an uncountable, disjoint collection of sets of positive -measure (Billingsley 1995: 162; Thm 10.2.iv).] 


3. Are the two conceptions equivalent?
Although compatible the two conceptions of common cause systems are not equivalent. In order to show this I provide a case of an HRS-RCCS that is not M-RCCS and a case of a M-RCCS that is not HRS-RCCS. 
To begin with, consider a factory manufacturing an auto part which has two components, . The plant has three production lines, , each one of them having two machines manufacturing the respective components of the product. Statistical results reveal that the defective parts are usually shown to be defective with respect to both components. Hence, the events
: “Component a is defective”,
: “Component b is defective”
exhibit positive statistical correlation, . The production manager, in order to explain the correlation notices that since the plant was expanded gradually over time by adding new production lines, the machines in  are older and less reliable, than the machines in , and the ones in  are older and less reliable than those of . Thus, 
                                                       (21)
and
                                .                        (22)
In addition, the production of each component of a part in each production line is independent of the production of the other component in the same line, i.e. the machines work independently in each line. Therefore, the following screening-off conditions hold good, 
                           for  .            (23)
From (21) – (23) one may easily conclude that the partition of the statistical ensemble of the defective parts with respect to the production line,  from which they were manufactured is an HRS-RCCS for the correlation between the defective components in each part.
Now, a particular numerical model of the aforementioned situation suggests that this HRS-RCCS may not be an M-RCCS. Namely, assume that the overall production of part components is distributed equally in the three lines, 
                              for  ,		                    (24)
and that the probability values for the events  are those shown in Table 2 below.
	Table 2

	
	
	

	
	0.1
	0.2

	
	0.055
	0.11

	
	0.01
	0.02



But then,
                 ,                   (25)
which in turn shows that , although an HRS-RCCS, is not M-RCCS for , since .
The second example is elaborating on the coin tossing case. If one partitions further one or more cells of the original partition, defined in terms of the three different types of coins used, by means of a factor that does not influence the probability of getting ‘head’ (for instance, the date of issue of a coin), then one might get an M-RCCS which is not anymore an HRS-RCCS. In particular, consider a further partition of the subensemble that contains type  coins into two classes, . The first one,  , contains c-type coins issued before 1-1-2014 while the other, , contains c-type coins issued after that date. Moreover, let’s assume that it is equiprobable to obtain a coin from either or  i.e. 
                                             .                                           (26)

By elaborating along these lines on the numerical example presented in the previous section we get the results shown in Table 3 below.

	Table 3
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Thus, here one has a case of an M-RCCS which is not an HRS-RCCS.

4. On Explanatory Adequacy
As claimed previously, on the basis of the three conditions of explanatory adequacy put forth by Hofer-Szabó, Rédei and Szabó (2013:81), both accounts of Reichenbachian Common Causes are equivalent. But do these conditions guarantee this so-called “explanatory adequacy”? Are these conditions sufficient for having intuitively “good” explanations of correlations? 
In my view, the answer is “no”. To understand why, look at the last example of the previous section. There, the date of issue of a coin is not relevant to the probability of yielding ‘head’ in a toss, since it does alter none of the physical characteristics of the coin nor the setting of the experiment, i.e., the way of sampling or anything else that might determine the statistics of the tossing results. Hence, an adequate explanation of the fact of getting ‘head’ in two consecutive coin-throws more frequently than if independent, shouldn’t include such factors and the thus constructed M-RCCS should not be considered to have explanatory significance. In general, the possibility of having explanations of correlations that respect all three conditions and, nevertheless, may partition the statistical ensemble by means of factors that are utterly explanatorily irrelevant to the explanandum speaks for the insufficiency of the proposed criterion to establish adequate explanations.
But what does it mean for a factor and for a partition to be explanatory relevant or irrelevant in this context? For the sake of the discussion, let’s assume that explanatory relevance can be explicated completely in terms of statistical relations.[footnoteRef:14] Now, following Salmon (1984:33), one might say that a factor  is statistically relevant to the occurrence of   under circumstances  if and only if  or, equivalently, . Usually,  is omitted if reference is made to the entire statistical ensemble.  [14:  My attempt is to discuss conditions of explanatory relevance couched in probabilistic terms concerning event types and not particular events (see also note 3). I find this approach closer to the commitments of Hofer-Szabó, Rédei, Szabó and Mazzolla. Otherwise, as the anonymous referee correctly commented, statistical relevance conditions, are not a necessary prerequisite of explanatory relevance. One might think that s, taken as event tokens, are causally connected with event tokens  by means of causal processes, in the context of Salmon’s account of causation. These causal connections explain the manifested statistical correlations between event types  and guarantee explanatory relevance even if no statistical relevance relation is satisfied at the level of event types.] 

