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Abstract. In recent years, a number of research projects have been proposed whose goal is to 

build large-scale simulations of brain mechanisms at unprecedented levels of biological 

accuracy. Here it is argued that the roles these simulations are expected to play in 

neuroscientific research go beyond the “synthetic method” extensively adopted in Artificial 

Intelligence and biorobotics. In addition we show that, over and above the common goal of 

simulating brain mechanisms, these projects pursue various modelling ambitions that can be 

sharply distinguished from one another, and that correspond to conceptually different 

interpretations of the notion of “biological accuracy”. They include the ambition (i) to reach 

extremely deep levels in the mechanistic decomposition hierarchy, (ii) to simulate networks 

composed of extremely large numbers of neural units, (iii) to build systems able to generate rich 

behavioural repertoires, (iv) to simulate “complex” neuron models, (v) to implement the “best” 

theories available on brain structure and function. Some questions will be raised concerning the 

significance of each of these modelling ambitions with respect to the various roles played by 

simulations in the study of the brain. 
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1.  Introduction 

As extensively discussed in Roberto Cordeschi’s The Discovery of the Artificial (Cordeschi, 

2002), the implementation of machines which can be sensibly said to accurately reproduce 

biological mechanisms has been occasionally pursued in biorobotics and Artificial Intelligence. 

This ambition is being pushed to unprecedented levels of biological accuracy in a number of 

contemporary research projects, which aim at building large-scale simulations of brain 

mechanisms. Notable examples are the “Blue Brain project” (Markram, 2006), the “Cognitive 

Computing via Synaptronics and Supercomputing” project (Ananthanarayanan et al., 2009), and 

the “Cognitive Computation Project” (Eliasmith et al., 2012); for a review, see (De Garis et al., 

2010). According to Blue Brain Project leader Henry Markram, a “quantum leap” towards the 

development of extremely accurate artificial models of brain mechanisms is now made possible 

by the availability of extremely powerful supercomputers, such as the IBM Blue Gene, able to 

carry out billions of floating-point operations per second. 

The broad ambition to «simulate the brains of mammals with a high level of biological 

accuracy» (Markram, 2006, p. 153) is not always accompanied by a clear statement of the 

research questions that these projects are expected to address, however. In some cases, purely 

technological motivations (connected to the development of new-generation biologically 

inspired supercomputers) seem to prevail over neuroscientific interests. Nor the leading 

researchers always justify their insistence on biological accuracy and on the importance of 

simulating extremely large-scale networks with respect to the study of the brain. Moreover, 

various forms of “biological accuracy” appear to be pursued in these projects. Some of them 

strive to reach the number of neural units existing in the brain of mammals, but use extremely 

abstracted neuron models; other projects aspire to build very fine-grained models of neurons, 

while yet other projects focus on the number of modelled behaviours. The purpose of this paper 
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is to contribute to the rising philosophical debate on these research and development enterprises 

(see, e.g., Miłkowski, 2015) by making these distinctions and by introducing a number of 

epistemological and methodological questions on the import of these different modelling 

ambitions with respect to the roles that simulations may play in neuroscientific research. 

Notably, as discussed in the next section, these roles are not limited to the discovery of models 

of brain mechanisms as in the “synthetic method” which has been analysed in a philosophical 

and historical perspective by Roberto Cordeschi. 

 

2.  The synthetic method, today 

As discussed by Cordeschi (2002, pp. 1-10 and pp. 82-115), one the first examples of the so-

called “synthetic method” for the study of intelligent behaviour and cognition can be found in 

the reaction of physiologist Jacques Loeb to the construction, in 1912, of a machine able to steer 

towards sources of light. In his Comparative Physiology of the Brain and Comparative 

Psychology, Loeb (1900) proposed an explanation of moths’ ability to track light sources (a 

form of behaviour often called phototropism) based on a very simple mechanism: light 

stimulates muscle activity, so that the motor organs located at the side hit by light move faster 

than the organs located at the opposite side. The robot built by John Hammond Jr. and Benjamin 

Miessner had two front light sensors and a simple electro-mechanical mechanism steering the 

robot towards the side receiving higher light stimulation. Miessner stressed that the structure of 

the robot was «very similar to that given by Jacques Loeb, the biologist, of reasons responsible 

for the flight of moths into a flame» (cited in Cordeschi, 2002, p. 3-5). Indeed, some years after, 

Loeb realized that the ability of the robot to track light sources could be taken to support his 

theory on moth phototropism: a machine reproducing the essential aspects of the theory proved 

able to generate phototropic behaviours. 

This example illustrates the structure of the so-called “synthetic method”, which 

characterizes important areas of research in Artificial Intelligence and contemporary neuro-

ethology. More schematically (see Figure 1), let BL be a description of a particular aspect of the 

behaviour of living system L, and let ML be a description of the mechanism which is 

hypothesized to produce BL in L. To test whether this hypothesis is true, one may build a 

machine A governed by mechanism ML (more precisely, by a mechanism MA which is similar 

in the relevant aspects to ML1) and compare its behaviour with the behaviour of L. If A’s 

behaviour BA is similar in relevant respects to BL, one may be induced to corroborate the 

hypothesis that ML produces BL, thus to explain BL with reference to ML. Otherwise, one may 

be induced to reject that hypothesis. Under a variety of epistemological and methodological 

assumptions, whose analysis is out of the scope of this contribution (see Cordeschi, 2002, 2008; 

Webb, 2006; Datteri and Tamburrini, 2007; Datteri, 2016), the synthetic method may therefore 

assist one in identifying the mechanism underlying a particular (observed) behaviour. This may 

be called a model-oriented use of simulations. 

