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1 Introduction

Bayesian inference is based on representing degrees of belief by probabilities, and on
changing these degrees of belief by Conditionalization. Its normative force in science
relies to a large extent on constraints on the conditional degree of belief in evidence E
given hypothesis H, that is, p(E|H).

To motivate this claim, think of what Bayesian inference in science typically looks
like. There are competing statistical hypotheses Hθ , θ ∈ [0, 1], that model a physi-
cal process, such as the chance of a coin to come up heads. Each of the Hθ spec-
ifies the probability of a certain event E (e.g., two heads in three tosses) by means
of a mathematical function, the probability density ρHθ

(E). For example, in the case
of tossing a coin N times, the Binomial distribution describes the probability of ob-
serving k heads and N − k tails if it is assumed that the tosses are independent and
identically distributed (henceforth, i.i.d.). The corresponding probability density is
ρHθ

(E) = (N
k )θ

k(1 − θ)N−k. When, for any particular H (e.g., θ = 1/2), the condi-
tional degree of belief p(E|H) tracks the probability density, that is, p(E|H) = ρH(E),
a Bayesian uses this value for calculating the posterior degree of belief in H.

The equality p(E|H) = ρH(E) is important for a variety of reasons. First, it allows
to calculate the Bayesian’s primary measure of evidential support, the Bayes factor
(Kass and Raftery, 1995). Bayes factors quantify the evidence for a hypothesis H0 over
a competitor H1 as the ratio of the probabilities p(E|H0)/p(E|H1)—or equivalently, as
the ratio of posterior to prior odds. When these degrees of belief are unconstrained,
it follows that one may not be able to agree whether E favors H0 over H1, or vice
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versa. For the application of Bayesian inference in the sciences, that would be a heavy
setback. On the other hand, plugging in the probability densities ρH0(E) and ρH1(E)
for p(E|H0) and p(E|H1) ensures immediate agreement on the Bayes factor (at least
for precise hypotheses about the unknown parameter).

Second and more generally, according to the Likelihood Principle (Birnbaum, 1962;
Berger and Wolpert, 1984), which is accepted by Bayesians as well as by some non-
Bayesians (Hacking, 1965; Sober, 2008), all experimental evidence that E yields about
an unknown parameter θ is contained in the values of the likelihood function L(θ) :=
p(E|Hθ) for different values of θ. Without agreement on these values, the evidential
relevance of the observations remains unclear and contested, with devastating conse-
quences for the epistemic authority of scientific research based on Bayesian methods.

Third, agreement on p(E|H) and p(E|¬H) is required to back up the various con-
vergence to truth theorems for Bayesian inference (e.g., Blackwell and Dubins, 1962;
Gaifman and Snir, 1982). These theorems claim, in a nutshell, that different prior
opinions will “wash out” as we continue to sample, ensuring agreement on posterior
probabilities. This happens via Bayes’ Theorem:

p(H|E) = p(H)
p(E|H)

p(E)

=

(
1 +

p(¬H)

p(H)

p(E|¬H)

p(E|H)

)−1

The idea is that in the long run, the ratio of p(E|¬H) and p(E|H) will dominate the
ratio of prior probabilities. Therefore, p(H|E) will converge either to one or to zero,
dependent on whether H or ¬H is true. However, if the degrees of belief in E given
H (or ¬H) vary, agents will also reach different posterior probabilities in the limit.
This undermines the trustworthiness of Bayesian inference and the decision-theoretic
paradigm that posterior probabilities should guide our decisions (Savage, 1972).

Hence, the main question of our paper is: What justifies the equality between
conditional degrees of belief and probability densities that is required for meaningful
Bayesian inference?

p(E|H) = ρH(E) (The Equality)

Various scholars derive The Equality from a general epistemic norm. They consider
it a requirement of rationality that degrees of belief be calibrated with information
about the empirical world (e.g., Lewis, 1980; Williamson, 2007, 2010). For instance,
according to the Principle of Direct Inference (PDI) (e.g., Reichenbach, 1949; Kyburg,
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1974; Levi, 1977), if I know that a coin is fair, I should assign degree of belief 1/2
that heads will come up. David Lewis (1980) formalized a related intuition in his
Principal Principle (PP): the initial credence function of a rational agent, conditional on
the proposition that the physical chance of E takes value x, should also be equal to x.

Do chances in statistical inference conform to those descriptions? Partially, they
do. A statistical hypothesis H describes the probability of possible events E by the
probability density ρH(E). So the chance of E given H is fixed and objective. For
instance, if H is the hypothesis that a coin is fair, then the probability of tossing two
heads in three i.i.d. tosses is ρH(E) = 3/8.

