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I state and prove, in the context of a space having only the metrical structure imposed by

the geometrized version of Newtonian gravitational theory, a theorem analagous to that

of Weyl’s in a Lorentzian space. The theorem, loosely speaking, says that a projective

structure and a suitably defined compatible conformal structure on such a space jointly

suffice for fixing the metrical structure of a Newtonian spacetime model up to constant

factors. It allows one to give a natural, physically compelling interpretation of the

spatiotemporal geometry of a geometrized Newtonian gravity spacetime manifold, in

close analogy with the way Weyl’s Theorem allows one to do in general relativity.
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1 Weyl’s Theorem

Soon after Einstein first promulgated the theory of general relativity, Weyl (1918) formulated and

proved a theorem that has since served as the foundation for one of the most influential and com-

pelling ways to give a physical interpretation to the theory’s mathematical machinery, Lorentzian

geometry:1

1Researchers as varied in their backgrounds, aims and temperaments as Eddington (1923), Møller (1952), Trautman

(1965), Hawking and Ellis (1973) and Malament (2012) have used it so, to mention only a small sample. This form of

interpretation can be enlighteningly contrasted with one based, e.g., on chronometry, as in Einstein (2001) or Synge

(1960).
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Theorem 1.1 Given a conformal structure on a differential manifold, and a projective structure

agreeing with it on (images) of its null geodesics, there is a Lorentz metric, fixed up to a constant

factor, having each as its associated structure of that kind.

In essence, to know the conformal structure is to know which curves are timelike (the possible paths

of massive bodies), which are null geodesics (the possible paths of light-rays in vacuo), and which

are spacelike (the possible paths of no physical system); to know the projective structure allows

one further to say which timelike curves are (images of) geodesics, i.e., the possible paths of freely

falling massive bodies. To know both, then, the theorem tells us, is to know the spacetime metric

up to a fixed constant, i.e., up to the choosing of a system of units of measurement, thus giving

us the physical significance of the metric: it is determined by the behavior of light rays and freely

falling bodies.2 In this paper, I construct the necessary machinery for a formulation and proof of

a natural analogue of this theorem in the context of geometrized Newtonian gravity. It provides in

the same way the basis for a compelling physical interpretation of the spatiotemporal structures of

that theory.

In §2, I characterize the analogue of a conformal structure in Newtonian spaces, Newtonian

conformal structure, which comprises most of the heavy lifting. I conclude in §3 with a statement

and proof of the theorem, and an explanation of the way it grounds a physical interpretation of the

theory. In appendix A, I sketch the machinery of geometrized Newtonian gravity required for the

paper’s definitions and proofs, following the treatment of Malament (2012, ch. 4, §2) (with minor

emendations and simplifications).

2 Newtonian Conformal Structure

The following definition encapsulates almost the entirety of the formal structure of geometrized

Newtonian gravity as a physical theory, the remainder being elaboration of and derivations from its

elements.

Definition 2.1 A Newtonian spacetime model is an ordered quintuplet (M, ρ, hab, tab,∇a), such

that:

1. M is a four-dimensional, connected, paracompact, smooth, differential manifold

2. ρ is a smooth, non-negative, scalar function on M

3. hab is a smooth, symmetric tensor field on M of signature (0, 1, 1, 1)

4. tab is a smooth, symmetric tensor field on M of signature (1, 0, 0, 0)

5. tab and hab are compatible, i.e., tanh
nb = 0

2See, e.g., Ehlers, Pirani, and Schild (1972) for a thorough exposition of the mathematics behind the theorem

and its intended physical significance, and Malament (2012, ch. 2, §1, pp. 120–121) for a lapidary account of such a

physical interpretation, including a discussion of its virtues and possible problems.
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6. ∇a is a smooth derivative operator on M, compatible with tab and hab in the sense that ∇atbc =

0 and ∇ahbc = 0

M represents spacetime, the “totality of all point-events”, and ∇a the physically relevant affine

structure, i.e., the one whose geodesics represent unaccelerated paths in the spacetime. ρ represents

the mass-density distribution of matter. hab and tab represent, respectively, the closest we come to

having spatial and temporal metric structures on M. (See appendix A for an explanation of the

sense in which these tensors represent sich structure.) We refer to the ordered pair (hab, tab) as a

Newtonian metrical structure.

