
Motivating Wittgenstein’s Perspective on
Mathematical Sentences as Norms1

A motivation of the later Wittgenstein’s perspective on mathemati-
cal sentences as norms is given for sentences belonging to axiomatic
systems that are treated along the lines of the Hilbertian axiomatic
method, the approach in which the axioms are used as implicit defini-
tions of the concepts they contain. It is shown that in this approach
the axioms are employed as norms in that they function as standards
of what counts as using the concepts involved. This normative dimen-
sion of the mode of use of the axioms, it is argued, is inherited by
the theorems derived from the axioms. Having been motivated along
these lines, the Wittgensteinian perspective on mathematical language
as normative may appear more plausible also to those who are not
friends or experts of Wittgenstein’s later philosophy of mathematics.

1 Introduction

Wittgenstein’s later thoughts on mathematics belong to the most neglected
parts of his work and have practically no influence on current debates in
the philosophy of mathematics. A selection of his notes on mathematics ap-
peared posthumously under the title Remarks on the Foundations of Math-
ematics2, but it received very critical reviews by some of the leading experts
in the philosophy of mathematics.3 Nevertheless, there has always been a
small fraction of researchers who believe that Wittgenstein’s philosophy of
mathematics contains extremely important insights.4 Despite their efforts,
however, Wittgenstein’s thoughts on mathematics play almost no role in
the more systematically oriented debates in the philosophy of mathematics
today.

The aim of the present paper is to show that this neglect is unjustified.
To this end, a motivation of Wittgenstein’s perspective on mathematical
sentences as norms is proposed which is so designed that it may appeal to
those having a background in what may be called contemporary mainstream

1I would like to thank Peter Hacker, Andrea and Friedrich Harbach, Felix Mühlhölzer
and two anonymous referees of Philosophia Mathematica for many valuable comments on
earlier versions of this paper. I am especially grateful to Felix Mühlhölzer for motivating
me to take Wittgenstein’s perspective on mathematical sentences as norms seriously in
the first place.

2See [Wittgenstein, 1956].
3See the review papers [Kreisel, 1958], [Bernays, 1959], and [Dummett, 1959].
4For book-length studies of aspects of Wittgenstein’s (later) philosophy of mathematics

see [Wright, 1980], [Baker and Hacker, 1985] (especially Chapter VII of the 2009 edition),
[Shanker, 1987], [Frascolla, 1994], [Marion, 1998], and [Mühlhölzer, 2010].
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philosophy of mathematics.5 Before discussing the main argument, however,
some brief remarks on the more general traits of Wittgenstein’s thoughts on
mathematics are in order to set the stage for the considerations which follow.

The later Wittgenstein’s thoughts on mathematics have what one may
call a positive and a negative side. On the negative side, Wittgenstein offers
a profound critique of attempts to provide mathematics with a “foundation”
in the sense of the logicist, intuitionist or finitist project. The foundationalist
enterprise Wittgenstein is chiefly concerned with is the logicist programme
of Whitehead and Russell, who tried to reconstruct mathematics as a branch
of logic. His criticism, however, applies quite generally to any attempt of
uncovering the nature or “essence” of mathematical objects by reductive
analysis, also in a set-theoretic framework.6 In view of the anti-revisionist
and descriptivist philosophical attitude championed by Wittgenstein in his
later writings7 it seems more natural to interpret him as attacking (what
he believes to be) most mathematicians’ motivation for studying subjects
such as set theory and as criticising their professed interpretations of these
theories than as rejecting these theories themselves for being based on il-
legitimate forms of mathematical reasoning.8 Nevertheless, Wittgenstein
has often been interpreted as defending various forms of constructivism and
finitism, positions which reject important parts of ordinary mathematical
reasoning as unintelligible.9 Wittgenstein’s position, thus construed, tends
to emerge as a bizarre case of philosophical presumptuousness and as, at
least in part, barely sensible. In the present paper, I shall ignore what
I have labelled the “negative side” of Wittgenstein’s philosophy of math-
ematics, even though his critique of foundationalism appears to me very
insightful, and focus on what I call its “positive side”.10

By the “positive side” of Wittgenstein’s philosophy of mathematics I
mean those remarks which are not critical of any other philosophical po-
sition or programme but contain his own original, “positive”, considera-
tions on mathematics. There are several importants leitmotifs here, but the
idea which is perhaps most central and ingenious is that mathematical sen-
tences are not used descriptively, as descriptions of “mathematical facts”,
so to speak, but normatively, as rules of language: “[I]n mathematics we

5For an introduction see Chapters 8-10 of [Shapiro, 2001].
6The core of Wittgenstein’s critique of logicist reductionism is contained in [Wittgen-

stein, 1956], Part III. For an extremely thorough and extensive commentary and discussion
see [Mühlhölzer, 2010], for a more compact account see [Mühlhölzer, 2006].

7See [Wittgenstein, 1953], § 124.
8For an elaborate non-revisionist reading of Wittgenstein’s philosophy of mathematics,

focusing on his remarks on Gödel, see [Floyd, 2001].
9See, for example, the influential reading of Wittgenstein as a “full-blooded convention-

alist” proposed in [Dummett, 1959] or the Stanford Encyclopedia article on Wittgenstein’s
philosophy of mathematics [Rodych, 2007].