Moreover, a partition is statistically relevant to  if it is created by means of statistically relevant factors. Thus, whenever one subdivides either the original statistical ensemble or any subensemble by requiring the presence or the absence, respectively, of a factor or property  in each of the resulting subclasses,  should be a statistically relevant factor to the occurrence of  under circumstances prescribed by the subensemble under division. 
Notice, however, that given a relevant partition of a statistical ensemble, in the course of creating a finer relevant partition[footnoteRef:15] by subdividing cells of the original one, it is not stipulated that each factor used to partition a specific cell should be statistically relevant to the occurrence of   under each possible circumstance, i.e., with respect to all cells of the original relevant partition. This is overstatement. Only with respect to the cells being subdivided by requiring the presence or the absence of that specific factor, the factor must be statistically relevant to the occurrence of . Hence, given a relevant to  partition  and a factor , in order to partition further a cell  into two cells,   and   it is not demanded that for all ;  only that  , and the resulting partition  is a relevant one.  In other words, contextual unanimity, as defined in the context of probabilistic causality (Eells 1991:86), is not required in order to construct a finer, relevant to some attribute, partition by means of a factor. [15:  For two partitions  and  of , one would say that  is finer than  (equivalently  is defined to be coarser than )  if and only if for every  there is   such that  If, additionally, , then one would say that  is strictly finer than . The relation ‘being finer than’ is a partial ordering of the set of all partitions of  (Hofer-Szabó et al. 2013:90)] 

According to Salmon (1989:63) a partition  of  in a probability space  is relevant with respect to some attribute  if the probability of  in each cell is different from its probability in each one of the other cells, that is 
 for all    (27)
The definition can be easily generalized for a collection of attributes. Thus, a partition  of  in a probability space  is relevant with respect to a collection of attributes  if and only if
 for all  (28)
Next, one can talk about uniform relevance with respect to a collection of attributes , just in case that
   for all    (29)
is satisfied. That is, for every pair of cells the difference of the probabilities of all attributes in these cells is either uniformly positive or negative. 
Obviously inequality (7) in the definition of HRS-RCCS demands the partition to be uniformly relevant with respect to  and . Moreover, I should stress the fact that Salmon was aware that the relevance condition (27) does not entail that the probability of   in one of the cells is different from the probability in the statistical ensemble, and to this result he proposed a counterexample[footnoteRef:16]. The example of the defective auto parts, presented in section 3, illustrates the same for the case of partitions relevant to two attributes  and , supporting the claim  that the relevance (uniform) condition (28), (29) does not entail condition (13) of the definition of M-RCCS. But also the converse is true as we saw in the modified case of the coin tossing example: M-RCCS are not necessarily relevant partitions. [16:  “Suppose, for example,” writes Salmon, “that we have a class of tosses consisting of tosses of many different coins. Suppose further that many of the coins are biased, some toward heads, others toward tails. Some of the coins are fair. Now if each of the biased coins is biased in the same degree toward heads or tails (as the case may be), if as many are biased toward heads as toward tails, and all of the coins are tossed equally often, then the probability of heads in the entire class will be 1/2. This class may be relevantly partitioned into three cells-tosses with coins biased toward heads, tosses with coins biased toward tails, and tosses of fair coins. The probability of heads in the third cell is equal to the probability of heads in the original class but that does not mean that the partition is not relevant.” (1989: note 7, 191)] 