From hereon, we assume all Newtonian spacetime models to be spatially flat (i.e., Rabcd, the

spatialized Riemann tensor, vanishes; see appendix A for an explanation of the significance of this

condition). It follows from the results and discussion of Malament (1986) that this represents no real

loss of generality, as it is those models that best capture the idea of the possible spaces of classical

Newtonian gravitational theory. We also assume in what follows that M is simply connected and

the spacetime model is temporally orientable (i.e., that there exists a globally defined temporal

function t such that tab = ∇at∇bt). Again, this is no real loss of generality, for all arguments and

conclusions would still go through without the assumption, at the cost of constant hedging about

which results are local and which global, and hence much technical work of a nit-picky sort without

any counter-balancing gain in physical insight.

From hereon, we will need to keep track of the difference between a curve considered, on the one

hand, as a smooth, injective mapping from a real interval to M, and, on the other, as the point-set

image in M of such a mapping. I will use ‘curve’ when I mean the former, and ‘image of a curve’

when I mean the latter.

Two affinities ∇a and ∇̃a are projectively equivalent if they agree on images of geodesics, which is

to say, if they agree on geodesics up to arbitrary (smooth, monotonic) reparametrization: ξn∇nξa =

0 if and only if ξn∇̃nξa = λξa for λ a smooth function on ξ. A projective structure, then, is a

maximal collection of affine structures on a Newtonian spacetime all of which agree on images of all

geodesics (“maximal” in the sense that we throw in every affine structure that meets the criterion).

One can equally well define the projective structure as the complete family of images of geodesics on

which the affine structures agree. A member of such a family of images of geodesics is a projective

geodesic.

Now, to characterize the analogue of conformal structure in geometrized Newtonian gravity. In

general relativity, one can define a conformal structure to be an assignment of a smoothly varying

field of quadratic cones at every point of the spacetime manifold, the null-cones. Two Lorentz

metrics gab and g̃ab are conformally equivalent if they have the same null-cone structure. This holds

if and only if the two metrics agree on their null geodesics, which holds if and only if gab = Ω2g̃ab

for some smooth, non-zero scalar field Ω. Because we have no such metric structure in geometrized

Newtonian gravity, and correlatively no cone-structure (except the degenerate one, which will not do)

or non-trivially null type of vector, one cannot apply such a characterization of conformal structure

here.
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The following observation provides the required clue for moving forward: two Lorentz metrics

are conformally equivalent if and only if they agree on orthogonality-relations for all pairs of vectors.

Indeed, two Lorentz metrics gab and g̃ab agree on orthogonality-relations if and only if gab = Ω2g̃ab

for some smooth, non-zero scalar field Ω. Equivalently, gab and g̃ab agree in assignments of ratios

of lengths to any pair of tangent vectors. The conformal structure so characterized then allows

one to distinguish among timelike, null and spacelike vectors, to distinguish null geodesics, and to

reconstruct the null-cone structure. Null-vectors are those non-zero vectors orthogonal to themselves,

which picks out the null-cones; and a null geodesic is one contained in a null-cone (in an appropriate

sense—see Ehlers, Pirani, and Schild 1972). Timelike vectors are those pointing into the interior of

the null cones, and spacelike vectors are all the rest.

This suggests that we attempt to characterize conformal structure in the context of geometrized

Newtonian gravity by making use of orthogonality among (appropriate) pairs of vectors.

Definition 2.2 A Newtonian Conformal Structure C on a four-dimensional manifold M consists

of:

1. at each point p ∈ M, a three-dimensional vector subspace Cp of T ∗
pM (the tensor space of

1-forms over p), smoothly varying from point to point

2. orthogonality relations fixed for all pairs of elements of Cp

This structure suffices for defining a family of symmetric tensor fields characterized by a given hab

with signature (0, 1, 1, 1), fixed up to multiplication by a positive scalar field Ω2: two 1-forms

αa, βa ∈ Cp are orthogonal if and only if hmnαmβn. We can now distinguish timelike from spacelike

vectors: spacelike vectors are those that result from raising an index of a 1-form in a Cp; timelike

are those that cannot be so derived. If ξa = hanαn, we say αa is a spacelike representative 1-form

of xa. The orthogonality relation extends in a natural way to pairs consisting of spacelike vectors,

and pairs consisting of one spacelike and one timelike vector. We can now also determine a second

family of symmetric tensor fields, characterized by a given tab with signature (1, 0, 0, 0), fixed up

to multiplication by a positive scalar field χ2. A vector ξa is timelike if and only if tmnξ
mξn > 0.

