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Abstract

Gödel’s (1949a) remarks concerning the ideality of time are examined.
In the literature, some of these remarks have been somewhat neglected
while others have been heavily criticized. In this note, we propose a
clear and defensible sense in which Gödel’s work bears on the question of
whether there is an objective lapse of time in our world.

1 Introduction

The cosmological model given by Gödel (1949) is an exact solution of Einstein’s
equation in which matter takes the form of a pressure-free perfect fluid. Its
peculiar causal properties (e.g. a global time function fails to exist) have been
of considerable interest to philosophers of time since they seem to imply the
non-extistence of an objective time lapse. But it is not clear how the peculiar
features of the Gödel model bear on the nature of time in our own universe.
This thought Gödel explicitly considered. He writes (1949a, 561-562):

It might, however, be asked: Of what use is it if such conditions
prevail in certain possible worlds? Does that mean anything for the
question interesting us whether in our world there exists an objective
lapse of time?

Gödel (1949a, 562) offers two remarks in response to the questions.

I think it does. For: (1) Our world, it is true, can hardly be
represented by the particular kind of rotating solutions referred to
above (because the solutions are static and, therefore, yield no red-
shift for distant objects); there exist however also expanding rotating

∗I wish to thank Thomas Barrett, Gordon Belot, David Malament, Steve Savitt, and Jim
Weatherall for helpful discussions. Special thanks to Thomas Barrett for presenting this paper
a few days before the birth of baby June. The paper is dedicated to baby June.
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solutions. In such universes an absolute time might fail to exist, and
it is not impossible that our world is a universe of this kind. (2)
The mere compatibility with the laws of nature of worlds in which
there is no distinguished absolute time...throws some light on the
meaning of time in those worlds in which an absolute time can be
defined. For, if someone asserts that this absolute time is lapsing,
he accepts as a consequence that whether or not an objective lapse
of time exists...depends on the particular way in which matter and
its motion are arranged in the world. This is not a straightforward
contradiction; nevertheless a philosophical view leading to such con-
sequences can hardly be considered as satisfactory.

Concerning remark (1) Gödel has been somewhat neglected (Yourgrau 1991;
Savitt 1994; Earman 1995; Dorato 2002; Belot 2005; Smeenk and Wüthrich
2011). Concerning remark (2) Gödel has been heavily criticized (Savitt 1994;
Earman 1995; Dorato 2002; Belot 2005; Smeenk and Wüthrich 2011). The
following is intended to be a straightforward defense of remark (1) and charitable
reconstruction of remark (2) which, together, serve to clarify the significance of
Gödel’s work for the nature of time in our world.

2 Preliminaries

We begin with a few preliminaries concerning the relevant background formal-
ism of general relativity.1 An n-dimensional, relativistic spacetime (for n ≥ 2)
is a pair of mathematical objects (M, gab). M is a connected n-dimensional
manifold (without boundary) that is smooth (infinitely differentiable). Here,
gab is a smooth, non-degenerate, pseudo-Riemannian metric of Lorentz signa-
ture (−,+, ...,+) defined on M . Two spacetimes (M, gab) and (M ′, g′ab) are
isometric if there is a diffeomorphism φ : M →M ′ such that φ∗(gab) = g′ab.

For each point p ∈ M , the metric assigns a cone structure to the tangent
space Mp. Any tangent vector ξa in Mp will be timelike (if gabξ

aξb < 0), null (if
gabξ

aξb = 0), or spacelike (if gabξ
aξb > 0). Null vectors create the cone structure;

timelike vectors are inside the cone while spacelike vectors are outside. A time
orientable spacetime is one that has a continuous timelike vector field on M . A
time orientable spacetime allows us to distinguish between the future and past
lobes of the light cone. In what follows, it is assumed that spacetimes are time
orientable.

For some interval I ⊆ R, a smooth curve γ : I →M is timelike if the tangent
vector ξa at each point in γ[I] is timelike. Similarly, a curve is null (respectively,
spacelike) if its tangent vector at each point is null (respectively, spacelike). A
curve is causal if its tangent vector at each point is either null or timelike. A
causal curve is future-directed if its tangent vector at each point falls in or on
the future lobe of the light cone. A timelike curve γ : I → M is closed if there
are two distinct points s1, s2 ∈ I such that γ(s1) = γ(s2).