However, this probability is objective, but not ontic—it is no physical chance that
describes properties of the real world (Rosenthal, 2004). It is not about the objective
chance of an event E in a real experiment, nor about the long-run frequency of E.
Instead, it describes the objective chance of E if the statistical hypothesis H were true. In
other words, it is part of the meaning of H that the probability of E is 3/8 (Sprenger,
2010). That is, the sentence

If a fair coin is tossed repeatedly, then the chance of two heads in three
i.i.d. tosses is 3/8.

makes no empirical predictions—it has a distinctly analytical flavor. There need not
exist any fair coins in the real world for this sentence to be true. Indeed, many scientific
models are of this idealized type and do not have any real-world implementation. The
Principle of Direct Inference and the Principal Principle, by contrast, apply to physical
chances: there has to be an event whose objective chance is 3/8. They are silent on
chances that are conditional on an idealized statistical model. Therefore, they fail to
justify The Equality. It is the task of this paper to provide such a justification.

Hence, our paper joins the efforts by philosophers of science to clarify the nature
of objective probability in scientific reasoning. Hoefer (2007) articulated the research
program as follows:

the vast majority of scientists using non-subjective probabilities [...] in their
research feel little need to spell out what they take objective probabilities
to be. [...] [T]o the extent that we intend to use objective probabilities
in explanation or predictions, we owe ourselves an account of what it is
about the world that makes the imputation and use of certain probabilities
correct. (Hoefer, 2007, 550)

While the role of physical chance in explanation and prediction is well-explored (Hoe-
fer, 2007; Suarez, 2011a,b), the role of mathematical probability densities and their
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relation to conditional degree of belief is much less explored.
The rest of the paper is structured as follows. Section 2 examines the standard

approach to conditional degree of belief: the ratio analysis of conditional probability.
I argue that it fails to account for The Equality, and also as an explanation of our
probabilistic reasoning practices. Section 3 develops the main constructive proposal:
conditional degrees of belief should be interpreted in the counterfactual sense already
suggested by Frank P. Ramsey. We then elaborate on how this proposal justifies The
Equality, that is, the agreement between conditional degrees of belief and probability
densities, and we relate Ramsey’s proposal to the problem of chance-credence coordi-
nation. Section 4 is devoted to exploring the implications of our proposal for Bayesian
inference: the counterfactual interpretation of conditional degree of belief should not
be restricted to likelihoods, but also hold for prior probabilities. This move explains
why Bayesian reasoners may assign positive degrees of belief to a hypothesis which
they know to be wrong. Section 5 discusses the interpretation of posterior degrees of
belief and the different roles of learning and supposing in Bayesian inference. Section
6 wraps up our findings.

2 The Ratio Analysis

According to most textbooks on probability theory, statistics and (formal) philosophy,
the conditional probability of an event E given H is defined as the ratio of the proba-
bility of the conjunction of both events, divided by the probability of H (Jackson, 1991;
Earman, 1992; Skyrms, 2000; Howson and Urbach, 2006).

p(E|H) :=
p(E ∧ H)

p(H)
(Ratio Analysis)

Now, there seems to be a fast and easy argument why the ratio analysis of conditional
probability fails to cover many important cases of Bayesian inference. Suppose that we
reason about the bias of a coin, with Hθ denoting the hypothesis that the bias of the
coin is equal to θ ∈ [0, 1]. If our prior probability density over the Hθ with respect to
the Lebesgue-measure is continuous (e.g., uniform or beta-shaped), then each single
point in [0, 1], which corresponds to a particular hypothesis about the bias of the
coin, will have probability zero. That is, we are virtually certain that no particular
real number describes the true bias of the coin. This sounds quite right given the
uncountably many ways the coin could be biased, but paired with Ratio Analysis, it
leads to strange results: we cannot assign a conditional degree of belief to a particular
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outcome (e.g., two heads in three i.i.d. tosses) given that the coin has a particular bias.
This sounds outrightly wrong since intuitively, we are able to assign a probability to
the event of E given H (=the conditional event E|H)—both from a frequentist and a
subjective Bayesian perspective (de Finetti, 1972, 81).

A similar challenge is presented by Borel’s paradox and related puzzles: “What is
the probability that a point on Earth is in the Western hemisphere (H), given that it lies
on the equator (E)?”. Intuitively, there seems to be a rational answer (one half), but ac-
cording to Ratio Analysis, we cannot even express such a degree of belief because for a
uniform probability distribution, p(E) = 0. Notably, even the well-known mathemat-
ics textbook by Billingsley (1995, 427) writes that “the conditional probability of [H]
with respect to [E, . . . ] is defined [by Ratio Analysis] unless p(E) vanishes, in which
case it is not defined at all” (notation changed). In other words, the epistemic func-
tion of conditional degree of belief is not adequately mirrored in the mathematics of
conditional probability. The seminal article by Alan Hájek (2003)—“What Conditional
Probability Could Not Be”—discusses these problems of Ratio Analysis in detail.