10A very useful general overview of the “negative side” of Wittgenstein’s philosophy of
mathematics is given in [Maddy, 1993].
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are convinced of grammatical propositions”, Wittgenstein writes, “so the
expression, the result, of our being convinced is that we accept a rule”.11

Wittgenstein sees mathematics as “normative”12 or, more figuratively, as
“form[ing] a network of norms”.13 In this picture of mathematics as a net-
work of norms, the knots of the web, corresponding to the norms, represent
the mathematical propositions, and the links between them are provided by
the proofs.

In view of how mathematicians and philosophers of mathematics usually
describe the nature of mathematical inquiry the idea that mathematical sen-
tences are normative is a truly radical idea. As developed by Wittgenstein,
it is completely at odds with any picture of the mathematician as an “ex-
plorer” or “discoverer”, exploring an unchanging realm of eternal objects
(the Platonist picture) or, to name another important view, exploring the
most general traits of possible structures of objects (the modal structuralist
picture). It is instructive to compare the Wittgensteinian perspective on
mathematical language as normative to that of a logicist who, besides aim-
ing at a reduction of mathematics to logic, subscribes to the commonplace
view that logic is normative in the sense of imposing constraints on rational
thought and belief.14 In particular, it is interesting to contrast Wittgen-
stein’s view with Frege’s, for the sense in which, according to Frege, logic is
normative—and hence all of mathematics that can be reduced to logic—is
illuminatingly different from the sense in which mathematics is normative
according to Wittgenstein.

The most important difference between Frege’s view and the Wittgen-
steinian perspective on mathematics as normative is this: For Frege, the
laws of logic, to which he refers as “laws of truth”, are both normative and
descriptive, and the descriptive aspect is the primary one in that it con-
stitutes their content.15 Comparing the laws of logic (“laws of truth”) to
the laws of nature, he claims that the latter are “general features of what
happens in nature, and occurences in nature are always in accordance with
them.”16 It is this descriptive sense in which Frege is chiefly interested in
the laws of logic: “It is in this sense that I speak of laws of truth. Here
of course it is not a matter of what happens but of what is.” Whereas the
laws of nature are descriptions, in general terms, of what happens in nature,
the laws of logic, for Frege, describe the most general features of concepts
and—both physical and non-physical—objects.17 However, Frege is far from

11See [Wittgenstein, 1956] III § 26.
12See [Wittgenstein, 1956] VII § 61.
13See [Wittgenstein, 1956] VII § 67.
14I would like to thank an anonymous referee of Philosophia Mathematica for suggesting

to me to compare the way in which mathematics is normative according to Wittgenstein
to the way in which it is normative according to such a logicist.

15See [Ricketts, 1996] p. 127, [MacFarlane, 2002] p. 36.
16For this and the following citation see [Frege, 1918] p. 58.
17See [MacFarlane, 2002] p. 35, where this claim is backed up by considering, as an
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denying that the laws of logic are not only descriptive but also normative,
for, as he claims, “[a]ny law asserting what is can be conceived as prescribing
that one ought to think in conformity with it, and is thus in that sense a
law of thought.”18 What is special about the laws of logic is their supreme
generality in virtue of which they “prescribe universally the way in which
one ought to think if one is to think at all.” Logic, for Frege, is normative in
that “[f]rom the laws of thought there follow prescriptions about asserting,
thinking, judging, inferring”19, but this normativity is derivative insofar as
it has its source in the fact that the laws of logic correctly describe the most
general features of concepts and objects.20

While for Frege the laws of logic and the propositions of arithmetic
impose normative constraints on what counts as “thought” because they
correctly describe the most general features of concepts and objects, the
normativity of mathematical sentences requires no such grounding according
to Wittgenstein. Although Frege and Wittgenstein agree on the fact that
logic and mathematics are normative—mathematics, for Frege, due to his
logicism—, they differ on the kind of normativity in play. Whereas for Frege
this normativity is derivative, mathematical sentences are first and foremost
(conceptual) norms according to Wittgenstein.

The considerations that motivate Wittgenstein to think of mathematical
sentences as norms for the use of mathematical concepts are very rich and
complex. They are connected to his celebrated remarks on rule-following
and to his highly original conception of necessity as having its roots in nor-
mativity.21 However, neither Wittgenstein’s considerations on rule-following
nor those on necessity and normativity are prominent topics in contempo-
rary philosophy of mathematics. From the standpoint of modern debates
on mathematics, most of Wittgenstein’s thoughts look rather idiosyncratic,
and it is in that sense understandable that they have so little influence.

In this paper, however, I shall argue that Wittgenstein’s perspective on
mathematical sentences as norms can be motivated independently of any
considerations that are accessible only to friends or experts of his later phi-
losophy. To do so, I start from something that is common ground among
many of the most popular approaches in modern philosophy of mathematics,
namely the Hilbertian conception of axiomatic systems in which the axioms
are employed as implicit definitions of the concepts they contain. This ap-
proach has stood the test of time, both in mathematics and in the philosophy

example, a law from Grundgesetze.
18For this and the following citation see [Frege, 1893] p. xv.
19See [Frege, 1918] p. 58.
20It would be interesting to know whether adherents of Neo-Logicism, for instance Bob

Hale and Crispin Wright, would consent to Frege’s view on the normativity of logic. While
I haven’t found any evidence on this matter, there seems to be no reason to believe that
their view might be significantly closer to Wittgenstein’s than is Frege’s.

