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Abstract

This paper develops axiomatic foundations for a probabilistic-interventionist
theory of causal strength. Transferring methods from Bayesian confirmation the-
ory, I proceed in three steps: (1) I develop a framework for defining and comparing
measures of causal strength; (2) I argue that no single measure can satisfy all nat-
ural constraints; (3) I prove two representation theorems for popular measures
of causal strength: Pearl’s causal effect measure and Eells’ difference measure.
In other words, I demonstrate these two measures can be derived from a set of
plausible adequacy conditions. The paper concludes by sketching future research
avenues.

1 Introduction

From Aristotle to the 21st century, causation is usually treated as a qualitative, all-or-
nothing concept. Either C is a cause of E or it isn’t. However, sometimes we have to
make more nuanced causal judgments that involve a quantitative dimension: C is a
more effective cause of E than C’, the causal effect of C on E is twice as high as the
effect of C’, etc. This is especially important for purposes of prediction and evaluating
experimental findings, e.g., quantifying effect sizes (e.g., Rubin, 1974; Rosenbaum and
Rubin, 1983; Pearl, 2001). For instance, the extent to which a newly developed drug
increases recovery rates affects the FDA’s and EMA’s decision to admit it to the market.
The degree to which promotional activities cause high sales of a product affects the
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allocation of resources within a firm. The degree to which a car accident can be
attributed to the behavior of an individual affects the amount of compensation that
other parties receive. All these judgments tap onto the concept of causal strength, or
equivalently, graded causation.

Whilst a huge amount of literature has been devoted to the qualitative question
“When is C a cause of E?” (e.g., Hume, 1739; Suppes, 1970; Lewis, 1973; Mackie, 1974;
Woodward, 2003), and the comparative question “Is C or C’ a more effective cause
of E?” starts to get explored as well (e.g., Chockler and Halpern, 2004; Halpern and
Hitchcock, 2016), the quantitative question “What is the causal strength of C on E?”
is relatively neglected, given the huge scope of actual and potential applications in
science. There are proposals from different disciplines, such as psychology (Cheng,
1997), computer science (Pearl, 2000), statistics (Good, 1961a,b) and philosophy (Eells,
1991), but with the exception of Good’s papers and the survey paper by Fitelson and
Hitchcock (2011), no attempt is made at a unified theory of causal strength.

The purpose of this paper is to close this gap and to develop axiomatic founda-
tions for probabilistic measures of causal strength: first, by developing a framework in
which different measures can be defined and compared; second, by showing that not
all natural constraints on causal strength can be jointly satisfied; and third, by prov-
ing two representation theorems for intuitive and much-discussed measures of causal
strength. That is we show how the measures in question can be derived from a set of
plausible adequacy conditions. This means that my paper is primarily descriptive, but
to the extent that the adequacy conditions are plausible, it has normative implications
for the choice of a measure of causal strength. It is also methodologically innovative
in trying to develop a theory of causal strength that transfers formal methods which
have been successful in the field of Bayesian confirmation theory. For a conference
like FEW, bridging the causal strength and credence literature might be particularly
exciting.

Laying foundations for a theory of causal strength also cuts across an important
distinction in philosophical theories of causality: the distinction between type and to-
ken causation, or actual and generic causation. While reasoning about actual causation
refers to concrete events and occurs in retrospective (“Was X or Y a cause of Z?”, see
e.g., Halpern and Pearl, 2005a,b), reasoning about generic causation refers to the causal
relationship between two different events or event-types, regardless of their actual re-
alization. One of the questions investigated by this paper is whether there should be
different measures of causal strength, dependent on whether we ask a question about
actual or about generic causation. (The answer is yes.)

In Section 2, I briefly motivate the choice of a probabilistic-interventionist frame-
work for explicating causal strength. Then I provide a basic set of axioms from which
a simple plurality result (we need more than one measure of causal strength) can be
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derived. Section 3 introduces several adequacy criteria and shows representation the-
orems for measures of actual and generic causation, respectively. Section 4 discusses
future research questions and concludes.

