Abstract

Recent work by Frigg et. al. (2014a, 2014b) and Mayo-Wilson (forthcoming) have called
attention to a particular sort of error associated with attempts to model certain complex systems:
structural modeling error (SME). The assessment of the degree of SME in a model presupposes
agreement between modelers about the best way to individuate natural systems, an agreement
which can be more problematic than it appears. This problem, which we dub “the system
individuation problem” arises in many of the same contexts as SME, and the two often
compound one another. This paper explores the common roots of the two problems in concerns
about the precision of predictions generated by scientific models, and discusses how both
concerns bear on the study of complex natural systems, particularly the global climate.

0.0 Introduction

Over the last century, the influence of collective behavior on the global climate system
has increased to the point that anthropic factors are now among the most significant drivers of
climate change. Science has at times struggled to keep pace with humanity’s rapidly evolving
impact. Constructing models of the global climate that are empirically adequate and predictively
useful has proven a very difficult task, and climate science has emerged as one of the most
rapidly progressing (and challenging) sciences in history. Understanding the behavior of the
global climate well enough to make predictions that are precise enough to be useful in public
policy deliberations means (among other things) integrating knowledge about a constellation of
different physical systems into individual models, validating those models in a context where
direct experimentation on the system being modeled is virtually impossible, and building
computers that are sophisticated enough to derive results from our best models on time-scales
that are relevant to human decision making. These tasks, daunting as they are, are further
complicated by the complex nature of the global climate system. While complexity science has
also begun to come into its own as an independent field over the last few decades, this has if
anything only served to underscore the unique challenges associated with studying complex

physical systems.

Complex systems in general--and the global climate in particular--ought to be of
particular interest to philosophers of science. There are a number of novel foundational

problems posed by science’s increasingly common confrontations with complexity, and the



advancement of complexity science has given us the tools (and motivation) to reexamine
previously well-worn concepts: emergence, identity, lawhood, and many other central
philosophical issues have, in recent years, been examined anew through the lens of complexity
theory. In a more practical and immediate way, however, climate science has presented
philosophers of science with a new set of challenges--how are we to understand the
methodologies of contemporary climate science, and to what extent are we justified in taking the
predictions made by climate models seriously? A large number' of philosophers from a variety

of backgrounds have attempted to meet these (and other) challenges, and progress is steady.

Most recently, Frigg et. al. (2013, 2014a, 2014b) and Mayo-Wilson (forthcoming) have
called attention to a separate problem for climate modelers (among others): the problem of
structural model error. Frigg presents a strong argument suggesting that climate modelers are in
a significantly worse epistemic position than that which they’d been previously taken to
occupy--that climate modeling attempts are vulnerable to a distinct flavor of uncertainty-related
issues that significantly restrict the level of precision in their predictions (even in principle). If
true, this is worrying for obvious reasons: given the looming socio-political relevance of
anthropogenic climate change, well-informed policy decisions in the next century will
necessarily be informed by our best contemporary understanding of the future of the global
climate. In the interest of making the most informed policy choices possible, it is vital that we

understand what relevant models can and cannot do.

Structural model error (SME) is indeed a serious worry for climate modeling, and it
remains to be seen if there might be some way to meet the challenge it poses. In this paper, we
explore and develop some of the background implicit in Frigg’s presentation of SME, and show
how it relates to another problem in the foundations of complex systems. This problem, which
we dub “the system individuation problem,” helps explain some of the novel difficulties faced by
scientists attempting to model complex systems. In Section 1 of this paper, we outline the

difference between SME and standard (Lorenzian) chaos, a similar (but distinct) problem faced

' An exhaustive list of philosophical work grappling with the foundations of climate science is impossible to present.
For some representative (and particularly strong) examples, see recent work by Winsberg (2001; 2003; 2009; 2012),
Frigg (2007; 2013; 2014a; 2014b), Parker (2006; 2010), Lloyd (2010), Lawhead (2014), Knutti (2008), Lenhard &
Winsberg (2010).



by the geosciences. After introducing the basics of standard chaos theory, we explore how
chaotic behavior does (and does not) constrain the sorts of predictions that we can make about
the future of the global climate. We then describe SME, and see how it relates to the challenges
posed by chaotic behavior. In Section 2, we introduce the system individuation problem, and
explore some of the general issues associated with which it is associated before seeing how it
bears on the discussion of climate science. Finally, in Section 3 we consider how SME and the
system individuation problem are related, and discuss the implications of both for the future of

climate science and complexity.
1.0 Chaos vs. Structural Modeling Error

Standard (Lorenzian) deterministic chaos is relatively well understood, both conceptually
and mathematically. However, there are a number of different ways of presenting the intuition
behind standard chaos. Because we’ll need a consistent, standardized notation for our discussion
of structural chaos, let’s start by reviewing some of the concepts behind Lorenzian chaos.
Lorenz (1963) discusses a system of equations first articulated by Saltzman (1962) to describe

the convective transfer of some quantity (e.g. average kinetic energy) across regions of a fluid:
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In this system of equations, X, y, and z represent the modeled system’s position in a
three-dimensional state space’ represents the intensity of convective motion, while o, p, and B
are parameters representing how strongly (and in what way) changes in each of the state

variables are connected to one another.