However, Hájek also mentions a refinement of Ratio Analysis that is based on
representing events and hypotheses as measurable sets. Let H denote a measurable
set of hypotheses (e.g., θ ∈ Θ). Then a conditional probability p(·|H) is a measurable
function from the σ-algebra of possible events to the real numbers such that

p(EH) =
∫
H

p(E|H)dp (Refined Ratio Analysis)

This definition of conditional probability, due to Kolmogorov (1933), is implicit: condi-
tional probabilities are functions that yield the product event p(EH) if one integrates
them over H, relative to the probability measure p(·). For atomic hypothesis sets
H = {H}, Refined Ratio Analysis reduces to Ratio Analysis, as one can readily verify.
Howson and Urbach (e.g., 2006, 37) propose a similar approach for parametric statisti-
cal inference: if p(Hθ) = 0 for a specific parameter value θ, then we define p(E|Hθ) as
the limit of p(E|(θ − ε, θ + ε)) for ε → 0. As long as the prior probability density over
θ is continuous and strictly positive, this quantity will be well-defined and can act as
a surrogate for the direct calculation of p(E|Hθ).

Easwaran (2011) and Myrvold (2015) show how this approach can be used to an-
swer Borel’s paradox and to rescue statistical inference with likelihood functions. For
the sake of the argument, I shall not try to take a stand in the debate and just concede
that Refined Ratio Analysis may be sufficient to talk meaningfully about events with
probability zero (though see Fitelson and Hájek (2016) for a dissenting view). The
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focus of my argument is different: even if the technical problems are solved, Ratio
Analysis fails to give an adequate explanation of our cognitive practices. It also fails
to account for The Equality and to explain why conditional probabilities are often con-
strained in a seemingly objective way. For reasons of simplicity, I shall focus on those
cases where probability zero is not a problem and Refined Ratio Analysis reduces to
Ratio Analysis.

I shall begin with the first objection. Ratio Analysis defines conditional degree of
belief in terms of unconditional degree of belief. The advantage of this move is that
we need no separate conceptual analysis of conditional degree of belief. Neither do
we need a bridge between probability densities and conditional degrees of belief: the
latter are reduced to unconditional degrees of belief. However, this approach fails
to do justice to the cognitive role of conditional degrees of belief. We do not form
conditional degrees of belief via the conjunction of both propositions. It is cognitively
very demanding to elicit p(E ∧ H) and p(H) and to calculate their ratio. Indeed,
recent psychological evidence suggests that Ratio Analysis is a poor description of
how people reason with conditional probabilities, pointing out the necessity of finding
an alternative account (Zhao et al., 2009).

Second, Ratio Analysis fails to grasp the normative role of conditional degree of
belief in statistical inference. In the introduction, we have seen that it is part of the
meaning of H to constrain p(E|H) in a unique way. Recall the example. For determin-
ing our rational degree of belief that a fair coin yields a particular sequence of heads
and tails, it does not matter whether the coin in question is actually fair. Regardless of
our degree of belief in that proposition, we all agree that the probability of two heads
in three tosses is 3/8 if we suppose that the coin is fair. On Ratio Analysis, this feature of
conditional degree of belief drops out of the picture. p(E|H) is constrained only via
constraints on p(E∧ H) and p(H). But even if we suspend judgment on p(E∧ H) and
p(H), we may still have a definite degree of belief p(E|H). Ratio Analysis therefore
misses an important aspect of conditional degree of belief. More precisely, as long as
the overall probability distribution is coherent, we do not have to coordinate probabil-
ity densities and conditional degrees of belief according to Ratio Analysis. While this
result may be acceptable for radically subjective Bayesians, it is devastating for those
philosophers (like myself) who believe that Bayesian inference should be constrained
by the implications of statistical hypotheses for the probabilities of real-world events.

Finally, it is notable that Refined Ratio Analysis defines a new conditional density
rather than calculating the value of the density via Ratio Analysis. That is, to the ex-
tent that it circumvents the problems created by the naïve definition of Ratio Analysis,
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it acknowledges the need of viewing conditional probability as an independent, and
possibly primitive, concept. The Howson-Urbach definition where conditional prob-
ability is calculated via a mathematical limit is a particularly salient example. Un-
surprisingly, Fitelson and Hájek (2016) advocate replacing Kolmogorov’s axioms by
the Popper-Renyi axioms (Renyi, 1970; Popper, 2002) where conditional probability
is take as primitive. This is a view that matches my own inclinations well, and the
following section will show how it naturally emerges from a proper understanding of
conditional degree of belief.