2 The Basic Axioms and the Plurality Result

This paper aims at an axiomatic theory of measures of causal strength for propositional
variables, and a framework in which they can be compared. The theory is based on
a probabilistic account of causal relevance (causes raise the probability of the effects),
amended with the manipulability view of causation (Spirtes et al., 2000; Pearl, 2000;
Woodward, 2003). On the interventionist account, C is a cause of E if and only if an
intervention on C would cause a change of value in E, or change the probability that E
takes a certain value (Woodward, 2012).1

An ideal intervention consists in forcing a variable C to take a certain value while
breaking the influence that other variables may have on it. Pearl’s notation for such
an intervention is do(C = x). Formally, this means “lifting C from the influence of the
old functional mechanism and placing it under the influence of a new mechanism that
sets the value C = x while keeping all other mechanisms undisturbed” (Pearl, 2000, 70,
notation changed). Imagine that we would like to study the effects of classroom light
on whether students are awake or asleep. The intensity of classroom light depends
on the settings of the audiovisual system. However, we may press the light switch
manually, overruling the system settings, and then study the effects of our intervention
on the students (e.g., they wake up from deep sleep). This way, we directly intervene
on the light intensity and break the functional dependency on the audiovisual system
settings.

A typical causal model in science contains a directed acyclical graph G that con-

1Outside formulae, notation in this paper distinguishes between propositional variables, which are
printed in italics, and realizations of these variables, which are printed in regular roman script.

X

EC

Figure 1: A typical common cause (conjunctive fork) structure. An intervention on C
would disrupt the causal arrow leading into this variable from X and not have any
effect on E.
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sists of a set of vertices (=variables) and directed edges, together with a probability
distribution over the variables in G.2 In such a setting, the interventionist account nat-
urally distinguishes genuinely causal relations between C and E from relations where
both variables are correlated as a result of a common cause X. See Figure 1. When
one intervenes on C, the causal arrow leading from X to C is broken and no effect on
E occurs. On the probabilistic account, it is less straightforward to express this dif-
ference since common effects raise the probability of each other, too (e.g., Eells, 1991).
While the probabilistic account describes causation in terms of statistical relevance,
comparing p(E|C) and p(E|¬C) in a set of relevant background contexts, the interven-
tionist account focuses on probability of the effect conditional on an intervention on
the cause, that is, p(E|do(C)). Both perspectives are combined in this paper.3

Now let L be a propositional language with closed sentences L, and let M be the
set of causal models whose variables are elements of L. Each such model includes a
joint probability distribution over its variables. This allows us to formulate our first
axiom:

Axiom I (Domain): For any two propositions C, E ∈ L and a causal model M ∈
M, the causal strength of C on E, η(C, E), is a continuous real-valued function
operating on a subset of L2 ×M, namely the set

S := {〈C, E, M〉 ∈ L2 ×M|M contains C and E as variables} (1)

Reference to a causal model in η(C, E) is omitted for the sake of brevity. More-
over, define C as the set of measurable functions S → R.

Implicitly, Axiom I asserts a strong claim: causal strength is a function of the joint
probability distribution of the causal network together with information about the
causal structure of M. This leaves out external factors such as typicality, normative
expectations and defaults, which are of theoretical significance and have been shown
to affect causal judgments in experimental settings (Knobe and Fraser, 2008; Hitch-
cock and Knobe, 2009; Halpern and Hitchcock, 2016). While this implies that my
model does not capture all aspects of judgments of causal strength, there are many
applications (e.g., quantifying effect size in science) where it is desirable to eliminate
normative considerations, and to derive causal strength from observed relative fre-
quencies. Moreover, my approach quantifies causal strength with respect to a single
background context, sidestepping a substantial discussion in the field of probabilistic
causation (e.g., Cartwright, 1979; Dupré, 1984; Eells, 1991).

2See Spirtes et al. (2000) for an introduction to causal reasoning with Bayesian nets.
3I am neutral on the interpretation of probability here: they can be subjective expectations (degrees

of belief), actual or hypothetical frequencies, propensities, or Humean best-system-chances. Which inter-
pretation is most appropriate will depend on the context of application, but our formal discussion is not
touched by this.
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The second axiom is purely technical and normalizes the range of measures of
causal strength to the interval [−1; 1].

Axiom II (Range): For all causal strength measures η ∈ C, the range of η is the interval
[−1; 1].

