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Abstract: 

We analyse the various notions that go under the umbrella “relationalism/substantivalism”. Our focus will be 

on evaluating the ontological status of spacetime in General Relativity (GR). To this end we systematically 

develop the substance-ontological framework, which implicitly underlies the traditional debate and common 

understanding of (classical) physics. We submit that spacetime with its chronogeometric and inertial structure - 

represented by the triple of the bare manifold, the metric and the affine structure, resp. - is best construed as 

the totality of possible and actual spatiotemporal relations of events. This can explain the non-fundamentality 

of general relativistic gravitational energy and suggests a non-causal, non-interactional understanding of the 

interdependence of matter in spacetime in GR. 
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1. Introduction 

This paper addresses the issue of whether spacetime is a substance or a relation, i.e. 

whether it exists independently of, “over and above” material things, as the stage on which 

the drama of the world unfolds1, the thought being that only a substance, endowed with 

properties, can exist independently. More precisely, our agenda consists of two entangled 

tasks: 

1. To offer a semantic analysis, esp. w.r.t. the content of GR, i.e. outline an 

interpretation of some basic elements employed in the formalism of GR2: What do 

the various symbols of the formalism represent? What is meant by “spacetime”? 

2. To propose an ontological underpinning of GR that clarifies the ontological 

category/status of spacetime: What is the ontological status/category of those 

entities represented in the GR formalism? 

 

                                                           
1 

For reviews, we refer to Dasgupta (2015), who focuses on the issue in classical mechanics, Huggett/Hoefer 
(2015), who are historically oriented. Comprehensive, systematic reviews are Earman (1989) and more 
recently, Pooley (2013). 
2
 We shall restrict ourselves to rudimentarily interpreting the standard formalism prevalent in the (textbook 

and non-mathematical-physics) literature. We shall not cover tetrads, which promise to be a powerful tool to 
give a precise meaning to such fundamental concepts as “inertial frame”, cf. Knox (2013), sect. 2.   
The interpretation of a more modern formalism, e.g. starting from the fibre bundle G, with total space E and 
structure group G, and then defining the manifold as � = �/�, cf. Socovosky (2011), may lend itself to a 
different ontology. 
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The first task is important in its own right, namely to connect the mathematical formalism to 

the external reality. The ontological task presupposes the semantic one: Before pondering 

the nature of, say, spacetime according to a theory, one must surely identify the elements of 

the formalism that theory that refer to the entity in question, i.e. one must know what one 

means by “spacetime”. 

We shall argue that spacetime, represented by (ℳ, ���, ∇)  - the manifold together with its 

metric and (metrically compatible) affine structure - is best construed not as a substance, 

but as the totality of possible and actual spatiotemporal relations between events; 

ontologically, thus it is secondary  vis-à-vis matter (in a sense to be made precise below).  

 “To resist the suspicion that this corner of the debate is becoming merely terminological”3, 

we reassure the reader that the relational/substantival nature of spacetime has direct 

implications for the quest for a quantum theory of gravity4 - a topic we ourselves take up 

elsewhere5. 

Here, we shall proceed as follows: In section II, we shall explain in what respects the debate 

so far has remained unsatisfactory –mostly due to a lack of terminological precision 

regarding (ontological) categories. In section III we therefore compile the conceptual 

paraphernalia we need for a semantic and ontological analysis - paraphernalia we shall put 

to work in section IV, highlighting the Action-Reaction Principle, the construal of Wheeler’s 

characterisation of the Einstein Equations as encoding interaction between matter and 

spacetime and the status of vacuum spacetimes. We shall devote special attention to the 

nature of the effects of gravitational waves and the extent to which our ontological analysis 

elucidates the non-fundamentality of gravitational energy in GR. We close (section V) with a 

comparison of the brand of “liberalized” relationalism we try to defend with more traditional 

forms. 

 

2. The relationalism/substantivalism debate and its discontents  

Before embarking upon both a semantic and ontological analysis, a terminological 

clarification6 is in order. By “semantics” we mean the interpretation of all theoretical terms, 

i.e. assigning meaning to the formalism (“What do the symbols of the formalism refer to or 

represent?”); by “ontology” we mean a theory about the most general structures of reality. 

Ontology in this sense explicates what all scientific theories (usually concerned with very 

specific hypotheses, e.g. the effects of impurities on the band structure of a specific solid) 

tacitly presuppose - or rather: take it for granted that these concepts are “intuitively clear”. 

                                                           
3
 Pooley (2013), p. 63. 

4
 As suggested, for instance, by Stachel (2014), Sect. 6.4 and Smolin (2005) 

5
 Duerr/Lehmkuhl (2015c) 

6
 We do not follow the Quinean usage of “ontology” (as opposed to “ideology”), cf. Pooley (2012), p. 26; 

instead, we follow Bunge’s usage, (1967) and (1977), for it captures in our opinion more clearly the questions 
at issue here, and furthermore is more continuous with common parlance in analytic ontology. 
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Such core concepts are, i.a., “thing”, “time” or “space”. The ontologist thus intends to 

rationally (re-)construct a conceptual system that captures what reality (“ontics”) is 

fundamentally made of. Reality is, of course, a given that comes as a whole-package: Things, 

their properties and mutual relations cannot be severed in re (“ontically”). As we shall see 

more clearly presently, rather than around “spacetime realism”, i.e. the question of whether 

spatiotemporal relations exist, the relationalism debate revolves around the question 

concerning what the status or category of “spacetime” is in the logico-conceptual hierarchy 

of the ontology: In which category (e.g. a substance or a relation) does spacetime belong?- A 

question that clearly presupposes what we mean by “spacetime”. How is the category we 

believe to fit “spacetime” characterized? Which concepts does it presuppose? (Think of the 

analogous case in mathematics: The definition of an algebra presupposes that of a vector 

space.) What is the status of certain propositions that involve spacetime and its 

characteristics: Are they theorems that follow from a given set of axioms? The majority of 

philosophers of physics (wont to feel more at ease at analyzing scientific theories) are 

reluctant to construct a systematic, axiomatic ontology, which starts from certain primitive 

concepts, axioms and postulates7. Such an explicit construction of an ontology, however, is 

called for: Firstly, because no ontology can be readily read off the formalism (to be sure: 

neither can it be based on a priori navel-contemplation)8; secondly, without such a 

systematically developed ontology it seems unlikely be possible to assess unambiguously the 

ontological status of space and time –a question one might be interested in for several 

reasons9. One is heuristic guidance in our search for new theories: One might argue, for 

instance, the point-particle ontology and the postulated existence of a distinguished 

reference frame, both inherent in Bohmian Mechanics, count as strong, ontological 

arguments against it, since both aspecst are at odds with the conceptual/ontological 

framework from a good deal of mainstream physics.   

With this in mind, let’s articulate our dissatisfaction about the extent literature on the 

relationalism debate: 

1. Firstly, at least five distinct concepts go under the umbrella of 

relationalism/substantivalism. Incoherent use may cause confusion and 

misunderstanding10 what is actually at stake, what the respective authors criticize – 

and if they do so successfully - or claim themselves:  

                                                           
7
 A highly formalised axiomatised ontology is found in Bunge (1977) and, in the same tradition, an “exact 

philosophy of spacetime“ in Vucetich (2011). 
8
 Cf. Esfeld (2013) 

9
 Cf. Bunge (1977), Introduction, esp. sect. 5 and 9. 

10
 To give three examples of such incoherent uses:  

 Baker, for instance, writes “A relationalist […] (holds) that all spatial and temporal properties are 
reducible to properties of material objects”, Baker (2013), p. 1.  

 Or, an even more misleading characterization of relationalism is given by Skow, viz. as “the doctrine 
that space and time do not exist” (Skow (2007), p. 1). Few relationalists, however, would subscribe to 
a Berkeleyian/ Borgesian view of spacetime as an illusion! 

 Historically, “Mach himself never seems to have kept [Machian and Leibnizian relationalism] apart.”, 
Huggett/Hoefer (2015), sect. 8.1. 
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a) “Realism about spacetime”: Are certain structures in the mathematical 

formalism that are (for certain reasons) associated with “spacetime” 

indispensable and/or explanatorily potent, and should therefore we take the 

formalism seriously and regard these structures as representing something 

real? This spacetime realism is a special case of scientific realism11; it is 

neutral on whether spacetime is a substance, a relation or whatnot. However, 

if a theory that has been convincingly equipped with an ontology and 

interpretation, turns out to be empirically successful, scientific realism 

encourages us to take seriously this whole “web of beliefs”, including its 

specific ontological framework.  

Even if one does not by that strong metaphysical statement, one might 

subscribe to a weaker form, popular amongst structural realists: The success 

of a physical theory in describing certain structures or regularities/patterns in 

the physical world gives credence to the belief that these structures capture 

something real “out there”. A natural follow- question suggests itself: How 

and by what entities are these structures physically instantiated?- A question 

for the Leibnizian relationalist. 

 

b) “Leibnizian relationalism”12: This is the ontological claim that spacetime is the 

totality of relations, and not itself a substance – a dichotomy that usually 

presupposes a certain type of ontology, a s.c. substance ontology: Within the 

latter, one Leibniz relationalist would hold that spatiotemporal structures are 

physically realized by material entities, a certain type of relations between 

which is spatiotemporal. (By contrast, the corresponding substantivalist 

would counter that spacetime possesses intrinsic, monadic properties.)   

However, alternatives to substance ontologies exist, according to which 

events or properties and relations are primary and exist independently, 

constituting e.g. ordinary stuff as bundles. We shall elaborate on this in the 

next section. Let’s, for the time being, turn to the question of an ontological 

priority of spacetime vis-à-vis matter.  

 

c) Spacetime subsistentialism: By that we mean the likewise ontological claim 

that spacetime can ontically subsist, i.e. whether -irrespective of the 

ontological category, e.g. substance or relation- it can exist independently of 

matter: Which is ontologically more fundamental, matter or spacetime, or are 

both on the same footing? In a substance ontology, for instance, substances 

are regarded as the only entities that carry properties and exist 
                                                           
11

 A more refined schematisation of the three main branches of scientific realism – theory realism, entity 
realism and structural realism – is found in Dorato (2006), sect. 1. For our purposes the more vague meaning of 
realism suffices. 
12

 Friedman (1983), Ch. VI, coined the terms “Leibnizean” and “Machian relationalism”, drawing attention to 
their distinctness. Huggett/Hoefer (2015) take up this distinction, but call it instead “Mach-lite” and “Mach-
heavy”, respectively. 
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independently13. Consequently, the conjunction of substance ontology and 

Leibnizean relationalism implies the negation of spacetime subsistentialism.  

Given the alternatives to substance ontologies, one could be both a Leibnizian 

relationalist and a spacetime subsistentialist simultaneously, though – a view 

that comes close to (ontic) structural realism14.   

A particularly virulent question15 in the relationalism debate concerns the 

status of vacuum solutions: Do they exist or are they, as Einstein initially 

thought, merely formal solutions? – A question for the spacetime 

subsistentialist. 

 

d) “Machian relationalism” aspires to find an explanation for the physical 

distinction of a class of reference frames identified as inertial frames. The 

Machian relationalist hopes to find it in a physical theory that only uses 

relative distances between material bodies and their derivatives as the 

fundamental spacetime-theoretical variables. Machian relationalism, with 

Barbour’s Shape Dynamics16 as an eminent contemporary exemplar, thus is a 

(non-mainstream) research programme in search of a theory to supersede 

GR; it therefore lies outside our present purpose of analyzing GR. Note that, 

although ontologically Machian relationalism is frequently motivated by 

arguments in favour of a Leibniz-relational nature of spacetime, logically the 

latter does not imply the former.  