21For an exposition and defence of this conception, see [Glock, 1996].
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of mathematics: It takes centre stage, for instance, in mathematical struc-
turalism, which is perhaps the dominating paradigm in the philosophy of
mathematics today.22 The claim I shall defend is that Hilbert’s account of
the axioms as implicit definitions leads in a very natural way to the Wittgen-
steinian perspective on mathematical sentences as conceptual norms—even
though the overall philosophical views of mathematics defended by Hilbert
and the later Wittgenstein are certainly very different.

The rest of this paper is organised as follows:
Section 2 contains a brief reminder of the axiomatic method, Hilbert’s ap-
proach to the axiomatisation of mathematical theories in which the axioms
are treated as implicit definitions. In Section 3 it is argued that—in accor-
dance with Wittgenstein’s idea that mathematical sentences play the role of
conceptual norms—employing the axioms as implicit definitions means us-
ing them as norms governing our use of the concepts they contain. Section
4 goes on to claim that the normative aspect of how the axioms are used
can be expected to carry over to any statement that has been derived from
the axioms, so the mode of use of the theorems should also be normative.
This completes the motivation for Wittgenstein’s perspective on mathemat-
ical sentences as conceptual norms as applied to axiom systems where the
axioms are treated as implicit definitions. The paper ends, in Section 5,
with a brief summary and conclusion.

2 The axioms as implicit definitions

The notion of an axiom goes back to antiquity, but the “axiomatic method”
had not been invented until the end of the 19th century. Its rise is linked
to the work of Moritz Pasch and, more famously, David Hilbert, whose ax-
iomatisation of geometry in the epoch-making Foundations of Geometry23

differs crucially from Euclid’s. The defining characteristic of the Hilbertian
axiomatic method, something that distinguishes this approach to axiomatic
systems from earlier ones, is that the axioms are no longer interpreted as
fundamental truths about mathematical (in this case geometrical) objects
but as defining the very subject matter they are about. In Hilbert’s account,
the axioms are “definitions”, but not in the more traditional sense of the
term as “explicit definitions” which introduce a new term by equating an
expressing containing it (the “definiendum”) with another expression con-
taining only terms assumed to be understood or already defined before (the
“definiens”). The axioms, in contrast, are treated by Hilbert as “implicit
definitions”, which means that they are accepted as primitive truths laying

22For the relevance of Hilbert’s account of axiomatics to mathematical structuralism see
the introductory section of [Hellman, 2005] and Section 4.2 of the chapter on structuralism
in [Shapiro, 2001].

23See [Hilbert, 1899].
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down connections between the concepts in terms of which they are formu-
lated.24 To implicit definitions the question of truth or falsity according to
pre-given, external criteria does not apply. The axioms, in Hilbert’s account,
are treated as (“internally”) true when operating within the axiom system,
but there is no question about their being potentially true or false according
to any superordinate, external standard.

This innovative conception of axiomatics is articulated perhaps most
succinctly by Hilbert himself in his correspondence with Frege.25 According
to Frege, who could not make himself comfortable with Hilbert’s approach
to axiomatic systems and even doubted its intelligibility, the task of the
axioms is to express fundamental truths. In order to accomplish this task,
the axioms have to be truth-apt and must be formulated in terms of concepts
the meanings of which are “assumed to be known in advance”.26 In Frege’s
view, the meanings of mathematical concepts must therefore be fixed prior
to their appearance in the axioms, otherwise the axioms “are made to carry
a burden that belongs to definitions”.27

Replying to Frege, Hilbert gives the following condensed formulation of
his account:

In my opinion, a concept can be fixed logically only by its re-
lations to other concepts. These relations, formulated in cer-
tain statements, I call axioms, thus arriving at the view that
axioms (perhaps together with propositions assigning names to
concepts) are the definitions of the concepts. I did not think up
this view because I had nothing better to do, but I found myself
forced into it by the requirements of strictness in logical infer-
ence and in the logical construction of a theory. I have become
convinced that the more subtle parts of mathematics ... can be
treated with certainty only in this way; otherwise one is going
around in a circle. ([Frege, 1980] p. 51)

Hilbert apparently saw his novel conception of axiomatic systems as a major
achievement and as an important step towards the enhancement of rigour
and certainty in mathematical inquiry. This claim has found widespread
approval among both practitioners and philosophers of mathematics. As
an example, one may cite Tait who describes the “axiomatic conception” of
mathematics—to axiomatise a branch of mathematics and treat the axioms

24For a more systematic characterisation of implicit definitions see [Gupta, 2009] Section
2.5. The question of what it practically means to treat an axiom as an implicit definition
is the subject of Section 3.

25See [Frege, 1980]. Hilbert’s contributions which are most relevant for our present
purposes include a letter dated 29 December 1899 and a postcard dated 22 September
1900.

26See [Frege, 1980] p. 35.
27See [Frege, 1980] p. 35.
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as implicit definitions of the concepts they contain—as “[t]he only concep-
tion of mathematics itself that I believe to be viable”.28 The work of a
mathematician employing the axiomatic method, Tait explains, can be seen
as comprising two utterly distinct parts: The “dialectic” part—Tait is bor-
rowing this terminology from Plato—which builds on our intuitions, takes
into account considerations about the desired applicability of mathematics
and culminates in the choice of a certain axiom system, and the genuinely
mathematical part that consists in the derivation of theorems according to
the rules of deductive logic. The axiomatic method enables the mathemati-
cian to design proofs of maximal rigour in the sense that every assumption
that enters into the proof must have been laid down as a conceptual connec-
tion in the axioms, and only logical rules are allowed to generate theorems
starting from others (including the axioms).