                                                           
1 As discussed later, to justifiably bring A’s behaviour to bear on the plausibility of ML, one has to assume that A 

is an accurate implementation of ML. This raises the problem of understanding under what conditions A can be 

sensibly said to be an accurate implementation of ML. To address this problem, whose analysis is out of the scope of 

this paper, it is useful to distinguish the target biological hypothesis ML from the blueprint MA describing the 

technical specifications that artificial system A is expected to satisfy. Indeed, A may fail to be an accurate 

implementation of ML for two kinds of reasons: 1) A may fail to implement all the technical specifications expressed 

in blueprint MA (for example, because the required electro-mechanical components were not available, and 

components differing from them in some non-negligible aspects have been used instead); or, 2) MA may consist in a 

distorted version of ML. A more detailed discussion of these methodological issues, together with an account of what 

is for a blueprint of a computer or robotic system to be an accurate translation of a biological mechanism description, 

is provided in (Datteri, 2016). 
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Figure 1 – Schema of the “synthetic method” 

Nowadays, however, simulations are also used for a rather different purpose, namely, to 

obtain behavioural data which are difficult or impossible to obtain through alternative strategies. 

For example, molecular-level simulations are used as “computational microscopes” (Dror et al., 

2012) to predict the behaviour of ion channels under a variety of physiological conditions. 

Simulations are essential to obtain fine-grained descriptions of ion channel behaviours: there are 

simply no alternative ways to observe them at the same spatial scale and at the same level of 

detail. In another branch of simulation-supported biology, called “evolutionary biorobotics”, a 

research group led by John Long builds robots reproducing the sensory-motor mechanisms and 

the physical structure of extinct animals to obtain their behaviour under a variety of conditions 

(Long, 2012). The purpose of these studies is not to discover the mechanism underlying a 

particular behaviour, but to obtain data on the behaviour of a system which is hard or impossible 

to observe through more conventional techniques. This may be called a behaviour-oriented or a 

data-oriented use of simulations. 

Model-oriented and data-oriented simulation studies crucially differ from one another in the 

nature of their research goals. This difference also reflects some methodological differences 

between the two, a brief discussion of which will be useful to assess the epistemic value of large 

scale simulations of the brain. First, note that the model-oriented (synthetic) methodology 

crucially involves a comparison between the behaviour of the artificial system A and the 

behaviour of the target system L. Such a comparison is not part of the data-oriented 

methodology, exactly because there are no living system data to compare artificial behaviours 

with (recall that data-oriented simulations are used to obtain behavioural data which are difficult 

or impossible to obtain otherwise).  

A second difference concerns the degree of corroboration of the mechanism ML simulated – 

via translation in model MA – in the artificial system. A fundamental methodological 

requirement of model-oriented simulation studies is that the artificial system A must simulate 

accurately the model ML under scrutiny – otherwise, there would be no reason to bring A’s 

behaviour to bear on the plausibility of ML itself (see footnote 1). It is not required, however, 

that ML be a “good” (that is to say, explanatory and highly corroborated) model of the target 

system L. Even though, as we will discuss later on, some evidence may already be available in 

support of ML, the goal of model-oriented simulations is exactly to corroborate it – and for this 

reason one cannot assume that ML is a good model of the target system before carrying out the 

simulation experiments. Instead, to make a proper data-oriented use of a simulation, one has to 
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assume that ML is a good model of L, otherwise there are no reasons to consider the behaviour 

of the simulation as the behaviour that the target system would have produced in those 

conditions. To consider the output of a simulation as informing one on the behaviour of a 

particular class of ion channels under particular physiological conditions, one has to ensure that 

the simulation is based on the best theories available on the physical structure and on the 

molecular interactions governing channels belonging to that class. Otherwise, the simulation 

would be informative of the behaviour of ion channels characterized by a different structure and 

different molecular interactions – or of the behaviour of a radically different, possibly non 

existing, system.2 In addition, one has clearly to assume that A is a good simulation of ML, as in 

the model-oriented case.3  These distinction will be useful in the ensuing discussion of the 

methodologies adopted in contemporary large-scale brain simulation projects. Indeed, the 

leaders of these projects are often ambiguous as to whether their goals are on the data-oriented 

or on the model-oriented side – in the latter case, their insistence on the plausibility of the 

neuroscientific theories used within their projects is not totally justified. 

Note also that, in light of these methodological differences, model-oriented and data-oriented 

simulation studies give rise to relatively different epistemological issues. In both cases, one may 

legitimately ask under what conditions one is really entitled to draw theoretical conclusions on 

the target living system based on the analysis of artificial system behaviours. With reference to 

the data-oriented method, this amounts to asking under what conditions one is really authorized 

to consider the behaviour of the simulation system as the behaviour that the target system would 

have produced in the same experimental circumstances. The question whether simulations are 

experiments is widely discussed in the epistemological literature (Humphreys, 2004; Parker, 

2009; Winsberg, 2003). This question concerns data-oriented simulations – thus, notably, it 

does not concern the use of simulations typically made in AI and biorobotics – and can be 

rephrased as a question whether the data produced by simulation studies of this kind have the 

same epistemic value as data acquired through observations and measurements made on the 

target system. The epistemic conditions under which such a judgment can be authorized notably 

include, as pointed out before, conditions on the plausibility of the theoretical model of the 

target system: the methodology of data-oriented simulations thus gives rise to the problem of 

evaluating the explanatory value of the theoretical models they implement. The availability of 

criteria to evaluate the plausibility of the underlying theoretical model is not required in the 

model-oriented methodology, instead, exactly because – as pointed out before – that model need 

not be plausible for the method to be sound. Rather, this methodology raises only the problem 

of understanding under what conditions A can be considered an accurate implementation of ML 

(a problem which, as pointed out before, is raised by data-oriented simulations too). 

To sum up, data-oriented and model-oriented simulation studies have different kinds of 

scientific goals, have different methodological requirements, and give rise to different 

epistemological issues. It is worth stressing that the “synthetic method” widely discussed in 

Cordeschi (2002) coincides with the model-oriented methodology. The role of machines in data-

oriented simulations, only minimally covered by Cordeschi’s analysis, is therefore rather 

different from the role assigned to machines in theoretically oriented (rather than in engineering 

oriented) AI and contemporary biorobotics. 

