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One	contentious	debate	in	the	philosophy	of	biology	is	that	between	the	

statisticalists	and	causalists.	The	former	understand	core	evolutionary	concepts	

like	fitness	and	selection	to	be	mere	statistical	summaries	of	underlying	causal	

processes.	In	this	view,	evolutionary	changes	cannot	be	causally	explained	by	

selection	or	fitness.	The	causalist	side,	on	the	other	hand,	holds	that	populations	

can	change	in	response	to	selection—one	can	cite	fitness	differences	or	

driftability	in	causal	explanations	of	evolutionary	change.	But	on	the	causal	side,	

it	is	often	not	clear	how,	precisely,	one	should	understand	these	causes.	Thus,	

much	more	could	be	said	about	what	sort	of	causes	fitness	and	driftability	are.	In	

this	paper,	I	borrow	Dretske’s	distinction	between	structuring	and	triggering	

causes	and	suggest	that	fitness	and	driftability	are	structuring	causes	of	

evolution.		
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1. Introduction	

One of the central debates in the philosophy of biology concerns the causal 

interpretation of the theory of evolution by natural selection. This debate has become 

polarized into two camps, the causalists and the statisticalists. The causalists, by and 

large, argue that changes in a population can be causally due to fitness differences or 

to selection: selection can cause changes (or stasis) in the frequencies of organism 

types in a population, or can shift (or stabilize) the mean value of quantitative traits, 

such as height [Sober 1984; Brandon 1990; Bouchard and Rosenberg 2004; Millstein 

2006; Brandon and Ramsey 2007; Ramsey 2013a, 2013b]. Drift, too, has been given 

a causal construal. Drift (often labeled ‘genetic drift’) is standardly defined by 

biologists as a change in the frequency of gene variants (alleles) in a population due 

to random sampling. Despite the simplicity of the biological definition of drift, there 

has been considerable debate concerning the fundamental nature of drift and how it 

can be distinguished from selection. Furthermore, both biologists and philosophers at 

times talk of evolutionary change being due to drift, where drift is considered not to 

be a mere outcome, but that which causally explains the outcome [Millstein 2002; 

Gildenhuys 2009; Ramsey 2013b].	

 In contrast with the causalists, the statisticalists argue that causal aspirations 

for fitness, selection, and drift cannot be realized. Fitness, selection, and drift are, 

they argue, outcomes, not causes. Population changes do have causes, but these are at 

the level of individual births, deaths, and other occurrences, not at the level of fitness 

differences [Matthen and Ariew 2002; Walsh, Lewens and Ariew 2002; Pigliucci and 

Kaplan 2006; Walsh 2007, 2010; Ariew and Ernst 2009].	

 Although the causalists have offered a compelling defense of their position, 

their arguments have not been entirely satisfying. For one thing, there is a lack of 

unanimity on the causalist side as to which of the central evolutionary concepts can 

causally explain evolutionary outcomes. For example, some have suggested that 

fitness differences can help to causally explain evolutionary outcomes [Ramsey 

2013a], while others have argued that it is selection, not fitness, that is causally 

effective [Sober 1984]. And some have argued that it is not selection in general that is 



This is a preprint of an article whose final and definitive form is published in the Australasian Journal of 
Philosophy. The published version is available online at: http://dx.doi.org/10.1080/00048402.2015.1111398 
Please quote only the published version of the paper.  
 

3	

causal, but instead it is “selection-for”	where the causal rubber meets the road [Sober 

1984]. Causalists are also divided on the concept of drift, debating whether drift is a 

causal process [Millstein 2002], a mere product [Brandon 2005], or can play roles as 

both cause and effect [Ramsey 2013b]. 	

 Which (if any) of these causalist positions is correct? This paper is an attempt 

to describe a unified account of the causal structure of evolution by natural selection. 

In describing the account, I borrow a distinction from Dretske [1988] between 

structuring and triggering causes to help understand how natural selection, fitness, 

and driftability can cause evolutionary change.	

 

2. Structuring and triggering causes	

Dretske [1988] introduced a distinction between structuring and triggering causes. 

This distinction is part of a family of distinctions, some of which preceded Dretske. 