3 The Counterfactual Analysis

Between the lines, the previous sections have already anticipated an alternative anal-
ysis of conditional degree of belief. Rather than conforming to the ratio analysis, we
could understand the concept in a counterfactual way. That is, we could determine our
degrees of belief in E given H by supposing that H were true.

There are two great figures in the philosophy of probability associated with this
view. One is Frank P. Ramsey, the other one is the Italian statistician Bruno de Finetti
(1972, 2008). I will focus on Ramsey since de Finetti also requires that H must be a (ver-
ifiable) event for p(E|H) to be meaningful (de Finetti, 1972, 193). This is unnecessarily
restrictive.

Here is Ramsey’s famous analysis of conditional degrees of belief:

If two people are arguing ’if H will E?’ and both are in doubt as to H, they
are adding H hypothetically to their stock of knowledge and arguing on
that basis about E. (Ramsey, 1926)

The above quote is ambiguous: it is about conditional (degree of) belief, the truth con-
ditions of conditionals, or about their probability? Many philosophers, most famously
Stalnaker (1968, 1975), were inspired by the latter readings and developed a theory of
(the probability of) conditionals based on the idea that assessing the conditional H→E
involves adding H to one’s background knowledge. See also Douven (2016).

I would like to stay neutral on all issues concerning conditionals and interpret
Ramsey’s quote as an analysis of conditional degrees of belief. Indeed, in the sentence
that follows the above quote, Ramsey describes the entire procedure as

We can say that they are fixing their degrees of belief in E given H. (ibid., my
emphasis)

7



This makes clear that regardless of the possible link to the epistemology of condition-
als, Ramsey intended that hypothetically assuming H would determine one’s condi-
tional degrees of belief in E, given H. That is, p(E|H) is the rational degree of belief
in E if we supposed that H were true. This analysis directly yields The Equality: if we
suppose that H is true, then all events E are described by the probability density ρH(E).
The fictitious world ωH, created by supposing H, is genuinely chancy, regardless of
whether the actual world is. Indeed, it can be seen as part of the meaning of ρH(E) to
quantify the chances of E (and other events) if H were the case. If a chance-credence
calibration norm is ever to work, this must the place: our degrees of belief, conditional
on supposing H, should follow the objective chances that H imposes on other events.

It is important to note the difference to the Principle of Direct Inference (PDI) and
the Principal Principle (PP), already pointed out in the introduction. Both principles
apply to real-world, ontic chances, e.g., “the chance of this atom decaying in the next
hour is 1/3” or “the chance of a zero in the spin of this roulette wheel is 1/37”. The
principles simply claim that degrees of belief should mirror such chances. Compare
this to the picture that we sketch for conditional degree of belief. We are not interested
in real-world chances; rather we observe that in the world ωH described by H, there is
an objective and unique chance of E occurring, and it is described by the probability
density ρH(E). This is just what it means to suppose that H is the case. In other
words, we apply PDI/PP not in the real world, but in the counterfactual world where
H holds, and we adapt our (conditional) degree of belief in E to ρH(E). By supposing
a world where the occurrence of E is genuinely chancy, the Ramseyian account of
conditional degree of belief explains why our conditional degree of belief in E given
H is uniquely determined and obeys The Equality. Note that this is really an initial
credence function, as PP demands: information about the actual world ω@ that may
conflict with H is irrelevant in ωH.

In other words, Bayesian inference requires two things for coordinating conditional
degrees of belief with probability densities: First, the Ramseyian, counterfactual inter-
pretation of conditional degree of belief which supposes that H is true— even if we
actually know that it is false. Second, conditional on this supposition, it is arguably
a requirement of rationality to coordinate degrees of beliefs with known objective
chances (Lewis, 1980). If this coordination is denied (as Strevens, 1999, seems to do
when he points to a “justification gap”), then degrees of belief are never rationally
constrained by chances and all Bayesian inference has to be radically subjective. But
apart from Strevens himself, few are willing to draw this conclusion.

To repeat, we are talking about chance-credence coordination in hypothetical worlds
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where the space of possible events (=the sampling space) is very restricted, not about
chance-credence coordination in the actual world ω@. This consequence is very de-
sirable because most statistical models are strong idealizations of the real world that
neither capture physical propensities, nor limiting frequencies, nor chances according
to a best-system account. Think of the omnipresent assumption of normality of errors,
focusing on specific causally relevant factors and leaving out others, and so on. Prob-
ability densities in statistics can only inform our hypothetical degrees of belief, not our
actual degrees of belief.