 

e) Eliminability/reducibility of spacetime structure – a notion that bifurcates 

once more into “scientific reduction” and “ontological reduction”:   

a. Whether a given property or a relation are reducible to (derivable 

from) other degrees of freedom, is a purely scientific question - once 

the philosophers have made more precise what is supposed to be 

meant by “reduction”17. (To avoid ambiguity, we merely add the rider 

“scientific”.) We submit that solely by itself general-relativistic 

spacetime relations do not supervene on other degrees of freedom of 

matter in any straightforwardly discernible sense. To see this, let us 

recall that a relation R supervenes on a property P, iff (i) each relatum 

                                                           
13

 Sklar, who introduced the relationalism/substantivalism terminology, seems to implicitly presuppose such a 
substance ontology (which defines substances essentially by being carriers of properties and by subsistence, cf. 
Kuhlmann (2013), Ch. 7.3) when he characterizes substantivalism as the view that spacetime “can be said to 
exist and to have specified features independently of the existence of ordinary material objects” (Sklar (1974), 
p. 161. 
14

 Cf. Dorato (2006), esp. sect. 1.1. With some justification, it may be seen as contrary to super-substantivalism, 
according to which 1) fundamentally, everything is a manifestation of spacetime, instituting spacetime as the 
sole ruler of reality, and 2) spacetime is viewed as a substance. 
15

 Cf. Earman (1989), Ch. 1.6 
16

 Cf. Pooley (2013), Ch. 6.2 
17

 A task the conceptual complexity of which should not underestimated, cf. Vanriel/Gulick (2014) for a review. 
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of R instantiates P and (ii) the instantiations of P uniquely determine 

R18. Neither condition seems to be satisfied:   

 Firstly, recall19 that Einstein Equations are a set of partial differential 

equations with a source density ��� =
�

�|�|

�

����
��|�|ℒ�, which itself 

contains not only the metric ���, but also the matter Lagrangian ℒ. 

Apart from a mild constraint on the functional dependence of ℒ that 

implements the (Einstein) Equivalence Principle (and thus ensures the 

validity of the Bianchi identities ∇� �R�� −
�

�
Rg��� = 0), GR does not 

specify the matter theory; in that sense it is not a fundamental 

theory20: The matter theory must be inserted by hand. Consequently, 

GR, just by itself, offers no matter properties P to begin with on which 

the spatiotemporal relations could potentially supervene.  

Suppose, though, we fortuitously stumbled on a model of matter on 

whose properties spatiotemporal relations would indeed supervene. It 

seems highly implausible that any (classical21) matter model would do 

the trick, so as to capture the spatiotemporal effects for that kind of 

matter, too! Conversely, it seems safe to assume that at least one 

(realistic) matter model exists on which spatiotemporal relations do 

not supervene. 

 Secondly, ��� does not contain all degrees of freedom. At best22, it 

encodes the energy-momentum of matter: That need not exhaust all 

there is to matter, though. In other words, the Einstein Equations are 

insensitive to matter degrees of freedom other than energy-

momentum23.     

b. Now to the notion of ontological reduction; it is a nonstarter: 

Relations, in general, form an ontologically 

irreducible/fundamental/primitive category (represented by all 

predicates other than unary ones), independently of whether certain 

relations are indeed scientifically reducible or not. This is reflected in 

the second condition for supervenience: The category of a relation is 

presupposed their as primitive. 

                                                           
18

 Cf. Cleland (1985) 
19

 Cf. Duerr/Lehmkuhl (2015b) for details 
20

 Hoefer (2009), Sect. 4.2 also points this out. 
21

 This rider is necessary, for a unified quantum description of matter evades the objections offered above. 
Such unified quantum descriptions of matter have been investigated recently, cf., e.g. Hedrich (2012) for a brief 
review.  In fact, in Duerr/Lehmkuhl (2015d) we explicitly advocate such an emergent spacetime framework as 
an attractive possible approach to quantum gravity compatible with our results Duerr/Lehmkuhl (2015a,b,c). 
22

  In fact, we argue that it does not even represent energy-momentum proper, cf. Duerr/Lehmkuhl (2015b). 
23

 This blocks a standard argument against supervenience, invoking the fact that for the same matter energy-
momentum, e.g. vacuum, the Einstein Equations can simultaneously yield different spacetimes, e.g. 
gravitational waves and Minkowski space. 
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In short: We shall not concern ourselves with Machian relationalism – a fascinating research 

agenda for a new physics – and reject the idea of eliminating spacetime; instead, adopting 

scientific realism throughout, we shall examine whether a spacetime subsistentialist, Leibniz-

relational ontology is defensible24. 

This leads us to a second complaint about the literature: 

2. Namely the tendency not to properly define the ontological categories employed, 

first and foremost what exactly one means by the concept of substance/thing25,26. 

The respective texts restrict themselves to vague, metaphoric paraphrases, 

obfuscating the debate with cryptic talk about spacetime being a “maybe pseudo-

substantial thing”27: Recall that ψευδής means “false” or “lying”; consequently, such 

a substantivalist position would bizarrely be one where spacetime is not a substance 

after all! An even more misleading claim is that a substantivalist is a realist about 

spacetime: Whatever brand of realism one may advocate, for most human beings - 

amongst them also the majority of professing substantivalists – relations to their 

friends or their dog are eminently real. If our best scientific theories happen to 

contain terms that describe relations, nothing stymies a realist interpretation of 

them! (Evidently, there is no reason for such a realist to reify relations. It is an 

independent, but crucial question, though, how these relations are physically 

instantiated!) Even the more scrupulous accounts suffer from this ambiguity: 

Lehmkuhl, for instance, in his characterization of the substantivalist’s core 

commitment, defines a substance as “a basic (or fundamental) object that is not 

derivative of anything else”28 – a definition that only postpones the crucial points: a) 

What counts as an object (would a process be one, or a property?); and b) What 

                                                           
24

 Benovsky (2010) has drawn attention to an interesting point concerning the structural equivalence of 
substantivalism and relationalism. In light of such structural equivalence he offers as one option (his “strong 
claim”, p. 500) to regard the difference between the two as merely terminological. We take a more 
conservative stance (Benovsky’s “weak claim”): Such an equivalence of two metaphysical positions only 
indicates similarities in their structure, i.e. the role certain of its elements play in the whole conceptual system 
at issue; the equivalence does not extend to the nature of the two systems. Such a structural equivalence of 
two theories that describe unconnected, vastly different phenomena are common in science, e.g. the 
equations of the Black Scholes option pricing model in essence take the form of the heat equation, while the 
change of temperature in a body is in no way related to the behaviour of financial markets. 
25

 Teller, for instance, diagnoses: “[…] (N)either I nor, as far as I know, anyone else has offered a close analysis 
of what ‘substantival’ comes to in this discussion.”, Teller (1991), p. 383. Earman’s often quoted usage of 
“substance” in the sense that bodies and space-time points or regions are elements of the domains of the 
intended models of [space-time theories] of the physical world”, Earman (1989), p. 114, somewhat circumvents 
the ontological problem. Although a powerful tool in other context, such as the issue of Background 
Independence, cf. Pooley (2015), the model-theoretic perspective is futile, when it comes to ontological 
questions, since it contains no ontological information whatsoever; it only deals with the mathematical 
representation of certain aspects of the target system. This becomes especially clear in its failure to connect to 
traditional themes of the (non-Machian) relationalism/substantivalism debate: For instance, the argument of 
vacuum solutions ceases to be cogently pro-substantivalist, if one precludes vacuum solutions from the notion 
of intended GR models.     
26

 An exception is the wonderfully lucid account by Dorato (2006), sect. 1.1. 
27

 Huggett/Hoefer (2015), sect. 5.2.  
28

 Lehmkuhl (2015), p. 5.  
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precisely is meant as “derivable” or fundamental29? Obscurum per obscurius! - As we 

saw, ontologically all relations are irreducible/primitive/fundamental (and whether 

all relations are scientifically reducible is a bold claim!) – as Lehmkuhl himself argued 

elsewhere himself30. In short, our promising definition winds up as one that blurs the 

ontological difference between substance/thing and relations, rendering it prima 

facie of doubtful value in a debate about the substantival or relational status of 

spacetime! 

Within analytic metaphysics key concepts such as “substance” or “process” have a clearly 

delineated meaning31. If we strive for a lucid and profound ontological analysis, we’d   better 

learn from our metaphysics colleagues! Let’s therefore start now with some basic 

ontological terminology.  

 

3. Ontological framework  

Following the Aristotelian-Kantian tradition, we shall adopt an explicitly thing-based or 

substance ontology32,33 - an ontology that takes the class of things (substances) as the 

ontologically prior category (a more detailed specification will be given presently). The 

reasons for this choice are threefold: 

- A substance ontology sticks close to our commonsense intuitions, roughly reflecting 

the background metaphysics that most people (including physicists) primarily 

operate with34 and that pervades the subject-predicate structure of European 

languages. Pragmatically, thus, it is a natural starting point. 

- Most combatants in the relationalism/substantivalism debate seem to have 

presupposed a substance ontology themselves – albeit only implicitly35.  

- On a more systematical level, a substance ontology turns out to be a natural 

framework for classical physics, i.e. one close to taking the standard formalism of 

classical theories at face value: As Scheibe has argued, it is “the modern concept of a 

physical system which comes nearest to the traditional notion of substance”36; he 

                                                           
29

 To be fair, in sect. 4 Lehmkuhl, loc. cit., elucidates the concepts of reduction (and emergence) in the context 
of super-substantivalism (whose core commitment consists in the tenet that “spacetime is the only (kind of) 
substance”, loc. cit., p. 6). But it is of no avail for the problem we pointed out. 
30

 Cf. Lehmkuhl (2010), esp. sect. 6.  
31

 Cf. Robinson (2014) 
32

 Cf. Kuhlmann (2013), Ch. 7.3. Ch. 7 gives a brief contemporary introduction to analytic ontology in the 
context of modern (quantum) physics. 
33

 We liberally draw on Mittelstaedt (1981) and Bunge (1977). The former emphasizes the Kantian notion of 
substance, showing its fertility for contemporary discourse. Bunge tailors his terminology to his original, 
formalised substance ontology. 
34

 A substance ontology may be regarded as an instance of what Strawson calls “descriptive metaphysics”, cf. 
Kuhlmann (2013), Ch. 7.1. 
35

 Cf. Sklar (1974), p. 161, for instance, whose characterization of substantivalism is manifestly embedded in a 
substance ontological framework. 
36

 Scheibe (1991), p. 215 
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characterizes the latter by independent existence, monadic predication, individuality 

and completeness. (More on these s.c. ontological category features below.)  

In other words: A “classical ontology” (Mittelstaedt) helps elucidating the conceptual 

structure of (classical) physics – thus doing exactly what a (classical) ontology should 

do. 

Now to the eponym of our type of ontology: We shall call an entity a substance or 

substratum (ὑποκείμενον), if it can be ascribed properties37 , i.e. if it is predicable. (In the 

following, “object”, “thing”, “substance” or ”substratum” will be used interchangeably.) On 

top of being the carriers of properties, substances usually stand in relations to each other. 

