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Abstract

In this note, we cast doubt on the requirement of spacetime inex-
tendibility; it is not at all clear that our universe is “as large as it can
be.”

1 Introduction

A number of experts in general relativity seem to be committed to the
following (Earman 1995, 32):

“Metaphysical considerations suggest that to be a serious
candidate for describing actuality, a spacetime should be [in-
extendible]. For example, for the Creative Force to actualize a
proper subpart of a larger spacetime would seem to be a viola-
tion of Leibniz’s principles of sufficient reason and plenitude. If
one adopts the image of spacetime as being generated or built
up as time passes then the dynamical version of the principle
of sufficient reason would ask why the Creative Force would
stop building if it is possible to continue.”

An important mathematical theorem due to Geroch (1970) underpins
such metaphysical views: Every extendible model of general relativistic
spacetime has an inextendible extension. Indeed, the theorem is foun-
dational for those who “regard inextendibility as a reasonable physical
condition to be imposed on models of the universe” (Geroch 1970, 262).
In this note, we cast doubt on the requirement of spacetime inextendibil-
ity.1 We construct a model of the universe with a “physically reasonable”
property which cannot be extended with the property to be inextendible.
In other words, it seems that when attention is restricted to a more rea-
sonable subset of models of general relativity, there is no analogue to the
Geroch (1970) theorem.

∗Thanks go to Jeff Barrett, Thomas Barrett, Bob Geroch, David Malament, Jim Weather-
all, and two anonymous referees for helping to improve an earlier draft.

1For two additional arguments against the requirement of spacetime inextendibility, see
Manchak (2011, 2016).
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2 Preliminaries

We begin with a few preliminaries concerning the relevant background
formalism of general relativity (Wald 1984). An n-dimensional, relativistic
spacetime (for n ≥ 2) is a pair of mathematical objects (M, gab). M is a
connected n-dimensional Hausdorff manifold (without boundary) that is
smooth (infinitely differentiable). Here, gab is a smooth, non-degenerate,
pseudo-Riemannian metric of Lorentz signature (+,−, ...,−) defined on
M . We say two spacetimes (M, gab) and (M ′, g′ab) are isometric if there
is a diffeomorphism ϕ : M →M ′ such that ϕ∗(gab) = g′ab.

A spacetime (M, gab) is extendible if there exists a spacetime (M, g)
and an isometric embedding ϕ : M → M ′ such that ϕ[M ] is a proper
subset of M ′. Here, the spacetime (M ′, g′ab) is an extension of (M, gab).
A spacetime is inextendible if it has no extension. A P-spacetime is a
spacetime with property P. A P-spacetime (M ′, g′ab) is a P-extension
of a P-spacetime (M, gab) if (M ′, g′ab) is an extension of (M, gab). A P-
spacetime is P-extendible if it has a P-extension and is P-inextendible
otherwise.

For each point p ∈M , the metric assigns a cone structure to the tan-
gent spaceMp. Any tangent vector ξa inMp will be timelike if gabξ

aξb > 0,
null if gabξ

aξb = 0, or spacelike if gabξ
aξb < 0. Null vectors create the cone

structure; timelike vectors are inside the cone while spacelike vectors are
outside. A time orientable spacetime is one that has a continuous timelike
vector field on M . A time orientable spacetime allows one to distinguish
between the future and past lobes of the light cone. In what follows, it is
assumed that spacetimes are time orientable.

For some open (connected) interval I ⊆ R, a smooth curve γ : I →
M is timelike if the tangent vector ξa at each point in γ[I] is timelike.
Similarly, a curve is null (respectively, spacelike) if its tangent vector at
each point is null (respectively, spacelike). A curve is causal if its tangent
vector at each point is either null or timelike. A causal curve is future
directed if its tangent vector at each point falls in or on the future lobe of
the light cone.

