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Abstract

In this paper we discuss the representational realist stance as a plural-
ist ontic approach to inter-theoretic relationships. Our stance stresses the
fact that physical theories require the necessary consideration of a concep-
tual level of discourse which determines and configures the specific field
of phenomena discussed by each particular theory. We will criticize the
orthodox line of research which has grounded the analysis about QM in
two (Bohrian) metaphysical presuppositions —accepted in the present as
dogmas that all interpretations must follow. We will also examine how
the orthodox project of “bridging the gap” between the quantum and the
classical domains has constrained the possibilities of research, producing
only a limited set of interpretational problems which only focus in the
justification of “classical reality” and exclude the possibility of analyzing
the possibilities of non-classical conceptual representations of QM. The
representational realist stance introduces two new problems, namely, the
superposition problem and the contextuality problem, which consider ex-
plicitly the conceptual representation of orthodox QM beyond the mere
reference to mathematical structures and measurement outcomes. In the
final part of the paper, we revisit, from a representational realist per-
spective, the quantum to classical limit and the orthodox claim that this
inter-theoretic relation can be explained through the principle of decoher-
ence.
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1 The Classical Representation of Physical
Reality and QM

The general characterization and representation of the idea of “classical reality”,
which encompases the whole of classical physics (including relativity theory),
can be condensed in the notion of Actual State of Affairs (ASA).1 This par-
ticular representation was developed by physics since Newton’s mechanics and
can be formulated in terms of systems constituted by a set of actual (definite
valued) preexistent properties. Actual classical properties are defined in terms
of three logical and ontological principles proposed by Aristotle. Indeed, the
Principle of Existence (PE), the Principle of Non-Contradiction (PNC) and the
Principle of Identity (PI) founded not only classical logic itself but also the ba-
sis of our classical meta-physical understanding of the world. In fact, during
the 18th century these principles were also used implicitly by Newton in order
to provide a metaphysical definition of the notion of actual entity in classical
mechanics.2 Through these principles Newton was able to conceive a Universe
constituted by bodies which existed, possesed non-contradictory properties and
remained always identical to themselves.3 This physical representation of real-
ity also allowed Laplace to imagine a demon who, given the complete and exact
knowledge of all particles in the Universe (i.e., the set of all actual properties),
would have immediate access, through the equations of motion, to the future
and the past of the whole Universe.4

However, it is well known that in the case of QM we have serious difficul-
ties to interpret the formalism in terms of “classical reality”. An evidence of
the deep crisis of physical representation within QM is the fact that more than
one century after its creation the physics community has reached no consensus
about what the theory is really talking about. A possibility with many adepts
today, is to simply deny the need of conceptual representation within physics
and understand the discipline as a mathematical scheme restricted to the pre-
diction of measurement outcomes. This idea goes back to logical positivism and
the Machian understanding of physical theories as an “economy of experience”

1See for discussion and definition of this notion in the context of classical physics [17].
2For a detailed analysis of the relation between these metaphysical principles and Newton’s

representation of physical relaity see [18].
3As noticed by Verelst and Coecke [36, p. 167], these principles are “exemplified in the three

possible usages of the verb ‘to be’: existential, predicative, and identical. The Aristotelian
syllogism always starts with the affirmation of existence: something is. The principle of
contradiction then concerns the way one can speak (predicate) validly about this existing
object, i.e. about the true and falsehood of its having properties, not about its being in
existence. The principle of identity states that the entity is identical to itself at any moment
(a=a), thus granting the stability necessary to name (identify) it.”

4Acording to the French physicist and mathematician Pierre Simon Laplace [33]: “We may
regard the present state of the universe as the effect of its past and the cause of its future.
An intellect which at any given moment knew all of the forces that animate nature and the
mutual positions of the beings that compose it, if this intellect were vast enough to submit
the data to analysis, could condense into a single formula the movement of the greatest bodies
of the universe and that of the lightest atom; for such an intellect nothing could be uncertain
and the future just like the past would be present before its eyes.”
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with no metaphysical background. Taking a radical epistemic viewpoint Fuchs
and Peres [22, p. 70] have argued that “[...] quantum theory does not describe
physical reality. What it does is provide an algorithm for computing proba-
bilities for the macroscopic events (‘detector clicks’) that are the consequences
of experimental interventions. This strict definition of the scope of quantum
theory is the only interpretation ever needed, whether by experimenters or the-
orists.” This instrumentalist perspective is satisfied with having a empirically
adequate “algorithmic recipe”. There is no need for an interpretation because
the mathematical structure already provides the correct predictions for mea-
surement outcomes. And that is what physics is all about.

In contraposition to that radical epistemic perspective, in this paper we dis-
cuss a representational realist stance according to which the task of both physics
and philosophy of physics is to produce conceptual representations which al-
lows us to understand and explain the features of the world and reality beyond
mathematical structures and measurement outcomes. According to our stance,
physical representation requires the coherent interelation between mathemati-
cal formalisms and conceptual schemes. Thus, representational realism imposes
the need of introducing adequate physical concepts in order to understand QM
beyond the mere reference to mathematical structures and measurement out-
comes. If we accept this challenge there seems to be two main lines of research
to consider. The first one is to investigate the possibility that QM makes ref-
erence to the same physical representation provided by classical physics; i.e.
that it talks about “classical reality”. This is the main idea presupposed, for
example, by the hidden variables program which, as noticed by Bacciagaluppi
[3, p. 74], attempts to “restore a classical way of thinking about what there is.”
The second line would be to consider the possibility that QM might describe
physical reality in a different —maybe even incommensurable— way to that of
classical physics. Apart from some few unorthodox attempts (e.g., [1, 30]), this
second line of research has not been truly addresed within orthodoxy. The rea-
son, we believe, is related to the introduction by Niels Bohr of two metaphysical
presuppositions which assume, as a general stanpoint, the idea that the only
possible representation of experience and physical reality is necessarily provided
by the language of classical physics. We will analyse these strong metaphysical
presuppositions in the following section. We remark that our analysis is only
concerned with the philosophy of QM and does not attempt to derive from it a
general conclussion regarding the general debate already present in philosophy
of science.