As mentioned before, it is not always clear whether contemporary large-scale brain 

simulation projects (and calls for projects) are data-oriented, model-oriented, or both. The ninth 

of the “14 Grand Challenges for Engineering in the 21st Century” proposed by the US National 

Academy of Engineering is entitled “Reverse-Engineer the Brain”.4 The goals of this challenge 

                                                           
2 This does not exclude that one can assess the behaviour of the simulation under implausible physiological or 

environmental conditions, in order to predict how the target system would behave in those cases. 
3 Mixed uses of simulations are clearly possible, as the same simulation system can used in a data-oriented and in 

a model-oriented way at different times. Consider, for example, weather forecasts. Simulations are used to predict 

meteorological data based on the best weather models available at the moment; when actual weather data become 

available, a comparison between them and the results of the simulation is used to refine the underlying theoretical 

model or to correct some theoretical assumptions accompanying it, as in model-oriented simulation studies. 
4 http://www.engineeringchallenges.org/9109.aspx, visited on 19/09/2015. 

http://www.engineeringchallenges.org/9109.aspx
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are recapitulated in Roysam, Shain, Ascoli (2009): «reverse engineering the brain goes well 

beyond the idea of mapping its structure, its cellular makeup, and molecular composition, 

although these are necessary prerequisites. To meet the ninth Grand Challenge, one must take 

the nontrivial next step, and create a successful computational system (combining appropriate 

hardware and software components) that algorithmically recapitulates all important brain 

functions» (p. 2). The goal of this Challenge, as stated here, consists in the simulation of a 

detailed, large, and plausible model of the brain (it must recapitulate “all important brain 

functions”, which therefore must have been already discovered before building the simulation), 

and for this reason the Challenge praises satisfaction of the central requirement of data-oriented 

simulation studies. 

Why should the brain be reverse-engineered? According to the text of the Grand Challenge, 

simulating brain activities may lead «to deeper insights about how and why the brain works and 

fails», thus to the discovery of models of brain functioning: this is a model-oriented use of 

simulations (this claim contrasts with the previous statement that the model must recapitulate 

“all important brain functions”). Immediately after, the authors add: «Such simulations will 

offer more precise methods for testing potential biotechnology solutions to brain disorders, such 

as drugs or neural implants». Here it is suggested that a computer model of the brain could assist 

in discovering how brain behaviour would change in particular conditions, that is to say, under 

the effect of certain drugs or after connection with additional devices. This goal is closer to the 

data-oriented side, as it is the goal of obtaining data on the target system (a plausible model of it 

is required). 

Similar ambiguities can be found in the scientific literature on specific simulation projects. 

According to Eliasmith and Trujillo (2014), for example, one of the reasons to build large-scale 

simulations is «to understand mysterious brain disorders, from autism to addiction». This 

objective is closer to the model-oriented side, as it consists in the discovery of theoretical 

models of brain and cognitive phenomena. Similarly, Kandel et al. (2013) point out that «the 

long-term goal of these highly ambitious projects is to gain a better understanding of the 

anatomical, molecular and circuit bases for the logical operations carried out by the human 

brain» (p. 659). In their opinion the Blue Brain Project «aims to understand the human brain by 

simulating its functions through the use of supercomputers» (p. 659). Another objective of 

large-scale simulations is, according to Eliasmith and Trujillo (2014), «to develop and test new 

kinds of medical interventions, be they drugs or stimulation» (p. 3). Here the authors have 

plausibly in mind the realization of an accurate simulation of the brain and the observation of its 

behaviour under the effect of particular interventions or medications: this would be a data-

oriented use of simulations. 

It is worth noting, in addition, that simulations are sometimes expected to play a key role in 

integrating knowledge coming from different studies and possibly from different research 

disciplines. Markram et al. (2011) claim that one of the goals of the Human Brain Project (HBP) 

is «to integrate everything we know in multilevel brain models» (p. 40). He claims that «the 

HBP sets academia and industry on a new road to understanding the human brain. On the way, 

it will unify existing biological knowledge, generate new approaches and methods for the brain 

sciences, and develop new intelligent technologies» (p. 41, emphasis added). Eliasmith and 

Trujillo (2014) also point out that a major purpose of building large-scale brain simulations is 

«to provide a way to organize and unify the massive amounts of data generated by the 

neurosciences» (p. 3). 

Whether and how simulations can really assist in integrating knowledge on the brain is a 

question that essentially depends on what we mean with “integrating knowledge”. Let us 

introduce some possible interpretations, which will be further illustrated and articulated later in 

connection with large-scale simulations of the brain. 

One way simulations can contribute to the integration of knowledge on brain mechanisms is 

inherent in the model-oriented (synthetic) method. We have claimed that the plausibility of the 
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mechanism description ML simulated in the artificial system A is not a requirement of “good” 

model-oriented studies. This is not to say that ML must be implausible, nor that no evidence at 

all on ML must be available before carrying out the simulation experiments. It may be the case 

that ML has been previously corroborated through other experimental strategies, and that a 

model-oriented study is expected to provide further evidence in support of it. Or, it may be the 

case that ML has been only partially (in a sense to be clarified) corroborated before running the 

simulation. With reference to the purely notional mechanism described in Figure 2, suppose that 

strong evidence – coming from different studies made at different times – is already available 

on the existence of components b1, b2, and b3 in L and on their behaviour, but that no evidence 

is available as to whether their organized interaction can actually produce the behaviour of 

interest. This is a first sense of ML being only partially corroborated: even though much is 

known on the mechanistic structure of the target system L, yet one is not in the position to 

corroborate the hypothesis according to which ML actually produces (that is to say, enables one 

to explain) the behaviour of interest. The ability of artificial system A to produce the behaviour 

under investigation may be taken as a basis to accept that hypothesis. Note that in this case the 

simulation would have contributed to integrating what different studies on L have previously 

discovered about the same system, in the same way as different pieces of a puzzle are assembled 

together to produce a particular figure. 