It follows that the timelike vectors at a point form a four-dimensional affine space modeled on the

space of all tangent vectors at that point. Clearly, any two such representative tensor fields hab and

tab are compatible, in the sense that tanh
nb = 0. We say two symmetric tensor fields hab and h̃ab of

the appropriate signature are conformally equivalent if they live in the same family of tensor fields

of a given Newtonian conformal structure, and similarly for tab and t̃ab. A conformal derivative

operator, then, is the family of derivative operators each of which is compatible with a pair of

compatible spatial and temporal metrics in the conformal family, in the sense that each triplet of

representatives satisfy ∇ahbc = 0 and ∇atbc = 0.

Because, given two spacelike vectors, there is always a third that, added to the first, makes

it orthogonal to the second, the trigonometric functions allow one to define angles among them.

In the same way, angles between spacelike and timelike vectors can be defined. Finally, one can

define hyperbolic angles among pairs of timelike vectors by taking the difference between them,
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fixing a spacelike vector, and using that as a “unit” to treat the difference vector as, in essence,

a velocity difference. One can then use the hyperbolic trigonometric to define the angles. (This

is essentially the same procedure one uses in general relativity to define hyperbolic angles between

timelike vectors; and, in the same way, this structure does not allow one to define orthogonality

relations among timelike vectors.) From this, one immediately derives ratios of lengths between

all pairs of spacelike vectors, between all pairs consisting of a spacelike and a timelike vector, and

between all pairs of timelike vectors.

It will give some insight into the character of a Newtonian conformal structure, as well as being

useful in the proof of theorem 3.1, to perform here the calculation that shows that being twist-free

for a vector field (∇[aξb] = 0) is a conformally invariant notion, i.e., a conformal derivative operator

allows one to determine whether a given vector field is twist-free or not. This makes intuitive sense,

as being twist-free essentially means that “nearby” vectors in the vector field have no “angular

velocity” with respect to each other, but angular velocity is a conformal notion. More precisely,

fix two representative derivative operators of a conformal derivative operator, ∇a and ∇̃a with

difference vector Cabc, and the hab and h̃ab in the conformal structure respectively compatible with

them, where h̃ab = Ω2hab. First,

0 = ∇̃ah̃bc

= ∇̃a(Ω2hbc)

so

Ω2∇̃ahbc + hbc∇̃aΩ2 = 0

Using Cabc to re-express this, and noting that ∇a and ∇̃a agree in their action on Ω2, we get

0 = Ω2∇ahbc + Ω2Cbanh
nc + Ω2Ccanh

bn + hbc∇aΩ2

= 2Ω2hcnCban + hbc∇aΩ2
(2.1)

Thus 2Ω2hanCbnc = −hab∇cΩ2 and so hn[aCb]nc = 0. It follows immediately that

∇̃[aξb] = 0 if and only if ∇[aξb] = 0

Now, for a Newtonian conformal structure to be a physically meaningful analogue of confor-

mal structure in general relativity, it should allow one to distinguish a preferred family of images

of curves, the conformal spacelike geodesics, i.e., images of curves that can be reparametrized so

as to be geodesics for each representative derivative operator of the conformal derivative operator

associated with the conformal structure.3 And it does. They are the spacelike curves that, in an

appropriate sense, preserve orthogonality relations. Fix two spacelike vector-fields ξa and ηa every-

where orthogonal to each other. One can always do this. Pick a representative of the conformal