Properties are represented by unary predicates, e.g.: “… is 2 feet tall”; relations by n-ary 

predicates (with � ∈ ℕ��), e.g. “…is married to …”. It follows that properties do not have 

properties themselves38: Only their conceptualizations, i.e. the predicates that represent 

these properties do. (Such a distinction is crucial here for consistency: If properties had 

properties themselves, they would count as substances; consequently the ontological 

difference between properties and substances would collapse.) For instance, the momentum 

of an acoustic wave is not differentiable; only the functions that represent the density 

fluctuations and their associated momenta of the air are. Likewise the distinction between 

intrinsic and extrinsic properties is misleading: According to the received terminology, a 

property, e.g. mass, is called intrinsic, if the property holds independently of what other 

objects exist and which properties they possess; an extrinsic property of an object, e.g. 

weight, by contrast, is one that holds in virtue of its relation to other objects. Within our 

nominalist/substance-ontological framework, properties don’t exist simpliciter, though (only 

to the extent that there exist objects that possess them); hence, a fortiori there exist no 

distinction between intrinsic/extrinsic properties. In order to saves such a generally useful 

distinction, we propose the following way out to save it in two steps: Firstly, the distinction 

holds only between predicates, i.e. the elements of our concepts with which we represent 

properties. Secondly, extrinsic predicates are only shorthand or implicit ways of representing 

a relation (with a non-descript relatum/a).  For example, “Aristotle is married.” is an implicit 

way of saying “There exists somebody, viz. Pythia, to whom Aristotle is married.”. In short, 

extrinsic predicates are relations in disguise.   

Opting for a thing-ontology, we now postulate that things/objects, endowed with their 

respective properties, make up the fundamental furniture of the world39,40: Things exist 

                                                           
37 

Moreover, Kant’s formulations, which provide an impressive ontological underpinning of classical physics, 
can be understood as requiring that the predicate structure be Boolean, cf. Mittelstaedt (1981), Ch. 4.  
38

 Cf. Bunge (1977), Ch. 4, esp. section 4, where the issue of properties of properties is explicitly discussed, as 
well as some potential objections. 
39

 Cf. loc. cit., Ch. 3.4 
40

 Like all other theories, every ontology is only “hypothetical, tentative and fallible” (Popper); there are no a 
priori reasons to prefer one (type of) ontology over another, for instance, one based on substances over one 
based on processes. In particular, one cannot “read off” an ontology from the formalism; it must be 
constructed explicitly. Pluralism of ideas is called for here as on all other intellectual turfs! In fact, it has been 
argued, cf. Dorato (2006), sect. 4, that Newton himself, in his De Gravitatione, seems to have encouraged 
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independently (subsist); properties or relations don’t. A property or relation is thus always a 

property or relation of, or is instantiated by something. (Properties exist only in re.) A 

universe is easily conceivable in which only a horse exist, “whereas a boundary could not 

even be imagined without something else whose boundary it is”41. Relations without relata 

don’t exist. In this sense what we mean ontologically, when we say that a relation has 

changed, it is really the relata that stand in new relations. Substances, properties and 

relations are each ontologically irreducible or fundamental: These categories are disjoint; 

one cannot “reduce” (whatever that may mean) a generic binary predicate to a unary one – 

irrespectively of the possibility of a scientific reduction.  

Let’s take a closer look at properties now. Amongst all properties, we posit that one is 

special - namely mutability, i.e. the ability of an object to change its state42. In turn, we 

define the state of an object as the totality of its properties. Scientific laws (the bread and 

butter of the individual sciences) are restrictions of the state space of objects, i.e. the set of 

all logically possible properties, to certain subsets43  - the nomological possibilities. Energy, 

we now stipulate, is a quantitative measure of mutability. (A motivation will be given below.) 

As such it is exactifies a meta-physical (rather than a merely physical) concept44, in this 

respect resembling probabilities as quantifications of Popperian propensities45 (with 

Kolmogorow’s Axioms as the formal desiderata a specific probability measure should 

satisfy). To propose specific quantifications of metaphysical concepts (such as propensities 

or mutability) assess their empirical adequacy, their interrelations or even prove their 

uniqueness is one of the jobs of the individual sciences46.  

Remark 1: Having no energy is not the same as having zero energy: The latter presupposes 

that it’s meaningful to assign the entity in question the respective quantity - albeit only with 

the quantification 0; whereas the former means that it isn’t. An elementary example would 

be: “The determinant of ℚ is 0.” – a nonsensical statement. By contrast, “ℚ doesn’t have a 

determinant” is impeccable and even true.  

Remark 2: One must not be misled by ordinary expressions such as “The concept of marriage 

changed over the course of history” – an expression that simply means that the same word 

was used for different concepts. 

                                                                                                                                                                                     
attempts to overcome the substance-ontological paradigm, inherited from the scholastic substantia-accidentia 
dichotomy and modeled on the categories of ordinary language. 
The value of a proposed ontology is always evaluated ex post: Does it elucidate (philosophically) certain 
theories? Does it help us solve certain problems? Is it heuristically (and/or didactically) fertile? How does it fare 
in comparison with other proposals? A list of meta-criteria of good ontologies/metaphysics is given in Ch. 8 and 
9 of Vollmer (1993). 
41

 Kuhlmann (2013), p. 73 
42

 Cf. Bunge (1977), Ch. 5, (1981), Ch. I and (2000) 
43

 Cf. Bunge (1977), Ch. 3.2 
44

 Cf. also Bunge (2000).  
45

 Cf., for instance, Bunge (1977), Ch. 4 
46

 There is no guarantee, though, that the quantification is unique –arguably one of the lessons from the quest 
for the right probability or entropy measure in statistical mechanics, cf., for instance, Sklar (2015), Sect. 2-4. 
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How to motivate now the above identification of energy as a measure of the ontological 

superproperty of mutability? 

- Within a purely Lagrangian framework, it can be shown directly47: If we take the 

Lagrangian (or the action) to represent the network of essential relations – i.e. 

relations that must hold between events (defined them as changes in the state of an 

entity, see next section) so as to be ascribe them to one substance (or, put 

differently, so as to warrant dia- and synchronic identity of the underlying 

substratum) -, the canonical definition of energy as the Lie derivative of the 

Lagrangian along a time-like vector field literally evaluates the change of the 

Lagrangian it acts on along the flow of the time-like vector field. Note that the 

(arbitrarily chosen) time-like vector field here only serves the purpose of an ordering 

parameter amongst events. (We’ll elaborate the meaning of coordinates and the 

definition of a field in the next section.) 

- The most general universally accepted definition of energy one finds in the physics 

literature arguably boils down to “capacity to do work”, thus involving forces. The 

latter induce a change of locomotion, i.e. of the mechanical state. Via the  

convertibility (and conservation) of energy this extends to non-mechanical states.  

Note that this argument is independent from the previous one, since some classical 

scenarios (e.g. those involving electromagnetic radiation) do not admit of a classical 

Lagrangian formulation48. 

- By the same token, energy conservation, together with a marker theory of causality –

causation as a lawlike relation of change between events with energy transfer –, link 

change and energy.   

- Thinking of energy as a measure of mutability fulfills  two  functions by offering a 

unifying perspective49:  

o It accounts for the centrality and ubiquity of energy within one discipline. 

Here one studies how changes in one thing are related to changes in either 

the same or another thing. E.g.: How does the stability of a solar system 

change if a comet invades it? 

o Likewise, it accounts for the centrality and ubiquity of energy across the 

various disciplines, where one predominantly studies how changes of things 

that belong to the domain of one discipline are related to changes in other 

things or systems that belong to a different (“higher” or “lower”) discipline. 

E.g.: How is an increase in the concentration of certain neurotransmitters 

(change on a biochemical level) related to the onset of a depression (change 

on a psychological level)?  

                                                           
47

 Cf. Duerr (2015a) 
48

 Cf. Galley (2012) 
49

 Cf. Bunge (2000). The need and fertility for such a unifying perspective should not be underestimated, 
especially both for the didactic and methodological training of scientists and science teachers, cf. Coelho 
(2009).  



12 
 

Remark: Substance conservation and energy conservation are not the same50:  

- The former is a fundamental ontological feature of substances, called “persistence”: 

Material objects don’t get created or destroyed out of the blue. Within all of 

classical/non-quantum physics, including GR (barring perhaps black hole scenarios), 

substances persist51. In a geometric spacetime setting, persistence translates into 

continuity of worldlines (or worldtubes for fields).  

- Conservation of energy ontologically means that the extent to which objects are able 

to undergo change itself does not change: Everything changes - except, as it were, 

changeability itself. Conservation of energy does not generically hold52 in GR: It 

depends on the presence of certain spacetime symmetries. This translates into 

variability of mutability. 

We shall be exploiting this suggested connection between the non-existence of general-

relativistic gravitational energy, for which it has recently been argued for53, and 

relationalism. We shall return to this connection in detail in the next section. For the 

moment, let us collect the last items of our ontological toolkit. 

Are all substances automatically material substances? For an answer let us further partition 

all substances into two categories: Those whose state space is a point (i.e. those substances 

which cannot change) and those whose state space contains at least two elements (i.e. those 

substances which can change). We call the former material/matter (or concreta), and the 

latter immaterial substances, or concepts (or abstracta). All familiar things such as cats or 

classical fields count as material substances; whereas Quetzalcoatl, mathematical objects or 

the beauty of Oriel College count as concepts.  

Let us pause for a moment to justify this philosophically loaded  - the medieval problem of 

universals! - terminology. We offer two arguments, both continuous with the main 

approaches to analytic metaphysics of abstracta54:  

- Apart from the cardinality of their respective state space, all the various paradigmatic 

instances of concreta and abstracta seem to have nothing in common; the cardinality 

of their state space is their “greatest common ontological denominator”.  

                                                           
50 

Bunge (2000) doesn’t make this distinction – nor does he realise that energy conservation in general doesn’t 
hold in GR.  
Interestingly, Kant, on the other hand, seems to have kept a “quantum of substance”, which apparently 
corresponds to a conserved quantity associated with the homogeneity of time, and substance conservation 
conceptually distinct. Due to the (in his opinion necessarily) Euclidean nature of space and time imply each 
other, cf. Mittelstaedt (1981), p. 130, footnote 3. 
51

 Cf. loc. cit. and Kuhlmann (2013), Ch. 7.3. Quantum physics forces us to revise this aspect of the classical 
ontology: The law of conservation of substance no longer holds, cf. Mittelstaedt (1981), Ch. 2 and esp. 4, and 
Kuhlmann (2013), Ch. 7.4 and Appendix B2. It can be argued that modern particle physics, i.e. QFT, forces us to 
jettison the concept of substance altogether (in the sense that QFT entities cannot be understood neither as 
fields nor particles), cf. loc. cit. Ch. 8 and 9. A fortiori, conservation of substance would no longer hold either. 
52

 Cf. Hoefer (2000) or Duerr/Lehmkuhl (2015a)  
53

 Cf. loc.cit. See also Lam (2011) for a similar analysis. 
54

 Cf. Rosen (2012) 
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- This ties in well with two common demarcation criteria of concreta vs. abstracta55: 1. 

The first one invokes the causal inefficacy of abstracta. Causality is a relation 

between events that takes the logical form of a sufficient condition: A change c in 

one thing implies a change e in another thing. Since, by our definition, abstracta 

cannot change, it follows that they can neither causally act nor be acted upon. 2. The 

second criterion invokes the non- spatiality of abstracta. We shall argue in the next 

section that, there are no “irreducible, monadic spatiotemporal properties like ‘is 

located at…’”56; instead, spacetime is the totality of spatiotemporal relations 

between events. As abstracta do not change, there are no events happening to them 

that can stand in spatiotemporal relations to begin with. For any brand of 

relationalism the argument takes an even sharper form in favour of the 

conceptual/abstract status of spacetime (thus ensuring virtuous circularity): As the 

relationalist regards the latter as the totality of spatiotemporal relations, they 

constitute spatiality (or rather: spatiotemporality). Consequently, spatiotemporal 

relations cannot stand in spatiotemporal interrelations themselves. 