Incidentally, this interpretation of conditional degree of belief fits well with the
thoughts of the great (non-Bayesian) statistician Ronald A. Fisher on the nature of
conditional probability in statistical inference:

In general tests of significance are based on hypothetical probabilities
calculated from their null hypotheses. They do not lead to any probability
statements about the real world. (Fisher, 1956, 44, original emphasis)

That is, Fisher is emphatic that the probabilities of evidence given some hypothesis
have hypothetical character and are not physically realized objective chances. Probabil-
ities are useful instruments of inference, not components of the actual world. Accord-
ing to Fisher, statistical reasoning and hypothesis testing is essentially counterfactual—
it is about the probability of a certain dataset under the tested “null” hypothesis. The
null hypothesis usually denotes the absence of any effect, the additivity of two factors,
the causal independence of two variables in a model, etc. In most cases, it is strictly
speaking false: there will be some minimal effect in the treatment, some slight devi-
ation from additivity, some negligible causal interaction between the variables. Our
statistical procedures are thus based on the probabilities of events under a hypothesis
which we know to be false—although it may be a good idealization of reality (Gallis-
tel, 2009). Hence, the proposed counterfactual interpretation of conditional degree of
belief naturally fits into the practice of statistical inference with its emphasis on testing
idealized point hypotheses, e.g., in null hypothesis significance testing.

Finally, I would like to point out that problems with inadmissible information,
that affect the Principal Principle, do not occur in this proposal. The worlds ωH are
so simple and well-behaved—H assigns a probability to all events in the sampling
space—that these conflicts cannot occur. Our actual background knowledge cannot
affect the conditional degrees of belief because we take a counterfactual stance, sup-
pose that H were the case and screen off any conflicting information. We can thus
explain why chance-credence coordination is so important for probabilistic reasoning,
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without committing ourselves to the tedious task of transferring the Principal Principle
from initial to actual credences in the world ω@.

4 Implications I: The Model-Relativity of Bayesian Inference

We now turn to the implications of the Ramseyian approach to conditional degree of
belief for Bayesian inference and statistical reasoning in general.

First, it may seem that the statistical hypothesis H and the background assumptions
are not clearly demarcated. Consider the case of tossing a coin. When we evaluate
p(E|H) with H = “the coin is fair”, we typically assume that the individual tosses
of the coin are independent and identically distributed. However, this assumption is
typically not part of H itself. If we contrast H to some alternative H’, we notice that
the differences between them are exclusively expressed in terms of parameter values,
such as H: θ = 1/2 versus H’: θ = 2/3, H”: θ > 1/2, etc. So it seems that assumptions
on the experiment, such as independence and identical distribution of the coin tosses,
do not enter the particular hypothesis we are testing. Rather, they are part of general
statistical model in which we compare H to H’. In other words, there are two layers in
the statistical modeling process—the layer of the general statistical modelM = (S ;P)
where S denotes the sampling space, that is, the set of observations, and P denotes
the set of probability distributions that describe the observations. In the case of i.i.d.
coin tosses with fixed sample size N, this would be the set of Binomial distributions
B(N, θ), with θ ∈ [0, 1] denoting the probability of the coin to come up heads on any
particular toss.

This implies that the conditional degree of belief p(E|H) is not only conditional on
H, but also conditional on M. Indeed, a Bayesian inference about the probability of
heads in the coin-tossing example takesM as given from the very start. This is espe-
cially clear in the assignment of prior probabilities p(H): Bayesian inference regarding
particular parameter values is relative to a modelM into which all hypotheses are em-
bedded, and degrees of belief are distributed only over elements of M. In particular,
also the prior and posterior degrees of belief, p(H) and p(H|E), should be understood
as relative to a modelM. In the above example, a Bayesian might distribute her prior
beliefs according to a probability density over θ ∈ [0, 1], such as the popular beta
distribution Beta(α, β) with density p(θ ∈ [a, b]) =

∫ b
a (1/B(α, β)) xα−1 (1− x)β−1 dx.

This move resolves a simple, but pertinent problem of Bayesian inference. On the
subjective interpretation of probability, the probability of a proposition H, p(H), is
standardly interpreted as the degree of belief that H is true. However, in science, we
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are often in a situation where we know that all of our models are strong idealizations
of reality. It would be silly to have a strictly positive degree of belief in the truth of a
certain statistical hypothesis. Similarly, the outcome space is highly idealized: a coin
may end up balancing on the fringe, a toss may fail to be recorded, the coin may be
damaged, etc. All these possibilites have a certain probability, but we neglect them
when setting up a statistical model and interpreting an experiment.