2 The Two Bohrian Dogmas of QM and the
Attempt to Restore “Classical Reality”

In [14], we argued that Bohr is the main responsible for producing an epistemo-
logical interpretation of QM that does not only limit physical representation in
terms of classical language and classical phenomena but also precludes the very
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possibility of introducing and developing new (non-classical) concepts. Bohr
is responsible for having introduced in the debate about the interpretation of
QM two strong metaphysical presuppositions which have constrained the pos-
sibilities of analysis and development of quantum theory. Since the mid 20th
century what became orthodoxy, took these ideas as necessary standpoints to
think about any possible interpretation of QM. Accepted as unquestionable,
these metaphysical presuppositions were turned into dogmas that all interpre-
tations of QM would have to respect.

The first metaphysical dogma is the idea that there must exist a “quantum
to classical limit”, implying what Alisa Bokulich calls an “open theory approach”
[5]. This reductionistic inter-theoretic relation between QM and classical me-
chanics was introduced by Bohr through his correspondence principle.5

Dogma I. Quantum to Classical Limit: The principle that there must
exist a continuous “bridge” or “limit” between classical mechanics and QM.

However, this is certainly not the only possible way to approach the problem
of inter-theory relation. In fact, this reductionistic understanding of the rela-
tion between classical mechanics and QM has been severly questioned by many
pluralist acocunts in the last decades. Pluralists approaches open different pos-
sibilities of analysis which due to the single-viewed orthodox perspective have
not been discussed nor developed within the literature.

The second metaphysical dogma which has guided orthodoxy can also be
traced back to Bohr’s claim that physical experience needs to be expressed ex-
clusively in terms of classical physical language [8]. Bohr [37, p. 7] stated that:
“[...] the unambiguous interpretation of any measurement must be essentially
framed in terms of classical physical theories, and we may say that in this sense
the language of Newton and Maxwell will remain the language of physicists for
all time.” In this respect, he added [Op. cit., p. 7] that, “it would be a miscon-
ception to believe that the difficulties of the atomic theory may be evaded by
eventually replacing the concepts of classical physics by new conceptual forms.”

Dogma II. Classical Representation of Physics: The principle that one
needs to necessarily presuppose the classical representation of physics in
order to interpret QM and the phenomena it talks about.

Both principles go clearly against a non-classical conceptual understanding of
QM. Bohr’s insistence in the necessity of only using classical physical notions
can be understood in relation to his interpretation of QM as a “rational gener-
alization of classical mechanics” [8].

A direct consequence of such commitment against new non-classical notions
has been his analysis of the double-slit experiment in terms of the classical no-
tions of ‘wave’ and ‘particle’. However, today we know that a quantum state Ψ
cannot be physically interpreted either in terms of ‘waves’ or ‘particles’ for difer-
ent formal and empirical reasons. Let us briefly recall some of them. Firstly,

5For a detailed analysis of Bohr’s correspondence principle see [7].
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Ψ is a mathematical entity that lives in configuration space, not in classical
3-dimensional space —which in turn would allow an interpretation in terms of
the Newtonian physical notions of space and time. Consequently, Ψ can repre-
sent neither a ‘particle’ nor a ‘wave’ which are physical notions that require a
classical 3-dimensional space.6 Secondly, according to the orthodox Born inter-
pretation of Ψ, the quantum wave function describes a probability distribution
that is non-Kolmogorovian, and thus, cannot be interpreted in terms of igno-
rance about an ASA [34]. Thirdly, a ‘click’ in a typical quantum experimental
set up does not behave as if that which is producing the ‘click’ is a ‘particle’
or a ‘wave’. At the empirical level, Bell’s inequalities have proven explicitly
that ‘quantum clicks’ cannot be represented in terms of a classical local-realistic
theory —to which ‘particles’ and ‘waves’ obviously pertain. Ever since the first
experiment of Aspect, the weirdness of such non-classical ‘clicks’ has been re-
peatedly confirmed. Fourthly, the Kochen-Specker theorem [32] proves that Ψ
does not possess definite valued properties independently of the context. On the
contrary, ‘waves’ and ‘particles’ are noncontextual entities which, as described
by classical physics in phase space, do possess definite valued properties. In
short, regardless of the many references made to these classical concepts within
the literature, it simply makes no sense to use the notions of ‘wave’ and ‘particle’
in order to interpret the orthodox formalism of QM.

It is quite clear that the knowledge we have acquired of QM today is more
detailed and accurate than the one Bohr and Einstein had at the beginning
of the 20th century when they discussed the interpretation of QM in terms
of Gedeankenexperiments. As a matter of fact, in the meantime, many of these
imagined experiments have become testable! With the knowledge we have today,
it would also seem wise to recall the old logical positivist lesson that the use of
inappropriate notions within a language can only create pseudoproblems.

3 The Bohrian Project Today: Bridging the
Quantum Gap

Following Bohr’s footsteps, one of present philosophy of physics’s major concerns
remains to try to explain QM in terms of our “common sense” understanding
of the world. As Mauro Dorato remarks [21, p. 369], the project amounts to
try to look for “the best candidate to bridge the gap between the manifest and
the physical image of the world emerging from quantum mechanics.” Sellars
characterizes the manifest image as “the framework in terms of which man came
to be aware of himself as man-in-the-world”,7 which, as remarked by de Vries
[Op. cit.], means more broadly “the framework in terms of which we ordinarily
observe and explain our world.” According to orthodoxy —in close relation to
Bohr’s dogmas— rather than to imagine new physical experiences or new ways of

6In fact, it was this reason which led Bohm to abandon, at least for a while, his own hidden
variable version of QM.

7[19].
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representing reality, the philosopher should focus in “bridging the gap” between
the new technical scientific developments and our common sense-manifest image
of the world.