For example, Mackie [1965] distinguishes predisposing causes (causal conditions that 

set the stage for an event to occur) from triggering causes (causes that trigger the 

event’s occurrence), and the language of precipitating versus predisposing causes is 

common in the medical literature (smoking can predispose you to have cancer 

without the cancer actually developing, i.e., without it being precipitated). And in the 

causal explanation literature there are parallel distinctions, like that between process 

and program explanations [Jackson and Pettit 1992]. Program explanations cite 

causes that ensure (“program for”) particular outcomes, whereas process explanations 

identify the actual causal chain leading to the outcome.  Finally, Sterelny’s [1996] 

distinction between actual-sequence and robust-process explanations parallels that of 

Jackson and Pettit: Sometimes we explain via actual sequences/processes, while other 

times we explain by pointing to the robustness or inevitability of the outcome. 	

	 I will use Dretske’s [2004] formulation here, since it has a less teleological 

connotation than a program, since outcomes need not be robust, and because the 

concept of structure nicely maps onto the ideas below concerning the structure of life 

histories. In Dretske’s rendering, the distinction is that structuring causes set up the 
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structure of a causal system, while triggering causes trigger the system to produce its 

effect. He uses an example of a terrorist and a general to illustrate this distinction.	

 

A terrorist plants a bomb in the general’s car. The bomb sits there for days until the 

general gets in his car and turns the key to start the engine. The bomb is detonated 

(triggered by turning the key in the ignition) and the general is killed. Who killed him? 

The terrorist, of course. How? By planting a bomb in his car. Although the general’s 

own action (turning on the engine) was the triggering cause, the terrorist’s action, wiring 

the bomb to the ignition, is the structuring cause, and it will surely be the terrorist’s 

action, something that happened a week ago, that will be singled out, in both legal and 

moral inquiries, as the cause of the explosion that resulted in the general’s death. [2004: 

169]	

 

This is a simple example with one setup and a single outcome (the car explosion).	

But more complex examples are possible. It could be that the terrorist did not want to 

blow up the general’s family, so she put a pressure sensor under the back seat that 

would make the key trigger only a secondary smoke bomb intended to warn and 

terrorize him and his family. A single structuring cause (setting up the car with the 

pair of bombs, the pressure sensor, and the key switch) has set the world up to have 

two possible outcomes (assuming, of course, that the general will definitely turn the 

key).	

	 If the probability that the general is with his family when he next drives his 

car has a value between one and zero, then there are intermediate probabilities for 

each outcome (fig. 1). Other possible outcomes, such as the key triggering a loud 

horn to sound, are not possible given the structuring cause (see d in fig. 1). This 

probabilistic branching structure is important because, I will argue, this is the kind of 

causal structure that is realized in evolution by natural selection. But before we can 

get there, let’s consider a natural structuring cause.	
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Figure 1. The terrorist structured the situation at a so that the car will either 

explode (b) or create smoke (c). The structuring cause does not allow for the 

horn to be triggered (d).	

 

 

 

3. Of fruit and rivers	

The case of the general involved two agents—a general and a terrorist—and, in the 

case of the smoke bomb, two probability-weighted outcomes. This example might 

seem to imply that structuring causes require agency, or at the very least some sort of 

planning, anticipation, or conceptualization. But this isn’t the case. Now consider a 

setup in which there are no agents involved, but outcomes nevertheless can be 

understood in terms of their structuring and triggering causes. 	

 Consider a river that forks into two branches, where three-quarters of the 

water passes through the left branch, while one-quarter passes through the right. Now 

consider a fruit floating down the river. The fruit falls into the river from an 

overhanging branch at point a (in fig. 2) and ends up either at point b or point c with a 

0.75 probability of the former and a 0.25 probability of the latter.1 Point d is on dry 

                                                
1 In order for these probabilities to obtain, assumptions must be made about the nature 

of the water flow, such as that it is turbulent instead of laminar, or that random 
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land and the river used to have a second branch ending at point e, but the entrance to 

this branch has become silted in and is now just a small, stagnant lake.	

 

	
Figure 2. Fruit falls into a river at a, has a 0.75 probability of ending up at b, a 

0.25 probability of ending up at c, and a 0 probability of ending up at d or e.	

 

 It turns out that the fruit under consideration ends up at point b. What are the 

structuring and triggering causes in this example and what causally explains this 

outcome? Consider first the triggering cause. Like the turning of the key in the case of 

the general, here we have the fruit falling into the stream at point a: What triggered 

the general’s death? He turned the key. What triggered the fruit to end up at b? It fell 

in the river at a.2	

                                                                                                                                      
external influences (like the wind) ensure that the probability density is uniform 

across the cross section of the river at the place where it forks. 