In other words, Bayesian inference seems to be based on false and unrealistic
premises: the interpretation of degrees of belief that H is true fails to make sense
for p(H). So how can Bayesian inference ever inspire confidence in a hypothesis? Do
we have to delve into the muddy waters of approximate truth, verisimilitude, and so
on? No. The considerations in this paper suggest a much simpler alternative: to in-
terpret prior probabilities as conditional (and counterfactual) degrees of belief, that is,
degrees of belief in H that we would have if we supposed that the general model of
the experiment M were true. Instead of p(H), we talk about p(H|M). This move
solves this problem by making the entire Bayesian inference relative to M. Similarly,
we replace the marginal likelihood p(E) by p(E|M) and interpret it counterfactually,
in agreement with the Law of Total Probability. p(E|M) is the weighted average of
the conditional probabilities of E, and thus our subjective expectation that E occurs if
M were the case.

p(E) = ∑
H∈M

p(E|H,M) · p(H|M)

On this view, the adequacy of M becomes a matter of external judgment and not of
reasoning within the model. That is, a Bayesian inference is trustworthy to the extent
that the underlying statistical model is well-chosen and the prior probabilities are well
motivated. Of course, this is no peculiar feature of Bayesian inference: it is character-
istic of all scientific modeling. Garbage in, garbage out. We have thus answered the
question of why Bayesian inference makes sense if all statistical models are known to
be wrong, but some are illuminating and useful (Box, 1976). More generally, we have
assimilated statistical reasoning to other ways of model-based reasoning in science
(e.g., Weisberg, 2007; Frigg and Hartmann, 2012).

Note that this account is compatible with any analysis of objective chances in the
real world. It is a distinct strength of the analysis presented here that it remains neutral
on the nature of objective chance: scientists and statisticians do not have to engage in
metaphysical analyses of objective chance when they build a statistical model and use
it to inform their credences. This is the same intuition that motivated the best-system
analysis of objective chance (Lewis, 1994; Hoefer, 2007).
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The model-relativity of a lot of probabilistic inference, as well as the results of
the last two sections, suggest that conditional and not unconditional degree of belief
might be a more adequate primitive notion if one wants to keep a sparse concep-
tual framework for probabilistic reasoning. This resonates well with Hájek’s (2003)
analysis which reaches the same conclusion. It requires some changes on the axiom
level, however. Kolmogorov’s three standard axioms (p(⊥) = 0; p(A) + p(¬A) = 1;
p(∨Ai) = ∑ p(Ai) for mutually exclusive Ai) will not do the job any more. One way
is to replace them by an axiom system that takes conditional probability as primi-
tive, such as the Popper-Renyi axioms (Renyi, 1970; Popper, 2002; Fitelson and Hájek,
2016). Unconditional probability can then be obtained as a limiting case of conditional
probability. Another way is to define conditional probability in terms of an expecta-
tion conditional on a random variable (Gyenis et al., 2016). It is up to future work to
determine which road is the most promising one.

5 Implications II: Learning vs. Supposing

Following up on the thoughts in the previous section, we notice that not all condi-
tional degrees of belief are of the same kind. There is a relevant difference between
p(E|H,M) on the one hand and p(H|E,M) on the other hand. When we calculate the
first value, we suppose thatM and H are the case and argue that the probability of E
should be equal to ρM,H(E). However, supposingM and E does not yield a uniquely
rational value for p(H|M, E). There is no objective chance of H in the hypothetical
world ωE. On the other hand, p(H|E,M) is objectively constrained by Bayes’ Theo-
rem: the already determined values of p(E|H,M) p(E|M) and p(H,M) force us to
assign a particular value to p(H|M, E) if we want to stay coherent.

In other words, our Ramseyian analysis of conditional degree of belief seems to be
very one-sided: it is restricted to likelihoods (probabilities of events given a specific
statistical distribution). For these probabilities of the type p(E|H,M), supposing H
andM delivers the intuitive result that the conditional degrees of belief are objectively
constrained, but supposing E and M does not deliver such a result for p(H|E,M).
Given that Bayesians interpret this value as the rational posterior degree of belief in
H and take it as a basis for decision-making and action, this seems to wreak havoc on
our attempts to integrate the Ramseyian approach to counterfactual degree of belief
into an appealing picture of Bayesian reasoning.

Perhaps contraintuitively, I suggest to bite the bullet and to accept that the condi-
tional degree of belief p(H|E,M) is unconstrained in the first place. Supposing E and
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M typically allows for different degrees of belief in H. There is no reason why, in the
absence of further information, agents should assign the same degree of belief to H,
given E. In fact, they often don’t. Now assume that we have a definite degrees of belief
in p(H|M) (as a matter of psychological fact) and p(E| ± H,M) (by supposing H and
¬H, as explained in Section 3). Then our degrees of belief in p(E|M) and p(H|E,M)

are fixed as well because p(·|M) is a probability function and therefore satisfies

p(H|E,M) = p(H|M) · p(E|H,M)

p(E|M)
(Bayes’ Theorem)

If our conditional degrees of belief do not satisfy this equality, we will run into a
Dutch Book and violate the Bayesian norms of rationality. Three things should be
noted, however.