The focus in trying to explain QM in terms of “classical reality” and our
“common sense” observability, is shared not only by most interpretations of QM,
but also by most philosophical perspectives within the field —both realists and
anti-realists. The general scheme which allows to state this particular problem is
grounded —implicitly or explicitly— in the distinction between observable and
non-observable put forward by the logical positivists. Contrary to our definition
of realism which considers representation as a construct of physical theories,
both realist and anti-realist orthodox positions accept as a standpoint the idea
that physical observation provides a direct access to reality as it is. This idea
was already implicit in the logical positivist distinction between theoretical terms
and empirical terms. But even though the philosophy of science community
itself has characterized this distinction as “naive”,8 the problems discussed in
the literature today still presuppose implicitly such distinction. As remarked
by Curd and Cover:

“Logical positivism is dead and logical empiricism is no longer an avowed
school of philosophical thought. But despite our historical and philosoph-
ical distance from logical positivism and empiricism, their influence can
be felt. An important part of their legacy is observational-theoretical dis-
tinction itself, which continues to play a central role in debates about
scientific realism.” [12, p. 1228]

We must remark that even scientific realism accepts the empiricist stand-
point of common sense observability. Indeed, as Musgrave [12, p. 1221] makes
the point: “In traditional discussions of scientific realism, common sense real-
ism regarding tables and chairs (or the moon) is accepted as unproblematic by
both sides. Attention is focused on the difficulties of scientific realism regarding
‘unobservables’ like electrons.” In line with both Bohr, the logical positivist
‘observable non-observable distinction’ also closes the door to the development
of new physical representations since it assumes that we already know what
reality is in terms of the (naive) observation of tables and chairs —also known
as “classical reality”. From this conservative perspective the task of the philoso-
pher should be to restore a classical understanding about what there is. Cao’s
criticism is in this respect very strong:

“The old-fashioned (positivist or constructive empiricist) tradition to the
distinction between observable and unobservable entities is obsolete. In
the context of moden physics, the distinction that really matters is whether
or not an entity is cognitively accessible by means of experimental equip-
ment as well as conceptual, theoretical and mathematical apparatus. If
a microscopic entity, such as a W-boson, is cognitively accessible, then it

8This distinction was strongly criticzed since the 60s by many, including Kuhn and Feyer-
abend.
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is not that different from a table or a chair. It is clear that the old con-
structive empiricist distinction between observables and nonobservables
is simply impotent in addressing contemporary scientific endeavor, and
thus carries no weight at all. If, however, some metaphysical category of
microscopic entities is cognitively inaccessible in modern physics, then,
no matter how basic it was in traditional metaphysics, it is irrelevant for
modern metaphysics.” [10, pp. 64-65]

4 Representational Realism: A Pluralist-Ontict
Approach

Within philosophy of physics, realism has been characterized as a stance which
assumes the existence of a reality independent of the actions of any human
subject or concious being. In short, realism is commited to the belief of an in-
dependent reality. However, this account falls short when attempting to grasp
the praxis of realist physicists themselves. Representational realism attempts to
capture exactly this aspect; i.e., the specific way through which realist physicists
produce a representational (meta-physical) account of reality. In this respect,
the main presupposition of representational realism is that physical theories re-
late to reality, not only through their mathematical formalisms, but also through
a network of physical concepts. The coherent interrelation between mathemat-
ical and conceptual structures allows physical theories to represent (in different
ways) physical reality. In turn, every new representation allows the physicist to
imagine and explore new physical phenomena.

For the representational realist, the task of philosophy of physics is to pro-
duce physical representations which would allow her to grasp the features of
the world beyond mathematical schemes and measurement outcomes. In order
to provide such representation we must necessarily complement mathematical
formalisms with networks of physical concepts. In this sense, for the represen-
tational realist it is not enough to claim that “according to QM the structure
of the world is like Hilbert space” or that “quantum particles are like vectors in
Hilbert space”. Mixing improperly classical notions with the quantum formalism
is simply not doing the job of providing a conceptual physical representation in
the sense discussed above.

Our representational realist stance is intimately linked to Heisenberg’s closed
theory approach [5] according to which there is no need of a reductionistic un-
derstanding of inter-theory relation.9 Every physical theory needs to develop its
own conceptual scheme —independent of those produced by different (closed)

9An important example to understand this non-reductionistic characterization is how New-
tonian mechanics has to be understood in relation, for example, to relativity theory. According
to Heisenberg [24, pp. 97-98]: “New phenomena that had been observed could only be under-
stood by new concepts which were adapted to the new phenomena. [...] These new concepts
again could be connected in a closed system. [...] This problem arose at once when the the-
ory of special relativity had been discovered. The concepts of space and time belonged to
both Newtonian mechanics and to the theory of relativity. But space and time in Newtonian
mechanics were independent; in the theory of relativity they were connected.”
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theories. The multiplicity of physical representations of reality does not invali-
date by itself a realist stance. In fact, we have argued elsewhere that a Spinozist
scheme would allow us to provide the missing univocity condition required to
make sense of such multilpe representations as expressions of the same one re-
ality.