The point of this axiom is that causal strength measures are easier to interpret and to
compare if they all have the same scaling properties. The rich literature in Bayesian
confirmation theory (e.g., Fitelson, 2001; Eells and Fitelson, 2002; Crupi, 2013) has
shown that [−1; 1] is an apt range. Since our project pursues a similar goal, we adopt
the same technical constraints.

The next axiom has more philosophical substance. It connects the qualitative no-
tion of being a cause to the causal strength measure. This move is borrowed from
confirmation theory: There, E confirms H (in the qualitative sense) if and only if
c(E, H) > k for a suitable confirmation measure c and a critical value k. In that field,
the bridge between the qualitative and quantitative concept has been very helpful at
better understanding resolving longstanding problems of confirmation, such as the
tacking paradoxes (e.g., Sprenger, 2016).

Axiom III (Qualitative-Quantitative Bridge Principle): For all measures of causal
strength η ∈ C,

• C is a (positive) cause of E if and only if η(C, E) > 0;

• C is a preventive cause of E if and only if η(C, E) < 0;

• C is causally irrelevant to E if and only if η(C, E) = 0.

In particular, this axiom clarifies that positive values of η denote a degree of causation,
negative values denote degree of prevention, and zero is the neutral value. Axiom III
could also be framed more generally with a variable k instead of the constant zero (see
Crupi, 2013, for the case of confirmation), but like for Axiom II, I would like to keep
things as simple and natural as possible. Note that Axiom III is specific to the case of
propositional variables; extensions to other categorical and real-valued variables are
not straightforward.

Now, I motivate another substantial constraint on η which also suits the interven-
tionist approach well. It is motivated by a very old idea about causes, namely that
causes make a difference to their effects. It has first been articulated by David Hume
(1711–1776) in his famous description of two causally related objects: “if the first object
had not been, the second never had existed” (Hume 1748/77).4 This line of reasoning

4It should be kept in mind that Hume makes these remarks in the context of spelling out a regularity
theory of causation, which is a bit at odds with the gist of the quote.

5



is later developed in the counterfactual account of David Lewis (1973, 1979), the proba-
bilistic account of Patrick Suppes (1970) and Nancy Cartwright (1979), and exemplified
in many cases of scientific inference, e.g., Randomized Controlled Trials (RCT). There,
we would like to assess the efficacy of a drug and we divide the trial participants in
two groups: one that receives the new drug, and one that receives the standard treat-
ment or a placebo. The causal efficacy of the new drug to cure the disease is then a
function of the divergence between the results in the treatment and the control group.
At least some measure of causal strength should preserve this intuition. This motivates
our next axiom:

Axiom IV (Probability Raising under Intervention) There is a measure of causal
strength η ∈ C such that η(C, E) > 0 if and only if

p(E|do(C)) > p(E|do(¬C))

Now consider a case of actual causation. Suzy throws stones at a bottle. What
if she throws blindly? In comparison to a throw where she sees the bottle, throwing
blindly lowers the probability that she hits the bottle. However, by accident her blind
throw hits the wall behind the bottle and bounces back toward the bottle. The bottle
shatters. Certainly, her blind throw was, in some sense, a cause of the shattering of the
bottle. On the other hand, it lowered the probability of the effect. This is analogous
to many cases in everyday life: making a technically sound decision at a card game
such as poker or bridge will be right most of the time, but when the distribution of
the cards is unlucky on a particular game, this decision may be the cause of a painful
loss. Fortune has let you down. This motivates the following axiom:

Axiom V (Probability-Lowering Causes): There are causal models M with proposi-
tional variables C and E such that

p(E|do(C)) ≤ p(E|do(¬C))

and yet, C is a (positive) cause of E.

From the preceding axioms, it is easy to derive the plurality of measures of causal
strength (all proofs in the appendix):

Theorem 1 There is more than one measure of causal strength.

This result is not particularly deep, and the proof is straightforward. It is reflected
in the plurality of measures that Fitelson and Hitchcock (2011) list in their commend-
able survey article. The Suppes-Pearl measure, for example, violates Axiom IV and
satisfies Axiom V, while the other measures satisfy Axiom IV and violate Axiom V. See
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Suppes (1970); Pearl (2000) η(C, E) = p(E|C)

Eells (1991) η(C, E) = p(E|C)− p(E|¬C)

“Galton” (covariation) η(C, E) = 4p(C) p(¬C)[p(E|C)− p(E|¬C)]

Lewis (1986) η(C, E) =
p(E|C)− p(E|¬C)
p(E|C) + p(E|¬C)

Cheng (1997) η(C, E) =
p(E|C)− p(E|¬C)

1− p(E|C)

Good (1961a,b) η(C, E) =
p(E|C)− p(E|¬C)

2− p(E|C)− p(E|¬C)

Table 1: Some prominent measures of causal strength. I follow the labels and rescal-
ings by Fitelson and Hitchcock (2011).