Back to our main line. Following the consensus amongst philosophers of science (barring 

perhaps those working in the philosophy of mind or mathematics), we adopt a materialist 

framework and posit that only material substances really exist “out there”57 (ontically 

subsist): Only material substances enjoy an ontically independent existence, whereas 

concepts enjoy only an ontologically independent existence: A cat, which can turn grey or 

fat, exists out there, whereas the concept of a cat does not exist ante rem, that is: The 

concept (“token”) does not dwell, as a self-sustaining entity, in a Platonic realm of ideas.  

Note that we use concepts, i.e. the ontically non-real, (e.g. predicates) to represent the 

ontically real (e.g. properties); a conceptual substance (which, by definition, has properties) 

can thus represent a physical non-substance (such as a property), which, by definition, has 

none. We must keep this in mind, when trying to tailor an ontology we want to develop to 

the formalism - lest the conceptual substantiality of an object in the formalism decoy us into 

naively reifying what it represents. 

Using the results developed so far, we can re-phrase a key insight: A necessary criterion for 

an object to count as a material substance is to have energy58,59. What about a sufficient 

                                                           
55

 Cf. loc. cit., sect. 3.  
56

 Earman (1989), p. 13 
57

 Cf. Bunge (1981), Ch. I and V 
58

 Cf. loc. cit. and Lehmkuhl (2011). 
59

 Most authors who broach gravitational energy in the context of the substantivalism/relationalism debate 
likewise seem to (at least implicitly) cherish this view. For instance, for Earman and Norton the very categorical 
difference between substantival spacetime (“container”) and matter (“the content of spacetime”) hinges on 
energy: “If we do not classify such energy bearing structures [...] as contained within space-time, then we do 
not see how we can consistently divide between container and contained”, Norton/Earman (1987), p. 519. By 
modus tollens, substantivalism (as the claim that spacetime is the substantival receptacle in which all events of 
the material world take place) thus implies that whatever has energy, counts as a substance.  



14 
 

criterion then? We propose that possessing energy and satisfying certain energy conditions60 

as jointly sufficient and necessary for an entity to count as a material thing/substance61. 

Without going into further detail, let’s only cursorily make this plausible: Energy conditions 

encode certain formalized meta(-)physical assumptions for matter62: For instance, the 

dominant energy condition captures the notion that energy-mass can never be transported 

superluminally; “if one drops the energy condition altogether, it is possible to construct bits 

of matter that propagate along any timelike curve. […] And if one weakens the (dominant) 

energy condition […] one can construct bits of matter that propagate along spacelike or null 

curves respectively.”63 In this sense, energy conditions serve as ontological/metaphysical 

selection rules for matter models. 

For the benefit of the reader we list the ontological apparatus developed so far in the 

following table: 

term/entity/ontological category definition/ features 
Substance, object, thing predicability, ontological subsistence  

state (space)  (totality of) possible properties 

material substance, matter, concretum mutability (|state space| ≥ 2), ontic subsistence, 
persistence 

concept, conceptual substance, abstractum immutability, no ontic subsistence 
Energy measure for mutability 

event in material substance � ordered pair of changes in �: (state�(�), state�(�) 

the  World Θ Totality of all things: {�: � is a material thing} 

 

We now hold in our hands the conceptual tools to get our semantic and ontological analysis 

to work. Note that an interpretation of a formalism (“semantics”) must be posited explicitly 

(via what Bunge aptly calls “semantic axioms”64). 

 

                                                           
60

 Cf. Poisson (2007), Ch. 2.1 or Malament (2012), Ch. 2.5 for an introduction. 
61

 Appealing to certain energy conditions might turn out to be a helpful tool to distinguish between physical 
and non-physical (“geometric”) fields in the context of alternative theories of gravity, esp. scalar-tensor 
theories, cf. Sotiriou et al. (2007). Generically, the Brans-Dicke scalar, which can be assigned an energy-
momentum tensor, violates any energy condition. Thus, according to the above criterion it does not qualify as a 
material/physical scalar, which exists ontologically on a par with other physically substantival things. 
Essentially, many of the arguments from our discussion of the classical GR case carry over: The Brans-Dicke 
scalar represents a relation. With hindsight this makes sense, since the scalar was historically introduced to 
render the gravitational coupling constant a dynamical variable (thereby incorporating Dirac’s Law of Large 
Numbers, cf. Weinberg (1972), Ch. 7.3); but without matter present gravity cannot couple to anything, so that 
the existence of the scalar (seen as the dynamically evolving strength of the gravitational coupling constant) 
(onto-)logically presupposes the existence of physical matter fields, and thus doesn’t represent an autonomous 
entity. We will tackle an ontological analysis of Brans-Dicke theory in a future project. 
62

 Cf. Curiel (2014c) for a comprehensive review. Note that the empirical discovery of fields that violate certain 
energy conditions may force us to revise the concomitant metaphysical assumptions (for instance about 
superluminally propagating causal mechanisms). Physicists already use energy conditions to ontologically 
categorise the fields in terms of substantival (physical) and non-substantival (geometrical), e.g., in the context 
of gravitational theories, cf. Sotiriou et al. (2007). 
63

 Weatherall (2012), p. 20 (his emphasis) 
64

 Cf. Bunge (1967) Ch. 1 and (1981), Ch. 10. 
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4. Semantics and ontology of GR 

Given a geometric spacetime theory (neo-Newtonian, neo-Minkowskian or general-

relativistic), let’s scrutinise now one of the main protagonists, the bare manifold ℳ itself. 

Scientific realism demands “semantic completeness”: In order to promote the mathematical 

formalism to an empirical theory each indispensable, non-mathematical/formal symbol must 

be assigned an unambiguous meaning65: What then does a point of the manifold represent? 

Since the representing mathematical entity should ideally somehow reflect the features of 

the real entity it represents, notice first that a point in a set lacks any intrinsic for 

properties66: Not even dimensionality or topology are available - features of the manifold set 

to which the points belong! Accordingly, what a point represents had better not be a thing 

(which by definition would have to be predicable). Instead, the candidate that lends itself 

naturally for the office, is an event, defined as a change of the state of a thing �, i.e. an 

(ordered) pair of its states, < state1(�), state2(�)>. (It follows that an event is not a thing!) 

Multiply occurring events are represented by different manifold points. Identifying manifold 

points with events is in line with common practice in Special Relativity, where a correct 

understanding of length contraction and time dilation calls for the identification of the 

proper events of the respective situation: It’s easy to conceive of experimental setups, such 

as in the Barn-Ladder-Paradox, where the measured time is contracted, whereas the 

measured length is dilated67.   

The chart (coordinate system), which maps manifold points ℳ to ℝ�, provides a mere 

labeling catalogue of events,  – in and of itself boring book-keeping that, figuratively 

speaking, only specifies the format of the label (via the dimensionality) and the section of 

the archive in which to retrieve a file (via the topology). What ultimately we are interested 

in, though, is the real order “hidden underneath the conventional labeling tags”, the 

objective (invariant) relations between events - the real spatiotemporal structures: 

Spatiotemporal statements such as “The proper length of a between two events, A and B, in 

a particle with the affinely-parameterised curve ��(�) is ℓ: ∫ ��
�

�
�|����̇��̇�| = ℓ.” can thus 

be understood  relationally68 in a straightforward manner: Despite the coordinatisation 

being a conventional labelling system, it can be used to represent an objective pattern of 

                                                           
65

 Cf. Bunge (1967), Ch. 1 
66

 Our view thus opposes e.g. Stachel’s (2014). He takes the lesson from the hole argument to be that “the 
points of spacetime have quiddity [i.e. share the same intrinsic properties], but no inherent haecceity [i.e. 
properties that individuate things of the same quiddity]”, p. 39. According to our thing-based ontology, only 
things possess intrinsic properties; non-things, such as processes or events, have no properties at all. Stachel’s 
position seems to imply the existence of non-intrinsic, i.e. extrinsic properties, and hence relations that 
individuate otherwise indistinguishable entities. Relations one might, however, argue ontologically presuppose 
distinct relata, so that no longer it is clear how the distinctness of spacetime points can be reconciled with the 
absence of any individuating properties. 
67

 Cf. van der Weele/Snoijer (2005) 
68

 Dieks (2001) elaborates on this, discussing also this relational interpretation of coordinates in pre-relativistic 
settings. 
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relations –an objectivity excplicitly implemented in the coordinate-independence of the 

spatiotemporal statement.  

This also leads us to a natural relational definition of a field69, namely as the relatum of the 

complex or network of relations amongst events, represented by the field variables. This 

network encodes the diatopochronic/spatiotemporal identity of the object - what connects 

two events that pertain to the same object. These relations, which ground spatiotemporal 

identity, are visualised by the 4D trajectories:  A point particle with a worldline; a (local) field 

with a worldtube or worldcone. Let us spell out this sketch with a simple example: The 

different values of the scalar field � represent the relations that hold amongst events that 

pertain to one substance ref[�]. Here, to distinguish between these relations � holding 

amongst events and the substance to which they pertain (i.e. the substance that changes), 

we have designated the latter by ref[�]. Via a coordinisation (diffeomorphism) �: ℳ → ℝ� 

one spreads labels over the bare manifold ℳ, which represents all possible events in (= 

changes that happen to) ref[�], thus inducing an (arbitrary) order amongst them. The “field 

configuration” � ∘ �: ℳ → ℝ now represents the necessary relations, i.e. the characteristic 

pattern that must hold amongst possible events in ref[�]. The dynamics of � is governed by 

the field equations. Note that the use of the term “dynamics of �” (or “evolution”, which we 

deliberately avoided) prima facie suggests that � is changing. This is misleading: � 

represents how changes in ref[�] are related. The field equations tell us what these 

relations are; alternately, if one insists on change-involving terms: how the relations 

between two events vary over different pairs of change. Given now some initial value data 

(taking the initial value problem �  to be well-posed), applying � to the initial value data, 

which serve as reference values for the relations, now yields the patterns for future events in 

ref[�] will occur. Let this brief outline suffice for our present purposes. 

What can we learn from such a relational interpretation of coordinates and fields? We 

submit, there are three immediate lessons:  

- It refutes Field’s popular argument that, since modern field theory, by the very 

definition of a field, assigns properties to spacetime points or regions, spacetime as a 

whole should count as a substance70. Our counterexample shows that, by itself, 

Field’s argument does not conclusively demonstrate the substantiality of spacetime 

(understood here tentatively as whatever is represented by ℳ).  

- In fact, in our whole discussion so far, the question of what ref[���] is in particular 

has not yet been touched upon at all: More generally, the field theoretical formalism 

(more precisely: the field configuration) by itself only specifies the relations between 

events. It does not reveal the nature of the entities in which the events occur. For 

that one needs to supplement the formalism with an interpretation. For instance, the 

2-dimensional wave equation 
�²�

��²
+

�²�

��²
−

�

�²

�²�

��²
= 0 (with some given parameter k in 

                                                           
69

 Cf. loc. cit., esp. section 5, for a similar account.  
70

 Field (1980) 
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units of a velocity) only relates unspecified events. That ref[�] is a (homogeneous) 

membrane, e.g. the skin of a drum, fixed at both ends and with the properties of 

“linear mass density” (represented by �) and “tension” (represented by �), both of 

which related via � = ��/�), and that � represents the vertical displacements of the 

membrane, requires the “semantic axioms” (Bunge) of an interpretation. The latter 

presupposes some (at least implicit, “intuitive”) understanding of the ontological 

categories “substance” or “properties” that underlie the model with its ontological 

commitment to a predicated substance, called “membrane”. 

- Our definition of a field easily carries over to statements involving the metric as a 

field, so as to satisfy an important desideratum of relationalism71: No irreducible, 

monadic spatiotemporal properties need appear in a correct analysis of the 

spatiotemporal idiom72.  