Our pluralist scheme evoids the reductionistic requirement imposed by or-
thodoxy. Theories are created discontinuously, through jumps. As remarked by
Heisenberg in an interview by Thomas Kuhn [6, p. 98]: “The decisive step is
always a rather discontinuous step. You can never hope to go by small steps
nearer and nearer to the real theory; at one point you are bound to jump, you
must really leave the old concepts and try something new... in any case you
can’t keep the old concepts.” The only important aspect to consider a physical
theory as ‘closed’ is the internal coherency between the formal mathematical
elements, the conceptual structure and the physical experience involved.10 The
coherency reflects a wholeness present in every ‘closed theory’ which Heisenberg
beautifully expresses in the following manner:

“One finds [in closed theories] structures so linked and entangled with
each other that it is really impossible to make further changes at any point
without calling all the connections into question [...] We are reminded here
of the artistic ribbon decorations of an Arab mosque, in which so many
symmetries are realized all at once that it would be impossible to alter a
single leaf without crucially disturbing the connection of the whole.” [6,
p. 95]

Physical representation allows us to think about experience and predict phe-
nomena without the need of actually performing any measurement. It allows us
to imagine physical reality beyond the here and now.11 Following both Einstein
and Heisenberg, representational realism assumes a radical metaphysical stance
regarding the possibility of observability in physics. Every new physical theory
creates a new experience and thus, also new possibilities of observability. Ob-
servability is not ‘a given’, observability in physics is always constructed, always
grounded on metaphysical principles. Classical physical observation —restricted
by the (metaphysical) PE, PNC and PI (see section 1)— is just a particular way
of observing the world. A particular viewpoint grounded on classical physics
and metaphysics.

According to our stance, physical theories contain a conceptual level from
which physical notions allow us to represent what the theory is talking about.

10It is important to remark that the coherency to which we relate in this case is not the one
discussed in “coherence theory of truths” in philosophy of science (see for example [38]). While
coherence theory of truths discuss about the relation between propositions within a physical
theory, we discuss about the relation between concepts, mathematical expressions and physical
experience.

11This is of course the opposite standpoint from empiricists who argue instead that the
fundament of physics is ‘actual experimental data’. As remarked by van Fraassen [35, pp.
202-203]: “To develop an empiricist account of science is to depict it as involving a search for
truth only about the empirical world, about what is actual and observable.”
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This basic assumption implies that mathematical structures are not enough to
produce by themselves a meaningful physical representation of reality. Physics
cannot be exclusively reduced to mathematical structures which predict mea-
surement ouctomes. As Heisenberg makes the point: “The history of physics is
not only a sequence of experimental discoveries and observations, followed by
their mathematical description; it is also a history of concepts. For an under-
standing of the phenomena the first condition is the introduction of adequate
concepts. Only with the help of correct concepts can we really know what has
been observed.”12 As said before, in a slogan, to explain is to represent.

Representational Realism: A representational realist account of a physical
theory must be capable of providing a physical representation of reality in terms
of a network of physical concepts which coherently relates to the mathematical
formalism of the theory and allows to articulate and make predictions of definite
phenomena. Observability in physics is always theoretically and metaphysically
laden, and thus must be regarded as a consequence of each particular physical
representation.

5 Formalism, Concepts and Observation
The distance bewteen orthodoxy and our representational realist project, can be
understood from the radical difference in which these general schemes place the
contitutive elements of a physical theory, namely, the mathematical formalism,
the network of physical concepts and the field of phenomena it is able to de-
scribe. This distance is somewhat analogous to the distance bewteen Bohr’s and
Einstein’s philosophy of physics. While Bohr takes as a standpoint of his anal-
ysis ‘classical phenomena’ —or ‘observational terms’ in philosophy of physics—
both Einstein and the representational realist consider observations and phe-
nomena always as metaphysically laden. As Einstein remarked in a letter to
Schrödinger in the summer of 1935: “The problem is that physics is a kind of
metaphysics; physics describes ‘reality’. But we do not know what ‘reality’ is.
We know it only through physical description...” [12, p. 1196] According to the
representational realist perspective, in order to truly understand a phenomenon
we need to have, beforehand, an adequate set of physical notions. Only with
the help of correct concepts and metaphysical principles can we really know
what has been observed. This implies that there is in principle no exclusive
commitment to classical phenomena. Observation is always both theory and
metaphysically laden.

Even though classical obsevation —which is in fact constrained by the meta-
physical PE, PNC and PI— is regarded by orthodoxy as the “self evident” stand-
point for the development and analysis of theories, it is in principle possible
to imagine —specially after the creation of non-classical logics— that different
principles could be considered in order to produce a new understanding of phys-
ical reality. It is only the theory, and the metaphysical principles in which it is

12[26, p. 264] (emphasis added).
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grounded, which can tell you what can be observed. According to the represen-
tational realist stance, empirical adequacy is only a way to decide whether the
theory is adequate or not, but the main goal of physics is to provide always new
representations of experience and reality.

Physical observability is always dependent on the physical representation
provided by each closed theory. From our constructive metaphysical line of
research, the task of both physicists and philosophers is to jointly construct
new mathematical formalisms and networks of physical concepts which allows
us to imagine new physical phenomena. These three elements interrelate in such
a way that the one can help the other to correct itself, to become more adequate.
It is the interrelation between the mathematical structure, the physical concepts
and the phenomena which allows a theory to provide a particluar representation
of physical reality. As Einstein [20, p. 175] made the point: “[...] it is the
purpose of theoretical physics to achieve understanding of physical reality which
exists independently of the observer, and for which the distinction between
‘direct observable’ and ‘not directly observable’ has no ontological significance”.
Observability is secondary even though “the only decisive factor for the question
whether or not to accept a particular physical theory is its empirical success.”
For the representational realist, empirical adequacy is part of a verification
procedure, not that which “needs to be saved”.

We believe our representational realist stance is close in many ways to Ein-
stein’s realism who, as noticed by Howard: “was not the friend of any simple
realism” [27, p. 206]. Einstein did not consider observation as ‘a given’13 and
stressed —like the representational realist— the importance of the metaphysical
level of physical representation of reality.14 We also find in Einstein a focus of
attention regarding the importance of physical concepts, as well as a recognition
of the threat of remaining captive of “common sense realism”:

“Concepts that have proven useful in ordering things easily achieve such
an authority over us that we forget their earthly origins and accept them
as unalterable givens. Thus they come to be stamped as ‘necessities of
thought,’ ‘a priori givens,’ etc. The path of scientific advance is often
made impossible for a long time through such errors. For that reason,
it is by no means an idle game if we become practiced in analyzing the
long common place concepts and exhibiting those circumstances upon
which their justification and usefulness depend, how they have grown up,
individually, out of the givens of experience. By this means, their all-too-
great authority will be broken. They will be removed if they cannot be
properly legitimated, corrected if their correlation with given things be

13This can be seen from the very interesting discussion between Heisenberg and Einstein
[25, p. 66] were the latter explains: “I have no wish to appear as an advocate of a naive form
of realism; I know that these are very difficult questions, but then I consider Mach’s concept
of observation also much too naive. He pretends that we know perfectly well what the word
‘observe’ means, and thinks this exempts him from having to discriminate between ‘objective’
and ‘subjective’ phenomena.”