For the case of geometry, this is nicely explained by Shapiro:

Although spatial intuition or observation remains the source of
the axioms of Euclidean geometry, in Hilbert’s writing the role of
intuition and observation is explicitly limited to motivation and
is heuristic. Once the axioms have been formulated, intuition
and observation are banished. They are not part of mathematics.
([Shapiro, 2001] p. 151)

Euclidean geometry is meant to be applicable to the study of physical space,
and Euclid’s choice of axioms obviously has been motivated by the properties
of physical space. In Hilbert’s approach, however, neither intuition nor
applicability to non-mathematical systems of objects are external criteria of
truth for the axioms, both can only influence our choice of an axiom system
on pragmatic grounds.

Wittgenstein does not adopt (in fact never explicitly considers) the
Hilbertian account of the axioms as implicit definitions in his writings, and
the spirit of his considerations on mathematics is, on the whole, rather
alien to that of the writings of Hilbert. Nevertheless, there is an important
amount of agreement between Wittgenstein’s remarks on axiomatics and the
Hilbertian approach. For although, as Wittgenstein writes, an axiom may
appeal to us as “self-evidently true”, this is irrelevant for the role it performs
in mathematical practice. Assessing the question of what it means to ac-
cept an axiom as true, he argues that “[i]t is not our finding the proposition
self-evidently true, but our making the self-evidence count, that makes it
into a mathematical proposition.”29 This goes well with regarding the role
of intuition and self-evidence as confined to motivation and heuristics, in
accordance with Shapiro’s characterisation of Hilbert’s account of axiomat-
ics in the passage cited before. This reading of Wittgenstein finds further
support in the following passage:

28See [Tait, 2005] p. 4.
29See [Wittgenstein, 1956] IV § 3.
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Suppose I now say: it is quite indifferent why [the axiom] is
evident. It is enough that we accept it. All that is important is
how we use it. ([Wittgenstein, 1956] IV § 2)

When we accept a sentence as an axiom, Wittgenstein suggests, what makes
it into an axiom is not that it states a self-evident truth, but the fact that
we “make the self-evidence count”, namely that we use it in a certain way
which is characteristic of how a sentence is used if used as an axiom. This
claim, however, provokes the immediate question: What are the distinctive
traits of how the axioms are used if, in accordance with Hilbert’s account,
they are treated as implicit definitions of the concepts they contain? This
question will be assessed in the following section.

3 Implicit definitions as norms

In this section I shall defend Wittgenstein’s conception of mathematical sen-
tences as norms with respect to the axioms as implicit definitions. To begin
with, let us briefly consider the distinctive features of the linguistic usage of
mathematical definitions in general—both explicit and implicit ones—and
investigate what it means to employ a mathematical sentence as a definition
of some term. Explicit definitions like, for example, that of “prime number”
are in an important way different from implicit definitions (like the axioms
à la Hilbert) in that they have two distinct “sides” connected by an equality
sign, the expression to be defined occurring only on one side of the equality
sign.

As an example, one may consider the (explicit) definition of “prime num-
ber”, which can be given as follows:

“A prime number is a natural number which has exactly two distinct
natural divisors: itself and 1.”30

With respect to explicit mathematical definitions like this one the idea
that they are employed as conceptual norms should not appear far-fetched.
Rather than descriptively reporting any facts about prime numbers this sen-
tence (normatively) proposes a convention for the use of the term “prime
number”. This manifests itself in the fact that someone who systemati-
cally fails to correctly apply the above definition of “prime number” is less
well described as having wrong opinions about (prime) numbers than as
not mastering the concept of prime number at all. As the definition of
“prime number” just given is aimed at being “adequate to existing usage”,
it qualifies as a “descriptive definition”31 according to currently accepted
terminological conventions about definitions. However, it is certainly not a

30Using the equality sign “=Df”, which is characteristic of explicit definitions, this
definition can be written as
Pn =Df (n ∈ N)∧(n 6= 1)∧(∀k, m ∈ N (k ·m = n → ((k = 1 ∨ k = n) ∧ (m = 1 ∨m = n)))) .

31See [Gupta, 2009], Section 1.4.
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descriptively used sentence in the sense of being used to describe the existing
usage of the term “prime number”. It is much more aptly characterised as a
conceptual norm in that it provides a standard of what counts as a correct
deployment of the concept of prime number.

Let me conclude from this that for explicit definitions in mathematics like
that of “prime number” the idea that they function as norms which govern
the use of the concepts defined by means of them looks reasonable. I shall
now try to generalise this result by proceeding to the axioms when treated
as implicitly defining the concepts of a mathematical theory. The idea is
that a class of statements may regulate the use of a number of concepts
in just the same way as a single sentence may normatively govern the use
of a single concept defined. Let us check whether something along these
lines appears plausible for the axioms when employed as implicit definitions
in the Hilbertian way. To be specific, consider, as an example, an axiom of
arithmetic, say, “Every natural number has a unique successor” and imagine
that it is treated as partly defining the concepts “natural number” and
“successor”. Is the fact that this sentence has been given the role of a
definition somehow connected to a normative dimension in how it is used?

