
Copyright Philosophy of Science 2016 
Preprint (not copyedited or formatted) 
Please use DOI when citing or quoting 
	

	
	

Integrative Modeling and the Role of Neural Constraints 

Daniel A. Weiskopf 

 

Contact information: Department of Philosophy, Georgia State University, 25 Park Place, Suite 
1600, Atlanta, GA, 30303, Email: dweiskopf@gsu.edu 

 

Abstract: Neuroscience constrains psychology, but stating these constraints with precision is not 
simple. Here I consider whether mechanistic analysis provides a useful way to integrate models 
of cognitive and neural structure. Recent evidence suggests that cognitive systems map onto 
overlapping, distributed networks of brain regions. These highly entangled networks often depart 
from stereotypical mechanistic behaviors. While this casts doubt on the prospects for classical 
mechanistic integration of psychology and neuroscience, I argue that it does not impugn a 
realistic interpretation of either type of model. Cognitive and neural models may depict different, 
but equally real, causal structures within the mind/brain. 
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1. Introduction: The Many-Models Problem 

Constructing scientific models requires making choices about how to represent the 
structural, functional, and dynamical properties of whatever lies within the target domain. But 
without a way of modeling all of the world’s aspects within a single comprehensive scheme, we 
are forced to find ways of coordinating and reconciling many incomplete models. The many-
models problem arises when two or more substantially different models are applied to a single 
system in a context where their differences give rise to tensions about how to understand the real 
structure of the system itself. These contexts are ones in which models are interpreted in a 
minimally realistic way: they are intended to capture real entities, processes, and causal 
structures that are responsible for the observed phenomena. As Margaret Morrison (2000) notes, 
such an “incompatible models” scenario seems to pose a problem for scientific realism: unless 
the world can contain contradictory states, not all of these models can be strictly and literally true 
of the target system. 

Here I consider one attempt to solve the many-models problem as it arises in cognitive 
neuroscience by using mechanistic analysis as a strategy of interfield integration. I cast a 
skeptical eye on this strategy by reviewing some evidence that psychological systems may not 
map onto neural systems in ways that are straightforwardly mechanistic, and I argue that such 
failures of integration do not show that these psychological systems are in any sense unreal. 

 

2. Cognitive Modeling Strategies 

Cognitive modeling aims to explain our psychological capacities for executing particular 
tasks, such as the ability to retain information in memory for short periods of time, or to 
categorize visually presented objects. Explaining these capacities requires describing the 
structure of the cognitive systems that underlie them, and tying the operations of those systems to 
the observed phenomena. These systems are recursively analyzed into interconnected 
subsystems, each of which is defined by its role in generating, transforming, and processing 
representations. A cognitive model is a depiction of how an ensemble of such systems interact to 
generate the target capacity or ability. Since capacities are identified in terms of their causal 
profiles, a cognitive model can explain the presence and exercise of a capacity only if the 
systems it depicts are capable of producing a matching profile. 

These models are intended to capture part of the causal structure of the mind in terms of 
the coordinated operations of complex systems. This makes cognitive models a species of 
componential causal model, specifically one in which the elements of the model are 
characterized primarily in functional terms (Weiskopf 2011). Insofar as these models have 
psychological systems, states, entities, and processes as their intended domain of reference, they 
make no essential mention of the details of their material composition or the spatiotemporal 
organization of their components. An accurate cognitive model is one that depicts a set of real 
psychological structures that actually produce the target capacity in the subjects being studied. 
The accuracy of a cognitive model turns on whether the structure that it depicts is instantiated in 
the subjects being studied. 
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Several strategies can be used to determine whether a model is accurate. One involves 
applying model-fitting procedures to determine whether the model can capture the data that have 
been produced so far, and whether it generalizes to new data sets (De Schutter 2010). A second 
is to experimentally determine whether the constructs of the model are robust, where a robust 
construct is one that is detectable through a variety of independent epistemic channels, and 
manipulable through a variety of distinct interventions. A third way to assess the accuracy of 
models in psychology has gained prominence with the rise of cognitive neuroscience. This 
method involves determining how well these models can be integrated with other models of the 
same system. This is often expressed as the demand that psychological models should be 
neurally plausible. 