An extension of a curve γ : I → M is a curve γ′ : I ′ → M such
that I is a proper subset of I ′ and γ(s) = γ′(s) for all s ∈ I. A curve
is maximal if it has no extension. A curve γ : I → M in a spacetime
(M, gab) a geodesic if ξa∇aξ

b = 0 where ξa is the tangent vector and ∇a

is the unique derivative operator compatible with gab. A point p ∈ M is
a future endpoint of a future directed causal curve γ : I →M if, for every
neighborhood O of p, there exists a point t0 ∈ I such that γ(t) ∈ O for all
t > t0. A past endpoint is defined similarly. A causal curve is inextendible
if it has no future or past endpoint. For any set S ⊆ M , we define the
domain of dependence of S, written D(S), to be the set of points p ∈ M
such that every causal inextendible causal curve through p intersects S.
A causal geodesic γ : I →M in a spacetime (M, g) is past incomplete if it
is maximal and there is an r ∈ R such that r < s for all s ∈ I.
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3 Example

As mentioned above, Geroch (1970) showed that every extendible space-
time has an inextendible extension. Now, the question examined here is
this: Is it the case that for all “physically reasonable” properties P, every
P-extendible P-spacetime has a P-inextendible P-extension? No.

Of course, spacetime properties may be considered “physically reason-
able” in various senses. In what follows, let us restrict attention to those
properties usually taken to be satisfied by (models of) our own universe.
We will say that a spacetime has property P if every inextendible timelike
geodesic in the spacetime is past incomplete. The “big bang” in our own
universe presumably renders P “physically reasonable” in our sense.

Example. Let (R2, η) be two-dimensional Minkowski spacetime in
standard (t, x) coordinates. For each i ∈ Z+ let Si be the (disjoint) set
{(t, x) ∈ R2 : t = −i and either x ≤ −1/i or 1/i ≤ x}. Let S = ∪{Si}.
Consider a smooth positive function Ω : R2 − S → R such that (i) Ω = 1
for all points in R2 −D(S) and (ii) Ω approaches zero as S is approached
along every timelike curve contained in D(S). Now consider (M, g) where
M = R2 − S and g = Ω2η. Note that (M, g) is inextendible. Let γ : I →
M be any inextendible timelike geodesic. One can verify that γ is past
incomplete except in the case where γ[I] is the line x = 0. (Every other
inextendible geodesic enters D(S) in the past direction and therefore must
approach S.) Let N be the set {(t, x) : t ∈ Z− and x = 0}. Consider the
spacetime (M −N, g) (see Figure 1).

Figure 1: The spacetime (M −N, g).

Because of the infinite number of “missing points” N , every inex-
tendible timelike geodesic in (M−N, g) is past incomplete. So (M−N, g)
is a P-spacetime. Note that any extension to (M−N, g) is, for some non-
empty set P ⊆ N , the spacetime (M − (N − P ), g). One can show that
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(M − (N −P ), g) is a P-extension of the P-spacetime (M −N, g) if and
only if N − P is an infinite set. (If N − P is infinite, there is no “lowest”
point in N − P . So, every inextendible timelike geodesic whose image is
a subset of the line x = 0 will approach some point in N − P in the past
direction. Thus, the geodesic will be past incomplete. On the other hand,
if N −P is finite, then there will be a “lowest” point in N −P . So, the in-
extendible timelike geodesic whose image is that portion of the line x = 0
below the lowest point in N −P will be past complete.) Since there exist
infinite sets N − P (take the set N − {q} for any q ∈ N for example), it
follows that (M −N, g) is P-extendible. Now, consider any P-extension
(M − (N −P ), g) of the P-spacetime (M −N, g). So N −P is an infinite
set. Let R be such that P ⊂ R ⊂ N and N −R is an infinite set. (Such a
set must exist. Take the set P ∪ {q} for any q ∈ N − P for example.) It
follows that (M − (N −R), g) is a P-extension to (M − (N − P ), g). So,
(M − (N −P ), g) is P-extendible. Since (M − (N −P ), g) was arbitrarily
chosen, we know that the P-extendible P-spacetime (M −N, g) has no
P-inextendible P-extension.

4 Conclusion

One might protest that the above example is not physically reasonable in
some sense. Fine. But the point is “to demonstrate by some example that
a certain assertion is false, or that a certain line of argument cannot work”
(Geroch and Horowitz 1979, 221). In this case, the assertion demonstrated
to be false is: It is clear that the Creative Force can build our universe to
be “as large as it can be.”
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