Table 1. Yet, the plurality result deserves mention because it has not been noted ex-
plicitly in the literature on causal strength. For example, it has not been demonstrated
that analyses of actual and generic causation may require different measures of causal
strength.

The question is now which measures we should prefer, and this is a hard question
whose answer will depend on the context of application. Nonetheless we will try to
impose some constraints that are motivated by technical convenience or by plausible
properties for causal relevance.

3 The Representation Theorems

The previous section has proposed that the causal strength of C for E depends on the
causal model, that is, a directed acyclical graph in which C and E are included, with
a probability distribution over the variables. We now make this intuition precise and
demand that η(C, E) be expressed as a function of the base rate of the cause and the
probability of E under the relevant interventions on the cause.

Formality For two propositions C, E ∈ L, the causal strength measure η(C, E) is a
real-valued function on S ⊂ (L2 ×M) → [−1; 1], and there exists a measurable
function f : [0, 1]3 → [−1; 1] such that

η(C, E) = f (p(C), p(E|do(C)), p(E|do(¬C)))
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Formality thus takes up Axiom I and II from the previous section. The reader may
ask why we are using the do-calculus in p(E|do(C)) and p(E|do(¬C)) rather than the
simple conditional probabilities p(E|C) and p(E|¬C). The answer is that probability
alone does not encapsulate information about causal directionality. Conditional prob-
abilities alone do not specify whether E is a (positive) cause of C or the other way
round, whether they have a common cause, etc. If η(C, E) is to be more than a mea-
sure of statistical association or positive relevance between two variables, then these
differences must be taken into account.

It is also notable that Formality is blind to mediator variables or multiple paths
leading from C to E. Mediators will sometimes be latent variables and not be directly
measurable. Therefore I keep the model simple and amalgamate the effects that C
may have on E via different paths into one number (e.g., Dupré, 1984; Eells, 1991).
Hoewever, this omission does not rule out a path-specific perspective. By appropriate
conditionalization on other factors in the causal model, η(C, E) can be used for cal-
culating path-specific effects as well and comparing them to the net effect (cf., Pearl,
2001).

While Formality sketches the ground on which the different measures compete, the
following adequacy conditions describe how they should rank different cause/effect
pairs. Notably, not all of them will pull into the same direction. We start with the
comparatively simple case of comparing two putative causes of an effect E. Suppose
for example that we ask what is a stronger cause of headache (E): thinking hard about
a difficult research problem (C1) or going for a night of binge drinking (C2)? In such
cases, it is natural to answer that C1 is more effective than C2 if and only if C1 makes
E more expected than C2:

Competing Causes I For propositions C1, C2, and E ∈ L and a causal model M with
probability function p(·),

η(C1, E) > η(C2, E) if and only if p(E|do(C1)) > p(E|do(C2))

This requirement is analogous to Final Probability Incrementality in Bayesian con-
firmation theory (Crupi, 2013; Crupi et al., 2013). If it is found too restrictive, then the
following weakening may be more palatable:

Competing Causes II
η(C1, E) > η(C2, E)

if and only if for some function g : [0, 1]2 → R:

g(p(E|do(C1)), p(E|do(¬C1))) > g(p(E|do(C2)), p(E|do(¬C2)))
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This condition is more liberal than Competing Causes I in demanding not more than
that the base rates of C1 and C2 should not matter for ranking causal strength if the
same effect is aimed at. Instead, we only look the degree to which intervening on C1

and C2 makes a difference for E. Note that Competing Causes II is silent on how the
two conditional probabilities should be combined in determining causal strength.

The predictive function of causal strength suggests the following condition: C has
positive (or at least not negative) causal strength for E if the intervention do(¬C) makes
E impossible. In other words, if E cannot be explained but by C (p(E|¬C) = 0), then
η(C, E) ≥ 0, and conversely for ¬C.