1The reader is encouraged to consult Wald (1984) and Malament (2012) for details.
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For any two points p, q ∈M , we write p << q if there exists a future-directed
timelike curve from p to q. We write p < q if there exists a future-directed causal
curve from p to q. These relations allow us to define the timelike and causal
pasts and futures of a point p: I−(p) = {q : q << p}, I+(p) = {q : p << q},
J−(p) = {q : q < p}, and J+(p) = {q : p < q}. We say a spacetime (M, gab)
admits a global time function if there is a smooth function t : M → R such that,
for any distinct points p, q ∈ M , if p ∈ J+(q), then t(p) > t(q). The function
assigns a “time” to every point in M such that it increases along every (non-
trivial) future-directed causal curve. Following the literature (e.g. Earman 1995,
Dorato 2002), we take the existence of a global time function to be a necessary
(but not sufficient) condition for the objective lapse of time.

3 Concerning Remark (1)

Gödel’s first consideration relating to the ideality of time and our universe is
clear: Despite the empirical data collected by cosmologists (e.g. data suggesting
an expanding universe), there remains the epistemic possibility that our universe
is one in which absolute time cannot be defined. Concerning (1), Yourgrau
(1991), Savitt (1994) and Dorato (2002) are silent. Earman (1995) and Belot
(2005) do consider Gödel’s claim but swiftly find it unconvincing.

Belot states that Gödel himself grants that the more adequate models of our
cosmos support an absolute time (2005, 270). But the text certainly does not
lead us to this conclusion. And we know that, even late in his life, Gödel had
still not given up on the possibility that we inhabit a Gödel-type model. Indeed,
he would remain intensely interested in the collection of all astronomical data
relevant to this possibility (Bernstein 1991). Earman (1995, 199) claims that “we
have all sorts of...experiences which lend strong support to the inference that we
do not inhabit a Gödel type universe but rather a universe that fulfills all of the
necessary conditions for an objective lapse of time.” However, Earman (1995,
199) does leave open the possibility that Gödel’s remark (1) can be defended.
To do so, it is sufficient to show the following.

There are cosmological models that (i) lack the features necessary
for an objective time lapse, but (ii) reproduce the redshift, etc., so
that they are effectively observationally indistinguishable from mod-
els that fit current astronomical data and have the spatio-temporal
structure needed to ground an objective lapse of time.

Earman strongly doubts that one can find “models which allow for time
travel and which are observationally indistinguishable from non-time travel
models” (1995, 200). But this remark is puzzling since one need not find models
which are so causally misbehaved as to allow for time travel – it would suffice
to find models which lack some feature or other necessary for an objective time
lapse. And it has already been shown by Malament (1977, 79-80) that the rela-
tion of observational indistinguishability as introduced by Glymour (1977) and
used by Earman (1995) does not always preserve some properties necessary for
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an objective time lapse (in particular, the existence of a global time function).
Also, the relation of observational indistinguishability as introduced by Gly-
mour is symmetric and allows observers to live eternally. But, these conditions
can be justifiably softened. Indeed, Malament (1977) has introduced the weaker
relation: the spacetime (M, gab) is weakly observationally indistinguishable from
the spacetime (M ′, g′ab) if for every point p ∈ M there is a point p′ ∈ M ′ such
that I−(p) and I−(p′) are isometric.

So, one might now wonder if there are cosmological models that fit current
astronomical data which are weakly observationally indistinguishable from mod-
els that lack features necessary for an objective time lapse (in particular, the
existence of a global time function). And it turns out that there are. In fact,
one can show that every cosmological model is weakly observationally indistin-
guishable from some model which lacks features necessary for an objective time
lapse.

Proposition 1. Every spacetime (M, gab) is weakly observationally indistin-
guishable from a spacetime (M ′, g′ab) which fails to have a global time function.

It should be clear that the proposition (a proof is given in the Appendix)
provides support for Gödel’s remark (1). Indeed, it remains an epistemic pos-
sibility, just as Gödel claimed it was, that we inhabit a world which has no
objective time lapse. Further, even in the face of any (as yet uncollected) astro-
nomical data, this epistemic possibility remains. One final comment concerning
the proposition: It makes precise the heavily criticized statement made else-
where by Gödel that “the experience of the lapse of time can exist without an
objective lapse of time” (Gödel 1949a, 561).