3Although a conformal structure in general relativity fixes the null geodesics as curves, not just images of curves,

we cannot expect that here: that happens in the null case only because all vectors tangent to all curves formed by

parametrizing the images have the same length (viz., 0), and so the images remain true geodesics under arbitrary

parametrizations. That will not be the case for the spacelike curves here, which will be true geodesics (not just

re-parametrizable so as to be geodesics) only under a preferred family of parametrizations.
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derivative operator, ∇a; fix ξa and ηa at a point p; then construct a curve (unique up to parametriza-

tion) that has ξa as its tangent vector at p, and that parallel-transports ηa along it with respect to

to ∇a. Then do the same with the roles of ξa and ηa reversed. Do the same along every point of

the constructed curves. Pick a vector θa orthogonal to both ξa and ηa at p, and parallel-transport

the constructed curves along θa. And so on. Because (recall) we have assumed that the Newto-

nian spacetime models we are working with are spatially flat (Rabcd = 0), we are guaranteed that

parallel-transport of all these vectors is path-independent, so the construction is consistent.

The integral curves of ξa and ηa are conformal spacelike geodesics. Pick a representative ∇a of

the conformal derivative operator, with its associated hab. We will use hab to effectively lower indices

in the following calculations, by using it to arbitrarily fix spacelike representative 1-forms of ξa and

ηa respectively. (It is a simple calculation, following essentially the same lines as the calculation that

being twist-free is a conformally invariant notion, to show that the following argument is independent

of the initial choice of spacelike representative 1-forms; I leave it to the reader.) Now, it is clear

that the two vector-fields Lie-derive each other. Thus ξn∇nηa = ηn∇nξa, and, by orthogonality,

∇aξnηn = 0. Now the result follows by playing these off each other in the standard way.

ηmξ
n∇nξm = ξmξn∇nηm

= ξn∇nξmηm − ηmξn∇nξm

The first term in the last line is zero by orthogonality, and so we are left with ηmξ
n∇nξm =

−ηmξn∇nξm, i.e., ηmξ
n∇nξm = 0. Since this is true for all vectors orthogonal to ξa, we conclude

that ξn∇nξa = λξa, for some scalar field λ. Thus, the integral curves of ξa are geodesics up to

reparametrization.

3 The Theorem

A projective structure and a Newtonian conformal structure are compatible with each other if the

conformal spacelike geodesics determined by the Newtonian conformal structure are also projective

geodesics. We can now state the main result of the paper.

Theorem 3.1 Two pairs of compatible spatial and temporal metrics (hab, tab) and (h̃ab, t̃ab) are both

projectively and conformally equivalent with respect to compatible projective and conformal structures

if and only if the two temporal metrics differ only by a constant factor, and the same holds for the

two spatial metrics (though not necessarily by the same factor as for the temporal metrics).

proof:

The “if” part of the theorem is immediate. Assume, then, that we have two pairs of confor-

mally and projectively equivalent pairs of compatible spatial and temporal metrics, (hab, tab) and

(h̃ab, t̃ab) with respect to compatible projective and conformal structures, where h̃ab = Ω2hab and

t̃ab = ξ2tab. Because their respective compatible derivative operators, ∇a and ∇̃a, agree on images

of geodesics, their difference tensor Cabc is of the form δa[bφc] for some 1-form φa. In particular,

because they are conformally related, from equation (2.1) we know that Cabc = − 1
2h

bc∇a ln Ω2.
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The analogous calculation shows that Cabc = 1
2 tbc∇a lnχ2. The proof now proceeds in perfect

exactly as in the Lorentzian case (Malament 2012, ch. 1, §9, p. 83), playing these expressions of

each other, until one derives ∇aΩ2 = 0 and ∇aχ2 = 0.
�

One can now use the theorem to render a physical interpretation to the Newtonian metric struc-

ture of a Newtonian spacetime model, in the following way.4 We will use the following interpretive

principles.