2 The reason this is ‘fell into the river at a’ instead of ‘fell into particular place p in 

the river at a’ is that depending on what happens between a and the the split leading 

to b and c—and what the natures are of the probabilities referred to in footnote 1—the 
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 What about a structuring cause in such a case? While the triggering cause of 

the fruit’s destiny is its plunge into the river, the structuring cause of the fruit ending 

up at b is the erosion, deposition, and other forces having set the river’s shape. Given 

this shape and the flowing water, we have a causal explanation for why the fruit 

ended up at b instead of, say, d or e. The riverbed morphology prevents the fruit from 

ending up on dry land, d, or in the isolated lake, e. Considering the question of why 

the fruit ended up at b instead of c, the structuring cause results in intermediate 

probabilities for each outcome, but does not say with certainty which one will occur 

for each fruit in question.	

 This situation is like the case of the terrorist and the general. The structuring 

cause can be used to explain why the general either died (b), or was subject to a 

smoke bomb (c). But it does not explain why one of these rather than the other 

occurred. This explanation is due to the triggering cause: either the general alone 

triggered the ignition switch, or the family triggered the pressure-sensitive switch and 

the general triggered the ignition switch. Which one of these occurred could be due to 

a host of external variables. If, for example, it is unusually cold, the general may go to 

start the car early in order for it to warm up before his family arrives. And because 

which effect is triggered depends on such variables, the structuring cause is not 

determinative of these outcomes. It does, however, explain why a loud horn does not 

sound when the general turns the key (d). The terrorist could have chosen this as a 

scare tactic instead of the smoke, but the fact that she decided on the smoke bomb and 

wired the car accordingly allows one to use the structuring cause to explain why the 

smoke bomb went off instead of a horn.	

 Now back to the fruit. While it is true that the structuring causes merely 

provided intermediate probabilities for why one fruit ended up at b instead of c, if a 

large number of fruits fall from the upstream branches, then the structuring causes can 

                                                                                                                                      
specific details of where the fruit landed in the river may or may not carry 

information about its chances of ending up in b or c.  
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do considerable explanatory work. If we find that 1,623 fruits reach b, but that only 

501 reach c, we can explain this pattern in terms of the structuring causes. The 

structuring causes would predict a c:d ratio of approximately 3:1, and the fruit count 

accords with this prediction, since 1,623:501 ≈	3:1. Thus, the explanatory and 

predictive power of structuring causes for cases like this will increase with an 

increase in the number of events that are triggered (falling fruit in this example). 	

 We have seen in section 2 that there is a structuring/triggering cause 

distinction, and in this section that this distinction does not require agents. Structuring 

causes can play a limited explanatory role for singular events, but can play a much 

more powerful role for ensembles. It is now time to apply this framework to 

evolutionary theory to see how it sheds light on its causal structure. Let’s begin this 

task by understanding the basic structural building block, the life history.	

 

4. Life history structures	

To understand the relationship between sets of life histories and the 

structuring/triggering cause distinction, let’s begin by considering fitness. Fitness is 

one of those perennially difficult concepts to define precisely. It has long been 

recognized that if it is to play a causal-explanatory role in evolutionary theory, fitness 

should not merely be equated with particular outcomes, like number of offspring 

produced, or a change in the frequency of a trait. Outcomes do not explain 

themselves. Instead, if fitness is to play this role, it must be identified with some sort 

of underlying cause of these outcomes. Brandon [1978] and Mills and Beatty [1979] 

introduced the propensity interpretation of fitness in part to solve this problem. 

Organisms of type A, on average, leave more descendants than type B individuals 

because they are fitter, that is, because they bear a propensity to have more offspring. 	

 Although the insights of Brandon, Mills, and Beatty constitute a significant 

advance in our understanding of evolutionary theory, they leave many lingering 

questions, such as what the ontological basis of fitness is. How, precisely, does fitness 

do its causal work and what kinds of outcomes can fitness explain? Ramsey [2006] 

made some progress on this issue through the introduction of his “block fitness”	
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framework. The block fitness idea is this: An organism with a particular genetic 

constitution and environmental arena can live various possible lives. Its encounter 

with the environmental heterogeneity can be unlucky, rendering its life short and 

absent of descendants. Or the organism could live a long, healthy, vigorous life, 

producing many offspring. There is thus a set of possible life histories, each life 

history being unique, but the set forms a heterogeneous structure containing patterns 

of traits and events. And from this set of life histories a single scalar quantity can in 

theory be derived, which forms the basis of rank-ordered comparisons of fitness 

values among individuals in a population. (See Pence and Ramsey [2013] for a 

discussion of the ways one can extract a scalar from the set of life histories.) What I 

hope to accomplish in this paper is to use this framework, in conjunction with the 

structuring/triggering cause distinction, to produce a novel account of the causal 

structure of evolutionary theory.	