 

Figure 2 – A purely notional mechanism description 

Or, suppose that strong evidence is available on the existence and behaviour of b1 and b2 

only, but that the existence and behaviour of b3 are highly speculative. A’s success in 

reproducing BL may be taken as evidence to corroborate the theoretical claims made in ML as 

far as b3 is concerned. This notional example illustrates another way in which model-based 

simulation studies can integrate already available knowledge on the brain, the term “integration” 

here implying the filling of gaps in a mechanism description that, as a result, becomes fully 

effective in explaining the target behaviour. An example is the biorobotics study on rat 

navigation described in Burgess et al. (2000), in which robotic behaviours have been taken as a 

basis to believe in the existence of so-called “goal cells”, never discovered in the rat at the time 

of publication of that work, but whose functional role must be instantiated in the robotic system 

for the latter to generate the behaviour under investigation (see Datteri and Tamburrini, 2007 for 

a discussion). 

The claim that simulations may enable one «to integrate everything we know in multilevel 

brain models» (Markram et al., 2011, p. 40, emphasis added), however, is likely to refer to 

forms of integration which are different from those discussed so far: his point is that building a 

simulation can contribute to identifying relationships or bridges between various levels of 

analysis at which a given phenomenon can be explained. Whether this is the case or not is a 

question that depends on what Markram means by “level” of analysis. This point will be 
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discussed in the next section, in which various concepts of level will be discussed in connection 

with the notion of “biological accuracy”.5 

3.  Dimensions of theoretical modelling in contemporary brain simulation projects 

Contemporary large-scale simulation projects aim at simulating the brain at high degrees of 

biological accuracy. On a closer look, their efforts towards biological accuracy take different 

forms, corresponding to different views on what makes a biologically accurate model or 

simulation. Some of these views are discussed below. The distinctions between model-oriented 

and data-oriented simulations made in the previous section will be useful to assess the role that 

the different forms of biological accuracy identified here can play in the study of the brain. 

 

3.1. Levels of functional decomposition 

As mentioned earlier, the Blue Brain Project had the ambitious goal of building «accurate 

models of the mammalian brain from first principles» (Markram, 2006, p. 155). In his (2006) 

Nature Reviews paper he offers several insights to understand what makes, in his opinion, an 

accurate theoretical model of the brain, and therefore to understand the nature of the goals of the 

Blue Brain project. A diagram included in that paper is particularly interesting in this respect, as 

there he represents what he thinks are «the minimal essential building blocks required to 

reconstruct a neural microcircuit» (see Figure 2 in Markram, 2006, p. 155). Let us focus on a 

specific subset of these requirements. He points out that «microcircuits are composed of neurons 

and synaptic connections» (p. 155), and that neurons must be characterized by their gene 

expression, electrophysiological, and morphological profiles. Most notably, he adds that «to 

model neurons, the three-dimensional morphology, ion channel composition, and distribution of 

electrical properties of the different types of neuron are required» (p. 155, emphasis added). 

The relationship between a neural microcircuit, the neurons composing it, and the ion 

channels spanning the membrane of each neuron is a relationship of mechanistic decomposition, 

at least as far as the electrophysiological profile of neurons is concerned. Indeed, the electrical 

activity of the microcircuit as a whole – for example, the relationship between the “input” and 

“output” neurons of it – crucially depends on the electrical activity of each neuron of the 

network and on their mechanistic organization. And the electrical activity of each neuron 

depends on the number, distribution, and type of the ion channels spanning its membrane. In 

other terms, neurons are components of the mechanism responsible for the electrophysiological 

behaviour of the whole circuit, and ion channels are components of the mechanism responsible 

for the electrophysiological behaviour of individual neurons. 

To generalize, the process of iterating mechanistic analysis over the components of a 

particular mechanism generates a hierarchy of levels of analysis, as schematized in Figure 3. 

The mechanism description at level n-1 mentions the mechanisms governing the behaviour of 

the components which are the base units of the mechanism at level n. The relationship between 

levels is based on mechanistic decomposition. This recursive process corresponds to the 

progressive opening of closed boxes in Rosenblueth’s and Wiener’s account of theoretical 

modelling (Rosenblueth, Wiener, 1945, p. 319). 

                                                           
5 In the “horizontal”, non-multilevel cases discussed here, integration is achieved by corroborating a mechanistic 

model of the target system. Integration is therefore essential to mechanistic explanation. Whether multi-level 

integration is a requirement of a “good” explanation is a more controversial question, which clearly depends on what 
is meant with “level”. A detail analysis of this broad problem goes out of the scope of the present article. A closely 

related question not addressed in this paper is whether horizontal or multi-level integration in simulative studies can 

contribute to scientific unification in the sense discussed by Friedman (1974) and Kitcher (1981). For a critical 

analysis of whether scientific unification, as interpreted by the latter authors, is necessary and/or sufficient for a 

“good” explanation see (Gijsbers, 2007). 
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Figure 3 – Schema illustrating mechanistic decomposition 

Markram’s claim discussed above suggests that, in his opinion, mechanistic decomposition 

down to the level of ion channel behaviour is required in a “good” model of a neural 

microcircuit. Moreover, he and other researchers advocate the building of supercomputer – 

possibly more powerful than the IBM Blue Gene, used in the Blue Brain Project – enabling one 

to iterate mechanistic decomposition at even lower levels. In an introductory paper to the 

Human Brain Project (Markram et al., 2011) it is suggested that «petascale computers, now 

available, are potentially powerful enough for cellular-level simulations of the whole rodent 

brain, or for molecular level simulations of single neurons. Exascale computers, predicted for 

the end of the decade, could allow cellular level simulations of the complete human brain with 

dynamic switching to molecular-level simulation of parts of the brain when required» (p. 40). 

The realization of simulations spanning many levels of the mechanistic decomposition 

hierarchy, from neural behaviour down to molecular interactions and possibly beyond, seems to 

be one of the ambitions pursued in large-scale brain simulation projects. Technological factors, 

he claims, constitute the main obstacle to the achievement of such an objective. 

The main limitations for digital computers in the simulation of biological processes are the 

extreme temporal and spatial resolution demanded by some biological processes, and the 

limitations of the algorithms that are used to model biological processes. If each atomic 

collision is simulated, the most powerful supercomputers still take days to simulate a 

microsecond of protein folding, so it is, of course, not possible to simulate complex biological 

systems at the atomic scale. (Markram, 2006, p. 158). 