Remark: The identification of coordinatisation as merely unphysical labeling deflates the 

meaning of the diff(ℳ)-invariance (General Covariance) of GR: Generally covariant 

equations take on a coordinate-independent form, reflecting, as we saw, that the relations 

expressed in them are objective. General Covariance of geometric spacetime theories 

ensures directly the objectivity and reality (independence of conventional labels) of the 

relations represented by generally covariant equations73. A change of coordinates only 

                                                           
71

 As Earman’s “third theme” R3 of traditional relationalism requires, cf. Earman (1989), p. 13. 
72

 Dieks (2001) is also explicit about this. 
73

 Our position over whether General Covariance has physical significance or is physically vacuous, cf. Norton 
(1993) for a historical review, is not that per se it has physical content. Rather we want to underscore two 
points: 

- General Covariance ensures objectivity/reality of the encoded relations. As our focus has shifted to 
objective geometric characteristics and relations of worldlines, we’re interested in the relevant 
invariants, which do not depend on the conventional choice of coordinate systems.  

- General Covariance inherits physical significance from the geometrisation paradigm, i.e. the 
identification of inertial and gravitational effects, unified via the spacetime geometry. The recent drift 
of the debate towards gauge aspects, cf. Pooley (2015), comes close to our point: The gauge group of 
geometric objects (as mathematical objects) is indeed diff(ℳ).  

Our appeal to both objectivity and the geometrisation paradigm resembles the one Einstein seems to have had 
in mind with his “private” version of the point coincidence argument, cf. Stachel (2014), Sect. 2.5. According to 
the latter, physical events are constituted by intersections of worldlines and therefore such intersections must 
be preserved, as reflected in General Covariance.  
It will be instruct to elaborate briefly here on Kretschmann’s trick to make any special-relativistic equation 
generally-covariant by firstly re-placing the Minkowski metric by a general metric, and secondly postulating 
that the associated Riemann tensor vanish, cf. Norton (1993), Ch. 5. What is going on here? The first step, the 
“general-covariantisation” of the originally special-relativistic equation, say, for the massive Klein Gordon 

Equation, i.e. the transition [��� ∂� ∂�+M�]ϕ = 0 → [���∇�∇�+M�]ϕ = 0 makes it explicit that the physical 
phenomenon described in the Klein-Gordon Equation is objective (not a coordinate artifact), but presupposes a 
certain chronogeometric and inertial structure (see main text), represented by the metric and the associated 
Levi-Civita connection, respectively. So far, however, the general-covariantised Klein-Gordon Equation as it 
stands holds for every reference frame and inertial/chronogeometric structure – obviously far beyond the 
domain of empirical validity. The second step, the additional postulate �����[�] ≡ 0,  now implicitly picks out a 
class of physically distinguished trajectories (spatiotemporal relations), namely those that move along 
geodesics w.r.t. to the Levi-Civita connection of Minkowski spacetime. With the general-covariantised Klein-
Klein Equation in conjunction with this additional postulate, the claim that the relations represented by ϕ  is 
restricted to the class of inertial frames. 
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changes the labeling - an intrinsically meaningless prop, anyway: A change in coordinates 

does not correspond to an active shifts. Diffeomorphism transformations only have a passive 

meaning: We simply use a different labeling system. This denial of equating “Hole 

Transformations” 74 with active shifts, which describe a physically distinct world, blocks the 

Hole Argument75. According to our relationalist reading of coordinates, diffeomorphically 

equivalent models describe the same world76.       

Having identified the manifold points as representations of events, one naturally might 

wonder: How are two events connected to each other? The universality of such a connection 

brings its distinctly extrinsic character to the fore: Whatever this connection represents, it 

does not depend on the internal state of the entities involved77. 

Let’s look more into the nature of such a connection. More precisely, the above question 

comprises two facets:  

1. Are there in some sense natural connections between events? Via which paths can 

two points be linked? Via which chain of events does a causal influence propagate 

from one event to another? This is what the geodesic/inertial structure (more 

specifically: parallel transport), embodied by the –aptly dubbed- connection ���
� , 

provides78: A distinguished path, viz. geodesics, between events.  

Note, however, that the mathematical/geometrical, i.e. mathematical distinction of 

geodesic paths, in and of itself, does not guarantee the physical distinction - nor, a 

fortiori, the identification with inertial structure. For instance, in Poincaré gauge 

theories of gravity that allow for non-vanishing torsion, i.e. a connection for which 

Γ[��]
� ≠ 0, “the fundamental geometric object [viz. the connection] fails completely to 

                                                                                                                                                                                     
The situation thus is completely analogous to GR: The Einstein Equations pick out the distinguished trajectories 
or relations, whereas General Covariance of a given general-relativistic matter field equation reflects the 
objectivity of the pertinent phenomenon.  
(In more standard parlance the general-relativistic matter field equations and the Einstein 
Equations/Kretschmannisation pick out the dynamically possible and kinematically possible models, 
respectively cf. Pooley (2015), pp. 11. ) 
74

 An active shifting of all physical states of affairs, which would correspond to a displacements of objects plus 
their worldlines (leaving the coordinate chart untouched), does make a physical difference: If shifted 
trajectories deviate from geodesics, inertial effects occur; but even if the geodesic nature of a body’s worldline 
is not altered, for instance, when we subject the body to a time-translation, an observable effect occurs: Think 
of shifting two points along great circles on the surface of a sphere; a shift can result in collision of the two 
points! Only for the special case of pseudo-Euclidean geometry do active shifts not result in discernible 
situations, cf. Nerlich (1994), Ch. 6 and 9. In short: While in a geometric spacetime setting invariance under 
passive shifts simply reflects coordinate-independence of the real effects, the claim that “General Relativity is 
distinguished from other dynamical field theories by its invariance under active diffeomorphisms." Gaul and 
Rovelli (2000), p. 30, is false: GR is not invariant under active shifts. The latter are physically discernible 
operations. 
75

 Cf. Norton (2015) or Stachel (2014). 
76

 Cf. Nerlich (1994), Ch. 6 and 9, for a similar point 
77

 Cf. Weatherson (2012), esp. sect. 2.3 
78

 Equivalently, of course, one may assign the geodesic structure to a derivative operator � with which the 
manifold is endowed, cf. Malament (2012), Ch. 1.7. The connection and the derivative operator are uniquely 
determined by ���

(��) = ���
� ��  where ��  denotes the unit vectors that span the tangent space. 
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possess the kind of spatiotemporal significance that the Levi-Civita connection has in 

GR”79.  The identification –by fiat! – of geodesic and  inertial structure, surely, is very 

attractive, since inertial frames, too, are uniquely distinguished, albeit physically: 

Firstly, by the fact that the laws of physics take the same form in all inertial frames80, 

a form, furthermore, that is particularly simple. Secondly, all physical interactions 

pick out the same distinguished, inertial frames81 - a mysterious “conspiracy” 

(Brown). 

2. How are distances between events measured? This is chronogeometric function of 

the metric, which equips the distinguished path with a measure.  This identification 

of chronogeometric and metric structure is already present in Special Relativity. 

In the standard formalism our manifold is supplemented by both a metric and metric-affine 

structure. With the above elucidations82, we have thus arrived at a natural ontological 

identification of the status of what both represent, namely relations: The metric-affine 

structure picks out those connections between events that are physically distinguished, viz. 

the inertial trajectories; the metric equips this path which a notion of spatiotemporal 

distance as well as the lightcone-structure.  

But why should we postulate such structure in the first place? Let us apply the realist 

strategy mentioned in section 2: 

- All established spacetime theories take for granted inertial frames as primitive, 

physically distinguished class of reference frames in order to account for all the 

inertial effects we experience directly every day. (We’ll elaborate on this in a bit.) In 

geometric spacetime theories geodesics (as defined by parallel transport w.r.t. to the 

affine-structure) take over this role of distinguished trajectories83. Scientific realism 

now abductively encourages that the postulated inertial frames should be taken 

seriously in the sense that affine structure may be assumed to represent an element 

of reality, viz. inertial structure.  
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 Knox (2013), p. 356 
80

 Cf. ibid., sect. 2 
81

 For a systematic bottom-up construction of GR, two ingredients seem essential for the “geometrisation 
paradigm”: 1. Universality of free-fall, and 2. the Einstein Equivalence Principle (claiming the local validity of 
special-relativistic physics in free-fall frames). Together, they suggest that free-fall frames be viewed as  
inertial, i.e. identify inertial and gravitational structure via the spacetime geometry.  
82

 Axiomatically, the identification of affine structure as inertial and the chronogeometric structure is achieved 
by “interpretative principles” which specify the conformal and affine/projective structure via their respective 
physical instantiation in terms of the behaviour of point particles and light rays, cf. loc. cit. (2012), Ch. 2.1. 
Whether these “interpretative principles” or “semantic axioms” (Bunge), are necessary or whether they follow 
from GR is a different issue, see footnote 84. 
83

 It is worthwhile pointing out that Einstein placed a special emphasis on the status of the geodesic postulate 
as a generalisation of Newton’s 2

nd
 Axiom, cf. Lehmkuhl (2014). The crucial point is that in geometrised 

spacetime theories, Newtonian or Minkowskian inertial frames morph into affine-structure (the uniqueness of 
which is guaranteed by the Equivalence Principle in the sense of indistinguishability of inertial and gravitational 
effects), see also Knox (2013).  
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- By the same argument, since the metric structure features in the explanation of 

observable effects84, such as gravitational redshift, we may again abductively infer 

that it corresponds to something real. Its geometric interpretation as a measure of 

spatiotemporal distances is vindicated via the experimentally well-corroborated s.c. 

Clock Hypothesis85, which equates the proper time measured by a commoving clock 

with the length of that cure as determined by the metric.  

A priori the metric and the affine structure need not be related86 - nor chronogeometric and 

inertial structure. Motivated, however, for instance by demanding that (affinely 

parameterized) geodesics on the manifold, �̇�∇��̇� = ẍ� + ���
� ẋ�ẋ� = 0 , should also 

extremalise the worldline element �
��

������, the simplest choice would be metric 

compatibility: ���
� =

1

2
�������

��
+ ���

��
− ���

��
�. Alternately, from a more mathematical 

perspective, one could demand that angle between two parallel-transported 4-vectors be 

preserved.  Be that as it may: Metric compatibility - as implemented in GR87,88 - unifies the 

chronogeometric and inertial structure89. 

In short, we propose that spacetime is represented by the triple ��, �
��

, ��90, where the 

metric represents chronogeometric structure and the metrically compatible connection ∇ 

represents inertial structure. Both are to be construed as relations between events. We’ll 

see in a bit that this claim is consistent with the actual physics and sheds some light on 

issues surrounding gravitational energy in GR.  