 Consider the set of possible life histories for an individual organism, an 

orangutan, say, in its forested home in Borneo. If we zoom in to the details of its set 

of possible life histories, it is easy to see that there is an immensity of ways that the 

orangutan can live its life. Many of the small-scale details of the organism’s life—

looking this way instead of that at a particular moment, scratching itself on an 

occasion for four seconds instead of five—may have little effect on lifetime 

outcomes, while other events may have catastrophic effects. The important point, 

however, is that although there is an immense number of ways that an orangutan can 

live its life in the forests of Borneo, there is also an immensity of ways that it cannot 

live its life. While orangutans may have a diet that includes several hundred food 

types, they can’t—and never will—process their food by, say, cooking or fermenting; 

they will never hunt and eat other mammals; they will never plant fruits in order to 

reap a harvest months or years later. These are simply outside of the possible 

orangutan life histories. This is not to say that these behaviours could not arise in 

some distant evolutionary future, it is just that given what orangutans are now, these 

are not behaviours that exist within their set of possible life histories.	
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 Just as there are both an immense number of ways that an organism can live 

its life, and at the same time a rather constrained set of possibilities, so it is with the 

fruit discussed above. A fruit dropped at a (in fig. 2) could, at a particular moment of 

time, be bobbing up instead of down, be to the left of the center of the river, or the 

right. At this scale of analysis, there is an immense number of possible life histories 

for the fruit. This does not, however, mean that the fruit could end up anywhere in the 

universe. Quite the contrary, there are just two places that the fruit can end up, b or c.3 

We have, on the one hand, the constraints of the structuring causes, and on the other, 

the immense variety of ways that the outcomes can be triggered. 	

 The same is the case for the general. There is an immensity of ways that the 

general might get in his car, lifting the door handle with a particular force, swinging 

the door open with a specific velocity, inserting the key with a unique flourish. But 

the fate of the general is nevertheless constrained. In this case, if the general turns the 

key and is without his family, his life ends. How tightly he grips the key, for example, 

is irrelevant to the outcome determined by the structuring cause.	

 It is clear, then, that if one accepts the structuring/triggering cause distinction 

in the case of the general and the fruit, one should also accept it for biological 

organisms. For the case of the fruit, it is much clearer what the boundaries are and 

how the world and properties of the fruit combine to fix the possible life histories for 

the floating fruit. With organisms, especially animals living in complex 

environments, the way in which the organism’s traits and environment combine to fix 

the set of possible life histories is staggeringly complex. But it is not different in kind. 

This life history structure framework, I will now argue, can help us understand the 

causal structure of evolution by natural selection, and show how fitness, selection, 

and driftability can help causally explain evolutionary outcomes.	

                                                
3 Of course if b and c represent lines across the river, not single points, then there are 

many ways that one can reach b or c (being on one side of the river, moving fast, 

etc.). 
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5. Fitness as a structuring cause	

Consider again the river in figure 2. The structure of the river has a number of 

features that affect the fruit’s movements. The fact that one-quarter of the water goes 

to the right explains why approximately one-quarter of the fruit dropped ends up at c. 

But there are other causally efficacious features of the structure as well. For example, 

the width of the channel affects the water’s velocity. If the branch leading to c 

narrows after it breaks off from the main channel (thereby increasing the water’s 

velocity), then fruit dropped at a would reach c sooner than it would reach b. While 

there are myriad other features of the structure that can causally affect the fruit 

outcomes, this one is sufficient in making the general point that we can identify 

particular features of the structure that can be causally linked to specific features of 

the outcomes. 	

 Let’s now consider organisms and the life history structure described in the 

previous section. The set of possible life histories for an organism is staggeringly 

complex and heterogeneous. There is also the fact that the possible life histories are 

critically dependent on the properties of the organisms. Despite this complexity, 

however, there are scalar quantities that can be extracted from the set of life histories, 

and these can play central roles in causal explanations of evolutionary outcomes, just 

as scalar quantities like channel width can play a central causal explanatory role in the 

property of travel time for the fruit outcomes. 	