4 Concerning Remark (2)

Gödel’s second remark is sometimes interpreted to be an argument that time in
our universe is ideal (Savitt 1994; Earman 1995; Dorato 2002). But this reading
seems to be a bit strong. Gödel only states that “the mere compatibility with the
laws of nature of worlds in which there is no distinguished absolute time...throws
some light on the meaning of time in those worlds in which an absolute time can
be defined.” In other words, the existence of Gödel-type solutions simply have
implications regarding the nature of time for all cosmological models. However,
it seems “there is a consensus that even this modest conclusion is not warranted”
(Smeenk and Wüthrich 2011, 597).

Now we have already shown that the non-existence of a global time function
in certain models does have epistemic implications for all models. But Gödel
seems to have something more in mind concerning remark (2). Indeed, of great
importance seems to be that fact that “whether or not an objective lapse of
time exists...depends on the particular way in which matter and its motion are
arranged in the world.” And it is unclear how this statement leads to any
general implications concerning all models. Here, we provide one way to spell
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out some of the details.
Consider an arbitrary model (M, gab) which has all the geometric properties

necessary for absolute time. In particular, assume it admits a global time func-
tion. Following Gödel, consider an observer at some point p ∈ M who “asserts
that this absolute time is lapsing.” Since time is lapsing objectively, this means
that at p – the event of the assertion – all events in the set I+(p) have yet to
“come into existence” (Gödel 1949a, 558). In other words, at p, if one takes
the idea of an objective time lapse seriously, one is led to consider as fixed not
the spacetime (M, gab) but rather merely a portion of it. It is then natural to
wonder if there is a sense in which this leaves open from the perspective of the
observer making the assertion the nomological possibility that, after the time of
the assertion, matter and its motions might be (re)arranged in such a way that
a global time function can no longer be defined. This question of whether a
cosmological model can “start out” with well-behaved causal structure but not
“end up” that way was, in a sense, asked some time ago by Stein (1970, 594).

Consider either an arbitrary given cosmological model, or a model
having the structure of one of the sorts assumed to hold in the real
world. Then: is it ((a) ever, (b) always) possible to introduce into
such a model a continuous deformation of the structure, leading
through intermediate states, all compatible with Einstein’s theory,
to a state in which Gödel-type relationships occur?

Here is one way to formulate this question precisely. Let (M, gab) be any
spacetime which admits a global time function. For any point p ∈ M , is there
is a spacetime (M, g′ab) which (i) fails to admit a global time function and (ii)
is such that g′ab = gab on the region M − I+(p)? When (M, gab) is at least
three-dimensional, yes.

Proposition 2. Let (M, gab) be any spacetime of dimension n ≥ 3 which ad-
mits a global time function. For any point p ∈M , there is a spacetime (M, g′ab)
which (i) fails to admit a global time function and (ii) is such that g′ab = gab on
the region M − I+(p).

It should be clear how the proposition (proof given in the Appendix) can
be used to understand Gödel’s remark (2). It is philosophically unsatisfying
(though not a contradiction) for one to assert that time is objectively lapsing in
one’s universe when from the perspective of the observer making the assertion
there remains the nomological possibility that, after the time of the assertion,
matter and its motions might be smoothly (re)arranged in such a way so as to
prohibit an objective time lapse.

5 Conclusion

Despite the above propositions, one might insist that “we do not inhabit a Gödel
type universe but rather a universe that fulfills all of the necessary conditions
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for an objective lapse of time” (Earman 1995, 199). We close with one final
word of caution. It seems reasonable that “in order to be physically significant,
a property of space-time ought to have some form of stability, that is to say,
it should also be a property of ‘nearby’ space-times” (Hawking and Ellis 1973,
197). There are a number of different ways to understand the notion of nearby
spacetimes – none entirely satisfactory (Geroch 1971, Fletcher 2015). Here we
simply note one sense in which causally well-behaved spacetimes can be “close”
to spacetimes which are not.

Consider the one-parameter family of spacetimes (M, gab(λ)) where λ ∈
[0, 1], M = R4, and gab(λ) = −∇at∇bt + ∇ax∇bx − 1

2 exp (2λx)∇ay∇by −
2 exp (λx)∇(at∇b)y+∇az∇bz. One can easily verify that (M, gab(λ)) is Gödelian
for all λ ∈ (0, 1]. But what about (M, gab(0))? Surprisingly, one finds it is
Minkowski spacetime.2 Thus, there is sense in which a model satisfying all of
the necessary conditions for an objective lapse of time is “close” to a set of
models which do not satisfy these conditions. Shouldn’t this fact give us pause?