As a first step towards a positive answer we may say that the axiom li-
cences certain conceptual connections and places a ban on others. It allows
forming connections of the form “the successor of n” and rules out as inad-
missible sentences having the form “(n = Sk)∧ (m = Sk)∧ (n 6= m)”, where
“S” denotes the successor function. In accordance with the considerations on
definitions presented before, if the axiom is treated as implicitly defining the
concepts it contains, someone apparently endorsing its negation would be ill
described as a believer in falsehoods about numbers. It is more accurate to
say that he does not participate in the (language) game of arithmetic at all.
In a context where the axioms are treated as defining the concepts of arith-
metic these concepts simply must be applied in accordance with the axioms,
for otherwise the very identity of the concepts has already got lost. Anything
that makes these concepts into the concepts they are is laid down in the ax-
ioms, and this is why sentences like “(n = Sk)∧(m = Sk)∧(n 6= m)”, which
are blatantly incompatible with the axioms, are immediately recognised as
illegitimate moves in the language game of arithmetic. Consequently, in a
rather charitable interpretation, we would interpret someone talking about
“the two successors of the natural number n” as proposing a conceptual
framework different from that of Peano arithmetic.

Generalising these observations, we may say that whenever the axioms
are used as implicit definitions to accept and endorse them is a necessary
condition for using the concepts defined through them. They are thus con-
ceptual norms in the sense that they function as standards of what counts
as employing these concepts and as operating within the axiomatic frame-
work in question. In agreement with the Wittgensteinian perspective on
mathematical sentences as norms this form of normativity is primary and
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non-derivative. Whereas, according to Frege, the normative force of the
laws of logic is due to the fact that they are true descriptions of the gen-
eral features of concepts and objects, the axioms as implicit definitions are
normative in the more direct sense that accepting them is a prerequisite for
“playing the game” of using the axiomatic framework in question at all.

The normative role which, as I have argued, characterises the axioms
as implicit definitions can be highlighted by stating them with an addi-
tional “Let” in front. Consider again the axiom “Every natural number
has a unique successor” and think of it as—together with others—implicitly
defining the concepts “natural number” and “successor”. If one wants to
emphasise its role as an implicit definition without having to add an ad-
ditional explanation, one can do so by phrasing it as “Let every natural
number have a unique successor”. If “Every natural number has a unique
successor” is indeed used as implicitly defining “natural number” and “suc-
cessor”, the two sentences should be more or less equivalent in use. With
regard to the sentence starting with “Let”, it is particularly striking and
evident that arguing about whether or not it is true does not make much
sense. The grammatical form of this sentence makes it clear that its role is
that of stating a norm for the usage of the concepts “natural number” and
“successor” and not that of describing anything.

During the Lectures on the Foundations of Mathematics given in Cam-
bridge in 1939 [Wittgenstein, 1976] Wittgenstein reportedly said that “[i]n
a most crude way ... the difference between an experiential proposition and
a mathematical proposition which looks exactly like it ... [is that] we can al-
ways affix to the mathematical proposition a formula like ‘by definition’ ”.32.
Affixing the formula “by definition” to a mathematical proposition is one
way of designating it as a conceptual norm. Another way of doing so is to
state the proposition with a “Let” in front, as I have just proposed for the
axioms as implicit definitions. Whether one prefers a “Let” or a “by defini-
tion” to mark the proposition as a conceptual norm seems to be primarily
a matter of taste. The only important difference, at least at this point, is
that Wittgenstein regards as conceptual norms all the mathematical sen-
tences we accept and not only the axioms, for which his perspective has now
already been motivated.

Before turning our attention from the axioms to the theorems, I shall
briefly address another idea that goes back to Hilbert and has strongly
influenced philosophical thinking about the axioms as implicit definitions.
The idea is that, if used as implicit definitions, the axioms are schematic
sentences which are not about any specific objects given in advance but
apply to any of a vast variety of systems of objects. In a letter to Frege,
Hilbert articulates this conception as follows:

[E]very [mathematical] theory is only a scaffolding or schema of
32See [Wittgenstein, 1976] p. 111
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concepts together with their necessary relations to one another,
and ... the basic elements can be thought of in any way one likes.
If in speaking of my [geometrical] points I think of some system
of things, e. g. the system: love, law, chimney-sweep ... and then
assume all my axioms as relations between these things, then my
propositions, e. g. Pythagoras’ theorem, are also valid for these
things. In other words: any theory can always be applied to
infinitely many systems of basic elements. One only needs to
apply a reversible one-one transformation and lay it down that
the axioms shall be correspondingly the same for the transformed
things. ([Frege, 1980] p. 40 f.)

For the axioms of geometry to be made true by love, law, and chimney-
sweep, it is necessary to (re)interpret the predicates as denoting properties
of and relations between love, law, and chimney-sweep so that the axioms
turn out to be true about these. Hilbert describes this as “assume all my
axioms as relations between these things”. There is an unlimited variety of
ways of reinterpreting the predicates, and Hilbert’s point seems to be that
when the axioms are treated as implicit definitions all these interpretations
are completely on a par and none of them is in any way privileged.