Inference to the Only Explanation If p(E|do(C)) > 0 and p(E|do(¬C)) = 0 then
η(C, E) ≥ 0. Conversely, if p(E|do(C)) = 0 and p(E|do(C)) > 0, then η(C, E) ≤ 0.

Rank Team Points Team Points
after 36 out of 38 rounds after 37 out of 38 rounds

1 Roma 78 Inter 79
2 Inter 76 Roma 78
3 Juve 74 Juve 74

Table 2: A motivating example for Conditional Equivalence. Top of the Seria A after
36 and 37 out of 38 rounds, respectively.

Now we introduce a condition which is motivated by actual causation. Consider
Table 2. Three teams in the Italian Seria A, AS Roma, FC Internazionale (“Inter”),
and Juventus (“Juve”) and, are competing for the scudetto, the national soccer cham-
pionship. On the penultimate match day, Inter beats Juve in the Derby d’Italia while
Roma loses to another team. Call this conjunction of events C. Let E1 = Inter will
win the championship and E2 = Roma will be the runner-up. Given C, E1 and E2 are
logically equivalent. (Juventus misses four and five points on both teams and cannot
surpass them any more.) It is now very natural to claim that C has caused E1 and E2

to an equal degree. This intuition is stated in the following condition:

Conditional Equivalence If E1 and E2 are logically equivalent given C, then
η(C, E1) = η(C, E2).

Finally, a condition on how causal strength combines on a single path—see Figure
2. According to a plausible intuition, overall causal strength should be a function of
individual causal strength. But which function g : R2 → R should be chosen such
that η(C, E) = g(η(C, X), η(X, E))? First of all, it appears natural that g is symmetric:
the order of mediators in a chain does not matter. Second, it seems that the overall
causal strength cannot be stronger than the weakest link in the chain: If C and X are
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C X E

Figure 2: The Bayesian Network for causation along a single path.

almost independent, it doesn’t matter how strongly X and E are correlated: the causal
strength will be weak. Similarly, if both links are weak, the overall link will be even
weaker. On the other hand, if the link is maximally strong (e.g., η(C, X) = 1), then the
strength of the entire chain will just be the strength of the rest of the chain. See also
Good (1961a, 311–312).

A very simple function that satisfies all these requirements is multiplication. Thus,
we obtain as an adequacy criterion:

Multiplicativeness along Single Paths If the propositional variables C and E are con-
nected via a single path with intermediate node X, then η(C, E) = η(C, X) ·
η(X, E).

As a corollary, we obtain that for a causal chain with multiple mediators, e.g.,
C → X1 → . . .→ Xn → E,

η(C, E) = η(C, X1) · η(X1, X2) · . . . · η(Xn−1, Xn) · η(Xn, E)

This concludes the exposition of adequacy criteria. Note that the point of this section is
not to find a measure of causal strength that satisfies all adequacy conditions. Actually,
one can even show that no such measure exists. However, we can use subsets of the
conditions for characterizing different measures up to ordinal equivalence. Two mea-
sures η and η′ are called ordinally equivalent if and only if they agree in their rankings
of causal strength, that is, η(C, E) > η(C′, E′) if and only if η′(C, E) > η′(C′, E′).

I now state two representation theorems pertaining to these adequacy conditions.

Theorem 2 All measures of causal strength that satisfy Formality, Competing Causes I and
Conditional Equivalence are ordinally equivalent to

η∗(C, E) = p(E|do(C))

Pearl (2000, 70) calls η∗(C, E) = p(E|do(C)) the “causal effect” of C on E. This
measure fits quite well with cases of actual causation where we are asked to rank
causes of an event according to the degree that they produced E or were responsible
for E. For instance, should a car accident (E) be attributed to driving a bit too fast (C1)
or to ignoring a red traffic light (C2)? Although both causes describe the violation of a
norm, one of them has a much higher tendency to cause an accident, and p(E|do(C))

10



seems to be a good guide for ranking the causes. Note, however, that η∗ violates
Axiom III and Axiom IV from the previous section: it is not suitable to distinguish
between (positive) causal relevance, causal prevention, and causal irrelevance. It also
violates Multiplicity along Single Paths and Inference to the Only Explanation.