14See for a detailed analysis of the importance of metaphysics for Einstein [27].
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far too superfluous, replaced by others if a new system can be established
that we prefer for whatever reason.” [28]

The representational realist stance argues in favour of a conceptual-metaphysical
understanding of physical theories. Indeed, to provide a coherent metaphysical
picture is the only way to truly understand what a physical theory is talking
about. As Cao makes the point:

“An important point here is that metaphysics, as reflections on physics
rather than as a prescription for physics, cannot be detached from physics.
It can help us to make physics intelligible by providing well-entrenched cat-
egories distilled from everyday life. But with the advancement of physics,
it has to move forward and revise itself for new situations: old categories
have to be discarded or transformed, new categories have to be introduced
to accommodate new facts and new situations.” [10, p. 65]

Going back to QM, since the standpoint of the representational realist stance
is different from many empiricist approaches, it also confronts a different set of
problems an limiting conditions. In the following section we attempt to discuss
two new problems, introduced by the representational realist project, which
consider explictly the representation of QM beyond mathematical structures
and the prediction of measurement outcomes.

6 The New Representational Problems of QM
The main idea behind the representational realist stance is that when a math-
ematical formalism is coherently related to a network of physical concepts, it is
possible to produce a physical representation of reality which allows us to de-
scribe particular physical phenomena. It is not enough to say that QM cannot
be explained in terms of “classical reality”. Neither is enough to argue that the
world can be understood as a mathematical structure. This is not doing the job
of producing a conceptual representation of QM. QM has proven already to be
empirically adequate and the orthodox formalism is mathematically rigorous.
However, instead of changing the formalism or adding ad hoc rules in order to
restore a classical discourse and representation, there is a different strategy that
could be considered. According to this new strategy what needs to be done is to
construct a new net of (non-classical) physical concepts capable of interpreting
the formalism as it is. There are some few attempts in this direction which we
mentioned above.

Contrary to our stance, the orthodox line of research deals with a specific set
of problems which analyze QM from a classical perspective. This means that
all problems assume as a standpoint “classical reality” and only reflect about
the formalism in “negative terms”; that is, in terms of the failure of QM to
account for the classical representation of reality and the use of its concepts:
separability, space, time, locality, individuality, identity, actuality, etc. The
“negative” problems are thus: non-separability, non-locality, non-individuality,
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non-identity, etc.15 These “no-problems” begin their analysis considering the
notions of classical physics, assuming implicitly as a standpoint the strong meta-
physical presupposition that QM should be able to represent physical reality in
terms of such classical notions.

Two of the main problems discussed in the literature which attempt to pro-
vide an answer to the emergence of our manifest image from the quantum formal-
ism are the famous measurement and basis problems. While the basis problem
attempts to justify the choice of a particular basis among the many possible
incompatible ones escaping the contextual character of QM, the measurement
problem attempts to justify actual outcomes arising from strange superposed
states. Contrary to orthodoxy, the representational realist project attempts to
consider the formal features behind these problems, namely, quantum contextu-
ality and the superposition principle, as positive elements which must guide us in
the creation of a conceptual representation of QM. The replacing of these main
problems and their consequences for the interpretation of QM will be discussed
in more detail in the subsequent subsections.

6.1 The Superposition Problem: Representation Beyond
Actual Outcomes

Maybe the most famous of all interpretational problems of QM is the so called
“measurement problem”. Let us briefly recall it.

Measurement Problem: Given a specific basis (or context), QM describes
mathematically a quantum state in terms of a superposition of, in general, mul-
tiple states. Since the evolution described by QM allows us to predict that the
quantum system will get entangled with the apparatus and thus its pointer po-
sitions will also become a superposition,16 the question is why do we observe a
single outcome instead of a superposition of them?

The measurement problem is also a way of discussing the quantum formalism
in “negative terms”. In this case, the problem concentrates in the justification
of actual measurement outcomes. It should be remarked that the measurement
problem presupposes that the basis (or context) —directly related to a measure-
ment set up— has been already determined (or fixed). Thus it should be clear
that there is no question regarding the contextual character of the theory within
this specific problem. As we have argued extensively in [15], the measurement
problem has nothing to do with contextuality. The problem araises when the
actualization process is considered. There is what could be described as a mix

15I am thankful to Bob Coecke for this linguistic insight. Cagliari, July 2014.
16Given a quantum system represented by a superposition of more than one term,

∑
ci|αi〉,

when in contact with an apparatus ready to measure, |R0〉, QM predicts that system and
apparatus will become “entangled” in such a way that the final ‘system + apparatus’ will be
described by

∑
ci|αi〉|Ri〉. Thus, as a consequence of the quantum evolution, the pointers

have also become —like the original quantum system— a superposition of pointers
∑
ci|Ri〉.

This is why the MP can be stated as a problem only in the case the original quantum state is
described by a superposition of more than one term.
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of subjective and objective elements when the recording of the experiment takes
place —as Wigner clearly exposed with his famous friend [37, pp. 324-341]. The
problem here is the shift from the physical representation provided when the
measurement was not yet performed (and the system is described in terms of
a quantum superposition), to when we claim that “we have observed a single
measurement outcome” which is not described by the theory. Since there is
no physical representation of “the collapse”, the subject (or his friend) seems
to define it explicitly. The mixture of objective and subjective is due to an
incomplete description of the state of affairs within the quantum measurement
process (or “collapse”).