This point has found widespread approval, in particular among pro-
ponents of structuralism in the philosophy of mathematics who emphati-
cally embrace the Hilbertian conception of the axioms as—in structural-
ist terminology—“defining a type of structure of mathematical interest”.33

Structuralists Hellman and Shapiro emphasise the algebraic character of
the axioms in Hilbert’s approach where “algebraic”, according to Shapiro,
means “schematic, applying to any system of objects that meets certain
conditions.”34

In this context, however, it is extremely important not to misinterpret
the schematicity of the axioms as a form generality, in which case the re-
sulting idea would be that the axioms are very general sentences describing
any system of objects that “meets certain conditions”, to use the words of
Shapiro. According to our previous considerations, the axioms are not de-
scriptive at all, in particular not in the sense of describing a vast variety of
different systems. Understanding the axioms as descriptive sentences of a
very general kind, moreover, is not in agreement with Hilbert’s own remarks
which do not say that the axioms, if used as implicit definitions, are very
general statements about an enormous variety of systems. All that Hilbert
claims is that the objects the axioms are about “can be thought of in any

33See [Hellman, 2005] p. 537. Structuralism seems to be compatible with the Wittgen-
steinian perspective on mathematical sentences as norms motivated here if we make the
important refinement that (normatively) “defining a type of structure of mathematical
interest” is something that is accomplished by all mathematical sentences belonging to a
mathematical theory, not only the axioms.

34See [Shapiro, 2005] p. 67.
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way one likes”. But this just means that the axioms are not about any
particular system of objects, it does not mean that the axioms, in a literal
sense, are simultaneously about any system of objects we might like to think
of.

Far from being a form of generality, the schematicity of the axioms em-
phasised by Hilbert and the structuralists can be seen as an aspect of their
normativity. This normativity, as argued before, consists in the fact that
the axioms, when used as implicit definitions, provide a standard of what
counts as using the concepts in terms of which they are formulated. Ac-
cording to the Wittgensteinian perspective on the axioms developed before,
the task accomplished by the axioms is a purely conceptual one insofar as
applying the concepts defined in accordance with them is the one and only
essential requirement for successfully operating within the axiomatic frame-
work in question. In contrast, what conception one has of the objects the
axioms are about is irrelevant for whether or not one applies the concepts
defined through the axioms. Different mathematicians may well think of
different types of objects and yet be participating in the same mathematical
“language game”. They may well communicate successfully as long as they
use the terms involved in accordance with the axioms. This seems to be
what Hilbert has in mind when he writes that in his account the objects
the axioms are about “can be thought of in any way one likes”. Conceiving
of the axioms as schematic and hence algebraic—the structuralist view—
and conceiving of them as conceptual norms—the view defended here—are
two perspectives on the axioms as implicit definitions which differ only in
emphasis. These are neither competing nor mutually exclusive views.

4 From the axioms to the theorems

According to Wittgenstein, as already stressed, the idea that mathematical
language is used in an essentially normative way applies to mathematical
sentences in general, not only the axioms. It therefore makes sense to inves-
tigate whether the account of the axioms as conceptual norms developed in
the previous section can be extended to the theorems. This will be done in
the present section.

There is one rather specific sense in which, according to Wittgenstein,
mathematical sentences are normative. Although this sense is not of partic-
ular relevance in the present context, it has to be mentioned because it is—
rightly—given a strong emphasis in the existing literature on Wittgenstein’s
philosophy of mathematics.35 The sense in which mathematical sentences

35See, in particular [Baker and Hacker, 1985], Chapter VII (“Grammar and necessity”,
revised version of Chapter VI in the first edition), [Rodych, 2007], Section 3.5, and [Steiner,
2009], focusing on Wittgenstein’s claim that theorems may arise as “hardened empirical
regularities”.
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are normative that I have in mind is connected to the applicability of math-
ematical theories outside mathematics, which, for Wittgenstein, forms an
essential feature of mathematics, distinguishing it from a mere sign-game.36

The present investigation, in contrast, is concerned with the use of mathe-
matical language within Hilbert-style axiom systems, which are part of pure
mathematics.

According to Wittgenstein, mathematical language has a normative role
in the application of mathematics to systems of non-mathematical objects
in that mathematical sentences may function as “norms of descriptions”,
deciding which claims on the non-mathematical objects under consideration
are meaningful and which not. The language of arithmetic, for instance, can
be seen as providing norms for the counting of objects. It licences certain
uses of number words in talk about empirical objects and rules out others
as senseless. As an example, one may consider the sentence “Alice, Bob and
Eve each ate two apples, so the three together ate seven.” This sentence
fails to make sense insofar as it suggests that because of the fact that Al-
ice, Bob and Eve each ate two apples the total number of apples eaten by
them equals seven, which is manifestly absurd. We can describe this as-
pect of the sentence—and similarly of arithmetic in general—by saying that
arithmetical propositions, in this case the sentence “3 · 2 6= 7”, function as
norms for the counting of objects.37 However, the observation that mathe-
matical sentences are used in a normative manner in this way is irrelevant
in the context of the present investigation, where we consider the status of
sentences belonging to Hilbert-style axiom systems which are part of pure
mathematics. To defend the Wittgensteinian perspective with respect to
such sentences in general, the account developed before with respect to the
axioms has to be extended to the theorems.