However, this claim leaves open the problem of understanding why this very 

computationally demanding ambition should be pursued. Are there really good reasons to praise 

mechanistic decomposition down to the level of ion channels, or possibly even beyond, in the 

construction of large-scale brain simulation projects? This question takes different forms, and 

possibly admits of different answers, depending on whether the simulation has a model-oriented 

or a data-oriented goal, or on whether it is expected to provide the basis for multilevel 

integration of knowledge on the brain.  

With reference to a model-oriented use of simulations, it can be rephrased as a question on 

the characteristics of a “good” theoretical model of the brain. Recall that the objective of a 

model-oriented simulation study is to test whether the mechanism description ML implemented 

in the machine is a good basis to explain why system L produces behaviour BL: therefore, by 

the question above one is asking whether the explanatory value of ML increases with the 

number of mechanistic decomposition levels covered by it. According to some influential 

theories on mechanistic explanation (Craver, 2007; Woodward, 2002), explanatory mechanism 

descriptions mention all and only those factors that make the difference with respect to the 

phenomena under investigation. And, by going downward the decomposition hierarchy and 

recursively “looking inside” previously closed boxes, one progressively identifies more and 

more difference-making factors. However, as pointed out by Eliasmith and Trujillo (2014), the 

choice of the level at which mechanistic analysis should bottom out is likely to depend on the 

characteristics of the phenomenon to be explained. Pushing mechanistic analysis down to the 

level of ion channels is likely to be required, for example, if one intends to explain why certain 
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forms of behaviour are produced under particular kinds of physiological conditions affecting ion 

channel activity. 

As far as the data-oriented use of simulations is concerned, the question above points to the 

benefits of going deeper and deeper in the mechanistic decomposition hierarchy with respect to 

the goal of predicting the behaviour of the target system. In principle, if the mechanism at level 

n correctly describes the behaviour of the various components and their interconnections, one of 

the two key requirements of data-simulation studies is satisfied: the machine implements an (at 

least predictively) adequate theoretical model of the target system. By moving down to level n-1 

one identifies the mechanisms governing the behaviour of level-n components. But it is not 

clear why this move should increase the predictive value of the simulation, given that (by 

assumption) the behaviour of level-n components has been already accurately identified. In 

other terms, this move would not improve one’s knowledge of the behaviour and organization 

of level-n components – it would only explain why their behaviour is as it is. Penetrating into 

deeper levels of the mechanistic decomposition hierarchy might be useful, however, to 

understand how the behaviour of the target system would change under interventions on 

components of those levels. For example, simulating brain processes all the way down to ion 

channel behaviour might enable one to predict the effects of blocking or perturbing the activity 

of particular kinds of ion channels on the overall brain behaviour – a possibility which would be 

impossible to obtain in more “shallow” simulations. 

Finally, it is worth noting that the development of a mechanistic decomposition hierarchy 

that spans many levels of analysis may represent a step towards what Markram calls “multilevel 

integration” of knowledge of the brain. The ability to simulate mechanisms at various levels of 

analysis in the hierarchy may contribute to achieving this goal. Suppose, for example, that one 

has a plausible theory of the behaviour of components at level n-2 and a plausible description of 

the behaviour of the system at level n. Ideally, simulations of these theories may enable one to 

discover a plausible mechanistic description of the system at level n-1, thus to build a bridge 

between the two. Indeed, one could implement data-oriented simulations of n-2 components to 

predict their behaviour; try and organize them in various ways so as to produce simulations of 

various putative n-1 components; then, iterate the same process on the newly formed n-1 

components until a mechanism is found which produces exactly the behaviour defined at level 

n. In this notional example, data-oriented simulations of mechanism components situated at 

“low” levels of analysis are used as building bricks to progressively walk the decomposition 

hierarchy upward. 

 

3.2. Size of the theoretical model 

Another broad goal of contemporary large-scale simulation projects, to be kept distinct from 

the goal discussed in the previous section, is to extend the “horizontal” rather than the “vertical” 

size of the model, namely to simulate mechanisms composed of a huge quantity of neurons or 

base units. One goal of the Blue Brain Project was to build a simulation of a portion of the 

somatosensory cortex of the rat composed of about 10.000 neurons, while the Blue Gene – the 

supercomputer used in the experiments – was reported to be able to simulate a 100.000-neuron 

neural network. Eliasmith’s SPAUN model comprises 2.5 million neurons, and Markram 

welcomed the development of computational techniques able to simulate the entire human brain 

with its 100 billion neurons. These techniques «provide a strong foundation for taking the next 

quantum step, to further increase the size of the modelled network to an unprecedented level» 

(Markram, 2006, p. 154). It is reasonable to believe that, in these authors’ view, size is an 

important dimension of biological realism: their ambition towards the construction of 

biologically realistic simulations is nearly always accompanied by emphasis on the huge 

number of base units they can implement. 
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This dimension is conceptually distinct from the “vertical” axis of mechanistic 

decomposition discussed before and from the other dimensions of theoretical modelling that will 

be analysed in the ensuing sections. Surely, the number of base units of a theoretical model is 

likely to increase as soon as one goes downward along the mechanistic decomposition hierarchy 

(each neural area has many neurons; each neuron has many ion channels). However, one can 

increase the number of base units without changing the level of mechanistic decomposition 

simply by adding other same-level units and mechanisms. One can choose, for example, to 

increase the number of neurons in an artificial neural network to improve its input-output 

accuracy or its learning profiles, or to add other same-level networks and mechanisms to 

increase the behavioural repertoire of the system. Indeed, the path imagined by these authors 

towards the creation of an artificial brain is a sort of upside-down version of the mechanistic 

decomposition hierarchy: «A natural progression is … to simulate neurons embedded in 

microcircuits, microcircuits in the local circuits of brain regions, and circuits within regions and 

the whole brain» (Markram, 2006, p. 154). 