We now prove a representation theorem for a measure that is based on statistical
relevance, and that agrees with Axiom I-IV.

Theorem 3 All measures of causal strength that satisfy Formality, Inference to the Only Ex-
planation, Competing Causes II, and Multiplicativity along Single Paths are ordinally equiva-
lent to

ηd(C, E) = p(E|do(C))− p(E|do(¬C))

This is a simple and intuitive quantity that measures the causal strength of C for E
by comparing the effect that different interventions on C have on E. It possesses the
sine qua non property that two effects in a conjunctive fork (e.g., E1 ← C → E2) do not
cause each other. It is also straightforwardly applicable in statistical inference where it
is used to quantify effect size for categorical variables under an intervention on C. For
example, in clinical trials, ηd(C, E) is called a measure of Absolute Risk Reduction, or
ARR.

We conclude this section by stating some notable properties of ηd. First, it can be
rewritten as

ηd(C, E) = p(E|do(C))− p(E|do(¬C))

= p(¬E|do(¬C)) + p(E|do(C))− 1

Modulo subtraction of a constant, ηd(C, E) is a sum of two quantities that have been
called causal/explanatory necessity and causal/explanatory sufficiency by Hempel
(1965) and Pearl (2000). The names are natural: p(¬E|do(¬C)) indicates to what extent
C was necessary for producing E (what would have happened if E had not occurred?),
and p(E|do(C)) indicates to what extent the presence of C is sufficient for producing
E. ηd(C, E) combines these two plausible ways of thinking about causal strength in an
intuitive manner.

While this property may be regarded as superficial, the following one is more
profound. Consider the proposition E1 that a certain real-valued quantity E falls into
the interval [e−1 , e+1 ] and the proposition E2 that E has values in [e−2 , e+2 ]. Obviously,
these two variables are mutually exclusive. But what is the degree to which C causes
E1 or E2 (that is, E ∈ [e−1 , e+1 ] ∪ [e−2 , e+2 ])? This question can be answered in general:

Corollary 1 For C, E1 and E2 ∈ L,

ηd(C, E1 ∨ E2) = ηd(C, E1) + ηd(C, E2)− ηd(C, E1 ∧ E2) (2)
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and in particular, if E1 and E2 are mutually exclusive (that is, if ¬(E1 ∧ E2) is a
theorem), then the above equation reduces to

ηd(C, E1 ∨ E2) = ηd(C, E1) + ηd(C, E2)

and we can also formulate the following necessary and sufficient condition on
rankings of causal strength:

ηd(C, E1 ∨ E2) > ηd(C, E1) iff ηd(C, E2) > 0,

and vice versa with E1 and E2 reversed.

The proof is straightforward and left as an exercise. This means that the degree
to which a (mutually exclusive) disjunction of effects is caused is the sum of the indi-
vidual degrees of causation. In particular, causal strength is enlarged by disjunctively
tacking further effects if and only if each of these effects is itself caused to a positive de-
gree. Notably, it would be possible to characterize ηd(C, E) up to ordinal equivalence
by conjoining (2) with Competing Causes I (cf. Crupi, 2013; Crupi et al., 2013).

Third and last, ηd(C, E) satisfies a natural symmetry constraint proposed by Fitel-
son and Hitchcock (2011), namely that the degree to which C prevents E (=the degree
to which C causes ¬E) is the negative of the degree to which C causes E:

−η(C, E) = η(C,¬E) (Causation-Prevention Continuity or CPC)

This concludes our discussion of the adequacy conditions and the measures which can
be used to derive them.

4 Discussion

This paper has provided axiomatic foundations for a probabilistic theory of causal
strength, proceeding toward a more systematic investigation of that topic. It synthe-
sizes ideas from the manipulability/interventionist view of causation and the proba-
bilistic relevance view of causation in developing a measure of causal strength. The
methods for characterizing the various measures are partly transferred from Bayesian
confirmation theory.