At first glance, it may not appear to be difficult to draw a coherent pic-
ture in which, on the one hand, the Hilbertian conception of axiomatics is
adopted and, on the other hand, the theorems are conceived of not as nor-
mative but as descriptive. The idea one is likely to have in mind is that once
the concepts have been defined in the axioms there is neither a necessity nor
even a possibility of fixing them any further, in any case not by the theo-
rems. The concepts, one might think, have been given sharp boundaries in
the axioms, and the theorems are subsequently used to describe the math-
ematical facts. The axioms, according to this perspective, do the necessary
groundwork in order for the theorems to state, with maximal precision, the
mathematical facts.

This line of thought, however, has something odd about it: If it were
true, this would imply that there is such a thing as a derivation of descrip-

36See [Wittgenstein, 1956] V, § 2.
37See Chapter VII of [Baker and Hacker, 1985], which provides an extensive discussion

and forceful defence of Wittgenstein’s idea that it is crucial for mathematical sentences to
be used as “norms of description” in the sense discussed in the text.
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tively used, fact-stating sentences from purely conceptual norms. If, for a
moment, we set aside the case of mathematics where we have the axioms
and definitions on the one hand and the theorems on the other, the idea of
such a derivation would strike most of us as quite absurd. How could this
possibly work: a derivation of sentences describing some kind of external
reality starting exclusively from mere conceptual norms? Returning to the
case of mathematics: If all the axioms do is constraining our use of the con-
cepts involved, how could we derive from them any truth about any realm
of objects whatsoever?38

At this point, it is useful to recall from the previous section that the
normative force of the axioms does not flow from the fact that they are
correct descriptions of anything. Whereas for Frege the normativity of the
laws of logic derives from the fact that they describe very general features
of concepts and objects, the normativity of the axioms, as I have argued
before, is primary and non-derivative in that to use the concepts involved in
accordance with the axioms is a necessary condition for using the concepts
defined through the axioms at all. An important point in the previous sec-
tion was that someone who, not just by accident, endorses a statement which
is blatantly incompatible with the axioms is better described as proposing
a different axiomatic (i. e. conceptual) framework than as “erring” about a
certain subject matter. It is dubious, however, why the incompatibility of
a sentence with the axioms should have to be blatant in order for a person
endorsing the sentence to be appropriately described as operating within a
different conceptual framework.

Imagine a mathematician who refuses to accept a certain theorem which
all others regard as validly proven and assume that it turns out that this dis-
agreement does not arise from what both parties would regard as a mistake
made by one of them. The most important remaining possible sources of
disagreement are that there are different background logics in play and that
the axiom systems on the basis of which the proofs are carried out are not
exactly the same, even though this may have seemed so before. Whichever
of these two possibilities is the case, it is arguably no less appropriate to
describe the mathematician who—systematically—refuses to accept what
according to all other mathematicians is a valid proof as failing to engage in
the same conceptual “game” than as differing in opinion on whether what

38This remark should not be understood as promoting a form of nominalism. Wittgen-
stein, in particular, has no concerns about the existence of mathematical objects. For
him, there is nothing wrong with calling ‘15 + 20 = 35’ “a statement about numbers”
since it is, as he says, “what we call a statement about numbers”. (See [Wittgenstein,
1976] p. 112.) The deflationary attitude towards mathematical existence expressed in this
remark is much more akin to Tait’s realist view (see [Tait, 2005]) than to nominalism.
(See also [Gerrard, 1991], where a reading of Wittgenstein as a deflationary realist is
defended.) If one wants to combine a view of mathematical sentences as norms with a
non-eliminative (i. e. non-nominalist) structuralist point of view (see Fn. 33), deflationism
about mathematical existence is the only choice one has.
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the sentence says is true.
However, nothing much hinges on whether it is really fully adequate to

characterise a mathematician endorsing the negation of a theorem which
all of her colleagues regard as validly proven as “failing to use the same
concepts” as they do. A much more important point is that due to the
theorems being mere deductive consequences of the axioms they are not in
any stronger sense answerable to any kind of reality than the axioms. I
have argued before that the axioms, when used as implicit definitions, are
conceptual norms in a primary sense, meaning that their normativity is not
derivative in the sense in which, for Frege, the normativity of the laws of
logic is derivative. Moreover, the axioms are “primitive” norms in the sense
that they are accepted without proof as underived statements defining the
concepts they involve. The theorems, of course, are not “primitive” in that
sense, simply because they are derived from other statements—namely the
axioms—and acceptance of them is based on their proofs. This, however,
does not bring them into closer contact to whatever kind of reality than the
axioms.

In order to make these rather abstract considerations on the status of
theorems in Hilbert-style axiom systems a little more vivid, it is useful to
consider, as an example, the Axiom of Choice and statements which, in
the context of Zermelo-Fraenkel set theory, are equivalent to it, for instance
Zorn’s Lemma, Zermelo’s well-ordering theorem and the Hausdorff maximal
principle. With regard to Zermelo-Fraenkel set theory (ZF or, if the Axiom
of Choice is included, ZFC) Hilbert’s account of the axioms as implicit def-
initions is especially natural because there exist alternative axiomatisations
of set theory (like NBG set theory or Ackermann set theory) which are bet-
ter described as incorporating different concepts of set than as competing
accounts of what “really is true” about sets.39

Of all the statements which are equivalent to the Axioms of Choice in
ZF, Zorn’s Lemma, the statement that every nonempty partially ordered set
in which every chain has an upper bound has at least one maximal element,
is perhaps the most widely used in proofs.40 It is employed, for instance in
the proof of the Hahn-Banach theorem in functional analysis, in the proof
of Tychonoff’s theorem in topology, and in the proof of the proposition

39For a defence of the Wittgensteinian perspective on mathematical sentences as norms
with respect to a more complicated example see [Mühlhölzer, 2001], an investigation of
the status of the proposition that no construction of a regular heptagon is possible within
the framework of Euclidean geometry. This theorem is also discussed by Wittgenstein
himself in his lectures [Wittgenstein, 1976] (in particular pp. 45-91).