6 Appendix

Lemma 1. Let (M, gab) be any spacetime and let O be any open set in M .
There is an open set Ô in O and a spacetime (M, g′ab) such that g′ab is flat on Ô
and g′ab = gab on M −O.

Proof. Let (M, gab) be any two-dimensional spacetime (one can generalize to
higher dimensions) and let O be any open set in M . Consider a chart (O′, ϕ)
such that (i) O′ ⊂ O, (ii) for some ε > 0, ϕ[O′] is the the open ball Bε(0, 0)
centered at the origin in R2 with radius ε, and (iii) the coordinate maps t :
O′ → R and x : O′ → R associated with (O′, ϕ) are such that gab at the point
ϕ−1(0, 0) is −∇at∇bt + ∇ax∇bx. We can now express gab|O′ as f∇at∇bt +
g∇ax∇bx+ 2h∇(at∇b)x for some smooth scalar fields f : O′ → R, g : O′ → R,
and h : O′ → R.

Let ηab = f ′∇at∇bt+g′∇ax∇bx+2h′∇(at∇b)x be a flat (Lorentzian) metric
on O′ for some smooth scalar fields f ′ : O′ → R, g′ : O′ → R, and h′ : O′ → R
such that ηab at the point ϕ−1(0, 0) is −∇at∇bt+∇ax∇bx.

Since f = f ′ < 0 < g = g′ at the point ϕ−1(0, 0), we can find a δ ∈ (0, ε)
such that f < 0 < g and f ′ < 0 < g′ on all of ϕ−1[Bδ(0, 0)]. Let O′′ ⊂ O′ be
this set ϕ−1[Bδ(0, 0)]. Now we divide O′′ into three disjoint regions: U , V , W .
For convenience, let r be the scalar function on O′′ defined by

√
t2 + x2. Let U

be the region where r < δ/3; V the region where δ/3 ≤ r < 2δ/3; W the region
where 2δ/3 ≤ r < δ.

Next, we define a field γab on each each of the three regions. On region W ,
let γab = gab. On region U , let γab = ηab. On region V , let γab be the following:
(θf + (1− θ)f ′)∇at∇bt+ (θg + (1− θ)g′)∇ax∇bx+ 2(θh+ (1− θ)h′)∇(at∇b)x
where θ : V → R is given by

2Thanks to David Malament for this example.
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θ(r) =

∫ 3(r−δ/3)/δ
0

exp [−(z−2 + (z − 1)−2)]dz∫ 1

0
exp [−(z−2 + (z − 1)−2)]dz

.

By inspection, one can see that γab is smooth field on O′′ (cf. Geroch
1968, 536). We will work to show that it is a metric. Clearly, it is everywhere
symmetric and is non-degenerate on U and W . We claim it is non-degenerate
on V as well. For convenience, let f ′′ = θf + (1 − θ)f ′, g′′ = θg + (1 − θ)g′,
h′′ = θh+(1−θ)h′. Let p be any point in V and let ξa be any vector at p. We can
express ξa as α(∂/∂t)a + β(∂/∂x)a for some α, β ∈ R. Consider γabξ

a. It must
come out as (f ′′(p)α+ h′′(p)β)∇bt+ (h′′(p)α+ g′′(p)β)∇bx. Now suppose that
γabξ

a = 0. This implies that f ′′(p)α + h′′(p)β = 0 and h′′(p)α + g′′(p)β = 0.
It follows that α(f ′′(p)g′′(p) − h′′(p)2) = 0 and β(f ′′(p)g′′(p) − h′′(p)2) = 0.
So either α = β = 0 or f ′′(p)g′′(p) = h′′(p)2. But the latter case cannot
obtain: Because f(p) < 0 < g(p), f ′(p) < 0 < g′(p), and θ(p) ∈ [0, 1], we know
f ′′(p) < 0 < g′′(p). So α = β = 0 and thus ξa = 0. So γab is non-degenerate on
V . So, γab is a smooth metric on O′′. Since γab is Lorentzian at ϕ−1(0, 0) and
O′′ is connected, γab is Lorentztian on all of O′′.

Now, consider the spacetime (M, g′ab) where g′ab = gab on M − O′′ and
g′ab = γab on O′′. By construction, g′ab is smooth. Also by construction, there is

an open set Ô in O such that g′ab is flat on Ô. Just take Ô = U . �

Lemma 2. Let (M, gab) be any spacetime of dimension n ≥ 3 and let O be any
open set in M . There is a spacetime (M, g′ab) such that there are closed timelike
curves contained in O and g′ab = gab on M −O.