The important feature of Lorenz’s system for our discussion is this: the system exhibits
chaotic behavior only for some parameterizations. That is, it’s possible to assign values to ¢, p,

and [ such that the behavior of the system has more in common with the behavior of (say) a

2 Precisely what this means, of course, depends on the system being modeled. In Lorenz’s original discussion, x
represents the intensity of convective energy transfer, y represents the relative temperature of flows moving in
opposite directions, and z represents the the degree to which (and how) the vertical temperature profile of the fluid
diverges from a smooth, linear flow.



clock’s pendulum than it does with global weather patterns: on some parameterizations of
Lorenz’s equations, initial conditions that begin close to one another in the system’s state space
remain close together as the system evolves over time. Moreover, even systems that exhibit
chaotic behavior in general may contain regions in their state space in which average distance
between trajectories decreases. This suggests that it isn’t always quite right to say that systems
themselves are chaotic. It’s possible for some systems to have chaotic regions in their state
spaces such that small differences in overall state not when the system is initialized, but rather
when (and if) it enters the chaotic region are magnified over time®. That is, it is possible for a
system’s behavior to go from non-chaotic (where trajectories that are close together at one time
stay close together) to chaotic (where trajectories that are close together at one time diverge)4.
Similarly, it is possible for systems to find their way ouf of chaotic behavior. Attempting to
simply divide systems into chaotic and non-chaotic groups drastically over-simplifies things, and
obscures the importance of finding predictors of chaos—signs that a system may be approaching

a chaotic region of its state space before it actually gets there.

Exactly how hard is it to predict the behavior of a system given a chaotic model? It’s
difficult to answer that question in any general way, and saying anything precise is going to
require that we at least dip our toes into the basics of the mathematics behind chaotic behavior®.
We’ve seen that state space trajectories in chaotic region diverge from one another, but we’ve
said nothing at all about how quickly that divergence happens. As you might expect, this is a

feature that varies from system to system: not all chaotic behavior is created equal. The rate of

3 Indeed, it is possible for two models that putatively represent the same real-world system to differ with respect to
the magnitude (or presence) of chaotic behavior. This is a point that we will return to in our discussion of structural
model instability.

* The Phillips curve in economics, which describes the relationship between inflation and unemployment, is a good
real-world example of this. Trajectories through economic state space described by the Phillips curve can fall into
chaotic regions under the right conditions, but there are also non-chaotic regions in the space.

5 For example, the appearance of a period-doubling bifurcation in the system’s state space.

6 In the discussion that follows, we present a simplified description of chaotic behavior, omitting many nuances,
caveats, and details in the interest of clarity and concision. There are a number of qualification that could be made
at several points of this exposition, but which do not bear directly on our central argument. Our purpose here is
merely to familiarize the reader with some of the relevant basic ideas so that she can grasp the ways in which chaos
is (and is not) an obstacle for prediction in order to set up a contrast case for structural modeling error and the
system individuation problem. For a more careful and comprehensive discussion, we refer the interested reader to
one of the many excellent references on this topic, including Smith (2007), Strogatz (2001), and Alligood, Sauer, &
Yorke (2000).



divergence between two trajectories is given by a particular number—the Lyapunov

exponent—that varies from system to system (as well as within the system, in many calses).7

Let’s consider a very simple case to get a feel for the concepts here. Suppose we have
two trajectories x, — x, and y, — y, in a system with a constant Lyapunov exponent A. If the two
trajectories are initially separated by some distance 8Z, then their separation at some later time ¢

1S:

8Z, = eM(3Z,) 4)

The time-scales at which chaotic effects come to dominate the dynamics of the system,
then depend in part on two factors: the value of the Lyapunov exponent, and how much
divergence we’re willing to allow between two trajectories before we’re willing to consider it
significant. If A is small, divergence at short timescales will be very small, and will thus likely
play little role in our treatment of the system (unless we have independent reasons for requiring
very great precision in our predictions). Likewise, there may be cases when we care only about
whether the trajectory of the system after a certain time falls into one or another region of state

space, and thus can treat some amount of divergence as irrelevant.

This point is not obvious but it is very important. Let’s spend some time thinking about
what we can learn by playing around a bit with the toy system from above.

To begin, let D be some neighborhood on &" such that:
<Xp,V0> €D & 0Z,< ¢ (5)

That is, let D be some neighborhood in an n-dimensional space such that for all pairs of points
that are in D, the distance between those two points is less than or equal to some small value

epsilon. Let D, be the region containing the points of the system at time ¢ if the system were

7 Because of this variation—some pairs of trajectories may diverge more quickly than others—it is helpful to also
define the maximal Lyapunov exponent (MLE) for the system. As the name suggests, this is just the largest
Lyapunov exponent to be found in a particular system. Because the MLE represents, in a sense, the “worst-case”
scenario for prediction, it is standard to play it safe and use the MLE whenever we need to make a general statement
about the behavior of the system as a whole. This is just one of the many real-world complications that we have
chosen to omit from this discussion in the interest of clarity.



initialized a state in D. If ®"is the state space our system with constant Lyapunov exponent A,
then combining (4) and (5) lets us deduce®
V(t>0)[<x,y> €Dt = 8Z,< &(@)] (6)

Informally, this means that for all times after the initialization time, the size of the
smallest neighborhood that must include the successors to some collection of states that started
off arbitrarily close together will increase as a function of rate at which trajectories in the system
diverge and the amount of time that has passed. That’s a mouthful, but the concepts are fairly
intuitive. In chaotic systems, the average distance between two trajectories through the state
space of the system increases exponentially as time goes by—two states that start off very close
together will eventually evolve into states that are quite far apart. How quickly this divergence
takes place is captured by the value of the Lyapunov exponent. Generalizing from particular
pairs of trajectories, we can think about defining a region in the state space. We can think about
the relationship between our region’s volume at one time and the smallest region encompassing
the end-state of all the trajectories that started in that region at some later time. This size
increase will be straightforwardly related to the degree of divergence of individual trajectories in
the region, so the size of the later region will depend on three things: the size of the initial region,
the rate at which paths through the system diverge, and the amount of time elapsed.9 IfA>0,
then no matter how small we make our region the trajectories followed by the states that are
included in it will, given enough time, diverge significantly.