C1 timelike curves represent the possible paths of massive bodies

C2 segments of images of spacelike geodesics represent the spatial position and extent of (rigid)

yard-sticks

C3 spacelike vectors represent the possible accelerations of massive bodies

P1 timelike geodesics represent the paths of freely falling massive bodies

P2 the ratio of the lengths of two segments of a timelike geodesic represent the ratio of the temporal

separations between the events at the ends of the two sgments

Now, if we can determine when the accelerations of two given massive bodies are orthogonal to each

other, then, by C3, we can determine the Newtonian conformal structure. This can be operational-

ized in any of a number of ways. Perhaps the simplest is to use the fact that the orthogonality

relations among spacelike vectors are encoded in the ratios of their lengths, and then to use the fact

that accelerations are linearly proportional to applied forces. Fix a standard yard-stick (by C2) and

a standard clock (by P2). We can now measure the ratio of the magnitude of two forces by applying

each in turn to the same body for a unit of time (based on our clock), and measuring the difference

in resultant velocities (based on our yard-stick and our clock). The projective structure is fixed by

determining the images of paths of freely falling bodies.

Thus, by the theorem, to know when two forces are orthogonal to each other, and to know the

images of the paths of freely falling bodies, is to fix the entirety of the Newtonian metric structure

of a Newtonian spacetime model.

A Appendix: Geometrized Newtonian Gravity

A Newtonian spacetime model is as defined in definition 2.1.

tab serves to define a notion of a vector’s being spacelike or timelike.

Definition A.1 The temporal length of a vector ξa is (ξmξntmn)
1
2 . ξa is timelike if its temporal

length is non-zero, spacelike if the vector is non-zero and has a temporal length of zero.

4I do not claim this is the unique or even just a canonical way of doing so, or the most elegant or concise or what

have you, only that it is a perspicuous and natural way, with clear physical significance.
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It is natural to think of the zero-vector as both timelike and spacelike, in so far as we know what it

means for two events to occur at the same time as well as at the same place. The addition of any

spacelike vector to a timelike one is always timelike. It follows that the family of timelike vectors

forms a four-dimensional affine space modeled on the tangent space. (It cannot form a vector-space,

as the sum of two timelike vectors may be spacelike.) It also follows that the family of spacelike

vectors at a point forms a three-dimensional vector subspace of the tangent space at that point.

The signature of tab implies that at every point there exists a neighborhood and smooth 1-form ta

defined on that neighborhood such that tab = tatb on that neighborhood. If there is a globally defined

such 1-form, then the spacetime model is temporally orientable and ta is a temporal orientation on

it; a timelike vector ξa is future-directed if tnξ
n > 0. Item 6 in definition 2.1 implies that ta is

closed, and so, at least locally, there exists a smooth function t such that ∇at = ta, the (local)

time-function. If M is simply connected and the spacetime model temporally orientable, t is defined

globally. In this case, its constant surfaces represent the Newtonian idea of “all of space at a given

moment of time”, i.e., a maximal collection of events all (absolutely) simultaneous with each other,

a simultaneity slice, and so M has the topology R × Σ, where Σ is a three-dimensional manifold

diffeomorphic to a simultaneity slice. This t is unique up to the addition of a constant, which may

be thought of as a change of temporal origin. Its scale, however, is fixed by the temporal length of

vectors: to multiply tab by a constant factor changes nothing physically, but rather represents only

a change in units of temporal measurement.

tab, then, determines an absolute temporal structure—the temporal separation of any two events

in the spacetime is fixed once and for all, independent of any other state of affairs in the world; the

equivalence classes of spacetime points under the relation “having a temporal separation of zero with”

are exactly the simultaneity slices. A timelike curve is one whose tangent vectors are everywhere

timelike. Such curves represent the possible worldlines of ponderable bodies. The signature of

tab has another consequence of note: it does not allow one to define orthogonality between two

timelike vectors. This makes physical sense: two orthogonal, timelike vector-fields would define

time-functions different in the sense that they would not share surfaces of constancy, i.e., they

would define incommensurable temporal structures.5

hab defines the spatial metric structure in a more indirect way.

Proposition A.2

1. A vector ξa is spacelike at a point p if and only if there is a covector αa at p such that

ξa = hanαn.