Neural plausibility gained currency in the debate between classical and connectionist 
cognitive architectures, in which connectionist models were often taken to be more neurally 
plausible than classical ones on the grounds that the structure of networks is broadly similar to 
the anatomical and physiological organization of actual neural systems (Butler 1994). On this 
reading, a cognitive model is neurally plausible to the extent that its structure and processing 
resemble what takes place in neural systems: units map onto neurons (or clusters thereof), 
connections onto axons and dendrites (or fiber tracts), activation onto action potentials and 
graded potentials, and so on. This mapping abstracts away some details, but projects the broad 
structural characteristics of brain organization onto cognition. 

As classical cognitivists objected, however, this is a needlessly strong requirement: while 
an account of neural plausibility requires imposing some constraints on how the elements of each 
model ought to be mapped onto one another, psychological structure does not need to be 
transparently recoverable from neural structure (McLaughlin and Warfield 1994). But recent 
work on mechanistic modeling offers an alternative construal of neural plausibility. 

 

3. Integration through Mechanistic Modeling 

Mechanistic modeling can be regarded as a paradigm for understanding interlevel 
relations in complex systems. Its explanatory target is the means by which S carries out Φ. To 
take one much-discussed example, the discovery that the dentate gyrus of the hippocampus (the 
target structure S) was a locus of long-term potentiation (the function Φ) guided investigations 
into the molecular mechanisms of the granule cell synapses where it occurred, resulting in, 
among other things, the discovery of the crucial role that the influx of Ca2+ ions plays in 
regulating LTP (Craver 2005). 

Here a specific activity was found to take place in an anatomically and 
cytoarchitecturally circumscribed region, which was then decomposed to reveal its causally 
relevant parts, namely the particular synaptic structures and processes that produce LTP in 
dentate gyrus neurons. The resulting model puts together two spatiotemporal scales at which the 
same entity can be described. As a coherent whole, S carries out a certain function Φ, and at the 
same time the mechanism by which S Φ’s is composed of the entities and processes that are 
mereologically contained within the boundaries of the whole entity, and organized to causally 
support that function. 
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This suggests a way of cashing out neural plausibility: a cognitive model is plausible to 
the extent that it can be mechanistically integrated with a neural model. The idea that psychology 
should ultimately be supported by mechanistic integration with neuroscience lies behind the “3M 
Constraint” proposed by Kaplan and Craver (2011, 611): “In successful explanatory models in 
cognitive and systems neuroscience (a) the variables in the model correspond to components, 
activities, properties, and organizational features of the target mechanism that produces, 
maintains, or underlies the phenomenon, and (b) the (perhaps mathematical) dependencies 
posited among these variables in the model correspond to the (perhaps quantifiable) causal 
relations among the components of the target mechanism.”  

Mechanistic integration requires mapping cognitive systems, representations, and 
processes onto the elements and activities of neural mechanisms. Here the twin heuristics of 
decomposition and localization come into play. Functional decomposition involves the analysis 
of a system into its functionally relevant subparts; structural decomposition involves doing the 
same for its physical parts. In the case of interfield modeling, the job of functional analysis has 
already been carried out by the cognitive modeler. Localization requires finding a one-to-one 
assignment of elements of the cognitive model to distinct structural elements of the neural 
model, subject to the added constraint that these neural elements should be both spatially 
circumscribed and relatively “natural”—that is, not arbitrary or gerrymandered, from the point of 
view of our background theory of how the brain is organized. If localization is successful, 
cognitive functions will end up being assigned to distinct spatially and structurally well-defined 
components of the brain. Everything that appears as a distinct element in the cognitive model 
will correspond to a distinct element of some neural mechanism. 