 To connect fitness to the structuring cause idea, consider again the propensity 

interpretation of fitness. This account as originally formulated (by Brandon [1978]; 

Mills and Beatty [1979]) was not without problems, since fitness was quantified as 

the expected offspring production in the next generation. This falls prey to a number 

of difficulties, like the fact that an increase in the variance in offspring production 

will lower fitness, even though it does not lower expected number of offspring 

[Beatty and Finsen 1989]. These problems, however, are not insurmountable, as 

shown by Pence and Ramsey [2013], who offer a new mathematical foundation for 

the propensity interpretation of fitness, sidestepping these counterexamples. The 
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details of the Pence-Ramsey model need not concern us here, but the model is 

important in justifying the assumption that each organism’s fitness propensity can be 

quantified as a single scalar, allowing a rank ordering of fitness values for 

conspecifics in a population. 	

 How should fitness be understood given the set of life histories described in 

the previous section? To get a grip on how fitness can be a structuring cause, consider 

a simple case in which an organism A has only a small number of possible lives. One 

of these lives ends without reproduction and has a probability of 0.5, and its only 

other possible life produces a single offspring. Organism A thus effectively flips a fair 

coin to either reproduce or to fail to do so. Compare this to another individual, B, that 

has a 0.25 probability of having 0 offspring, a 0.5 probability of having 1 offspring, 

and a probability of 0.25 of having 2 offspring. These possibilities are like the forked 

river in figure 2, in this case A has two branches and B has three. In the example of 

the river, both the characteristics of these paths and the probability of realizing them 

have important implications for the outcomes of the fruits. So it is with these 

organisms.	

 What is the fitness of A and B and how does fitness causally explain 

outcomes? Fitness is the probabilistic propensity to survive and reproduce, and can be 

quantified via the effects it has on the structure of the possible life histories. Although 

it is overly simple (and ultimately problematic for the reasons mentioned above), let’s 

extract the single scalar for fitness by taking the probability-weighted arithmetic 

mean of these values. In this case the fitness of A is 0.5 and that of B is 1.0. This 

scalar quantity can then be used to causally explain evolutionary outcomes (like why 

a population of 50-50 As and Bs changed to be only 10 per cent As over a particular 

time span). This is like being able to extract a single scalar (mean channel width, say) 

that will predict mean travel time of the fruits from a to c. 	

 The possible ways that organisms can live their lives and the features of the 

environment that modulate life history outcomes are much more complex and opaque 

than the river example. Instead of a simple riverbank, organisms face myriad 

diseases, dangers, and windfalls as they navigate their lives. The boundaries for 
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organisms are nevertheless just as present as they are for fruit, but they are so much 

more difficult to see and articulate. This complexity, however, in no way undermines 

the view presented here. Instead, it just shows that we should not expect simple, 

linear relationships among the variables that affect life outcomes. I will elaborate this 

point and draw the links between fitness and selection in section 7. But first let’s 

consider driftability, to see whether it, too, can be a structuring cause of evolution.	

 

6. Driftability as a structuring cause	

Accounts of drift, like fitness, carry considerable controversy. ‘Drift’	is often used in 

ambiguous ways. Sometimes populations are said to change because of drift, where 

drift is singled out as a cause of evolution, and at other times drift merely denotes a 

kind of outcome, such as a deviation from expectation. The standard biological 

definition of drift is a change in gene frequency due to random sampling. But it is 

often left unexplored by biologists what the nature of this random sampling is. 

Philosophers have taken up this issue, supporting a variety of positions, such as 

arguing that drift is fundamentally a kind of process [Millstein 2002], a particular sort 

of cause [Gildenhuys 2009], or a kind of outcome [Brandon 2005].	

 The account of drift I will endorse here is that of Ramsey [2013b]. This 

account retains the standard definition of genetic drift as used by biologists,4 but 

suggests that there is a missing concept, driftability, that can causally explain drift. 

Within the propensity interpretation framework, fitness is a structuring cause and 

‘realized fitness’	refers to the triggered outcome. Similarly, there is on the one hand 

selection, which is identified as a cause of change, and on the other hand an 

evolutionary response to selection, which is the change precipitated by selection. 

These are long-standing distinctions [Haldane 1954], but until recently an analogous 

set of distinctions has not been in play for drift. The driftability–drift distinction 

parallels that of fitness–realized fitness. Driftability and fitness are structuring causes, 

drift and realized fitness are the triggered outcomes.	
                                                
4 Though because more than genes can drift, I prefer to simply label it ‘drift’. 
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 Consider again the set of possible organismic life histories discussed in 

section 4. This set has numerous features that can causally explain evolutionary 

outcomes (just as the river has many properties that can help explain features of the 

outcome of the fruit’s voyage). My claim here is that fitness and driftability operate 

by structuring the life history possibilities. While fitness is tied to one feature of the 

constellation of reproductive events along the set of life histories, driftability is tied to 

another. What, one might ask, are the differences between fitness and driftability and 

what effects do they have on population dynamics? The short answer is that while 

fitness concerns success and is a property connected to the probable production of 

many, good quality offspring, driftability concerns the heterogeneity of life history 

outcomes.	