Let us pause for a moment to make three observations that make contact with the existing 

relationalism/substantivalism literature: 

- The standard abductive arguments for substantivalism that appeal to inertial 

effects, such as Newton’s Bucket Experiment, are all beside the point: Neither 
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 Cf. Will (2014) for a comprehensive review of all the different tests GR has been subjected to. 
85

 Cf. Fletcher (2013), who also proves that for every timelike curve such a clock of arbtritrary precision exists. 
One may in fact, reverse the argument to the extent that “the ‘geometrical’ hypothesis linking the behaviour of 
ideal clocks to the […] ‘metric’ field is in principle dispensable” (Pooley (2015), p. 3): It need not be postulated 
separately. 
86

 For instance, in s.c. Palatini f(R) Gravity, cf. Sotiriou et al. (2007), the connection (with which a derivative 
operator and the Riemann tensor are defined) and is not the Levi-Civita connection of the metric: Geodesics 
w.r.t. the connection do not extemalise the line element. 
87

 It’s a striking feature of GR (and more generally, a certain class of alternative theories of gravity, s.c. 
“Lovelock Gravity”, cf. Padmanabhan/Kothawala (2013), pp. 9., that this unification follows from both the 
inertial and the chronogeometric structure being treated as dynamical, independent structures, subject to 
variation in the formulation of GR (the s.c. Palatini variation), cf., for instance, Hobson et al. (2006), Ch. 19.11. 
88

 By contrast, this unification gets lost in Newton-Cartan Theory, where the chronogeometric structure is 
encoded in the two metrics, the temporal and the spatial one, and the inertial structure is encoded in a 
separate derivative operator, cf. Malament (2012), Ch. 4.1. 
89

 Einstein himself viewed the revolutionary core of GR, as represented by (ℳ, ���, ∇), in the unification 

between inertia and chronogeometry , a unification that manifests itself in the Levi-Civita connection Γ��
� , as it 

appears in the the geodesic equation, interpreted as a generalisation of Newton’s 2
nd

 Law, cf. Lehmkuhl (2014). 
90

 Don’t conflate spacetime represented by (ℳ, ���, ∇) and the universe! The latter corresponds to the system 
composed of all material objects –and is a substance itself, cf. Bunge (2007).  
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spacetime substantivalism nor relationalism can explain inertial effects! What both 

ontological approaches must postulate as a brute fact are physically distinguished 

trajectories, i.e. inertial structure91. “Contemporary space—time theories show a 

ubiquitous need for inertial structure as a theoretical construct.”92 Any departure 

from inertial motion elicits well-corroborated effects. The assumption of the 

existence of inertial frames is beyond doubt. It is the ontological construal of this 

physically distinguished class of trajectories, where the substantivalist and the 

relationalist part company: For the substantivalist the physical distinction originates 

in the intrinsic properties of spacetime – without being able to offer a proper theory 

that explains this distinction in terms of intrinsic properties. The relationalist, on the 

other hand, simply claims that there exists a distinguished chain of relations 

connecting two pair of events93. Both take inertial structure as a primitive. The point 

of contention between the relationalists and substantivalists is a purely ontological, 

conceptual one! Here we clearly, see why Leibnizian- relationalism (the ontological 

issue just mentioned) and Machian relationalism must be kept apart: The latter seeks 

a theory that can account for - i.e. explain - the physical distinction of inertial 

trajectories – a distinction that the former must accept as a datum. Note, however, 

that the innovation of GR to treat inertial structure as dynamical (via metric 

compatibility) is a necessary first step towards a Machian relationalism: If one wants 

to derive inertial structure, it surely cannot be fixed. 

- In principle, one might consider promoting the inertial structure (absolute 

acceleration) to the status of a primitive, intrinsic property of a body, as Sklar has 

proposed94, emphasizing that this acceleration absolutism does not necessarily 
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 One might argue, though, that, since the Einstein Equations imply the Geodesic Principle, i.e. the fact that in 
absence of external forces bodies follow geodesics, GR indeed explains inertia. Einstein himself thought so for a 
while. In fact, that the Bianchi identities imply the geodesic equations of motion for relativistic dust is a 
standard textbook exercise, cf., for instance, Hobson et al. (2008), Ch. 8.8. (Similarly, in the geometric optics 
approximation, one can derive that electromagnetic waves propagate along null-hypersurfaces, cf. Wald 
(1984), pp. 70.) Furthermore, the s.c. Geroch-Jang Theorem extends this in a rigorous manner to matter other 
than dust that satisfies the strong energy condition, cf., for instance, Weatherall (2012), Sect. 3.  
However, Tamir (2011) has subtly argued against the claim that GR contains the Geodesic Principle, pointing 
out in particular that all realistic matter models violate the strong energy-condition. Weatherall (2012) takes up 
the idea, esp. Sect. 4, arguing, however, that if one adopts a modified notion of explanation (“puzzleball view”), 
loc.cit., sect. 5, GR does explain inertia. 
92

 Teller (1991), p. 377. According to Teller, a substantivalist might then argue  that since inertial structure must 
be structure of something, “this something is precisely what we have in mind when we talk about the manifold 
of space-time points, substantivally conceived”, loc. cit. Such an argument falls into the error we anticipated 
above: Even if a conceptual entity has properties, we may not infer that what the latter represents is 
necessarily a substance. In the jargon of the field: Mind the type-token difference! 
93

 Cf. loc.cit., Sect. IV. To do justice to the relationalists before the advent of non-geometric spacetime theories, 
one may summarise the jist of their methodologically attractive and heuristically indeed fertile complaints as a 
mismatch between the spacetime symmetries and the dynamical symmetries describing matter, cf. Pooley 
(2013), Ch 4.2. This surplus structure is then criticized as being unobservable. To give a concrete example: The 
Galilei group as the symmetry group of Newton’s absolute space and time is a proper subgroup of the Leibniz 
group. The relationalists’ methodological demand that this unobservable structure be minimized, if not 
eliminated, is realised in geometrised spacetime theories, where gravitation has been incorporated into the 
spacetime geometry. 
94

 Cf. Sklar (1974), pp. 229-332 
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conflict with Leibniz-relationalism. His proposal has been criticised elsewhere95 in 

detail; suffice it here to mention the following – comparing Sklar’s proposal to ours: 

o The former remains, as he himself admits, only a sketch; crucial details need 

still to be fleshed out. Our ontological and semantic proposal, by contrast, is 

close and natural to the formalism, as we outlined above.  

o If in GR the affine and metric structure are unified via metric compatibility, 

they should have the same ontological status, as it has in our proposal. For 

the metric structure, however, it make no sense to consider it as an intrinsic 

property (‘“Sklarise” it’): A well-posed question about a distance involves two 

points, between which the distance relation holds.    

o An independent, more direct argument for the relational status of the metric 

can be constructed from the following syllogism: (P1) The ontological status 

(denoted by “[.]”) of the objects represented by the l.h.s. and the r.h.s. of an 

equation must be the same. Take as an example � = ��², irrespective of its 

exact meaning96: [�] is a property, namely energy, [���] = [�] is likewise a 

property, namely rest-mass. (P2) Manipulations like differentiation w.r.t. its 

arguments do not change the ontological status of the object: They merely 

specify local changes, zooming in as it were on infinitesimal details without 

altering the ontological category. The (time-dependent) mass ratio of two 

chemicals, for instance, is a relation; so is its rate of change.  (P3) The energy-

momentum tensor expresses a relation97. (P1-3), together with the Einstein 

Equations, entail: [���] = [���] = [���], i.e. the metric likewise expresses a 

relation. A similar argument applies to the affine structure. 

The reader might level a natural objection against our claim that spacetime is a relation: 

Wouldn’t, according to our ontological terminology, the non-substantival nature of 

spacetime entail that it didn’t have any properties? What then with curvature?- Indeed, we 

deny that spacetime possesses any properties98! W.r.t. the curvature, the distinction 

between the object and its representation becomes crucial: Curvature is a mathematical 

property only of the mathematical object that represents spacetime; the Riemann tensor 

� ���
�  is a function not of spacetime, but of the metric and its derivatives: � ���

� = �[�Γ�]�
� +

Γ�[�
� Γ�]�

� , giving us information about the mathematical properties of the metric – as a 

mathematical object. 

Let’s close this section with a remark on pre-GR spacetimes. Essentially all our arguments 

carry through also for the Minkowski spacetime of SR (and neo-Newtonian spacetime of 
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 Cf. Earman (1989), Ch. 6.9 
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 The correct interpretation of this s.c. Mass-Energy Equivalence turns out to be not so easy, cf. Fernflores 
(2012) 
97

 Cf. Lehmkuhl (2010) 
98

 Bunge (1977) also points this out. Einstein himself seems to have articulated this intuition at some point. In a 
letter to E. Mach from 1913 he writes: “It seems to me an absurdity to ascribe space physical properties.” 
(quoted in Brown/Lehmkuhl (2013)).    
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Newton-Cartan-Theory): Minkowskian spacetime is represented by the triple 

�ℝ���, η��, ∇(�)� and best construed as the totality of possible and actual relations between 

events. Note that the immutability of Minkowski spacetime is particularly natural to 

apprehend, since it is “absolute” (in Friedman’s first sense of the word99). 

For the benefit of the reader we list the results of our semantical analysis in the following 

table: 

element in the formalism  …represents… ontological status 

manifold ℳ totality of possible events in the World All possible changes 

metric structure ��� chronogeometric structure spatiotemporal distances 

affine structure (parallel transport) 

∇ 

inertial structure spatiotemporal paths 

 (ℳ, ���, ∇) Spacetime Totality of spatiotemporal 
relations between possible 
events in the World 

Coordinates ordering/labeling system for events Conventions 

General Covariance of a law Objectivity of the represented pattern  - 

 

It’s instructive to contrast our own relationalism against metric (field) substantivalism, 

which has been argued to be the most defensible form of substantivalism100. It states that 

the pair (ℳ, ���) represents spacetime and that the latter is a substance. 

- Three main virtues commend themselves for metric substantivalism: 

o It accounts for the fact that the bare manifold by itself lacks the salient 

features of spacetime (e.g. light-cone structure, past-future-distinction, etc.) 

that constitute explanatory core and the essential the metric plays. 

o It is not bound to the notion of primitive identity of manifold points 

(“hæcceitism”: the postulate that the points of the manifold are individuated 

in virtue of an empirically elusive primitive indexical) – a manœuvre the Hole 

Argument101 forces the advocate of “manifold substantivalism” to resort to102. 

o Regarding the metric as a substance, like any other field, chimes with the 

popular view, natural to quantum field theoreticians103 with little sympathy 

for the geometric spirit of GR, reflecting in particular, that it seems to carry 

energy. 
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 Friedman (1983), p 208 distinguishes three meanings of “absolute”: a) independent of a reference frame, as 
opposed to “relative” (for instance, within Newtonian Mechanics e.g. spatial distance, or within GR rotation 
relative to a local inertial system); b) non-dynamical (for instance, the speed of light in Special Relativity) and c) 
substantival (as opposed to relational), on which our discussion here focuses. Our analysis illustrated: A 
dynamical quantity needn’t represent a substance, whereas a material substance must always be represented 
by a variable that is both dynamical and non-relative. 
100

 Cf. Hoefer (1996).   
101

 Cf. Norton (2015) or Stachel (2014) for a review. 
102

 Cf. op. cit., where the manœuvre is dismissed as ad hoc.  
103

  A textbook written explicitly in this field-theorectical spirit is Weinberg (1972). 
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Let us comment on these tenets: 

- We agree with Hoefer’s analysis that the concept of primitive identity of manifold 

points should be relinquished as an ad hoc manœuvre. Like we, Hoefer couches his 

analysis (albeit implicitly) in a substance ontology: “A modern-day substantivalist 

thinks that space is a kind of thing that can […] exist independently of material things 

[…] and which is properly described as having its own properties […]”104. 

- However, even though we agree with Hoefer that the manifold together with the 

metric does represent decisive spatiotemporal features, this is not the whole story: 

(ℳ, ���) only captures the chronogeometric structure that defines spatiotemporal 

lengths; the conceptually distinct -albeit contingently related- inertial structure must 

still be accommodated - by extending the spacetime model to the triple (ℳ, ���, ∇).  

- We also reject the third argument: Its first part, the common linguistic practice as a 

fait social, is irrelevant for any systematic analysis; its second part, the fact that 

metric substantivalism accommodates for gravitational energy, becomes moot, since, 

as we and Hoefer himself argued elsewhere105, gravitational energy does in fact not 

exist as a fundamental concept in GR.  