The focus of the measurement problem is on the actual realm of experience.
In this sense, the measurement problem is an empiricist problem which presup-
poses the controversial idea that actual observation is perfectly well defined.
However, from a representational realist stance things must be analyzed in a
radically different perspective. Indeed, for the represenational realist it is only
the theory which can tell you what can be observed. This means that if we
are willing to truly investigate the physical representation of quantum super-
positions then we will need to “invert” the measurement problem and focus on
the formal-conceptual level —instead of trying to justify what we observe in
classical terms. Thus, attention should be focused on the physical representa-
tion of the mathematical expression instead of attempting to somehow “save”
the measurement outcomes, justifying through ad hoc rules the “collapse” of the
quantum superposition to one of its terms.

The new technological era we are witnessing through quantum information
processing requires that we, philosophers of QM, pay attention to the develop-
ments that are taking place today. We believe that an important help could be
provided by philosophers of physics, in case we were able to develop a concep-
tual representation of quantum superpositions (see also [16]).

Superposition Problem: Given a situation in which there is a quantum su-
perposition of more than one term,

∑
ci |αi〉, and given the fact that each one

of the terms relates through the Born rule to a meaningful physical statement,
the problem is how do we conceptually represent this mathematical expression?
Which is the physical notion that relates to each one of the terms in a quantum
superposition?

The superposition problem opens the possibility to truly discuss a physical rep-
resentation of reality which goes beyond the classical representation of physics.
Instead of keep trying —as we have done for almost a century— to restore dog-
matically our manifest image of the world, this new problem allows us to reflect
about possible non-classical solutions to the problem of interpretation of QM.
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6.2 The Contextuality Problem: Representation Beyond
Classical Contexts

Following the analysis of the measrement problem as a negative one, the basis
problem is also interesting to analyse in these terms. In fact, the basis problem is
also a way of discussing quantum contextuality in “negative terms”. The problem
already sets the solution through the specificity of its questioning. It presup-
poses that there exists a path from the “weird” contextual quantum formalism to
a classical non-contextual experimental set up in which classical discourse holds.

Basis Problem: Given the fact that Ψ can be expressed by multiple incompat-
ible bases (given by the choice of a Complete Set of Commuting Observables)
and that due to the KS theorem the observables arising from such bases cannot
be interpreted as simultaneously preexistent, the question is: how does Nature
make a choice between the different bases? Which is the objective physical pro-
cess that leads to a particular basis instead of a different one?

If one could explain that path through an objective physical process, then the
choice of the experimenter could be regarded as well, as being part of such an ob-
jective process —and not one that determines reality explicitly. Unfortunately,
the problem remains with no solution within the limits of the orthodox formal-
ism. Today, many interpretations attempt to “explain” the process with the
addition of strange ad hoc rules, unjustified mathematical jumps and the like.
These rules “added by hand”, not only lack any physical justification but, more
importantly, also limit the counterfactual discourse of the meaningful physical
statements provided by the theory.

From the representational realist viewpoint, instead of trying to escape the
contextual character of the theory, quantum contextuality should be understood
as a consequence of the mathematical structure of the theory —a formal scheme
which has been allowing us for more than one century to produce the most
outstanding physical predictions. The feature of contextuality emerges from
the orthodox formalism of QM itself, it is not something external to it. But
instead of regarding quantum contextuality as a new interesting feature of a
theory, many orthodox interpretations discussed in the literature focus their
efforts in trying to escape or bypass quantum contextuality so as to restore
a classical noncontextual representation of physical reality. We believe that
to deny contextuality just because it obstructs an interpretation of the theory
in terms of actual (definite valued) properties would be tantamount to trying
to deny the Lorentz transformations in special relativity simply because of its
implications to the contraction of rigid rods. Indeed, this was the attempt
of most conservative physicists until Einstein made the strong interpretational
move of taking seriously the formalism of the theory and its phenomena, and
derived a new net of physical notions in order to coherently understand the new
theory.

Instead of trying to escape quantum contextuality our representational real-
ist stance proposes to discuss the following contextuality problem:
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Contextuality Problem: Given the fact that Hilbert space QM is a contextual
theory, the question is: which are the concepts that would allow us to coherently
interpret the formalism and provide a representation of physical reality that ac-
counts for this main feature of the theory?

If we accept the orthodox formalism, then contextuality is the crux of QM. It
is contextuality that which needs to be physically interpreted, instead of some-
thing that needs to be bypassed because of its non-classical consequences. Like
the superposition problem, the contextuality problem opens the possibility to
truly discuss a physical representation of reality which goes beyond the classical
representation of physics in terms of an ASA.

While the measurement and basis problems attempt to justify “classical real-
ity”, independently of the quantum formalism, the superposition and contextu-
ality leave open the possibility to the development of new non-classical schemes.
Orthodox problems escape right from the start the possibility to analyse and
discuss non-classical representations. This is the reason why, without a replace-
ment of the problems addressed in the literature there is no true possibility of
discussing an interpretation of QM which provides an objective non-classical
physical representation of reality. We know of no reasons to believe that this is
not doable.

The failure of orthodoxy to solve the measurement and basis problems is
also the failure to solve the orthodox (reductionistic) problem which attempts
to bridge the gap between our common sense-classical description of reality and
the quantum formalism. We will now turn our attention to this more general
problem.

7 The Quantum to Classical Limit Revisited
From an orthodox perspective, the most important problem that needs to be
solved still remains —after almost one century of attempts— to explain the
inter-theoretic relationship between QM and classical physics. Indeed, reduc-
tionistic approaches must explain necessarily the emergence of the classical world
from QM. As John Hawthorne remarks:

“[A] natural question to ask is how the familiar truths about the macro-
scopic world that we know and love (‘the manifest image’) emerge from
the ground floor described by the fundamental book of the world. Assum-
ing that we don’t wish to concede that most of our ordinary beliefs about
the physical world are false, we seem obliged to make the emergence of
the familiar world from the ground floor intelligible to ourselves.” [23, p.
144]

In this respect, it becomes of outmost importance to recognize the fact that
the problem of ‘the quantum to classical limit’ is a conceptual representational
realist problem. It is obviously a problem which goes beyond our observable
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classical world. It attempts to provide a physical explanation and representation
of what is the relation between the quantum and the classical realms.