It bears emphasis that localization of function is a significant constraint for mechanists 
(Silberstein and Chemero 2014). The guiding image of mechanisms as machinelike structures 
strongly suggests that they are made of discrete parts each of which carries out a dedicated 
function. Mass-produced artifacts with this sort of design allow parts to be detached and 
swapped out without disrupting the organization of the whole. The less well-localized these 
functions become, and the less easily the parts can be separated from one another while retaining 
their own functions, the further the system drifts away from being mechanistic. This underlies 
both Simon’s notion of near-decomposability and James Woodward’s related constraint of 
functional modularity (Woodward 2013). 

Localization failures can arise in several ways. One possibility is that the posited function 
might have no corresponding structural element at all. A second is that functional assignments 
may overlap: if several functions are assigned to the same structural element, the specialization 
of functional parts that mechanism requires is violated. Localization of functions, then, implies 
that the neural elements that correspond to particular cognitive elements ought to be wholly or 
largely non-overlapping. 

There are several reasons why localization of function significantly constrains interfield 
modeling. One is that ontologically distinct entities are expected to be independently modifiable. 
In a situation where mechanistic components overlap or interpenetrate, however, there may be a 
single local intervention that could affect two or more psychological systems simultaneously by 
targeting their region of overlap. If neural elements interpenetrate or share parts to any 
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significant degree, modifying one can potentially modify the other, and this casts doubt on the 
claim that the cognitive elements that map onto them are really distinct entities. 

Another reason comes from the practice of reverse inference. A reverse inference is one 
that moves from the detection of a pattern of neural activity to the conclusion that a certain 
psychological state or process is taking place. Such inferences proceed on the assumption that 
psychological entities can be correctly discriminated by corresponding neural entities; that is, 
that neural entities are selective. As Russell Poldrack puts it, “If a region is activated by a large 
number of cognitive processes, then activation in that region provides relatively weak evidence 
of the engagement of the cognitive process; conversely, if the region is activated relatively 
selectively by the specific process of interest, then one can infer with substantial confidence that 
the process is engaged given activation in the region” (Poldrack 2006, 2). The greater the degree 
of overlap between neural entities, the less distinguishable they will be, and the less powerful 
reverse inferences will become. 

Poldrack has strengthened this proposal into a method for deciding on the legitimacy of 
elements of a cognitive model (Poldrack 2010, 760): “if it is not possible to distinguish two 
[psychological] concepts from one another (but it is possible to distinguish both from a different 
process), this suggests that the ontological distinction between those two concepts should be 
reconsidered.” This method of distinguishing between psychological constructs involves 
comparing the overlap between the neural regions recruited in various tasks. If two tasks that 
purportedly employ different cognitive processes cannot be cleanly distinguished from each 
other in terms of neural activation, then the distinction between those processes is potentially 
unreliable and on the table for revision.  

As a “proof of concept” for this strategy, Lenartowicz et al. (2010) surveyed the imaging 
literature to see whether psychological processes associated with cognitive control could be 
neurally discriminated from one another. They searched the literature for a set of labels for 
different processes associated with cognitive control and retrieved from the BrainMap database 
the regions that manifested peaks of activity on tasks invoking those processes. They then 
constructed a pairwise comparison matrix showing the degree to which these patterns could be 
discriminated from one another. While most of the processes were fairly discriminable, task 
switching and response selection were poorly discriminated, as were task switching and response 
inhibition. Since the latter two processes are independently well discriminated from the 
remaining ones, task switching’s weak pairwise discrimination may indicate that it is not a 
neurally plausible construct. 