 When a population drifts it evolves in ways that don’t accord with fitness rank 

orderings. The population, as some have put it, exhibits a deviation from expectation 

[Brandon 2005]. Why did the population drift? The usual answer centers on 

population size. But population size alone does not fully account for drift. What is 

required is heterogeneity of the set of life history outcomes for the organisms in the 

population. If there were no heterogeneity in an organism’s set of life histories—if, 

that is, each organism had only one possible way of living its life—then there could 

not be any drift (no matter the population size). Like flipping two-headed coins, 

deviation from expectation (all heads) is impossible independently of how many 

coins are flipped. Thus if drift is deviation from expectation, there can’t be any drift 

for organisms with only one possible life history outcome.	

 Now consider the case in which driftability is not zero, but is low. This could 

be an example in which there are two possible outcomes, but the outcomes do not 

greatly differ, say a 0.5 probability of having 7 offspring and a 0.5 probability of 

having 8. In such a case, the deviation from expectation would be small. The 

expected value for offspring production in such a case is 7.5, so the largest deviation 

from this would be 0.5. Note, again, that I have not brought population size into play 

here. Population size is, however, important for the expression of driftability. In this 

case, a population of size 1 is guaranteed to deviate from expectation, since no 
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individual can produce 7.5 offspring.5 In a population of two of these individuals, 

there is a 50 per cent chance of deviation from expectation. Moving out toward the 

infinite limit, the probability of there being deviation from expectation approaches 

zero. 	

 It is easily seen that as the possible life history outcomes increase, the effect 

on the deviation from expectation increases. Going from a 0.5 probability of having 7 

or 8 offspring to having, say, 5 or 8 offspring will increase the magnitude of the 

deviation from expectation. This heterogeneity is responsible for populations 

deviating from expectations, and to do so in very significant ways in small 

populations. This property that is responsible for the life history heterogeneity is what 

Ramsey [2013b] labeled driftability. Driftability is a property that structures the set of 

life histories; it is a structuring cause of evolution. 	

 This interplay of driftability and population size is directly analogous to the 

interplay between the number of fruit dropped into the river and the expectations of 

the outcomes. If there is zero heterogeneity in the outcomes of the fruit, if, that is, 

there are no branches and thus a probability of 1 for the fruit staying in the one and 

only channel, then there cannot be any deviation from expectation. If three fruits fall 

into the river, we expect three fruits to end up in the (one and only) channel. The 

same is true of ten fruits or a hundred. If, on the other hand, the river is branched like 

that of figure 2, then the outcomes will be a function of both the degree of 

heterogeneity of the river as well as the number of fruit dropped. Our expectation for 

the branch in figure 2 is a 3:1 ratio. If one fruit drops in the river, we would predict a 

significant deviation from this ratio. With ten fruit, we would predict a closer 

approximation of the ratio. With 1000 fruits, we would predict a very close 

approximation. Fruit number, however, is only one component. If the branch 

heterogeneity were increased, with only a trickle of water passing down the smaller 

                                                
5 See Brandon and Carson [1996] for originally making the point that some setups 

make drift mathematically necessary, not just highly probable. 
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fork, our expectation might be 1000:1 instead of 3:1. It is easily seen that in such a 

scenario, many more fruit would have to drop into the river in order to have a good 

chance of the 1000:1 ratio being approximated. Whereas tens of fruits will do a 

decent job approximating the 3:1 ratio, tens of thousands of fruits would be needed 

for a high probability of the 1000:1 ratio being approximated. Heterogeneity in the 

structures of life histories thus works in conjunction with the number of fruit to 

determine probabilities associated with deviations from outcomes. Similarly, 

driftability—in conjunction with population size—determines the probabilities 

associated with the deviations from expectation.	

	

7. Selection-of and selection-for	

Now that we have seen that fitness and driftability are structural causes of 

evolutionary outcomes, let’s consider how selection fits into this framework. Let’s 

begin by examining one very lucid and influential account of the causal structure of 

evolutionary theory, that of Sober [1984].	