The quantum to classical limit cannot be understood from an exclusive epis-
temic perspective, for if there is no reference of the theory to “something hap-
pening within physical reality”, beyond our concious recognition of measurement
outcomes, the question cannot be even posed. In fact, in the explanation of
the quantum to classical limit the subject is simply out of the picture. If we
assumed, from an epistemic viewpoint, that physical theories provide “an eco-
nomical account of experience” with no metaphysical referent whatsoever, then
there seems to be no interesting ‘limit’ or ‘relation’ to be discussed between these
two theories. The problem simply disapears. As a matter of fact, both classical
mechanics and QM (within their specific limit of applicability) already accom-
plish their means with respect to their empirical findings. Let us be explicit
about this point. The problem of the quantum limit addresses the description
and representation of a real physical process, it seeks to explain the conceptual
representation of what is exactly going on within physical reality. Any real-
ist description must be provided necessarily beyond mathematical structures
and measurement outcomes, for if there is no conceptual metaphysical level of
analysis the “solution” seems to differ in no way from instrumentalism itself.

The reductionistic perspective requires an explanation of the limit from QM
to “classical reality”. Whithout a clear explanation of such limit orthodoxy
seems to run into trouble. The limit cannot be regarded exclusively in terms of
a formal or empirical reduction. It is also a problem which requires necessarily a
conceptual level of analysis capable of providing a physical explanation of such
a seemingly incompatible relation. And the explanation of a physical relation
between theories seems to necessarily imply the understanding of the relata. In
order to explain the path from QM to classical mechanics it seems one should
understand, first of all, what is QM really talking about.

Bohr himself made especial emphasis on the fact that the measurement pro-
cess was the key to recover a “rational account of physical phenomena” [8]. In
line with Bohr’s concerns, the principle of decoherence introduced by Zurek in
1981, attempted to provide the missing physical explanation of the “the quantum
to classical limit” [40, 41]. Indeed, would there be an objective explanation of
such physical process that would turn “quantum particles” into “stable macro-
scopic objects”, it would also imply a solution to the basis and measurement
problems of QM. Such objective explanation would then provide the key to a
unified (reductionistic) representation of physical reality which would contain
both quantum and classical physics.

As remarked by Jeffrey Bub, in the last decades decoherence has become
“the new orthodoxy” [9, p. 212]. The popularity of the principle came from the
repeated claims which argued that decoherence provided a suitable solution to
the problem of the quantum to classical limit. As exaplined by Zurek [42, p. 20]:
“[Classical] reality emerges from the substrate of quantum physics: Open quan-
tum systems are forced into states described by localized wave packets. They
obey classical equations of motion, although with damping terms and fluctua-
tions that have a quantum origin. What else is there to explain?” However,
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when decoherence theorists reflect about the physical meaning of such isolated
quantum states, things become quite bizarre:

“If the unknown state cannot be found out —as is indeed the case for
isolated quantum systems— then one can make a persuasive case that
such states are subjective, and that quantum state vectors are merely
records of the observer’s knowledge about the state of a fragment of the
Universe (Fuchs and Peres 2000). However, einselection is capable of
converting such malleable and ‘unreal’ quantum states into solid elements
of reality.” [Op. cit., p. 22]

Indeed, it is claimed by Zurek that decoherence is capable of creating the “real”
from the “unreal”, objective states from subjective choices.

“Quantum state vectors can be real, but only when the superposition prin-
ciple —a cornerstone of quantum behavior— is ‘turned off’ by einselection.
Yet einselection is caused by the transfer of information about selected ob-
servables. Hence, the ontological features of the state vectors —objective
existence of the einselected states— is acquired through the epistemological
‘information transfer’.” [Op. cit., p. 22] (emphasis added)

Unfortunatelly, regardless of Zurek’s strong claims, it was soon recognized
that the promise of the new orthodoxy to account for the quantum to classical
limit was neither physically nor philosophically justified. In fact, the principle
of decoherence has been found to have many problems, ad hoc moves as well as
unjustified shortcuts. There are several important technical problems which cast
severe doubts on the validity of the original project of decoherence to explain
the limit. Let us mention some of them:

I. The fact that the diagonalization of quantum states is not complete, since
“very small” is obviously not “equal to zero”. It is true that decoherence seems
to produce approximately diagonal mixtures in very “short times”, and it is
also true that from an epistemic viewpoint “very small” might be considered
as superfluous when compared to “very big”; however, this is clearly not the
case when considering an ontological problem such as the one addressed by
the limit. From an ontological perspective there is no essential difference
between “very big” and “very small”, they both have exactly the same im-
portance. The problem is not if a subject is capable of observing something
“big” or “small”, the problem is to provide a coherent representation —both
formal and conceptual— of what there is —even if it is very, very small!