How much does this behavior actually limit the practice of predicting what chaotic
systems will do in the future? Consider two limit cases of the inequality in (6). First:

lim, _y () =0 (7)

This is just the limiting case of perfect measurement of the initial condition of the
system—a case where there’s absolutely no uncertainty in our first measurement, and so the size
of our “neighborhood” of possible initial conditions is zero. As the distance between the two

points in the initial pair approaches zero, then the distance between the corresponding pair at

8 Thanks to an anonymous reviewer for pointing out an error in the original formulation of (6) and suggesting a
cleaner way to make the intended point.

% If we have some way of determining the largest Lyapunov exponent that appears in D, then that can stand in for the
global MLE in our equations here. If not, then we must use the MLE for the system as a whole, as that is the only
way of guaranteeing that the region at the later time will include all the trajectories.



time ¢ will also shrink (again, given the simplifying assumption that A is constant). Equivalently,
if the size of the neighborhood is zero—if the neighborhood includes one and only one
point—then we can be sure of the system’s position in its state space at any later time (assuming
no stochasticity in our equations). This highlights the fact that standard chaos is deterministic
chaos; the practical difficulties associated with predicting their long-term behavior emerges from
small uncertainties about the initial conditions. However:

limy_ 6(eM) =¢ (8)

As A approaches zero, the second term on the right side of the inequality in (6)
approaches unity. This represents another limiting case—one which is perhaps even more
interesting than the first one. Note that (8) is still valid for non-chaotic systems: if A = 0, the
distance between two trajectories will remain constant as those points are evolved forward in
time." More interestingly, think about what things look like if A > 0 but still very small. No
matter how small & is, if 3> + the distance between even two trajectories that begin arbitrarily
close together will become arbitrarily large; even a very small amount of divergence becomes
significant on long enough time scales. Similarly, if ¢ € i}\ then we can generally treat the
system as if it is non-chaotic (as in the case of the orbits of planets in our solar system). The
lesson to be drawn is that it isn’t the value of either ¢ or A that matters so much as the ratio
between the two values combined with our tolerance for error in the precision of our predictions.
1.1 Prediction and Standard Chaos

It can be tempting to conclude from this that if we know A, €, and ¢, then we can put a
meaningful and objective “horizon” on our prediction attempts. If we know the amount of
uncertainty in the initial measurement of the system’s state (¢), the rate at which two paths
through the state space diverge (L), and the amount of time that has elapsed between the initial
measurement and the time at which we’re trying to make our prediction (7), then shouldn’t we be
able to design things to operate within the uncertainty by defining relevant macrostates of our

system as being uniformly smaller than g(e*) ? If this were true, it would be very exciting—it

1% If the Lyapunov exponent is negative, then the distance between two paths decreases exponentially with time.
Intuitively, this represents the initial conditions all being “sucked” toward a single end-state. This is the case for
dissipative systems (for instance, the case with a damped pendulum): all initial conditions eventually converge on
the rest state.



would let us deduce the best way to construct our models from the dynamics of the system under
consideration, and would tell us how to carve up the state space of some system of interest
optimally given the temporal scales involved.

Unfortunately, things are not this simple. In particular, this suggestion assumes that the
state space can be neatly divided into continuously connected macrostates, and that it is not
possible for a single macrostate’s volume to be distributed across a number of isolated regions.
It assumes, that is, that simple distance in state-space is always going to be the best measure of
qualitative similarity between two states. This is manifestly not the case. As a simple analogue,
suppose you’re making a measurement (in familiar, everyday space) and decide to round the
outcome of your measurement to the nearest half inch. It’s clear that this decision might have
consequences ranging from completely innocuous to horribly disastrous, depending on the
circumstances in which you’re making your measurement. If you’re reporting your height to the
DMV to get a new driver’s license, the half-inch rounding is inconsequential; if you’re a
neurosurgeon preparing to make the first incision, however, that same half-inch is likely to be the
difference between a successful operation and a well-deserved malpractice lawsuit (not to
mention patient death). Something very similar is true in state space: while a very short distance
between two states tells you that those states are similar in some respect, whether or not they’re
similar enough--similar in the way that matters--is another matter entirely. Judging the second
sort of similarity involves considering a whole host of other factors, none of which can be
straightforwardly discerned from information about state space distance, no matter how precise
that information is.

Might this just go to show that such a naive notion of “distance” isn’t the appropriate one
to work with here? Perhaps scientists, when building models, merely need to define a different
conception of “distance” that actually tracks the factors that result in “significant” distance,
whatever that might mean in a given context. After all, there’s no rule that says we have to
remain wedded to the intuitive standard distance metric that we’re used to working with. The
impulse behind this kind of objection is correct and solidly grounded, and the recognition that we
can (and in many cases must) construct novel metrics for measuring distance across state spaces

when working with mathematical models of dynamical systems is an important one. However,



suggesting that this redefinition is a trivial (or even relatively easy) matter is a mistake.
Mathematical modeling the natural world is ard, and constructing a model that is both tractable
and accurate enough for our purposes is difficult enough already, and so modelers often (quite
reasonably) choose distance metrics that ease calculation, computation, and derivations. These
choices reflect a spectrum of practically motivated choices in model building, and there is no
guarantee that distance metric chosen to reflect those ease of use criteria will correspond neatly
with our distinct (albeit just as practical) interests in predicting the qualitative behavior of the
system. Indeed, it is precisely this potential mismatch that we are interested in here.