Equipped with the notion of statistical relevance of a partition with respect to a class of attributes, one may proceed in proposing the Statistical Relevance (SR) criterion of adequacy for the explanation of statistical correlations. Thus,
(SR-criterion 1): an explanation of a statistical correlation in terms of a system of common causes should include all and only those factors that are explanatorily relevant. 
In attempting to explicate further this criterion, I refer again to Salmon’s Statistical Relevance model of scientific explanation, in particular, to the notion of objectively homogeneous relevant partition. More precisely, a class is homogeneous with respect to an attribute or property  if no partition relevant to  can be made in ; it is epistemically homogeneous if our system of knowledge does not contain information on how to make a relevant partition; while it is objectively homogeneous if it is impossible in principle, independently of our system of knowledge, to make such a partition (Salmon 1989:63). Thus one may provide the following definition: a partition  of  in a probability space  is an objectively homogeneous relevant partition with respect to a collection of attributes  if and only if 
                             for all ,                (30)
and there is no strictly finer partition  which is relevant with respect to the same collection of attributes .
The notion of objectively homogeneous relevant partition explicates the two conditions stated in S-R criterion. Namely, as Salmon (1989:64) stresses, “…when an objectively homogeneous relevant partition of a reference class has been given, all relevant factors have been taken into account -i.e., all relevant partitions have been effected- and (2) a relevant partition admits only relevant factors, since no two cells in the partition have the same probability for the attribute G.” (1989:64). Thus, one can reformulate the S-R criterion of explanatory adequacy as stipulating that, 
(SR-criterion 2): An explanation of a statistical correlation in terms of a system of common causes should be an objectively homogeneous relevant partition with respect to the correlated events.
Now, it is obvious that M-RCCS, in general, do not satisfy this criterion since they are not necessarily relevant partitions with respect to the correlated pair of events, and, thus, fail to become adequate explanations of correlations. On the other hand, HRS-RCCS do satisfy the relevance condition by definition, but the SR criterion demands more. At this point, a mathematical result comes to our help. It claims that if   is a HRS-RCCS in  for the pair  then there exists in  neither strictly finer nor strictly coarser HRS-RCCS for   (Hofer-Szabó et al. 2013:90; Prop. 7.5). In view of this proposition HRS-RCCS are not just relevant partitions with respect to the correlated pair of events, but objectively homogeneous relevant ones and, thus, good candidates for adequate explanations of correlations. In few words, regarding explanatory adequacy, HRS-RCCS succeed where M-RCCS fail.

5.  Conclusion
In this paper I compared two rival accounts of Reichenbachian Common Cause Systems: HRS-RCCS and M-RCCS. These notions attempt to extend the Reichenbachian common cause in explanations of statistical correlations of events and they are suggested as a remedy for the existence of common cause incomplete probability spaces. I showed, by means of examples, that the two accounts are compatible: there exist partitions which are Reichenbachian common cause systems on both accounts. However, the two conceptions are not equivalent: there are partitions that are Reichenbachian common cause systems with respect to just one account and not to the other. Also, I compared the two accounts with respect to the adequacy of explanation they provide for a given correlation. Both accounts satisfy the following three conditions: (a) they require for the correlation to disappear in each of the subensembles; (b) they generalize naturally, though differently, the inequalities in the definition of Reichenbachian common cause; (c) they explain the correlation in the sense of entailing it. However, these three conditions are not sufficient for having adequate explanations since they allow the inclusion of irrelevant factors in the explanandum. Thus, in order to avoid this undesirable situation, the criterion of Statistical Relevance is stated as a further criterion of explanatory adequacy. This criterion is suggested and elaborated in Salmon’s Statistical Relevance model of explanation: for the explanation of particular facts, one has to employ all and only relevant factors in the explanandum in order to guarantee the adequacy of the explanation of general facts as well. Finally, I have shown that only HRS-RCCS satisfies naturally the SR criterion whereas M-RCCS doesn’t. 
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