If cognitive functions are localized in separate, naturally circumscribed neural regions, 
they will be independently modifiable under some class of neural interventions, and will also 
support fairly strong reverse inferences. If, on the other hand, cognitive functions map onto 
interpenetrating, distributed neural elements, neither of these will necessarily hold. The latter 
scenario would also cast doubt on the possibility of a mechanistic integration of psychology and 
neuroscience, given the centrality of localization to this enterprise. I now turn to some evidence 
that this scenario ought to be taken seriously. 
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4. Network Analysis and Massive Neural Redeployment 

Much current theoretical work in neuroscience makes use of network-analytic tools and 
methods to uncover brain structure at a variety of spatial scales, as well as the dominant modes 
of large-scale neurophysiological organization (Sporns 2011). A recurring theme in this research 
is that the primary unit for understanding brain function is whole networks, rather than individual 
localized areas. These networks consist of anatomically distinct regions that are linked by 
relatively persistent fiber pathways which support their tendencies to co-activate. Local 
structures contribute their specific processing capacity to these networks, but by themselves tend 
not to realize cognitively significant functions. Instead, these functions can only be assigned to 
the coordinated dynamical activity of large regions of cortex. 

There are three facts about network structure that are significant here. The first is that the 
networks that are involved in cognitive processing have significant areas of anatomical overlap. 
The individual regions that play a role in one network may also play a role in many other 
networks, although there is no guarantee that the role that a region plays in one network is the 
same as the role it plays in another.  

The second is that the same anatomical network can support many different dynamic 
functional configurations. The shifting activation dynamics of a network reflect changing task 
demands, stimulus characteristics, and changes to the brain’s background processing conditions. 
This suggests that particular regions are multifunctional in two ways. Not only can they 
contribute processing to partially anatomically disjoint structural networks, they can also support 
different modes of processing within one and the same anatomical network. Studies of neural 
dynamics suggest that there are many such overlapping networks present, and that their activity 
is sensitive to ongoing cognitive tasks and context (Wig, Schlaggar, and Petersen 2011). 

The third is that what role a region plays, and how regions are functionally connected to 
one another, is often determined by nonlocal factors; that is, by factors that are extrinsic to the 
region itself. Even if a region such as inferotemporal cortex is activated in two task contexts, 
what it is doing (object recognition vs. face recognition) in those contexts may differ based on 
the pattern of other regions that are coactivated in each one (Friston 1997). Given the density of 
interconnections among brain areas, it would not be surprising if such extrinsic modulations of 
regional functions were commonplace. 

This emphasis on the role of dynamic networks dovetails nicely with Michael Anderson’s 
hypothesis of massive neural redeployment (Anderson 2007a, 2007b, 2010, 2014). According to 
this view, cognitive functions depend on the coordinated activity of many different neural 
regions that are themselves highly multifunctional. Support from the thesis comes from several 
meta-analytic studies. In an early review of 35 PET studies by Lloyd (2000), it was reported that 
separate cognitive tasks recruit on average 3.3 Brodmann areas, and each BA is implicated in 3.4 
tasks. Another analysis of 135 tasks used in dozens of studies of attention, perception, imagery, 
and language suggests that these tasks involve an average of 5.97 different anatomical areas 
each. And these areas themselves participate in many other unrelated tasks: e.g., 93% of left 
lateralized regions participate in at least one other task of a different category (Cabeza and 
Nyberg 2000). 
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Other reviews point in a similar direction. A review by Anderson and Pessoa (2011) 
examined the participation of 78 distinct anatomical regions across 1138 experimental tasks, 
which were each assigned to 11 possible BrainMap task domains. A diversity score was 
calculated for each region, representing the degree to which each area participated in different 
BrainMap tasks. The average diversity across all regions was .70, suggesting that they tended to 
be invoked in a large number of task domains. More interestingly, Anderson and colleagues 
derived a functional connectivity matrix for brain regions employed in 1127 experimental tasks 
(Anderson and Penner-Wilger 2013). Where regions are mutually active more often than would 
be predicted based on the probability of their individual activations, they are considered to be 
functionally connected. These coactivation patterns were used to generate network maps of brain 
regions. In the empirically derived networks, there is more overlap in nodes than in edges; i.e., 
the networks reuse the same anatomical components, but coordinate and deploy them in different 
ways. These graphs can be compared to the organization of “random” networks with the same 
numbers of edges and nodes to show that the functional networks have more node overlap and 
less edge overlap than would have been predicted by chance. 