Proof. Let (M, gab) be any three-dimensional spacetime (one can generalize to
higher dimensions) and let O be any open set in M . By the lemma above, there
is an open set Ô in O and a spacetime (M, g′′ab) such that g′′ab is flat on Ô and
g′′ab = gab on M −O.

Next, consider a chart (U,ϕ) such that (i) U ⊂ Ô (ii) for some δ > 0, ϕ[U ]
is the the open ball Bδ(0, 0, 0) centered at the origin in R3 with radius δ, and
(iii) the coordinate maps t : U → R, x : U → R, and y : U → R associated with
(U,ϕ) are such that the (flat) metric g′′ab on U can be expressed as the (flat)
metric: −∇at∇bt+∇ax∇bx− (1/2)∇ay∇by − 2∇(at∇b)y.

Now we divide U into three disjoint regions: U1, U2, U3. For convenience,
let r be the scalar function on U defined by

√
t2 + x2 + y2. Let U1 be the

region where r < δ/3; U2 the region where δ/3 ≤ r < 2δ/3; U3 the region where
2δ/3 ≤ r < δ.

Next, we define a metric g′ab on M with the desired properties. On re-
gions U3 and M − U , let g′ab = g′′ab. On region U1, let g′ab be Gödelian:
−∇at∇bt+∇ax∇bx−(1/2) exp (2ax)∇ay∇by−2 exp (ax)∇(at∇b)y where a > 0
is large enough that closed timelike curves exist in U1. On region U2, let
g′ab be the following: −∇at∇bt + ∇ax∇bx − (1/2) exp (2ax(1− θ))∇ay∇by −
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2 exp (ax(1− θ))∇(at∇b)y where θ : U2 → R is just the function θ(r) given in
the proof of the above lemma. By inspection, one can see that g′ab is a smooth
metric on M (cf. Geroch 1968, 536). By construction, the spacetime (M, g′ab)
is such that there are closed timelike curves contained in O and g′ab = gab on
M −O. �

Proposition 1. Every spacetime (M, gab) is observationally indistinguishable
from a spacetime (M ′, g′ab) which fails to have a global time function.

Proof. Let (M, gab) be a two-dimensional spacetime (one can generalize to
higher dimensions). If there is a point p ∈ M such that I−(p) = M , then
(M, gab) fails to have a global time function. Suppose there does not exist a
p ∈ M for which I−(p) = M . Construct the spacetime (M ′, g′ab) according to
the method outlined in Manchak (2009). Next, consider any open set O in the
M(1, β) portion of the manifold M ′ which is disjoint from the set O1∪O2. From
the first lemma, there is an open set Ô in O and a spacetime (M ′, g′′ab) such that

g′ab is flat on Ô and g′ab = gab on M − O. Consider a chart (O′, ϕ) such that

(i) O′ ⊂ Ô, (ii) for some ε > 0, ϕ[O′] is the the open ball Bε(0, 0) centered at
the origin in R2 with radius ε, and (iii) the coordinate maps t : O′ → R and
x : O′ → R associated with (O′, ϕ) are such that g′′ab is −∇at∇bt + ∇ax∇bx.
Now, excise two sets of points from O: S+ = {(t, x) : t = ε/2,−ε/2 ≤ x ≤ ε/2}
and S−{(t, x) : t = −ε/2,−ε/2 ≤ x ≤ ε/2}. Identify the bottom edge S− with
the top edge of S+ and the top edge of S− with the bottom edge of S+ (cf.
Hawking and Ellis 1973, 58-59). The resulting spacetime, call it (M ′′, g′′ab), con-
tains closed timelike curves. By construction, (M, gab) is weakly observationally
indistinguishable from (M ′′, g′′ab). Of course, the non-existence of a global time
function follows from the existence of closed timelike curves. �

Proposition 2. Let (M, gab) be any spacetime of dimension n ≥ 3 which ad-
mits a global time function. For any point p ∈M , there is a spacetime (M, g′ab)
which (i) fails to admit a global time function and (ii) is such that g′ab = gab on
the region M − I+(p).

Proof. Let (M, gab) be any spacetime of dimension n ≥ 3 which admits a global
time function. Let p be any point in M . By the second lemma, we know
(since I+(p) is an open set) there exists a spacetime (M, g′ab) such that there
are closed timelike curves in I+(p) and gab = g′ab on M − I+(p). Of course,
the non-existence of a global time function follows from the existence of closed
timelike curves. �
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