After an introduction of the conceptual and mathematical framework, the paper
has essentially shown two results. First, intuitions about measures of causal strength
pull into different directions, making it difficult to come up with one true measure
of causal strength. Second, by means of a list of plausible adequacy criteria, one
can characterize two intuitive measures of causal strength: η∗(C, E) = p(E|do(C)) for
matters of actual causation and causal attribution, ηd(C, E) = p(E|do(C)) for matters of
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Measure Property
FORM CC1 CC2 CE IOE MUL CPC

Suppes/Pearl yes yes yes yes no no no
Eells yes no yes no yes yes yes
Cheng yes no yes no yes no no
Galton yes no no no yes no yes
Lewis yes no yes no yes no no
Good yes yes no no yes no no

Table 3: A classification of different measures of causal strength according to the ad-
equacy conditions that they satisfy. FORM = Formality, CC1+2 = Competing Causes
I+II, CE = Conditional Equivalence, IOE = Inference to the Only Explanation, MUL =
Multiplicativity along Single Paths, CPC = Causation-Prevention Continuity.

generic causation and predicting the effect of an intervention. As stated in the previous
section, these measures are not only conceptually appealing, but they also have plenty
of applications in scientific and everyday reasoning. For instance, Stegenga (2015) has
argued that ηd is superior to competing causal effect measures in medical decision-
making, e.g., the Lewis measure, both from epistemological and pragmatic points of
view. All these arguments make a good case for treating η∗ and ηd as default measures
for causal strength, while leaving open that other measures may be more appropriate
for specific applications.

What remains to do? First of all, we may aim at generalizing the framework from
propositional variables to categorical and real-valued variables. Indeed, many mea-
sures of effect size for real-valued variables, such as Cohen’s d or Glass’s ∆, are based
on the difference of group means, and ηd might be extended naturally into this direc-
tion.

Second, it would be desirable to axiomatize other measures of causal strength
along similar lines. That would help us to nail down the differences between them
in a formally precise way, and help to argue for or against specific measures. Ta-
ble 3 already displays which measure in Table 1 satisfies which adequacy conditions.
It is notable that few measures satisfy Multiplicativity along Single Paths and the
Causation-Prevention Continuity, although these are eminently sensible properties.

Third, the properties of ηd in complicated networks (e.g., more than one path link-
ing C and E) have not been investigated. Is it possible to show, for example, how
degrees of causation along different paths can be combined in an overall assessment
of causal strength, e.g., similar to Theorem 3 in Pearl (2001)?

Fourth, this work can be connected to information-theoretic approaches to causal
specificity (Weber, 2006; Waters, 2007; Korb et al., 2011; Griffiths et al., 2015). The more
narrow the range of effects that an intervention can produce, the more specific the
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cause is to the effect. How does this concept relate to causal strength and causal effect
and to what extent can both research programs learn from each other?

Fifth, I would like to apply this theory to canonical examples in the causation
literature and to explore whether this understanding of causal strength squares well
with the significance of normality and norms in causal reasoning (Knobe and Fraser,
2008; Hitchcock and Knobe, 2009).

These are all open and exciting questions, and I guess it is not difficult to come up
with others. The present paper is just a beginning. I hope, however, that the results
presented herein are promising enough to motivate a further pursuit of an axiomatic
theory of causal strength.

Proofs of the Theorems

Proof of Theorem 1 (Plurality of Measures of Graded Causation)

We have to show that Axiom III, IV and V are not compatible. From Axiom V, we
know that there is a causal model with a probability-lowering cause p(E|do(C)) <

p(E|do(¬C)). By Axiom III, η(C, E) > 0 for all causal strength measures η ∈ C.
This conflicts straightforwardly with Axiom IV, which asserts that there is at least one
measure of causal strength that tracks probability-raising: η(C, E) > 0 if and only if
p(E|do(C)) > p(E|do(¬C)). Contradiction. �

Proof of Theorem 2 (Representation Theorem for Graded Actual Causation)

The proof relies on a recent result by Michael Schippers (2016) in the field of confirma-
tion theory. Schippers demonstrates that the following three conditions are necessary
and sufficient to characterize the posterior probability c∗(E, H) := p(H|E) as a mea-
sure of degree of confirmation, up to ordinal equivalence.

Formality (Confirmation) There is a measurable function f ′ : [0, 1]3 → R such that for
any h, e ∈ L with probability distribution p(·), c(E, H) = f ′(p(E), p(H), p(H ∧
E)).

Final Probability Incrementality For any sentences H, E1, and E2 ∈ L with probabil-
ity measure p(·),

c(E1, H) > c(E2, H) if and only if p(H|E1) > p(H|E2).