This organization is consistent with Sporns’ claim that “the same set of network elements 
can participate in multiple cognitive functions by rapid reconfigurations of network links or 
functional connections” (2011, 182-83). In all of these cases, the mapping from cognitive to 
neural organization is one in which many brain regions are linked with a single cognitive 
function, and a single region can participate in many functions. This is not just a many-many 
mapping, which implies that the realization base for cognitive systems will be “smeared out” and 
interdigitated, but it is also often overlapping. In an extreme case, two cognitive systems might 
share nearly all of a set of underlying brain regions; here, the regions would be ones in which 
dynamic reconfiguration of regional activity gives rise to different functions. One upshot of this 
form of organization is that the neural regions that participate in this assembly may have no 
identifiable cognitive function outside of their role in the ensemble. 

While classical localization assumed that distinct cognitive systems would have disjoint 
physical realization bases, massive redeployment and network theory seem to demonstrate that 
different systems may have entangled realizers: shared physical structures spread out over a 
large region of cortex. This suggests that not only will there not be distinct mechanisms 
corresponding to many of the systems depicted in otherwise well-supported cognitive models, 
but given that the relevant anatomical structures are multifunctional in a highly context-sensitive 
way, perhaps nothing much like mechanisms at all—at least as those have been conceived of in 
the dominant writings of contemporary mechanistic philosophers of science. And while it might 
be that these networks should count as mechanisms on a sufficiently liberal conception of what 
that involves, widespread entanglement still violates Poldrack’s constraint that distinct cognitive 
structures should be realized in distinct neural structures. Given the centrality of the distinct 
localization constraint to cognitive neuroscience (Coltheart 2001), it is worthwhile to explore 
what dropping it might entail. 

 

5. Realistic Model Pluralism 
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Assuming that the foregoing claims about neural structure are correct, we seem to have a 
classic instance of the many-models problem, in which psychology and neuroscience can give 
rise to interestingly distinct models of the same system. While cognitive models depict one sort 
of causal structure for the mind/brain, network and massive redeployment models depict a 
different one, in which two or more ontologically distinct cognitive systems map onto a 
constellation of shared, overlapping brain networks. If we assume that no system can have more 
than one causal organization, we would be forced to the conclusion that one of these models 
must be false—perhaps that the neurally implausible cognitive model should be revised, or 
interpreted in a less than completely realistic fashion. 

I contend that it is the assumption of a unique causal structure that should go instead. 
This depends on fleshing out a notion of what it means for a model to depict a causal structure. 
Here I will adopt some terminology from John Campbell (2006, 2008, 2010) and say that the 
elements of a model (cognitive or neural) constitute control variables for the behavior of the 
system as a whole. To call an element a control variable is to analogize it to a dial, knob, lever, 
or switch on a control panel. Just as these particular physical control structures can, when 
attached to a well-designed system and appropriately manipulated, produce predictable outcomes 
on the part of the machine that they are coupled to, control variables within models stand for 
components that can be intervened on or manipulated to produce effects in a similar smoothly 
predictable fashion. 

In more precise terms, Campbell considers something to be a control variable when:  
there is a natural-seeming function from the variable to a set of possible outcomes; changes in 
the variable can make a large difference in the possible outcome that is achieved; these 
differences are largely specific to the outcome in question; and  there is a way of systematically 
manipulating or changing the variable. If all of these conditions are met for model components, 
then prima facie they depict genuine, causally active entities. If manipulating a component 
produces only unsystematic, negligible, or unspecific effects on a system’s behavior, its claim to 
causal reality is weakened. 