Let’s distinguish, then, between two related but distinct concepts: the quantitative notion
of distance and the qualitative notion of similarity. Information about the distance between two
states tells us something about the formal structure of the model used to generate the space but,
by itself, won’t reveal the presence of any sensible way to group those states into regions that
share predictively useful behaviors in common. Without an independent measure of how to
group regions of a state space together such that the states inside those regions are similar to one
another, we have no way of guaranteeing that just because some collection of states falls within
the bounds of the region defined by (6)--a region defined with reference to distance--they are
alike in any significant way. Two states might be very close together in terms of distance, and
quite far apart in terms of similarity. Failing to notice this fact can obscure interesting, important
dynamical facts about the system.

Generalizing from this case, we can conclude that knowing A, €, and ¢ is enough to let us
put a meaningful cap on the distance resolution of future predictions (i.e. that they can be only as
fine-grained as the size of the neighborhood given by &(eM) ) only if we stay agnostic about the
presence (and location) of similar macrostates when we make our predictions. That is, while the
inequality in (6) does indeed hold, we have no way of knowing whether or not the size and
distribution of similarly interesting, well-behaved regions of the state-space will correspond

neatly with distance-based size of the neighborhoods defined by that inequality.

To put the point another way, restricting our attention to the behavior of some system
considered as a collection of states can distract us from relevant factors in predicting the future

of the system. In cases where the dynamical form of a system can shift as a function of time, we
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need to attend to patterns in the formation of well-behaved regions (like those of thermodynamic
macrostates)—including critical points and bifurcations—with just as much acumen as we attend
to patterns in the transition from one state to another. This is a very important point, and one we

shall return to later.
1.2 Structural Modelling Error

Similar predictive concerns have led Frigg et. al. (2014a) to worry about structural
modelling error (SME). Just as with Lorenzian chaos, SME has to do with the rate at which
predictions about a system diverge from one another. However, SME is explicitly a property of
ensembles of models rather than of systems themselves. Informally, SME is present when the
predictions made by multiple models of the same system diverge from one another exponentially
over time, rendering predictions by those models useless from the perspective of practical
decision-making. The most striking difference between Lorenzian and SME is that the latter can
be present even in the case of perfect knowledge of initial conditions, a circumstance in which

(as we saw in [7]) eliminates the predictive problems associated with standard chaos.

Frigg et. al. (2014a) frames the discussion of SME with a revamp to the familiar story of
Laplace’s Demon. In Frigg’s retelling, the Demon has decided to hire two apprentices to help
him with his work: a Senior Apprentice and a Freshman Apprentice. Recall the traditional
account of Laplace’s Demon. The Demon is an entity gifted with the ability to perfectly measure
and predict the future of any physical system to which it turns its attention, and to do so very

rapidly. Frigg describes the Demon as having the following three powers:

a. Computational omniscience: the ability to apply a set of deterministic equations of
motion to calculate the future state of a given physical system with perfect precision, and
to do so arbitrarily quickly.

b. Dynamical omniscience: the ability to discern the true deterministic equations of motion
for the relevant physical system

c. Observational omniscience: the ability to determine the initial conditions of a given

physical system, and to do so with perfect accuracy.
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In the language of Section 1, we can say that for all cases, the Demon is able to measure
the state of a physical system such that € = 0, and so &(e!) =0, irrespective of the value of A.
Sensitive dependence on initial conditions--Lorenzian chaos--is of no concern to the Demon, as
for even the largest values of A, the demon is able to determine the precise initial conditions of
the system, so his application of the equations of motion will always generate the correct
prediction, with zero uncertainty. Moreover, the Demon has access to the correct equations of
motion for the system with which he’s engaged. For classical physical systems, we can think of
this as the Demon’s having access to the Newtonian equations of motion. Finally, we can
stipulate that the Demon is very careful in his calculations, and never introduces an error through

the incorrect application of those equations.

The Demon’s apprentices are not quite as lucky. The Senior Apprentice, being more
advanced than the Freshman, has nearly all the Demon’s powers; he only lacks power (c),
observational omniscience. The Freshman is less advanced, and lacks not just power (c), but
power (b) as well, and makes errors in both his measurement of initial conditions and in his
discernment of the proper equations of motion to apply when generating his predictions. Frigg
asks us to consider how these two apprentices will stack up against their master in generating
predictions about a system’s time-evolution. It seems clear that neither will fare as well as the
Demon himself, as both are subject to the concerns described in Section 1, and thus susceptible
to the limitations on predictive utility resulting from Lorenzian chaos. The Freshman, however,
seems to be in markedly worse shape than the Senior: not only are his predictions vulnerable to
Lorenzian effects, he can never be sure if they were generated using incorrect equations of
motion. As Frigg describes, this can lead to cases where the Freshman’s predictions are not just
useless for making decisions about the future, but actively misleading. Even if the Freshman’s
model is structured very much like the Demon’s, in cases where the system behaves chaotically

it can happen that:

[The Freshman’s] probabilities are off track: he regards events that do not happen as very likely, while he
regards what actually happens as very unlikely. So his predictions here are worse than useless: they are
fundamentally misleading. Hence, simply moving an initial distribution forward in time under the
dynamics of a model--even a good one need not yield decision-relevant evidence. Even models that yield
deep physical insight can produce disastrous probability forecasts'".