2. For all covectors αa and βa at a point, if hanαn = hanβn, then hmnαmαn = hmnβmβn.

5One can see the physical sense this makes in another, more indirect way: in so far as one can consider all the

spacelike vectors at a point in Newtonian spacetime to be the result, in the limit, of “flattening” the null-cones in a

relativistic spacetime—“letting the upper bound of possible velocities go to infinity”—the timelike Newtonian vectors

at that point encode essentially the same information as the timelike vectors in the interior of the original null-cones,

and no two timelike vectors can be orthogonal to each other with respect to a fixed Lorentz metric. See Malament

(1986) for a precise characterization and analysis of the process of flattening the null-cones in a relativistic spacetime.
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In virtue of this proposition, the following is well formulated.

Definition A.3 The spatial length of a spacelike vector ξa is (hnmαnαm)
1
2 , where αa is any cov-

ector satisfying hanαn = ξa.

If a spacelike ηa equals hanαn, then we say αa is a representative spacelike 1-form of ηa. In so far

as hab determines lengths only for spacelike vectors, but not at all for timelike vectors (whereas

tab determines lengths for all spacelike vectors: 0), it defines a spatial metric in only a Pickwickian

sense, as it ought to according to Galileian relativity. We know what it means in Newtonian theory

to assign a definite distance between two simultaneous events, by employing yard-sticks and the

like, independent of any other state of affairs in the world. We do not know how to do so for

non-simultaneous events.6

The following construction captures the content of this observation. Specify at a point p a

constant timelike vector ξa of unit temporal length, and define ĥab to be the unique symmetric

tensor at p satisfying

ĥanh
nb = δa

b − tanξbξn

ĥanξ
n = 0

ĥab represents the covariant spatial metric determined by projection relative to ξa. Then the spatial

length of any vector assigned indirectly by hab will agree with that assigned directly by ĥab. The

spatial separation of two non-simultaneous events, however, as determined by such a ĥab, depends

on the choice of ξa. Again, this is as it should be. If we knew how to assign a spatial length to

timelike vectors, and so a fixed spatial separation between non-simultaneous events, then we could

define a notion of absolute rest: “a particle is at absolute rest if the timelike curve representing its

worldline has everywhere tangent vectors of zero spatial length”. This, however, we cannot do.

In contradistinction to tab, h
ab allows one to define a relation of orthogonality among spacelike

vectors: two spacelike vectors ηa and θa are orthogonal if hmnαmβn = 0, where αm and βn are

any two representative spacelike 1-forms of ηa and θa respectively. This makes physical sense as

well: we know in Newtonian spacetime how to determine whether two yardsticks at a single moment

of time are at a right angle to each other. hab also allows us to define a relation of orthogonality

between a spacelike and a timelike vector: given a a timelike vector ξa, a spacelike vector ηa, and any

representative 1-form αa for ηa, then ξnαn = 0 if and only if ξnβn = 0 for any other representative

spacelike 1-form βa. Though this may sound a little odd at first, it makes physical sense, too. A

simple calculation shows that any timelike curve parametrized by arc-length (“proper time”) will

satisfy ξn∇nξa = ηa, where ξa is the tangent to the curve and ηa is spacelike and orthogonal to ξa.

This says that for any ponderable body, the worldine of which by definition instantiates a timelike

curve, its acceleration is everywhere spacelike, and thus a viable candidate for entering Newton’s

Second Law on the righthand side. If this were not the case, then one could have ponderable bodies

accelerating in a timelike direction, with attendant timelike forces, and I see no possible way to make

6See Stein (1967) for a thorough discussion.
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physical sense of such a conceit, except perhaps in a 1950’s B-movie “Great Scot! He’s beginning

to mutate!”-sort of way. Thus, we can assign determinate magnitudes, fixed once and for all, to the

acceleration of bodies, as Galileian relativity allows us to do, and Newtonian mechanics demands we

do (Stein 1967). In sum, hab encodes the right amount of structure of the right kind, nothing more,

nothing less. (One may think of this as physics practiced in accord with the Goldilocks Principle.)

In what follows, we assume that M is simply connected and the spacetime model is temporally

orientable; this is no real loss of generality, for all arguments and conclusions would still go through

without the assumption, at the cost of constant hedging and much technical work of a nit-picky

sort without any counter-balancing gain in physical insight. In particular, we do not need to worry

about which results hold only locally and which globally.