Much of the work of designing experiments in psychology, particularly where this work 
is guided by an existing model, can be interpreted as aiming at discovering control variables 
(Weiskopf forthcoming). For example, components of cognitive models are defined in terms of 
their role in carrying out specific kinds of information processing tasks defined over materials 
having a particular format and content. Studies involving materials manipulations, then, are 
aimed at seeing how these components systematically change their behavior when exposed to a 
range of inputs. If their behavior is stable, predictable, and in line with what the model predicts 
about the component’s role in the organization, this counts as reason to treat that component as a 
control variable. The same goes for interference or dual-task experimental designs, which are 
intended to isolate particular components of a model by overloading them to see what effect their 
inhibition has on processing. In these paradigms, tasks that place high demands on a component 
are predicted to deactivate that component, which allows testing of the model’s predictions of 
how the system will operate without it. 

So a cognitive model can be said to be empirically well-validated when there is a range of 
experimental tasks that target each of its component elements, their processing structure, and 
their interconnections, and these tasks are sufficient to establish that these elements are control 
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variables; that is, they can all be specifically and systematically manipulated to produce a range 
of well-defined effects. In this case, there is every reason to think that these elements are 
depicting causally real structures within the mind. 

By the same token, models of neural structure and function may be treated as depicting 
proposals about the control variables for the dynamics of neurophysiology. When considering 
the behavior of a dynamic network, the nodes and edges provide potential local regions where 
we can intervene in the system via transient or longer-lasting procedures to see how its behavior 
changes at the collective level. Interventions such as lesions, stimulation by electrodes, or 
transient regional deactivation via transcranial magnetic stimulation lead to predictions about 
how the other nodes in the network will reconfigure themselves as a result. This has been 
modeled computationally using lesions in realistic network simulations, which indicate that 
localized damage can have both regional and more widespread effects on network function 
(Alstott, Breakspear, Hagmann, Cammoun, and Sporns 2009). 

However, the fact that there are two sets of control variables that can be used to model a 
system doesn’t entail that they can be straightforwardly integrated. In particular, there may be no 
simple way of systematically manipulating a system’s cognitive properties by designing 
interventions into its neural architecture. This is a characteristic shared by control variables in 
other domains (Campbell 2008, 437-42). Given the differences between cognitive and neural 
models, the control variables they provide may not align with each other. A single system that 
serves as a locus of cognitive interventions may not be uniquely, systematically targetable by a 
local neural intervention if cognitive systems generally have entangled realization bases. This is 
the sense in which these models depict different causal structures. However, if the causal 
structure depicted by each model is empirically validated, there are no grounds for preferring one 
to the other, or forcing a revision to one set of categories in favor of another.  

Obviously these comments are speculative, in light of how little is yet known about the 
relationship between cognitive models and network-style neurophysiological models. Given the 
facts of model pluralism, however, we need not expect any neat relationship between the causal 
patterns picked out by these two types of models. Using the lens of cognitive modeling involves 
representing the system’s functional components in one way, while using the lens of 
neurophysiology involves representing them in another. The essence of autonomy is that these 
lenses may simply produce different images. 

 

6. Conclusion 

This discussion, brief as it is, highlights some of the complications of interfield modeling. 
While many systems may turn out to be tractable using the techniques of mechanistic analysis, it 
is less clear that psychological models can be integrated with neural models in this way. This 
isn’t to deny that many aspects of brain function can be captured mechanistically, just that 
understanding the neural basis of cognitive functions may require a new set of analytical tools to 
deal with cases in which they are realized in a distributed, non-local, and entangled fashion. 
These cases should also signal a need for humility in applying constraints such as neural 
plausibility, especially insofar as our understanding of what is and isn’t plausible is conditioned 
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by thinking about this mapping in terms of assignment of cognitive functions to unique 
mechanistic structures. The mind-brain relationship might be considerably more opaque than 
that. 
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