" Frigg et. al. (2014a), p. 39
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Just as with Lorenzian chaos, the heart of the problem here is the possibility of extreme,
difficult to foresee divergence between trajectories that are generated by initial conditions that
are separated by an arbitrarily short distance from one another. Here, however, the problem
seems much more severe--the “initial conditions” are not points in a dynamical state space
separated by a confusion in measurement, but rather different models of the system represented
by that state space. Frigg et. al. (2014a) have adopted the term “the hawk-moth effect” (c.f. “the
butterfly effect”) from Thompson & Smith (2013) to refer to this meta-level instability.
Informally, the hawk-moth effect states that we might be arbitrarily close to the correct model to
predict the future behavior of a particular dynamical system, and yet still generate predictions
that make no contact with the actual behavior of the system. Mayo-Wilson (forthcoming) quite
astutely points out that this is a mathematically precise way of articulating the classic problem of
induction: a model might be close enough to the “correct” model to perfectly reproduce past
states of the system (up to and including the present time), and yet still fail spectacularly to
generate accurate predictions about the future of the system. This hawk-moth effect is in many
ways more troubling than the butterfly effect, as it seems to stymie the traditional approach to
dealing with Lorenzian chaos in dynamical systems--that is, the process of moving from precise
“point predictions” about the future of the system, and embracing statistical ensembles of the

system’s most likely future behavior.

Given the apparent fact that climate models exhibit SME, Frigg et. al. (2014a) is deeply
pessimistic about the possibility of model-driven policy recommendations.'> Mayo-Wilson notes
that giving coherent explanations of structurally chaotic systems is equally difficult. However,
there are a number of questions that need to be addressed with respect to SME--Mayo-Wilson

rightly calls identifies it as the birth of a new research program.

There are, however, a set of suppressed assumptions in Frigg’s formulation of SME: a set
of assumptions about the Demon’s knowledge, and of the knowledge of his apprentices.

Specifically, Frigg has assumed that both the Demon and his two apprentices agree on what

12 This family of worries is first expressed in Frigg et. al. (2013), and fully elucidated in the context of structural
model instability in Frigg et. al. (2014a)
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counts as their target system in the first place, and that this assumption is both deeply correct and
can be maintained over the timeframe in which they’re interested. This assumption is innocuous
enough in some cases, but may be far less so in other cases--especially those in which the three
ur-scientists are attempting to deal with a highly complex system. This question of how to
individuate a system is one that real-world scientists too must grapple with, and which has
serious implications for the practice of modeling complex natural systems. Given Frigg’s
explicit interest in drawing lessons about the implications of SME for making decisions about
how to respond to phenomena like anthropogenic global climate change, these considerations are

particularly relevant.

2. The System Individuation Problem

Complex systems are partially characterized by the presence of many behavioral
constraints operating at many different spatio-temporal scales. Lawhead (2014) argues that the
degree to which the dynamics of a given system at one scale constrain the allowable dynamics at
other scales serves as a good measure for zow complex a given system is, and more traditional
conceptions like the “effective complexity” outlined by Gell-Mann & Lloyd (1996) and the
earlier “algorithmic information content” described in Kolmogorov (1963) also tie complexity in
some way to the amount of information contained in a system. In many familiar systems, the
dynamics at very different scales operate quasi-independently. If we (say) are interested in
tracking the propagation of waves across the Pacific ocean after a major seismic event, the
formalism of atomic physics is not the appropriate lens through which to view the system. The
degrees of freedom that are relevant in atomic physics disappear at the relatively low-energy
scale of ocean waves, and generating an accurate prediction of how macroscopic waves move
and interact means ignoring some degrees of freedom in the system which would be central if we
examined water at an atomic level. This is a familiar problem; Putnam (1975) notes that a very
sophisticated knowledge of quantum electrodynamics (QED) isn’t much help in predicting
whether or not this square peg will fit in that round hole, despite the fact that the behavior of both
the peg and the hole are consequences of the laws of QED. When we seek to model some
system so that we can predict its behavior, we often choose to ignore other models that operate at

scales that are wildly disparate from our scale of interest.
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In some cases, as with wooden pegs and ocean waves, these cut-off scales are relatively
well-defined, and allow scientists to investigate (say) the behavior of quarks without concerning
themselves with the demand that their theories remain mathematically well-behaved when
applied to, for instance, the motion of galaxies". This seems very natural; it would strike us as
incredibly odd if, for example, the construction of the Mars Rover depended sensitively on
details about the dynamics of fermions, despite the fact that things like the Mars Rover are
composed to no small degree of fermionic constituents.

Complex systems, however, often fail to present with such neatly demarcated scales. In
many (if not all) complex systems, two striking features obtain: (1) states of the system’s
constituent parts are constrained by the state of the system as a whole, and (2) the constraint(s)
on the system’s constituent parts are not present if the parts are isolated from the rest of the
system.' Part of the challenge in modeling the behavior of complex systems, then, lies in
modeling how patterns operating at very different scales affect and constrain one another.

The observation that complex systems are often best viewed in terms of
mutually-interacting constraints operating at highly disparate scales and levels of analysis is not
novel. The implications for (in particular) complex adaptive biological systems has been
well-explored.”> Our concern here is not with rehashing this discussion, but rather applying these
lessons to the problem of SME, and showing how that problem stems from more general issues
in modeling complex adaptive systems.