 

5. Discussion 

So far, we have mostly operated in a purely conceptual manner. Time to make a connection 

to more physics-oriented results: 

Elsewhere,106 it has been argued that gravitational energy, i.e. energy attributable to 

spacetime, does not exist within GR as a fundamental concept. The main line of arguments 

roughly went like this:  

- All known definitions of gravitational energy presuppose background structures and 

involve ad hoc assumptions that do not hold for generic spacetimes. 

- An evaluation of these conditions yields that they considerably narrow down the 

solution space:  

o Known, numerous and natural counterexamples exist. 

o Even our cosmological standard model (ΛCDM) does not comply with these 

conditions. 

o They are unphysical/unstable: Tiny deviations from suitable models lead to 

models that violate again the conditions. 

o In themselves, their motivation is dubious (e.g. already the plane gravitational 

wave violates them). 
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 Hoefer (1996), p. 5.  
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 Cf. Duerr/Lehmkuhl (2015a), in which the authors elaborate pioneering work by Hoefer (2000). 
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 Cf. loc. cit. 
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- We concluded that, since for a concept to be fundamental/essential in the 

framework of a scientific theory, it must be applicable to a typical – or in the absence 

of a discernible measure - sufficiently large class of typical situations and must not 

hinge on very specific, contingent conditions, gravitational energy is not fundamental 

to GR.  

- Retrospectively this verdict makes sense: “If gravitational force has somehow been 

compromised - geometrised away- then we should expect the same to happen to 

[....] ENERGY and MOMENTUM”107.  

Is there a connection between the non-existence of general-relativistic gravitational energy 

and the view that spacetime is a relation? We submit that there are two important links: 

1) As we argued, it is necessary for a material substance to possess energy. (Non-

material substances, i.e. abstracta, do not ontically exist.) From this angle, the non-

existence of gravitational energy is a consistency check for relationalism: If 

gravitational energy did in fact exist, our relationalism would be inconsistent.  

 

2) Our ontological relationalism can in fact explain the non-existence of gravitational 

energy.  

- Let’s first ponder: Does spacetime change? We propose that it doesn’t. 

Consider the epitome of a putatively changing spacetime: a gravitational wave 

passing through an interferometric detector. The wave changes the proper lengths of 

the detector arms, thereby inducing a difference in running times of laser pulses 

travelling back and forth, a difference that gives rise to detectable interference 

patterns108.  On the face of it, looks as if spacetime has changed with the passage of 

the gravitational wave. However this is not so: We are comparing two different pairs 

of events; the spatiotemporal relations between them are different, too. Saying that 

spacetime has changed, would require one pair of events and their spatiotemporal 

relations to be treated legitimately as a reference value. But there is no cogent 

reason to do that: GR lacks all absolute spacetime background structures that might 

justify privileging a relation among one specific pair of events as the default relation.  

Put slightly differently: The Einstein Eqations serve as a black box giving the right 

metric, the corresponding Levi-Civita connection of which then picks out inertial 

frames. (In that respect the Einstein Equations take up the role of the demand that 

the Riemann tensor vanish in Kretschmannisation (see footnote 73): They pick out 

and fix, by fiat, the class of inertial frames, the class of physically distinguished 

relations between events.) Each pair of events is assigned a spatiotemporal relation – 

no change is involved in the assignment of these relations. 

In conclusion, spacetime does not change. 
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 Norton (2001), p. 21 (Norton’s emphases). 
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 Cf., for instance, Misner et al. (1973), Ch. 37 
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- Now recall that we identified energy as a quantification/measure of changeability. 

Absent any genuine notion of change of spatiotemporal relations, a fortiori the 

changeability of spatiotemporal relations cannot be quantified: Gravitational energy, 

as the energy attributable to spacetime, does not exist. (Recall the difference pointed 

out in section 3 between “having no energy” and “having zero energy”.)    

Misner et al. even give a related explanation for the non-definability of gravitational 

energy in a generic spacetime such as a closed universe: “To weigh something one 

needs a platform on which to stand to do the weighing”109 – an illustration that can 

be rendered non-metaphorical now: The definability of gravitational energy requires 

background structure as a somehow privileged reference - background structure that 

generic spacetimes lack. 

Remark: By contrast, for the relations expressed in matter field configurations (recall 

our sketch of a relationalist definition of a field in section 4) we do have a natural way 

to pick out a class of privileged default relations, namely both on the one hand the 

dynamical symmetries of the matter field itself, which e.g. define the ground state, 

and the background spacetime structure on the other (especially when the latter is 

highly symmetric – the case sufficient for all practical purposes of (quantum) field 

theories on a curved spacetime). 

 

A remark is in order now on those cases where an ersatz for gravitational energy in its 

various incarnations is possible110. For the time being, we shall gloss over our arguments 

against the fundamentality of gravitational energy and only focus on the special cases that 

allow for a definition of gravitational energy. According to the Positive Energy Theorem111, 

such gravitational ersatz energy turns out always to be positive – an important property for 

the coherence (e.g. in terms of stability) to the standard view of spacetime carrying energy. 

Thus, the spacetime in general, and the gravitational wave in particular, would satisfy our 

proposed sufficient conditions for material substantiality. Thus, we can explain why 

spacetime and gravitational waves so beguilingly look like substances in such cases! In the 

case of gravitational waves this renders explicit the ontological presuppositions underlying 

Isaacson’s variational approach112: Here, from the outset, the gravitational wave is de facto 

treated like an ordinary matter field. In this respect, the gravitational energy is an artifact of 

the implicit ontological assumption. Material substantiality in – energy out. 

Let’s turn now to the status of vacuum solutions, a notorious bee in any relationalist’s 

bonnet. 

According to substance ontologies, for a relation to exist, there must be relata between 

which such a relation holds. Consequently, relations between matter-free spacetime points 
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 Misner et al. (1974), p. 457. 
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 Cf. Duerr/Lehmkuhl (2015a, b) 
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 Cf. Wald (1984), Ch. 11.2 for further references. 
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 Cf. Duerr (2015) 
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and vacuum solutions- prima facie look like stumbling stones for any relationalist: Several 

authors have claimed to show the spacetime structure a relationalist may, according to his 

own standards, avail himself of, viz. spatiotemporal relations between matter-occupied 

points, is explanatorily insufficient113. It seems, a relationalist is committed to discard 

globally vacuum solutions as non-physical – a disturbing view for the science-loving realist, 

since after all gravitational waves are vacuum solutions: Why, if they are non-physical 

anyway, invest millions of pounds into gravitational wave detectors such as LIGO?  

These claims, however, are premised on a “narrow relationalism” (Teller), “the view that the 

actual space-time relations between actual bodies and events exhaust all the facts about 

space-time”114. According to a “narrow relationalist” only spatiotemporal relations between 

actually matter-occupied spacetime points are ontologically legitimate. We reject this 

restriction to actual material relata, instead adopting a “liberalised relationalism” (Teller) – 

a relationalism that recognises not only the actual, but also the scheme of space-time 

relations of actual or hypothetical objects to each other.115 Only relations between matter-

occupied points represent actual spatiotemporal relations, as opposed to only possible ones 

represented by relations between matter-unoccupied points: If there were two specks of 

dust with negligible mass-energy at the respective spacetime points, how would they be 

spatiotemporally related?     

Is this possibility-admitting extension du domaine de la lutte an ad hoc strategy? On the 

contrary; rather the restriction to only actualities is - presumably a relic from an 

empiricism116 seeking a way to ascend inductively from observable data to theories. In any 

theory, the mathematical formalism and its formal solutions must be supplemented by 

additional requirements that select physical solutions, i.e. restrict the formal solution space 

of possible, abstract/mathematical model to realistic, actual solutions. Consider three 

examples: 1. As far as we know electric charge comes only in integer multiples of 1/3 e. 

Nonetheless all electrodynamical equations also carry over to even non-integer multiples, 

which are nomological possibilia. 2. Despite the weirdness of their characteristics, such as 

imaginary masses, superluminal particles, s.c. tachyons, can formally be treated within 

Special Relativity117. And to be sure: Given the data, their existence is highly unlikely, though. 

3. As a last example, recall that the state vector of quantum many-particle systems 

empirically, turns out to be either symmetric or anti-symmetric, in the bosonic and fermionic 

case, respectively. Formally, however, nothing forbids a mixed symmetric many particle-
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 For example, Friedmann (1983), Ch. VI.3 and VI.4, Maudlin (1993), esp. section 6 or Skow (2007).  The latter 
is an interesting case, since it levels an objection at Sklar’s original brand of relationalism that considers 
absolute acceleration a fundamental, intrinsic property of material bodies. Skow then shows that the initial 
value problem for Leibnizian initial data (i.e. specification of relative positions, velocities and acceleration 
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114

 Teller (1991), p. 364 
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 Cf. loc. cit., Sect. II. It must be pointed out, however, that counterfactuals are problematic in GR. We’ll come 
back to this. For (test) particles with negligible energy, however, no problem occurs.   
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 Cf. Earman (1989), p. 135 
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 Cf. Baez (1993) 
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state118, i.e. some particles transforming symmetrically and others anti-symmetrically: 

Nature simply seems not to realize this possibility. 

In the same vein, the formal solution space of the Einstein Equations also contains possible 

spatiotemporal relations, i.e. spatiotemporal relations between hypothetical test particles; 

actual spatiotemporal relations on the other hand are those that are represented by metric 

or affine connections between matter-occupied manifold points. One could argue that 

Einstein, in the aftermath of de Sitter’s discovery of cosmological solutions of the Einstein 

Equations, viewed Mach’s Principle in this sense119, viz. as an ontological selection rule to 

demarcate actual, physical from only possible, formal solutions120.  

Remark: Inserting a cosmological constant Λ in the Einstein Equations, ��� = ���� − Λ���, 

and interpreting it as the zero point energy induced by a quantum field, rescues the 

actuality/physicality even of “vacuum” solutions (also for the “narrow relationalist”). These  

solutions then are, strictly speaking, no longer vacuum solutions, because there would exist 

a physical matter field filling the cosmic voids. Unfortunately, this strategy has so far failed 

spectacularly as “probably the worst prediction in the history of physics”121 - with a 

discrepancy between observation and theoretical prediction of more than 120 orders of 

magnitude122. Note also that the interpretation of the cosmological constant as vacuum 

density is not cogent (albeit natural)123: It could be just a free parameter of the minimal 

modification of the original Einstein Equations, not describing Dark Energy (in the sense of a 

material source of unknown type) but, as it were, “Dark Geometry”.     

Let us reply to two objections against liberalized relationalism. The first one concerns the 

suspicion that liberalized relationalism “serves to obscure the substantive aspects in the 
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 Cf. Messiah/Greenberg (1964). Such mixed-symmetric states give rise to the s.c. parastatistics. The fact that 
the statistical quantum mechanical formalism admits such empirically not realized possibilities is sometimes 
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 What is commonly known as Mach’s Principle was actually Einstein’s Mach-inspired hypothesis about the 
origin of inertia, namely that the global mass distribution uniquely determines the inertia of a body, cf. Earman, 
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 Hobson et al. (2006), p. 187 
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 Pace Baker (2005) whose argument is multiply confused in firstly proclaiming that Λ  must be interpreted as 
vacuum energy, but simultaneously attributing it to the vacuum energy of spacetime, and then using an unclear 
(and, as he admits, idiosyncratic) notion and alleged inter-relation of general-relativistic acceleration (which on 
top he conflates with the “accelerated increase” of physical separation) and causality to infer that a Λ-driven 
cosmic expansion is a “causal argument for substantivalism”, p. 3, by which – to conclude the parade of flaws 
and confusions- he doesn’t mean substantivalism in the usual sense, but scientific reduction of spatiotemporal 
relations. 