The construction of supercomputers able to simulate networks composed of billions of 

neurons surely represents a major technological advancement. It is not obvious, however, that 

increasing the size of a simulation is of any theoretical interest with respect to the explanation or 

the prediction of brain behaviour. Let us consider first the model-oriented role sometimes 

assigned to large-scale simulations of the brain. The question can be reformulated as to whether 

increasing the size of the underlying mechanism description ML increases its explanatory 

power, and it is reasonable to believe that this needs not be the case – it depends on the 

particular explanandum addressed in the model-oriented study. Some forms of behaviour may 

well be produced by complex interactions between many brain areas while other behavioural 

explananda may be suitably addressed by considering lower-scale mechanisms. Cognitive 

science and neuroscientific behavioural explananda are typically defined in a way that 

legitimates abstraction from the interaction of concurrent mechanisms and boundary conditions. 

For example, every form of sensory-motor coordination in the everyday life is likely to require 

massive and widespread brain activation. However, scientific explanations of sensory-motor 

coordination capacities start with the definition of explananda which abstract away from many 

aspects of their everyday-life form – consider, for example, the goal of understanding why 

particular kinds of eye movements are produced under well-defined and typically narrow classes 

of visual stimuli in aseptic and artificial laboratory environments. The typical way scientific 

explananda are carved out of everyday behaviour is exactly meant to authorize abstraction from 

concurrent mechanisms and possible perturbing factors in the explanation (Bogen and 

Woodward, 1988; Suppe, 1989; Datteri and Laudisa, 2014). 

To sum up, contemporary supercomputers may well contribute to the understanding of brain 

mechanisms by simulating theoretical models which make reference to a multitude of brain 

areas and to a huge number of base units (Eliasmith and Trujillo, 2014), and large-scale 

simulation projects may end up with the development of technologies and computational 

frameworks that, in principle, enable one to test hypotheses of high dimensionality. 

Nevertheless, “good” mechanistic explanations of behaviour need not be large. They must 

capture all and only the causally relevant factors for the production of the behaviour to be 

explained (Woodward, 2002), and whether the number of those factors is high or low is a 

question that depends, among other factors, from the characteristics of the explanandum.  

The magnitude of the model may be relevant in a data-oriented perspective, however. As 

mentioned earlier, increasing the number of units in an artificial neural network may have 

positive effects on its ability to learn particular input-output functions. Moreover, adding same-

level mechanisms may increase the behavioural repertoire of the system and consequently, as 

discussed in the next section, the usefulness of the simulation to predict the various behavioural 

effects of particular interventions or stimulations. 
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3.3. The number of modelled phenomena 

Markram’s Blue Brain and Human Brain projects, and Eliasmith’s Cognitive Computation 

project – the latter aiming at developing a 2.5-million-neuron model of the brain called “Spaun” 

– are some of the most popular large-scale simulation projects proposed in recent years. Despite 

the complexity of their internal architecture, some general differences in their modelling 

approaches have been identified. Eliasmith and Trujillo (2014) and Miłkowski (2015) have 

pointed out that Markram’s projects are not guided by clear-cut explananda. Even though, as 

mentioned above, understanding intelligent behaviour is among their goals, a sufficiently well-

defined description of the behaviours to be explained is missing. The main ambition of the Blue 

Brain and of the Human Brain Project is, rather generically, to «simulate the brain of mammals» 

(Markram, 2006, p. 153) and “to reconstruct and simulate the human brain and its diseases» 

(Kandel et al., 2013, p. 659). The lack of well-defined explananda is consistent with a view of 

the Blue Brain and of the Human Brain projects as aspiring to build (technological, 

computational, and conceptual) frameworks for the explanation of brain behaviours, rather than 

to formulate full-fledged explanations of particular kinds of behaviours. And it is also consistent 

with a data-oriented interpretation of these projects, according to which their prominent goal is 

to generate data on the target behaviours rather than to explain them. 

As pointed out by the same authors, Eliasmith’s Cognitive Computation project has a 

different nature. Indeed, it has a relatively well-defined and fairly articulated explanandum to 

address. The Spaun model is a huge neural network able to perform eight tasks, including copy 

drawing, image recognition, a task involving reinforcement learning, a serial working memory 

task, counting, question answering, rapid variable creation, and fluid reasoning (Eliasmith et al., 

2012). Eliasmith is careful to note that «the central purpose of this work is not to explain any 

one of these tasks, but to propose a unified set of neural mechanisms able to perform them all. 

In a sense, the complex task solved by Spaun is one of coordination. That is, the rapid flexibility 

of biological systems is its target of explanation» (p. 1024; see also Donnarumma et al., 2012). 

To sum up, while clear descriptions of explananda to be addressed are missing in Markram’s 

projects, Eliasmith’s simulation comes with a relatively precise definition of the tasks it can 

perform and of the explanandum it may contribute to addressing. And the fact that his neural 

network model is able to perform a variety of tasks can be considered one of the most 

distinctive features of the Cognitive Computation project with respect to other model-based AI 

and biorobotics simulation studies (focused on the production a much more limited behavioural 

repertoire) and, especially, to other large-scale simulation projects (lacking a clear description of 

their explananda). As pointed out by Eliasmith. 

Although impressive scaling has been achieved, no previous large-scale spiking neuron 

models have demonstrated how such simulations connect to a variety of specific observable 

behaviors. The focus of this past work has been on scaling to larger numbers of neurons and 

more detailed neuron models. Unfortunately, simulating a complex brain alone does not address 

one of the central challenges for neuroscience: explaining how complex brain activity generates 

complex behaviour (Eliasmith et al., 2012 p. 1202). 

The ambition to model many different behavioural phenomena in one simulation is 

conceptually distinct from the ambition to go downward through the mechanistic decomposition 

hierarchy (Section 3.1), as penetrating into lower levels of analysis needs not have effect on the 

behavioural repertoire of the system, and from the ambition to simulate huge numbers of base 

units (Section 3.2), even though in some cases – as mentioned above – adding same-level 

mechanisms may increase the number of capacities displayed by the system. And, similarly to 

the previous section, it is legitimate to ask what is the explanatory and predictive value of 

building such behaviourally rich simulations. 