2.1 Will The Real System Please Stand Up?

Frigg et. al. and Mayo-Wilson both seem to take it as a matter of course that there is a
(single) correct model of a given system, and that scientific attempts to predict the future
behavior of any system consist in attempts to hit on that model. The hawk-moth problem arises
in cases where a model candidate that differs from the true model even in an arbitrarily slight

way may lead to abysmally bad predictions. In that sense, the problem associated with SME is

'3 Hartmann (2001); Castellani (2002)

14 If this strikes you of smacking of “downward causation” (of the type Kim [1992] and [2003] criticizes), you are
quite correct. The structure of many complex systems does great violence to some of our cherished metaphysical
beliefs about the natural world (and so much the worse for those beliefs!).

% See, e.g., Massio, Bich, and Moreno (2013); Mossio & Moreno (2010); Mossio, Saborido, and Moreno (2009),
Collier (2008; 2011), Barandiaran, X., & Moreno, A. (2006), and many others.
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far more serious than that associated with standard chaotic behavior: the error associated with
Lorenzian chaos can be slowly whittled away with successively better measurements and
models, and we can be confident that such a gradual procedure will converge on arbitrarily
precise predictions if we are careful and diligent. In cases where SME is a possibility, we have
no such assurances; neither improved measurements nor refined models are guaranteed to bolster
the accuracy of predictions unless we have hit on the correct model of the system in question.

This is indeed a cause for concern (to put it mildly!), but this way of framing the problem
strikes us as problematic. Attempting to discern the correct model of a system only makes sense
as an endeavor once we’ve already agreed on how to individuate “the system,” and the identity
of a system--the answer to questions of the form “what counts as part of the global climate?”’--is
not something given to scientists by nature, fully formed and ready for our modeling attempts,
nor is it something that can be discovered through careful observation and experimentation.

Rather, as Cumming & Collier (2005) note:

The role played by our subjective interest in the system is in many ways crucial to our system
definition. If we ask different questions about the system that we are studying, we can expect different
answers, and, for the same question, the answer might depend on our motivations for asking it.'®

This concern is echoed in McAllister (2003) as part of his discussion of the problems
associated with applying Gell-Mann’s effective complexity'” to the global climate system.
McAllister points out that the data set associated with atmospheric temperature exhibits many

different patterns at many different scales:

These include a pattern with a period of a day, associated with the earth’s rotation about its axis;
patterns with periods of a few days, associated with the life span of individual weather systems; a
pattern with a period of a year, associated with the earth’s orbit around the sun; a pattern with a
period of 11 years, attributed to the sunspot cycle; a pattern with a period of approximately 21,000
years, attributed to the precession of the earth’s orbit; various patterns with periods of between
40,000 and 100,000 years, attributed to fluctuations in the inclination of the earth’s axis of rotation
and the eccentricity of the earth’s orbit; and various patterns with periods of between 107 and 10°
years, associated with variations in the earth’s rate of rotation, the major geography of the earth,
the composition of the atmosphere, and the characteristics of the sun

McAllister argues that such a plurality of signals makes the task of settling on a single
value for the effective complexity of a climate data set impossible. There are clear parallels with

the Cummings & Collier’s point: the multiplicity of interesting patterns in complex systems can

1® Cummings & Collier (2005), p. 29
7 Gell-Mann & Lloyd (1996)
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raise problems for traditional methods of modeling and analysis. This goes beyond “mere”
perspectivalism in science. That is, the worry here is not just a rehashing of issues concerning
the theory-ladenness of observation or the like; the problem is deeper than that. The task of
individuating a system--picking it out as a thing to be studied, and separating it from a distinct
(though interactive) ambient environment--and the task of modeling that system are wrapped up

together in ways that magnify the difficulties of each.

Consider the global climate. How are we to specify what counts as “the global climate
system,” and what counts as exogenous forcings on the climate system? The standard definition
of the climate (e.g. the IPCC glossary’s reference to statistical weather patterns) is a useful
individuation, but carving the world up in this way--making this very clearly purpose-driven and
perspectival decision about where to draw the lines--has enormous practical implications for
model building. In particular, the time-evolution some system (particularly if that system is a
complex system) might result in behavior that requires us to redraw system boundaries--to

reindividuate the system--if we we want to continue to make similar predictions about the future.

Hooker (2011) defines self-organized complex systems as those systems in which
“dynamical form is no longer invariant across dynamical states but is rather a (mathematical)
function of them.”'® That is, for many (if not all) complex systems, the processes that are
supposed to be captured in our best models--details about how the system changes over
time--result in the practice of modeling consisting in hitting a rapidly moving target. The model
that’s appropriate for forecasting the future behavior of (say) the global climate system today
might be rendered inappropriate tomorrow, as new features come to dominate the system’s
dynamics. As a simple illustration, consider the difference between modeling the behavior of the
paleoclimate and modeling the behavior of the contemporary global climate. In particular,
consider the relatively recent importance of the relationship between the behavior of the global
economy and the behavior of the global climate. It’s clear that any model that hopes to make
even reasonably precise predictions about the state of the global climate over the next 50 years

will need to account for the interactions between human industry and the climate. It’s equally

'8 Hooker (2011) p. 212
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clear that modeling the paleoclimate doesn ’t involve accounting for similar interactions. In at
least some cases, this problem can be solved by careful parameterization and tweaking of
existing models. The range of carbon emission scenarios in the warming models discussed by
the IPCC are an attempt to meet a very basic version of this challenge--to provide an answer to
the question “how will our model outputs change if human civilization at large takes our model
outputs seriously?” Still, this is only a very crude version of the deeper problem: at some point
the coupling between the global economy and the climate may (if it has not already) become
strong and intricate enough that, if we’re to continue to make good predictions about the future
of either system, we’ll be forced to consider them not as coupled systems, but rather components
of a single system. This reindividuation would require us to do far more than reparameterize

existing models.