First, the left hand side on the equation describes the conditional degree of belief
in H, given E andM, not on the degree of belief in H, givenM and after learning E. (I
will say more on this distinction below.) It is a synchronic, not a diachronic constraint,
and Bayesian Conditionalization has not been invoked in stating the above equality.

Second, Bayes’ Theorem is a mathematical fact which is in itself closely related to
Ratio Analysis—in fact, it can be derived easily from applying Ratio Analysis to both
p(E|H,M) and p(H|E,M). This underlines that the above equation is not about the
definition of p(H|E,M), but about constraining its value.

Third and last, we see that p(H|E,M) is constrained to the extent that the proba-
bilities on the right hand side are. In other words, the normative pull for constraining
p(H|E,M) does not come from the counterfactual interpretation of conditional de-
grees of belief (=supposing E), but from the requirement of probabilistic coherence.
This is a reading of Bayesian inference that is very close to Ramsey’s and de Finetti’s
subjectivism: we are free to assign degrees of belief to events as long as we respect
probabilistic coherence and the constraints which rational arguments impose on us
(e.g., when we suppose that H is the case and reason about the probability of E). This
clarifies that subjectivism is not to be confused with an “anything goes” mentality: the
rationally required constraints can be substantial.

It should also be added that supposing a certain event E may still determine the
conditional probability of other events. Suppose that two variables X = (xt) and
Y = (yt) depend on each other via the formula yt+1 = αxt+1 + βyt + εt+1, a typical
time series model M with Gaussian error terms ε ∼ N(0, 1). Let H denote specific
values for α and β, e.g., α = β = 1. In that case, the conditional degree of belief
in E′ : yt+1 = 2 given H, p(E′|H,M), is not uniquely determined. However, if we
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also suppose that E : yt = 1 occurred, the model yields a meaningful and uniquely
counterfactual degree of belief p(E′|H, E,M).

Finally, inference about posterior degrees of belief typically concerns the case when
we have learned evidence E. This is, in the first place, something different from the con-
ditional probability degree of belief in H, given E. Again, this distinction is supported
by recent psychological evidence that points to differences between both modes of rea-
soning (Zhao et al., 2012). In that experiment, the authors found a difference between
participants who learned evidence E (e.g., by observing relative frequencies) and par-
ticipants who had to suppose that E occurred, in terms of the probability estimates
which they submitted after the learning/supposing took place.

This finding suggests that the learning of evidence E, as it is relevant for posterior
degrees of belief, should be modeled differently from supposing E (see also de Finetti,
1972; Skyrms, 1987). The obvious option is to state that the posterior probability of H
after learning E should be described by the probability pE(H|M) which represents the
agent’s rational degree of belief after learning E and should be numerically identical
to (but not be counterfactually interpreted as) the conditional probability p(H|E,M).
Now, it is distinctive of Bayesian reasoning that pE(H|M) = p(H|E,M): this is just
the requirement of Bayesian Conditionalization. The rational posterior degree of belief
in H given M and after learning E should just be the number yielded by applying
Bayes’ Theorem to p(H|E,M). That is, to the extent that p(H|E,M) is constrained by
the conditional degrees of belief p(H|M), p(E|M) and p(E|H,M) that we happen to
have, also pE(H|M) will be constrained. This observation rescues the normative pull
of basing decisions and actions on posterior degrees of belief.

Bayesian Conditionalization relates posterior degrees of belief (that emerge from
learning E) to proper conditional degrees of belief (that emerge from supposing E)
in a similar way as Ratio Analysis does for conditional and unconditional probabili-
ties. It is a numerical constraint that allows for the calculation of the one in terms of
the other. However, it is not a definition or an exhaustive philosophical analysis. In
both cases—posteriors vs. conditional degrees of belief, conditional vs. unconditional
probabilities—the two concepts remain conceptually distinct, and the existence of a
close mathematical relation between them should not seduce us to try to reduce one
concept to the other.

Finally, the learning/supposing distinction also allows for a better assessment of
the Problem of Old Evidence and its proposed solutions. This problem deals with the
question how previously known (“old”) evidence E can confirm a new theory H that
manages to explain E, while other theories have been struggling with E. This pattern

14



of reasoning is frequently found in science (e.g., Glymour, 1980), but the standard
Bayesian account fails to retrieve it because the actual degree of belief in E is equal to
unity. Hence, pE(H) = p(H|E) = p(H).