This question has an easy answer as far as the data-oriented role of simulations is concerned. 

Having one system that reproduces many aspects of the behaviour of the target system may 
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enable one to predict many different behavioural effects of the same intervention or stimulation. 

For example, it might assist one in identifying the consequences of the delivering of particular 

drugs on various sensory and motor modalities at the same time. On the model-oriented side, 

over and above the obvious epistemic value of a unified theory able to encompass a variety of 

behavioural phenomena, the experimental role of such a simulation is likely to depend on the 

characteristics of the explanandum that is addressed from case to case: if that explanandum 

concerns just one form of behaviour, it is not clear why a simulation succeeding in the 

reproduction of that behaviour would be less valuable from an epistemic point of view than a 

simulation able to reproduce that behaviour plus other ones. And one may reasonably ask 

whether such a striving for unification can be justified even though “good” neuroscientific 

explanations for many particular forms of behaviours are still awaited. 

 

3.4. Abstraction in the model of the base units 

A research group led by IBM researcher Dharmendra Modha has built a massively parallel 

cortical simulator, called C2, «with 1.617 × 109 neurons and 0.887×1013 synapses, roughly 643 

times slower than real-time per Hertz of average neuronal firing rate. The model used 

biologically-measured gray matter thalamocortical connectivity from cat visual cortex» 

(Ananthanarayanan et al., 2009, p. 1). C2 approaches the scale of a cat’s brain in terms of the 

number of neurons and synapses involved, and is often called a “cat’s scale simulation” in the 

scientific literature and in the press. Modha claims that large-scale simulators, including C2, 

«have tremendous potential implications for theoretical and applied neuroscience as well for 

cognitive computing. The simulator is a modern-day scientific instrument, analogous to a linear 

accelerator or an electron microscope, that is a significant step towards unraveling the mystery 

of what the brain computes and towards paving the path to low- power, compact neuromorphic 

and synaptronic computers of tomorrow» (Ananthanarayanan et al., 2009, p. 10). 

Large-scale simulations, according to Modha, are therefore of theoretical and technological 

interest, as they may lead to the development of novel and ever more powerful computational 

techniques and devices. It is worth noting that the development of Modha’s simulator responds 

to the “SyNAPSE” call launched by DARPA in 2008, whose goal was to promote the 

development of «electronic neuromorphic machine technology that scales to biological levels. 

More simply stated, it is an attempt to build a new kind of computer with similar form and 

function to the mammalian brain. Such artificial brains would be used to build robots whose 

intelligence matches that of mice and cats»6. And in a press report Modha declared that his 

Cognitive Computing Project “is the quest to engineer mind-like intelligent business machines 

by reverse engineering the computational function of the brain and packaging it in a small, low-

power chip”7. It therefore seems that Modha’s principal interests are technological. 

The simulation built by Modha’s team has been vividly criticized by Henry Markram in a 

letter sent to the IBM Chief Technical Officer in 2009. In the letter, Markram dubbed Modha’s 

reports on C2 as hoaxes and claimed that it was “shameful and unethical” to call C2 a 

simulation of the cat’s brain. Markram’s point was that the neuron models used by Modha «are 

point neurons [with] no branches; no detailed ion channels; the simplest possible equation you 

can imagine to simulate a neuron, totally trivial synapses, […] All these kinds of simulations 

are trivial and have been around for decades - simply called artificial neural network (ANN) 

simulations. […] It is really no big deal to simulate a billion points interacting if you have a big 

enough computer».8 

                                                           
6 From http://www.artificialbrains.com/darpa-synapse-program, visited on 19/09/15. 
7 From http://www.technewsworld.com/story/65237.html, visited on 19/09/15. 

8  From http://spectrum.ieee.org/tech-talk/semiconductors/devices/blue-brain-project-leader-angry-about-cat-brain, 

visited on 19/09/15. 

http://www.artificialbrains.com/darpa-synapse-program
http://www.technewsworld.com/story/65237.html
http://spectrum.ieee.org/tech-talk/semiconductors/devices/blue-brain-project-leader-angry-about-cat-brain
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For some commentators Markram has neglected the fact that the goals of Modha’s project 

are prominently technological, and that for this reason he cannot be criticized for having 

modelled too “simple” neurons. Over and above the details of this controversy, Markram’s 

reaction illustrates another ambition pursued in large-scale simulation projects, which can be 

distinguished from those discussed in the previous section. It concerns the “complexity” of the 

model of the base units of the mechanism, which in those simulations consist in artificial 

neurons. One thing is to simulate a point neuron with a simple input-output function and few 

dendrites; another thing is to simulate neurons with a realistic degree of dendritic and axonal 

arborisation, and with “complex” input-output characteristics. Markram often emphasizes that 

Blue Brain’s neurons are “biologically realistic” in this sense of the term, and that this kind of 

biological realism is to be praised in a large-scale simulation: 

At this point, some may ask, why not use this computing power to simulate cortical circuits 

with artificial neural networks, in which the entire neuron is represented by one summing node 

(point neuron), connectivity is simplified to reciprocal interactions between all nodes, and 

functional properties are simplified as ‘integrate and fire’ types of activity. Such simulations 

provide a powerful exploratory tool, but the lack of biological realism severely limits their 

biological interpretation (Markram, 2006, p. 154). 

Note that this dimension of “biological realism” is conceptually independent from the 

dimensions analysed so far. One can change the model of the base unit without changing level 

of mechanistic decomposition hierarchy (Section 3.1), the size of the model (Section 3.2), and 

the number of modelled phenomena (Section 3.3).  

Markram’s claim that “the lack of biological realism” in terms of the complexity of the base 

unit model limits the “biological interpretation” of the simulation is not self-explanatory, 

however. With reference to a data-oriented use of simulations, one may reasonably reply that 

only those aspects of the neuron which make a detectable difference to the overall system 

behaviour should be included in the model. There are no general reasons to pursue 

complexification of the base unit in every case. Similarly, Markram’s claim can be reformulated 

in connection with the model-oriented method as stating that plausibility of theoretical model 

ML improves with the complexity of the base unit. This epistemological assumption is arguably 

made in other computer-based and biorobotics simulation studies using very complicate model 

neurons, such as (Reeke, Sporns and Edelman, 1990). Here again, many philosophical analyses 

of what makes a “good” mechanistic explanation converge in asserting that all and only the 

causally relevant factors – that is to say, all and only the factors that make a difference with 

respect to the phenomenon to be explained – should be mentioned in the theoretical model.  