Before moving on to the definition of the appropriate analogue of a conformal structure for a

Newtonian metric structure, we rehearse a few of its properties and state the most important two

theorems in geometrized Newtonian gravity, which will be of use later. When there is no chance

for ambiguity, we will use raised indices to represent the action of hab on a tensorial object, e.g.,

∇a := han∇n.

Theorem A.4 (The Geometrization Lemma) Fix a Newtonian spacetime model (M, ρ, hab,

tab,∇a), such that ∇a is flat, i.e., its associated Riemann tensor Rabcd = 0, and a smooth

scalar field φ such that ∇n∇nφ = 4πρ (the Poisson equation). Define another derivative opera-

tor ∇̃a = (∇a, Cabc), where Cabc = −tcb∇aφ. Then:

1. (M, ρ, hab, tab, ∇̃a) is a Newtonian spacetime model

2. ∇̃a is the unique derivative operator such that

ξn∇̃nξa = 0 if and only if ξn∇nξa = −∇aφ

3. the Riemann tensor R̃abcd associated with ∇̃a satisfies

a. R̃ab = 4πρtab

b. R̃ab
c
d = R̃cd

a
b

c. R̃abcd = 0

A few remarks are in order to explain the physical significance of the theorem. In essence it says that,

given a Newtonian spacetime model with a flat affine structure, we can always construct one in which

the geodesics (possible paths of “freely falling bodies”) of a curved affine structure are the same paths

as those representing bodies moving under the force of the ambient gravitational field associated with

ρ in the original model. The constructed model “geometrizes” gravity: it incorporates the effects of

gravity into the metric structure of the new model, in analogy with general relativity.

The effective converse of the Geometrization Lemma holds as well.

Theorem A.5 (Trautman Recovery Theorem) Fix a Newtonian spacetime model

(M, ρ, hab, tab,∇a) satisfying
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1. Rab = 4πρtab

2. Rab
c
d = Rcd

a
b

3. Rabcd = 0

Then there is a derivative operator ∇̃a and a scalar field φ̃ such that

1. ∇̃n∇̃nφ̃ = 4πρ (the Poisson equation)

2. ∇̃a is compatible with tab and hab

3. ∇̃a if flat

4. for all timelike curves with tangent vector ξa

ξn∇nξa = 0 if and only if ξn∇̃nξa = −∇̃aφ̃

Moreover, (∇̃a, φ̃) is not unique. Any other such pair (∇̂a, φ̂) will satisfy the stated conditions

if and only if

a. ∇a∇b(φ̃− φ̂) = 0

b. ∇̂a = (∇̃a, Cabc), where Cabc = tbc∇a(φ̃− φ̂)

Given a Newtonian spacetime model in which the gravitational effects of ρ are geometrized (incor-

porated into the curved affine structure), the theorem tells us that we can recover one in which

the gravitational effects of ρ are rather represented by the acceleration of the paths of freely-falling

bodies, as defined by a flat affine structure.

In disanalogy with general relativity, and crucially for our purposes, in this context Rabcd = 0 is

not equivalent to Rabcd = 0. The interpretation of the condition Rabcd = 0 and its relative strength

as compared to Rabcd = 0 follow from a proposition whose proof is straightforward, albeit tedious

(Malament 2012, §§4.2–4.3). To state it, we need a few more definitions. A Newtonian spacetime

model is spatially flat if Rabcd = 0, i.e., if the affine structure on the simultaneity slices derived by

restricting to them the action of the global affine structure is flat. A unit, future-directed timelike

vector-field ξa is rigid if £ξh
ab = 0, i.e., if ∇(aξb) = 0. (One may think of a rigid vector field as the

analogue of a Killing field in general relativity.) ξa is twist-free if ∇[aξb] = 0, and is acceleration-free

if ∇aξb.

Proposition A.6 Fix a spatially flat Newtonian spacetime model. Then:

1. Rabcd = 0 if and only if there exists a rigid and twist-free vector field

2. Rabcd = 0 if and only if there exists a rigid, twist-free and acceleration-free vector field

Another illuminating characterization of Rabcd = 0 follows from this proposition: the condition holds

if and only if parallel-transport of spacelike vectors is path-independent.
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