Most solutions of the Problem of Old Evidence make use of an argument of the
form p(E|H,M) � p(E|¬H,M) in the suppositional sense that we have elaborated
above (e.g., Garber, 1983; Howson, 1984; Earman, 1992; Sprenger, 2015; Fitelson and
Hartmann, 2016). Given H, E is way more expected than given the alternatives.
This implies that E confirms H (relative to M) on a Bayesian account. However,
when the counterfactual interpretation is shunned and conditional degrees of belief
are calculated according to Ratio Analysis, after learning E, these values are equal
to unity: pE(E|H) = pE(H ∧ E)/pE(H) = pE(H)/pE(H) = 1, and pE(E|¬H) =

pE(¬H ∧ E)/pE(¬H) = pE(¬H)/pE(¬H) = 1.
The source of the problem is easily diagnosed: there is an equivocation regarding

the relevant conditional degrees of belief. The interpretation that feeds the problem
in the first place looks at the conditional degree of belief in E relative to H and all
actually available information, including the actual occurrence of E. That is, it looks
at the probability distribution pE(·). Various solutions, by contrast, are phrased in
terms of the model-relative, suppositional conditional degree of belief in E, that is,
p(E|·,M), or in other words, the likelihood function L(H) = ρH(E). Indeed, when
we evaluate conditional degree of belief by counterfactually assuming that H is true,
we get a different picture. In a modelM where H competes with alternatives H’, H”,
etc., it makes sense to say that E favors H over the alternatives because p(E|H,M) �
p(E|H′,M), p(E|H,M)� p(E|H′′,M), etc. This is the intuition which all those who
believe that old evidence can confirm a theory want to rescue. These degrees of belief
can be read as a sort of ur-credences, conditional on M and H only (Howson, 1984;
Sprenger, 2015). Making the distinction between pE(·) and p(·|E,M) captures the
different sorts of confirmation (or evidential favoring) that matter in science. Hence,
our analysis of conditional degree of belief backs up technical solutions of the Problem
of Old Evidence by a philosophical story why we can have non-trivial conditional
degrees of belief in the first place. Similarly, it supports those Bayesians who believe
that Bayes factors based on such conditional degrees of belief can be objective—or at
least intersubjectively compelling—measures of evidence (Sprenger, 2016).
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6 Conclusion

This paper was devoted to a defense of the claim that conditional degrees of belief
are essentially counterfactual, taking up a proposal by Frank P. Ramsey. On the ba-
sis of this interpretation, it was argued that conditional degrees of belief equal the
corresponding probability densities, as The Equality postulated (p(H|E) = ρH(E)).
Furthermore, the counterfactual interpretation was extended to other probabilities in
Bayesian inference, and the relation between learning evidence E and conditional de-
grees of belief that suppose E was investigated.

We can now state our main results. They may be shared by other philosophers of
probability, but I am aware of no place where a majority of them is clearly articulated
and defended.

1. Ratio Analysis is a mathematical constraint on conditional degree of belief, but
provides no satisfactory philosophical analysis.

2. Conditional degrees of belief p(E|H) should be interpreted in the counterfactual
way outlined by Ramsey: we suppose that H were true and reason on this basis
about the probability of E.

3. On this approach, supposing H will often uniquely determine the objective prob-
ability of E and the conditional degree of belief in E. In other words, we have
justified The Equality: conditional degrees of belief equal the mathematical prob-
ability densities.

4. The Ramseyian approach explains the seemingly analytical nature of many prob-
ability statements in statistics, and it agrees with how statisticians view proba-
bilities in inference: as objective, but hypothetical entities. Statistical inference
does not need to be backed up by a particular interpretation of objective chance.

5. It rescues the normative pull of Bayesian inference, by contributing to agreement
on the value of measures of evidential support such as the Bayes Factor.

6. It avoids problems of chance-credence coordination principles such as the Prin-
cipal Principle or the Principle of Direct Inference.

7. Also other probabilities in Bayesian inference (e.g., priors) should be understood
as conditional degrees of belief: they are conditional on assuming a general
statistical model. This answers the challenge why we should ever have positive
degrees of belief in a hypothesis when we know that the model is wrong.
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8. Bayesian Conditionalization relates the posterior degrees of belief (learning E) to
the conditional degrees of belief (supposing E). This should not be understood
as a definition or conceptual reduction, but as a mathematical constraint that
relates two distinct credence functions.

9. The distinction between posterior and conditional degrees of belief also con-
tributes to a better assessment of the Problem of Old Evidence and various solu-
tion proposals.

If some of these conclusions withstood the test of time, that would be a fair result.
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