Sober argues that selection-for is the central causal concept at the heart of 

evolution by natural selection. He illustrates his argument with an example of a toy 

containing a sieve and two kinds of balls, small green balls and larger red ones (the 

colors have been changed to fit with the fruit example below). The small red balls are 

small enough to easily pass through the sieve, but the large green balls are too large to 

easily pass through, thus the red balls will be disproportionately represented at the 

bottom of the toy. Sober’s way of describing the situation is this: The small red balls 

(the objects) were selected-of, but it was smallness (the property) that was selected-

for. Although the red balls were the ones that ended up easily making it through the 

sieve, this was not due to the property of being red. It was just that the properties of 

being red and being small clustered together, allowing the red property to tag along.	

 In contrast to the selection-for concept, Sober argues that fitness is not causal. 

For him, fitness is like life expectancy, which is a result of putting a lot of unrelated 

facts together in order to make predictions about how old an individual is going to be 

when they die. If someone dies at the age of 71, we don’t cite their life expectancy as 
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a cause of their death, or the reason they died then as opposed to at a different time. 

The factor that triggered their death may have been one that played a role in the 

actuarial calculations of their life expectancy, but it was this factor—not their life 

expectancy—that was responsible for the death. Similarly, or so argues Sober, fitness 

is a result of myriad causal factors, but fitness is not in fact causal. 	

 This appears to contradict the picture of fitness described above. Thus, in this 

section I will offer a framework for understanding how the core concepts of fitness, 

selection-of, and selection-for are related to one another, and can play a role in causal 

explanations. To do this, let’s return to our fruit example, adding some complexity. 

Let’s say that the overhanging branch drops fruit when the wind whips up, but that 

the fruit varies in ripeness. The riper fruit is less dense and is red, while the less ripe 

fruit is denser and green. Above a particular density threshold, the unripe fruit’s 

specific gravity exceeds that of water and sinks. The sunken fruit rolls along the 

riverbed, moving more slowly than the ripe fruit, frequently getting stuck. We might 

imagine, then, that half of the fruit dropped at a in figure 2 is ripe, but that 75 per cent 

of the fruit that reaches b or c is ripe.	

 The river thus exhibits a selection process on the fruit. Using Sober’s 

framework, we would say that the ripe fruit (the objects) are selected-of, but that 

buoyancy (the property) is selected-for. It happens that the red fruit make it to b and c 

at a disproportionate rate, but it is not redness that is selected for: buoyancy and 

redness merely happen to be coextensive traits. Let’s now consider fitness and 

driftability in this case to see if they can causally explain outcomes. 	

 Fitness, again, is a structuring cause of the fruit life histories and concerns 

successfulness. If making it to point b or c first is what it is to be a successful fruit, 

then the ripe ones are the more successful. This is not to say that every ripe fruit will 

be more successful than any less ripe one. It is that a greater proportion of the ripe 

fruit’s possible life histories make a rapid trip down the river. We could imagine, 

then, an overall success metric for the fruit, which is based on the average travel time 

of the fruit, an average over its set of possible life histories. This overall structural 

feature allows us to causally explain the outcomes of fruits of this type. One way to 
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understand why the explanations/predictions become better with larger sets of fruits 

instead of smaller sets or single fruits is to realize that multiple fruits of the same type 

(with, therefore, approximately the same set of possible life histories) are exploring 

more of the space of life histories. Therefore, the fate of a large set of fruits can be 

better explained or predicted by fitness values since the larger the set, the higher the 

probability is that the totality of individual fruit life histories is a representative 

sample of the total set of possible life histories. 	

 While fitness is about success, driftability concerns the heterogeneity of the 

life histories, in particular the variation in life history outcomes. As pointed out 

above, as the variation in outcomes increases, we predict larger deviations from 

expectations. Driftability, then, is tied to intra-organismic variation in life history 

outcomes. What about selection-of? To understand selection-of, we merely need to 

move from intra-organismic variation to inter-organismic variation. While driftability 

concerns intra-organismic variation, selection-of concerns inter-organismic variation 

in the life histories. Specifically, the focal property is success (i.e., fitness), thus, 

selection-of concerns (intra-generational) inter-organismic variation in fitness. There 

is selection-of the ripe fruit over the unripe because there is variation in the fitness of 

the fruit. This is Sober’s selection-of: Ripe fruit (the objects) are selected-of because 

there is variation in fitness values, and it is the ripe ones that are fitter.	

 Selection-of in this sense is thus not a process—it is constituted by fitness 

differences. Evolution by natural selection, however, is a process. And it is one whose 

outcomes we can explain via fitness differences (i.e., selection-of). The life history 

framework thus unifies fitness, driftability, and selection-of. In this discussion of 

selection, the focus has been on organisms (objects), not on their traits (properties). 