II. The fact that the diagonalization can recompose itself into un-diagonalized
mixtures if enough time is considered [2, 11]. The restitution of non-diagonal
terms comprises the whole program since the fact that time is “long” or
“short” is neither important from an ontological perspective. Once again,
the problem is not epistemic, it is not about what a subject might be able
to observe; the problem of the limit is ontic problem, it is a question about
what there is in physical reality —independently of conscious beings.
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III. The fact that the principle only allows to turn —at least for a while—
non-diagonal improper mixtures into “approximately” diagonal improper mix-
tures does not solve anything. Even if decoherence was able to accomplish the
complete diagonalization —something it does not— of the improper mixture,
the problem remains that all improper mixtures simply cannot be interpreted
in terms of ignorance. As remarked by Zhe:

“[...] by decoherence I mean the practically irreversible and practically
unavoidable (in general approximate) disappearance of certain phase
relations from the states of local systems by interaction with their envi-
ronment according to the Schrödinger equation. Since phase relations
cannot absolutely disappear in a unitary evolution, this disappearance
can only represent a delocalization, which means that the phases “are
not there” any more, neither in the system nor in the environment, al-
though they still exist in the total state that describes both of them in
accordance with quantum nonlocality [...] Decoherence is thus a normal
consequence of interacting quantum mechanical systems. It can hardly
be denied to occur —but it cannot explain anything that could not have
been explained before.” [39]

IV. The late recognition by Zurek of the fact that the principle of decoherence
only leads to (approximately diagonal) improper mixtures has forced him
to venture himself into Everett’s many worlds interpretation and quantum
bayesianism (see [42]). However, also here, as it has been discussed by Dawin
and Thébault, serious inconsistencies threaten the project [13].

V. Even more worrying is the analysis provided by Kastner, who has pointed
out that —even if all these just mentioned problems would be left aside—
the main reasoning of the whole decoherence program is circular [31]. There
has been, up to date, no reply to the analysis provided by Kastner.

Due to all these well knwon facts about decoherence, today it is becom-
ing to be more and more recognized, mainly within the specialized literature,
that the principle of decoherence has failed to provide a convincing physical
explanation of the quantum to classical limit (see [29]). As remarked by Guido
Bacciagaluppi:

“[some physicists and philosophers] still believe decoherence would provide
a solution to the measurement problem of quantum mechanics. As pointed
out by many authors, however (e.g. Adler 2003; Zeh 1995, pp. 14-15),
this claim is not tenable. [...] Unfortunately, naive claims of the kind that
decoherence gives a complete answer to the measurement problem are still
somewhat part of the ‘folklore’ of decoherence, and deservedly attract the
wrath of physicists (e.g. Pearle 1997) and philosophers (e.g. Bub 1997,
Chap. 8) alike.” [4]

In fact, today, there seems to be more questions than answers when consid-
ering the solution provided by decoherence to the quantum to classical limit. So
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it seems, the principle of decoherence might be regarded, in this specifc respect,
at best, as a proto-principle or proto-model of the quantum process of mea-
surement, but never —at least at this stage of its development— as a coherent
physical representation of the path from the quantum to the classical. This is
not to undermine the importance of decoherence. One might recall that proto-
models have been of great importance in the development of physical theories.
Even in QM, we find a very good example of the importance of proto-models
when recalling the history behind Bohr’s atomic model. Quite regardless of
its empirical success this model was abandoned due to the incoherent physical
descrpition it provided. The critical recognition by Heisenberg and Pauli of the
failure of Bohr’s atomic model to produce a coherent formal and conceptual
account might be regarded as the very precondition of possibility for the devel-
opment of QM itself. We could say that matrix mechanics and Schrödinger’s
formulation were developed because it was recognized that the Bohrian model
was simply not a closed physical theory.

8 Is the ‘FAPP Solution’ a ‘Solution’?
Unfortunatelly, after more or less having recognized that decoherence does not
solve that which it had promised to solve originally, something very strange
happened within the new community. Instead of reconsidering the problem and
the set of presuppositions involved in order to re-develop the principle of deco-
herence, a new justification was advanced by the new orthodoxy. Even though
it was accepted that decoherence did not “really” solve the quantum to classical
limit, it was argued that “the principle of decoherence solves the problem For All
Practical Purposes (FAPP)!” This has been a way of the new orthodoxy to argue
—more or less in disguise— that “we cannot really explain the path in physical
terms, but don’t worry, it works anyhow!” This instrumentalist justification
escapes any physical explanation grounding itself, once again, in the predictive
power of the theory —a predictive power no physicist had ever doubted in the
first place.

Following an epistemic viewpoint it might then be argued that decoherence
is an “economy of experience”, that it helps us to work in the lab, that it is
in fact an “epistemic solution”. But then the original ontological problem has
been completely abandoned, the original question completely forgotten. This
new “FAPP solution” —which is in itself a revival of instrumentalism placed
in the heart of realist discussions— has been imported in order to discuss the
ontological question of the quantum to classical limit, not only without a proper
recognition of the failure of the original project but also turning the original
problem into a pseudoproblem. This re-cooked quantum omelette produced
by decoherence —which like many interpretations today create physical reality
from epistemic choices— has penetrated physics so deeply that today many
physicist seem to uncritically accept there actually exists a physical process
called “decoherence” that really takes place in the lab. But when asked to explain
what is exactly this physical process about, the new orthodoxy rapidly shifts
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the debate and using this new instrumentalist justification argue: “decoherence
works FAPP!”

The main problem of the ‘FAPP solution’ is that it solves nothing, it just
sweeps the (quantum) dirt under the (classical) carpet. By repeating that “it
works!”, many physicist and philosophers believe the problem has been actually
solved. And there is nothing less interesting in physics than engaging in a
problem that already has a solution. There is nothing there to be done, nothing
to be thought or in need of development. But problems are the true gas of
science, they are that which scientist work on, concentrate with passion, allow us
to produce new physical theories. Problems in science should not to be regarded
as ghosts or monsters that we need to destroy. In fact, there is nothing more
interesting, more encouraging than a good difficult scientific problem.

In QM, it was Heisenberg and Pauli’s unsatisfaction with Bohr’s “magical”
model of the atom —as Sommerfeld used to call it— which led them to de-
velop matrix mechanics and the exclusion principle. Instead of confronting the
problem, orthodoxy has advanced the most weird type of justifications: “more
or less solved”, “approximately solved”, “almost solved”, “solved FAPP”? These
solutions simply escape the question at stake. But in fact, it is quite simple,
ontological problems canot be solved epistemically. A representational realist
problem, such as the quantum to classical limit, cannot be solved FAPP.
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