40The definitions of the terms employed in the formulation of Zorn’s Lemma given in
the text are as follows: A partial ordering ≤ of a set x is a reflexive, antisymmetric and
transitive relation on x. A chain is a nonempty subset y of a partially ordered set x that
is totally ordered with respect to ≤ (A ≤ B or B ≤ A for any two elements in y). An
upper bound for a chain y is an element b ∈ x such that a ≤ b for every a ∈ y. An element
m of x is maximal if for any a such that m ≤ a one has a = m.
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that every vector space has a basis. There are two different ways in which
Zorn’s Lemma can be introduced, namely either as a theorem, derived from,
for instance, the Axiom of Choice, or as a set-theoretic axiom in itself.
Historically, it emerged as a statement derived from the Axiom of Choice,
but there are many texts in which it is stated without proof as an “axiom
of set theory” in its own right.41

The most important point about Zorn’s Lemma in the context of the
present investigation is that whenever it occurs in a proof it plays absolutely
no role for the details of the proof whether it has been stated before as an
axiom or derived as a theorem. Consider, for instance, the possibility of
introducing Zorn’s Lemma as an axiom and afterwards using it in the proof
of the proposition that every vector space has a basis. If the considerations
on the normativity of the axioms as implicit definition presented before are
correct, its role will then be to licence forming the conceptual connection
“maximal element of the set of linearly independent subsets of a vector space
V ” (which turns out to designate a set of vectors forming a basis of V ). The
step in the proof where Zorn’s Lemma is employed, however, is carried out
in exactly the same way when Zorn’s Lemma has been derived before from
the Axiom of Choice as when it is treated as an axiom in its own right.
Consequently, if the mode in which it is used when treated as an axiom can
be described as (normatively) licencing a certain conceptual connection, this
applies no less if one sees it as a theorem. Generalising this observation, we
may conclude that for any statement which is provably equivalent to one of
the axioms it makes no difference for its role in further proofs and hence for
its mode of use in further mathematical activity whether it is regarded as
an axiom or derived as a theorem. If, in accordance with the considerations
presented before, the axioms as implicit definitions are standards of what
counts as using the concepts involved, the same should be true for any
theorem which, in the context of a given axiom system, is equivalent to one
of the axioms.

The example of Zorn’s Lemma and the Axiom of Choice in Zermelo-
Fraenkel set theory is useful because in this case the relation between an
axiom and a number of theorems is particularly easy to survey in that it
is simply equivalence. There is, however, no reason to suppose that the
mode of use of a theorem should depend on whether it is equivalent to one
of the axioms. Without going into the details of studying cases where the
logical relations between the axioms and theorems are more complicated,
we may conjecture that there is no fundamental divide between the axioms
and theorems as regards their mode of use, in any case not one in terms of
the normative/descriptive distinction. This result confirms the expectation
formulated above that the theorems, being mere deductive consequences of

41See, for example, [Grove, 1983] p. 289: “We take the point of view that the following
statement, Zorn’s Lemma, is an axiom of set theory”. See also [Goodman, 2006] p. 168.
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the axioms, cannot in any stronger sense than the axioms be descriptions
of anything. The motivation of Wittgenstein’s perspective on mathemat-
ical sentences as conceptual norms with respect to sentences belonging to
Hilbert-style axiom systems is thereby complete.

5 Summary and conclusion

In this paper, I have motivated Wittgenstein’s idea that mathematical sen-
tences are used as conceptual norms for sentences belonging to axiomatic
systems that are treated along the lines of the Hilbertian axiomatic method.
In a first step, it was shown that the axioms in Hilbert-style axiom systems
are employed as conceptual norms in the sense that they function as stan-
dards of what counts as employment of the concepts defined through them.
In a second step, it was argued that the same normative mode of use that
applies to the axioms characterises the theorems which are derived from
them. While in virtue of being derived from the axioms the theorems are
not in the same sense “primitive norms” as the axioms, they are not in any
stronger sense than the axioms answerable to any kind of reality, so they
are no more descriptive than these. Since the normativity of the axioms is
primary in that it does not arise from the fact that the axioms are correct
descriptions of anything, the same should hold for the theorems.

Hilbert’s and Wittgenstein’s overall philosophical views on mathematics
are, of course, very different. However, an important element of Wittgen-
stein’s thoughts on mathematics—his perspective on mathematical sentences
as conceptual norms—is arguably not in conflict with an important element
of Hilbert’s approach to axiomatics—his conception of the axioms as im-
plicit definitions. Here I have tried to motivate the first from the latter by
outlining a route from the (nowadays) common account of the axioms cham-
pioned by Hilbert to the more exotic perspective on mathematical language
as normative developed by Wittgenstein.
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