Similarly, consider the question of how to individuate future climate states such that the
data we have now can be relevantly considered to generate the sorts of predictions we care about.
Many economists are concerned about the impact that either climate change itself or attempts to
forestall/mitigate climate change will have on the world gross domestic product (GDP). Many
policy debates turn significantly on whether late-stage adaptation strategies or early-stage
mitigation strategies will result in a larger decline in world GPD. If mitigation impacts world
GDP more severely than adaptation, one line of reasoning goes, then it makes more sense from a
humanitarian perspective to eschew mitigation policies like cutting fossil fuel consumption in
favor of encouraging GDP growth now, then using the returns on that growth to adapt to a
changed climate later. Whatever we think about this line of argumentation as a basis of global
climate policies," it is clear that to systematically evaluate it in the context of climate policy
debates we must reconsider some assumptions about the “best” way to individuate future states
of the planet. This point is reflected in the fact that there are two distinct ways in which we
might object to the argument given above: we might accept this as a valid individuation of future
states but reject the claim that mitigation strategies will lead to states with lower global GDPs

than adaptation strategies, or we might reject this as an appropriate individuation entirely and

1% Evaluating this class of arguments is beyond the scope of this discussion. See Stern (2006) and Tol & Yohe
(2007) for more.
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maintain that global GDP is simply not a valid factor to consider.

How do we know when this sort of reindividuation is appropriate, and when to simply
reparameterize existing models to account for different exogenous forcings? We might think of
this as an instance of what Cumming & Collier (2005) call “metamodeling,” a practice that’s

motivated by exactly the challenges we’ve been discussing:

At the heart of cohesive models of complex systems are a few issues that are extremely difficult to
cope with in empirical investigation. Most complex systems are dynamic entities that span
multiple spatial and temporal scales; the distinction between endogenous and exogenous dynamics
is not always clear; and, because of their many components, the outcomes of manipulations of the
system may differ depending on relatively small differences in starting conditions. [...]
[Metamodels] are a step back from the immediate process of prediction...their value comes from
the way in which they somehow capture the essential ingredients of many interrelated models in
symbolic form.?

The implementation of this sort of metamodel reasoning is one of the things that makes
the study of complex systems like the global climate challenging in a way that sets them apart
from other systems science might study. There is an extra layer of inference here, and one that
introduces a significant amount of new perspectivalism into the already value-laden practice of
science. A particular approach to individuating a system for scientific study is informed by the
predictive goals of the scientist, the possible application of those predictions, and other decisions
reflecting the scientist’s priorities. A natural approach to individuating a complex system is
rarely uncontroversial and obvious, and there may be many approaches to individuation that
outperform other approaches with respect to one set of predictive goals, and yet lag far behind
with respect to different goals. Which individuation is best suited to a given predictive task

cannot be simply read off of nature.
2.2 Similarity and Individuation

Let’s continue with the example from above. In taking the economic argument against
climate mitigation seriously, we implicitly agree on an at least partial metric for similarity of
future states of the climate system: two states in which the global GDP is similar may be counted
as similar states from this perspective, even if they differ in, e.g., global average temperature, a

difference which may give them a rather large distance from one another in the space defined by

20 Cumming & Collier (2005). p. 5
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most climate models. This suggests a link between the system individuation problem and the

distinction between similarity and distance outlined in Section 1.

To see how these two concepts are related, we need to think a little more carefully about
what exactly we’re doing when we individuate a system. Let’s start with something simpler than
the global climate: a box of warm gas. There are two ways of looking at this system that are
likely to be interesting, each of which is associated with a collection of well-mapped dynamical
laws that might be leveraged to make useful predictions. We might choose to adopt the
perspective from which the “box of gas” is really not itself an individual, but rather a composite
system of many small interacting individuals--molecules--each of which moves around in the
way classical mechanics predicts. This two-part choice of individuation and model implicitly
defines a state space for the system (in this case, the familiar six-dimensional position/velocity
space used in statistical mechanics). On the other hand, we might choose to treat the gas as a
whole as an individual, ignoring the dynamics of individual molecules and instead attending to
features like temperature and entropy. Happily, this choice too is associated with a collection of
well-mapped dynamical laws and so also implicitly defines a state space: that of
thermodynamics. There are, of course, very many more possible individuations: we could treat
the stuff on the left half and the stuff on the right half as individuals, for instance. The vast
majority of possible ways of carving the system up into individuals aren’t likely to be interesting,
in the sense that they’re unlikely to exhibit any useful, robust patterns that help make the sort of
predictions that we care about making--what will happen if I throw a match into the box, say.
Still, the fact that these two individuations are useful ones is emphatically not something obvious
that’s written into nature; we discovered that carving things up in that way was helpful only after

long centuries of experimentation.

This example is, in a certain sense, special. We chose it in part because the relationship
between the state spaces and dynamics associated with each individuation are related to one
another in ways that are robust and well-explored. Quantities that are associated with the first
individuation (like momentum) can be mapped on to quantities associated with the second (like

temperature) in ways that help us understand both: this is the business of statistical
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thermodynamics. This is the first time that concepts like “microstate,” “macrostate,” and
“similarity” enter into the picture; these terms only make sense when we’re comparing two (or
more) individuations and looking for patterns linking them. If we’re attending only to a single
way of individuating a system, the distinction between distance and similarity that we laid out in
Section 1 collapses for the simple reason that once we start to group states into regions that share
what we described as “qualitative” features in common--once we start carving up a collection of
microstates into macrostates--we’ve already begun to attempt to reindividuate the system. When
we notice that some set of states in one space are all “similar” to one another in the sense that by
grouping them together we can discover stable dynamical patterns that can be leveraged to make
useful predictions, we’ve also discovered that there is another individuation worth exploring: the
one where collections of points in the original space can all be associated with a single point in

the new one--collections of microstates that all correspond to the same macrostate. What was

similarity in our old space, then, becomes distance in our new space.