Let’s now consider properties and how to understand the selection-for concept. 	

 If there are fitness differences among individuals (and therefore selection), 

then there must be differences in their set of possible life histories due to the traits 

that the organisms will bear if such a life history is realized. Some of these life history 

traits will be the ones that are responsible for the fitness differences. Among the traits 

responsible for the fitness differences, the ones that make a positive difference for 
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fitness are the ones that are selected-for. Let’s consider how this understanding of the 

selection-for concept would play out for our fruit example before considering more of 

its implications for organisms. 	

 Recall that fruits dropped at a vary in their color and density, the riper ones 

being red and buoyant enough to float. The red fruit (the objects) are thus selected-of, 

but what is selected-for? The answer to this question concerns which life history 

properties make the difference between making it down the river quickly or not 

making it down quickly (or at all). The difference in this case is due to the density of 

the fruit. It is thus low density (or high buoyancy) that is selected-for. 	

 It is important to distinguish between traits that are coextensive with those 

making fitness differences, and those responsible for those differences. Fruit color 

correlates with speed of movement downstream as well as the probability of making 

it all the way down. It is not, however, a trait selected-for—the trait is not responsible 

for changing the set of life histories in fitness-affecting ways, it is merely riding 

along. How could we know this? We might proceed as follows: We could make 

observations about how the fruits behave as they make their way down the river. We 

could note that the difference in outcome seems to be tied to whether or not the fruit 

floats, and note that it is the density of the fruits that determines whether or not they 

float. This conjecture could then be tested. For example, fruit could be painted and it 

could be seen whether color changes affect their outcomes. Or plastic artificial fruit 

could be created that vary in their size, density, and color—and these could be 

dropped at a to see which properties affect their outcomes in which ways. 	

 It is important to emphasize that selection-for, as described here, is not about 

outcomes, it is not a way of categorizing the results of evolution. Instead, it is about 

properties that change the possibility space in fitness-affecting ways. If, for example, 

there is an unlucky ripe fruit that happens to spend a lot of time near the slow-running 

edge of the river, it may lose the race to an unripe fruit that happened to get a lucky, 

obstruction-free path down the middle of the riverbed. It is a mistake to examine the 

fates of these two fruits and say that the denser one was in this case selected-for. This 

is wrong because it is basing the answer to the question of whether there was 
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selection-for on a single life history, not on the totality of life histories. Instead, for a 

property to be selected-for, it need only make a positive difference to fitness—it must 

only, that is, be responsible for a difference in the overall structure of possible life 

histories in a positive fitness-affecting way—it need not make a positive difference 

for each life history. 	

 The selection-for concept works for organisms just as it does for the fruit in 

the river. Consider the arctic hare, Lepus arcticus. In the far north the hare is white all 

year around. But in the southern part of its range, where the summers are longer, it 

changes color in the summer to better match its surroundings. If we find that some of 

the southern hares retain their white pelts through the summer, and that they have a 

higher predation rate, we can conclude that the individuals that change color are 

selected-of. If we confirm that it is the lack of camouflage that underlies the fitness 

differences, then it is the trait of molting into a darker color during the summer that is 

selected-for. Having the trait of molting into the darker pelt helps shape the set of 

possible life histories for the hares. The white ones have a greater proportion of their 

life histories end in predation. And it is this structural difference in the life history 

space that underlies the difference in outcomes for the hares. 	

 

8. Conclusions	

The theory of evolution by natural selection provides a basis for how stability and 

directional change can be caused and, perhaps most centrally, provides a naturalistic 

account of the origin and maintenance of adaptations—traits with apparent design and 

purpose. This much is clear. What has remained unclear is how, precisely, this theory 

works and which parts of it are causal. This has led some to argue that its central 

concepts should not in fact be given a causal construal [Matthen and Ariew 2002; 

Walsh, Lewens, and Ariew 2002; Pigliucci and Kaplan 2006], or that only a single 

concept—selection-for, for example—is causal [Sober 1984]. This paper has 

attempted to provide a general framework with which to understand the causal nature 

of evolution by natural selection. Fitness and driftability are causes, though they are 

causes of a special sort: structuring causes. It is my hope that this framework will 
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provide a useful platform for the causalists or, perhaps, a clearer target for the 

statisticalists. Playing either role, it should help advance the debate and the shared 

project of having a deeper understanding of evolutionary theory.	
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