29 
 

(relationalism/substantivalism) debate”124, the second worries about ontological parsimony. 

We submit, neither is justified:     

- Earman sharply rejects liberalized relationalism on the grounds of “eroding the 

difference between relationalism and substantivalism; indeed the notion that space 

points are permanent possibilities of location for bodies is one plausible reading of 

Newton’s ‘De Gravitatione’”125. In what he proclaims, Earman misses the crucial point 

of the substantivalism/relationalism debate: As we clarified in section 2, it revolves 

around the ontological category of spacetime (substance, property or relation).  

- Teller concedes: “The ontology of liberalized relationalism may appear to be just as 

rich as, and perhaps in some sense isomorphic to the ontology of substantivalism.”126 

One might therefore anticipate the criticism that it smuggles in all the entities back in 

through the backdoor that the relationalist had wanted to get rid of in the first place, 

appealing to Occam’s razor. Appeal to the latter is misplaced, though, in a twofold 

way:  

o Firstly, it refers to actual entities (entia), not possible ones (possibilia). How 

could it: Any theory admits of an infinitude of possible entities! Obviously, we 

have not multiplied the actualia. 

o Secondly, Occam’s razor states demands “entia non sunt multiplicanda 

praeter necessitatem”. The necessity of postulating the existence of inertial 

structure as primitive, thus is beyond any doubt for both parties. So should 

we regard accounting for possible phenomena as unnecessary? As we argued 

and illustrated, we shouldn’t: It is an indispensable part of the explanatory 

labour of scientific theories also to cover hypothetical cases. After all, how to 

make any new discoveries, when shackling our theoretical curiosity to the 

confines of already known actualia?  

In sum: Occam’s Razor does not excise a “liberalized relationalism”. 

 

Let us eventually harvest the last fruits of ontological labours w.r.t. the putative interaction 

between matter and spacetime, sometimes presented as the take-home message of 

Einstein’s GR.  

Causality and the question whether an object acts upon another, are commonly taken to 

involve energy transfer from one object (or event) to the other127. This distinguishes causal 

relations (“a ball breaks a window”) from non-causal relations (“night follows day”) – 

notwithstanding the Humean tradition, which sought to eliminate causality in philosophical 
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parlance in favour of contingent, correlational regularities. What consequences does the 

fundamental lack of “spacetime energy” have for pertinent causality issues? 

1. Wheeler’s famous slogan “Space acts on matter, telling it how to move. In turn, 

matter reacts back on space, telling it how to curve”128 must not be understood in 

terms of a mutual causal influence of spacetime and matter: No energy is exchanged 

between the two. Instead, the Einstein equations should be understood as mutual 

constraints, i.e. an identification of the matter energy-stress tensor as the source 

term of the dynamical equation for the metric. In this respect, albeit in a dynamical 

fashion, the Einstein Equations take over the role Kretschmann’s �����[�] ≡ 0 had in 

picking out –as an implicit function - the physically privileged metric and affine-

structure, i.e. in determining the right chronogeometric and inertial structure of the 

kinematically possible models. 

Schrödinger makes the same point about a non-causal understanding of the Einstein 

Equations: “Just in the same way as Laplace’s equation ��� ��⃗ = � says nothing but: 

wherever the divergence of ��⃗  is non-zero, we say there is a charge and call ��� ��⃗  the 

density of charge. Charge does not cause the electric vector to have a non-vanishing 

divergence, it is this non-vanishing divergence. In the same way, matter does not 

cause the geometrical quantity, which forms the first member of the above [i.e. the 

Einstein] equation to be different from zero“129.  

The energy-momentum tensor is ultimately a misnomer, though: It is the source term 

functional (depending on the metric and the matter variables) that determines, in the 

guise of an implicit function the metric encoding the physical chronogeometric 

structure130. 

 

2. Thus, gravitational waves cannot cause anything or act on anything. This does not 

mean, of course, they don’t have any effects: A gravitational wave that hits a 

detector reveals itself as an effect – an effect, however, that, as we argued, reflects 

the difference in the relations between two different pairs of events! One may even 

reverse the usual order of the explanatory burden: That two relations between two 

different pairs of events differ, is exactly what to expect; their similarity is what 

requires an explanation. In other words: We mustn’t (metaphysically) take the highly 

symmetrical nature of pseudo-Euclidean geometry for granted, which represents 

such even a uniformity between all spatiotemporal events131. 

 

Remark 1: The same argument of non-causality applies to the expansion of the 

universe: The latter needs not to be interpreted as a causal effect of spacetime; again 

the exact form of the possible and actual spatiotemporal relations between events is 
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simply dictated via the field equations - a form that predicts for instance cosmic 

expansion132, i.e. the increase in spatial distances between galaxy clusters, the older 

the universe gets. 

 

Remark 2: Similarly, rotation -such as it features prominently in the Gödel solution 

with its closed worldlines133 (which one may regard as an incarnation of Mach’s 

Bucket Experiment)- fits into the relationalist, general-relativistic framework. One 

might immediately object that global rotation is conceptually problematic for a 

relationalist, but the 4-dimensional perspective admits a precise definition in terms of 

the relative positions of geodesics (e.g., whether they intersect or recede from each 

other) via the geodesic deviation equation or the (counterparts of the) optical scalars 

(shear, vorticity and expansion): For instance, the extent to which light rays are 

twisted (think of fibers in a rope) is captured in the vorticity134. Rotation thus 

characterized by the relative positions of the geodesics, is doubly relational in nature: 

Firstly since it is defined as relative positions of geodesic, and secondly, since what 

the geodesics represent are spatiotemporal relations between events in 

(hypothetical) massive bodies.  

 

3. Spacetime and matter do not exchange energy; hence no mutual causal influence or 

interaction proper (defined as a process with energy exchange)135: The Action-

Reaction Principle, which Einstein himself at some point extolled as GR’s most 

singular virtue136, thus is not satisfied in GR! However, as Brown and Lehmkuhl 

remind us: “(N) ote that at [Einstein‘s] time it was quite common not to draw a clear 

distinction between causality and determinism“137. We therefore propose to 

attenuate the condition of the Action-Reaction Principle, stipulating a distinction 

between a strong and a weak form of the Action-Reaction Principle: The former 

indeed asserts that spacetime and matter causally interact, i.e. exchange energy; the 
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latter denotes dynamical completeness138. By that we mean that in terms of 

dynamical evolution matter fields and the metric interdepend. 

According to this terminology, GR only satisfies the weak form of the Action-Reaction 

Principle. 

 The main ontological function of the original Action-Reaction Principle carries over, 

to the weak form: Namely that it serves as a reality criterion for the entities 

involved139. Note, however, the difference: Whereas the strong form is a sufficient 

criterion for the represented entities that satisfy it to count as material substances, 

the weak form only yields that they are real, irrespective of their ontological 

category. Applied to GR, this agrees with the multiply emphasized fact that the 

spatiotemporal structure encoded in the metric is real, but not a substance. 

Admittedly, our dismissal of the causal agency of spacetime is limited in that it hinges on a 

specific theory of causality, employing s.c. causal markers – a view of causality many 

philosophers might not be sympathetic to. It will prove rewarding to investigate how 

different accounts of causality140 fare in GR141, in particular the Strong Action-Reaction 

Principle. Of special interest are, of course, counterfactual accounts of causality. They face a 

severe difficulty, however, as Curiel points out: Modal statements like “How would a light 

ray move, were a certain object X not there?” don’t have any obvious meaning within GR, 

“because however we make sense of ‘removing matter’ from a spacetime region, the metric 

will eo ipso be different in that region from what it was”142. Thus, “we have no way to 

conclude on any principled basis ‘what the metric would look then look like’”143. 

A proper analysis of causality in various theories and their validity in GR also has a pressing 

practical aspect for our understanding of gravitational waves: If the effects as which non-

Euclidean spacetime geometry manifests itself are not causal, then the usual argument 

invoking causality to discard advanced wave solutions as unphysical, is strictly speaking no 

longer applicable.  
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6. Conclusion 

With our plea that spacetime, as represented by (ℳ, ���, ∇), is best construed as the totality 

of spatiotemporal relations between events, our position naturally appears to qualify as a 

form of relationism in that “bodies alone exhaust the domains of the intended models of 

[spacetime theories of the physical world]”144. Substantivalism, on the other hand, asserts 

that “both bodies and space are substances in that bodies and space points or regions are 

elements of the domains of the intended models of [space-time theories] of the physical 

world”145.    

Let’s by way of a summary compare our results with the tenets of “traditional relationalism”, 

which Earman characterizes by three “themes”: 146 

R1: “All motion is the relative motion of bodies.”147  

Remark: With the modification in meaning the term “motion” exacts in a general-relativistic 

setting we fully subscribe to this: Like in all geometrised spacetime theory, in GR the 

spatiotemporal behaviour of bodies is described four-dimensionally, expressed through 

paths (trajectories or curves). They represent the (actual or possible) spatiotemporal 

relations in which one event stands to another, an event defined as a change in a body. 

Global rotation, as appears to realize Mach’s Newtonian Bucket Experiment, does not 

contradict this. The concept of global rotation (and other forms of global “motion” such as a 

global expansion or shear) are defined via relative behaviour of (congruences of) geodesics, 

which in turn have (actual or hypothetical) test particles as their relata. 

R2: “Spatiotemporal relations among bodies and events are direct; that is, they are not 

parasitic on relations among a substratum of space points that underlie bodies or space-time 

points that underlie events.”148  

Remark: We fully subscribe to this theme, too. 

- Spacetime is indeed the totality of direct relations among events (represented by the 

manifold points). The non-existence of gravitational energy played a distinguished 

role here in our chain our arguments as a super-property: An entity that does not 

possess energy is not a material substance.  

- Note that Earman’s quoted definition does not specify, whether the relata of the 

spatiotemporal relations must be actual or possible bodies or events. We opted for 

Teller’s “liberalized” reading to include possible events as legitimate as well, whereas 

the majority of relationalists seem to have restricted the admissible domain to actual 

bodies or events.  
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- Such relations are not ‘parasitic’ on relations between substantival spacetime points 

to the extent that a) firstly manifold points represent events; and the latter are not 

substances, but changes of the states in such b) secondly, we argued that as 

categories spatiotemporal relations are ontologically not reducible to substances; 

relations constitute a primitive category; c) thirdly, we argued against an scientific 

reducibility of spacetime within (classical) GR.    

- By contradistinction, substantivalism regards spacetime as a “substance in that it 

forms a substratum that underlies physical events and processes, and spatiotemporal 

relations among such events and processes are parasitic on the spatiotemporal 

relations inherent in the substratum of space-time points and regions.”149 Recall that 

the technical term “substratum” amounts to the “ultimate subjecthood of 

predication” (Kuhlmann), i.e. being the carrier of properties. The ontological 

framework we adopted was based on such a substratum-type notion of substance. 

With the relational nature of spacetime, we explicitly embraced the consequence 

that it does not possess any properties: only its mathematical (ℳ, ���, ∇) does. Tout 

court: We indeed deny substantivalism. 

R3: “No irreducible, monadic spatiotemporal properties like ‘is located at…’appear in a 

correct analysis of the spatiotemporal idiom.”150  

Remark: Again, we fully subscribe to this: With spacetime as a totality of relations, by our 

very definition, there aren’t any “monadic spatiotemporal properties”. In fact, spacetime, we 

argued, has no properties at all. The statement that a spacetime has, say, vanishing 

curvature does not refer to a property of spacetime, but merely implicitly characterizes the 

metric structure by which it is partially represented as satisfying �����[�] ≡ 0.   
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