For this reason, one may well turn Markram’s above claim upside down and conclude that a 

hyper-complex simulation may actually “provide a powerful exploratory tool”, as it may enable 

one to finely intervene on various aspects of the model neurons (for example, by changing the 

degree of arborisation or the characteristics of the input-output function) and to assess whether 

this makes the difference on the target behaviour. A “good” explanatory model would be then 

obtained by removing all the supposedly irrelevant factors. The model-oriented simulation study 

on the cellular mechanisms of neuronal synchronization in epilepsy reported in (Traub and 

Wong, 1982) and cited in (Markram, 2006) proceeds in a similar way, that is to say, by building 

a detailed (in the sense analysed here) 100-neuron simulation of a brain circuit and – through 

finely-grained interventions – by identifying features of the model neurons that are not critical 

to the production of the behaviour to be explained. Model-oriented computer-based and 

biorobotic studies often involve processes of explanation of machine behaviour, aimed at 

discovering what aspects of the system are really relevant with respect to the target behaviour, 

and what aspects have negligible effects instead (see for example Grasso, 2000; Reeve et al., 

2005). 
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3.5. The plausibility of the theoretical model 

Finally, let us point out that another goal of contemporary large-scale simulation projects is 

to simulate plausible, that is to say, well corroborated theoretical models of the target system. 

The leaders of these projects put great emphasis on the fact that their simulations are to be based 

on “quantitative data” concerning “anatomical and physiological properties of the synaptic 

connections and the ion channels that support the different types of electrical behaviour” 

(Markram, 2006, p. 156) obtained in experiments performed on biological tissues. Note that the 

point here is not (only) the level of the decomposition analysis: ideally, one can build a 

simulation that extends downward to the level of ion channels and, at the same time, build 

models of ion channel behaviour which conflict with what is known on the behaviour of 

biological ion channels. Similarly, one can implement very large (Section 3.2) simulations 

composed of very complicated (Section 3.4) neuron models which are nevertheless known to be 

false. The point is whether incorporating plausible theories on the target system is a desideratum 

in large-scale simulation projects. In Markram’s and other leading neuroscientists’ opinion, it is. 

We have already discussed the significance of this choice in Section 2 in connection with the 

distinction between data-oriented and model-oriented simulation studies. Markram and 

colleagues’ emphasis on the model plausibility requirement suggests that they expect their 

simulations to play data-oriented roles, insofar as the truth of the underlying model is a key 

requirement of data-oriented simulations. Model plausibility is also essential for the integrative 

role of multilevel simulations, insofar as they are expected to assist in building bridges between 

bodies of accepted knowledge on the brain. However, for the reasons discussed above, the truth 

of ML is not required in a “good” model-oriented study, and the synthetic method has been 

often adopted through the XX century to test conjectural models whose plausibility was still 

largely unknown.  

 

4.  Summary and conclusions 

A century has passed since the construction of Hammond and Miessner’s “electric dog” 

inspired by Loeb’s theories on moth phototropism. Computational and robotic technologies 

have undergone dramatic improvements in the last decades, and the use of machines as models 

of biological and cognitive processes has become widespread in the scientific community. 

However, several methodological questions – many of which were highly debated in the early 

stages of Cybernetics and Artificial Intelligence, as extensively discussed by Cordeschi in his 

philosophical and historical works – are still open. To be sure, contemporary scientific literature 

shows substantial ambiguities concerning the roles of simulations in neuroscientific research, 

and the methodological constraints that “good” simulation studies are required to meet. 

In this exploratory article we have pointed out that simulations can contribute to 

neuroscience and cognitive science in at least three different ways, namely by supporting (a) the 

discovery of mechanisms (model-oriented studies), (b) the acquisition of data on target system 

behaviours (data-oriented studies), and (c) the integration of knowledge coming from different 

studies and sources. Leaders of contemporary large-scale brain simulation projects, however, 

are often vague as to which of these roles their simulations are expected to play. The issue is 

crucial since these roles are rather different from each other, require different experimental 

strategies, and place different constraints on the features of the simulation system and on the 

theoretical model implemented in it. For example, we have argued that a “good” data-oriented 

study requires one to implement the best theories available on the target system, whereas this 

strong epistemic requirement can be relaxed in model-oriented studies. A lack of clarity on the 

role a simulation is expected to play in neuroscientific research implies, to a significant extent, a 

corresponding lack of clarity on the features that the simulation is expected to display. In one 

important case – the Blue Brain Project – a precise and clear statement of the research questions 

addressed in the project is even missing. 
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What we have called here the data-oriented use of simulations is rather different from the 

model-oriented use of computers and robots extensively made in Artificial Intelligence and 

biorobotics. Contemporary large-scale brain simulation projects therefore show what the role of 

machines might be in the study of brain and cognition over and above the “synthetic” method. 

They also illustrate the aim of pushing biological accuracy to unprecedented levels, by 

exploiting the extraordinary computational potentialities of new-generation supercomputers. In 

this article we have distinguished between some conceptually distinct modelling ambitions 

pursued in these projects, notably, the ambition of reaching extremely “low” levels in the 

mechanistic decomposition hierarchy, of simulating huge quantities of base units, of generating 

multiple behaviours by the same system, of simulating “complex” base units, and of simulating 

explanatory and highly corroborated models of brain activity. And we have argued that the 

significance of these efforts with respect to the explanation and prediction of brain activity is 

not always clear. Moreover we stress that many of the epistemological and methodological 

questions that these efforts give rise to, and that have been introduced in this article, ultimately 

reduce to one of the most important and hard conceptual problems in the philosophy of science, 

that is to say, the problem of understanding what makes a “good” mechanistic explanation. 
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