The choice of what to count as an interesting macrostate--how to carve the state space of
a system up into volumes that are distinct from one another in significant and useful ways--is
thus a choice about how we might reindividuate a system. The question or whether one
microstate is similar to another is not just a question of whether those microstates are close to
one another in the sense of being proximal in a given state space, but also a question of whether
or not they fall into volumes corresponding to similar macrostates. The answer to this
question--of which microstates are relevantly similar to one another such that they can
appropriately be grouped together into a single macrostate--is non-trivial to discern, and depends
on what our predictive goals are, what sorts of measurement tools we have access to, and also on
the whole host of practical concerns that always go into model building. System individuation
and model building are deeply linked, and both are foundational to the practice of science.
Attending only to problems (or methodologies) associated with the latter means ignoring a
significant part of what science consists in, and potentially failing to notice opportunities to
improve the predictions made from the perspective of one individuation by noticing its

relationship to another.
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2.3. System Individuation in Practice

Consider again the task of predicting the future of the global climate. What are the
criteria by which we divide the possible futures of the global climate into macrostates such that
those macrostates are relevant for the kinds of decisions we need to make? That is, how might
we individuate the global climate system so that we can notice the patterns that might help us
predict the outcome of various climate policies? The answer to this question depends in part
upon what we consider valuable; if we want to maximize long-term economic growth for human
society, for instance, our set of macrostates will likely look very different than it would if we
wanted to simply ensure that the average global temperature remained below a particular value.
Both of those in turn may differ significantly from a set of macrostates informed by a desire to
maximize available agricultural land. These different ways of carving possible future states up
into distinctive macrostates do not involve changes to the underlying equations of motion
describing how the system moves through its state space, nor does the microstructure of the
system provide an obvious and uncontroversial answer to the question of which individuation we

should choose. There is no clearly best way to go about reindividuating the world.

By comparing this situation to the one we found ourselves in when considering the box of
gas, we can start to see why modeling complex systems is so difficult. In the case of the gas,
there are a relatively small number of ways to individuate the system such that the state space we
end up with is dynamically interesting. In the case of the global climate, there are a tremendous
number of potentially interesting individuations, each associated with its own collection of
models. The two problems are not mere difference of degree; they are difference in kind, and
must be approached with that in mind. This may involve rather large changes in the way we

think about the practice of science.
3. Conclusion

Frigg et. al. (2014a) write that "by assumption, the demon can compute the unvarnished

truth about everything.'" This works well to illustrate their concern, but it is also not entirely

2 Frigg et. al. (2014), p. 32
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correct. In stating that Demon can compute the unvarnished truth about everything, Frigg et. al.
tacitly assume that the only relevant predictions about the system’s behavior to be had are those
which are apparent given the system individuation that the Demon (along with his apprentices)
have adopted: the fact that the Demon can predict with perfect precision precisely which state the
system will end up in is taken to exhaust the interesting predictions to be had about the system.
But this isn’t necessarily the case--always knowing precisely which state the system will end up
in exhausts the interesting predictions to be had about the system given a particular single
individuation. This is a lot, but it certainly may not be everything: there may be interesting facts
that can be discovered only by reindividuating the system, and those facts may be just as
relevant--if not more relevant--to our practical decision making. The possibility of giving the
Demon an extra power--macrostate omniscience--in which he has perfect knowledge of the best
individuation simply does not arise, for there is no best individuation. Or, rather, there are very
many best individuations, each reflecting a different set of priorities, values, and pragmatic

choices.

None of this should be taken as an argument against the importance of considering SME
as we evaluate scientific models. Frigg and Mayo-Wilson are both quite correct to argue that
the problem of SME is distinct from the problem of prediction under Lorenzian chaos, and that
in many cases it can be both more consequential and more difficult to remedy. If anything, the
system individuation problem should be seen as an additional layer of difficulty that compounds
the problem of SME. Both SME and the system individuation problem can be thought of as
problems in the foundations of complexity science. Both worries stem from the observation that
there may be some important scientific obstacles that cannot be overcome merely by making
more precise measurements and constructing increasingly refined versions of the same models.
These problems--and others like them--are likely to become increasingly salient as science
pushes toward studying and modeling ever more complex systems. Keeping our eye on the
system individuation problem serves as a powerful reminder of the difficulty inherent in
attempting to engineer the future of complex systems, and also sheds some light on why that task
is as difficult as it is. This underscores the importance of continued inquiry into the details of

complex adaptive systems, and how scientific practice must be tailored to deal with complexity.
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Finally, this discussion can be taken as a call for closer collaboration between scientists
studying the behavior of complex systems like the global climate, and those with a stake in the
decisions that such scientific study must eventually inform; in the case of climate science, that is
a very big category indeed. Our practical decisions can and should be informed by our best
contemporary science, but it is important to recognize that our best contemporary science--not to
mention philosophy of science--is also informed by those decisions and the values they reflect.
The more explicit this can be made, the more likely we are to make good decisions and to do

good science.
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