Local Equivalence If H1 and H2 are logically equivalent given E, then c(E, H1) =

c(E, H2).
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It is easy to see that Final Probability Incrementality translates into Competing Causes
I when the pair (H, E1,2) is mapped to (E, C1,2):

η(C1, E) > η(C2, E) if and only if p(E|C1) > p(E|C2)

The same is true for Local Equivalence: with (H1,2, E) mapped to (E1,2, C), it postulates
that if E1 and E2 are logically equivalent given C, then η(C, E1) = η(C, E2). This is just
the same as Conditional Equivalence.

Thus it remains to show that Formality (Graded Causation) can be transformed
into Formality (Confirmation) by a suitable change of variables. We already know that
there exists a f : [0, 1]3 → R such that η(C, E) = f (p(C), p(E|do(C)), p(E|do(¬C)).
Since we only want to characterize f mathematically, we restrict ourselves to the case
where E is among the descendants of C and they share no common causes. We also
assume that p(C) ∈ (0, 1). This allows us to write

p(E ∧ C) = p(C)p(E|do(C)) p(E) = p(C)p(E|do(C)) + (1− p(C))p(E|do(¬C))

which we can transform into the equations

p(E|do(C)) =
p(E ∧ C)

p(C)
p(E|do(¬C)) =

p(E)− p(C)p(E|do(C))
1− p(C)

(3)

Hence, we can write p(E|do(C)) and p(E|do(¬C)) as functions of p(C), p(E) and
p(E∧C). In other words, there is a function f ′(p(C), p(E), p(C∧ E)) that characterizes
η(C, E), namely

f ′(p(C), p(E), p(C ∧ E)) := f
(

p(C),
p(E ∧ C)

p(C)
,

p(E)− p(C)p(E|do(C))
1− p(C)

)
= f (p(C), p(E|do(C)), p(E|do(¬C))

= η(C, E)

f ′ is continuous because f and the functions in Equation (3) are. Thus we can extend
f ′ canonically to the set {p(C) ∈ {0, 1}}. Hence we can invoke Schippers’ theorem
which shows that η(C, E) = p(E|C) up to ordinal equivalence. �

Proof of Theorem 3 (Representation Theorem for Graded Generic Causation)

The proof of this representation theorem proceeds in several steps. First, we will show
that η(C, E) = f (p(C), p(E|do(C)), p(E|do(¬C)) does not depend on p(C).

The proof of this first claim proceeds by contradiction. Consider that there are
real numbers x1, x2, y, z ∈ [0, 1] such that f (x1, y, z) 6= f (x2, y, z). Then choose E,
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C1

E

C2

Figure 3: A classical collider/joint effect structure in a causal net.

C1 and C2 such that E is a joint effect of C1 and C2 with x1 = p(C1), x2 = p(C2),
y = p(E|do(C1)) = p(E|do(C2)), z = p(E|do(¬C1)) = p(E|do(¬C2)). In this case,
Competing Causes II tells us that η(C1, E) = η(C2, E). However, on the other hand, we
also know

η(C1, E) = f (x1, y, z) 6= f (x2, y, z) = η(C2, E)

This leads to a straightforward contradiction. Hence, from now on we focus on the
function g : [0, 1]2 → R such that η(C, E) = g(p(E|do(C)), p(E|do(¬C)).

The second step of the proof consists in deriving the equality

g(α, ᾱ) · g(β, β̄) = g(αβ + (1− α)β̄, ᾱβ + (1− ᾱ)β̄) (4)

To this end, recall the Bayesian network from the main paper. It is reproduced in
Figure 4. Again, for the purpose of investigating the formal properties of g, we can
focus on those cases where p(E|±C) and p(E| ± C) agree.

C X E

Figure 4: The Bayesian Network for causation along a single path.

We know by Multiciplity along Single Paths that

η(C, E) = η(C, X) · η(X, E)

= g(p(X|do(C)), p(X|do(¬C))) · g(p(E|do(X)), p(E|do(¬X)))

= g(p(X|C), p(X|¬C)) · g(p(E|X), p(E|¬X))

and at the same time,

η(C, E) = g(p(E|do(C)), p(E|do(¬C)))

= g

(
∑
±X

p(X|C)p(E|C, X), ∑
±X

p(X|¬C)p(E|¬C, X)

)
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Combining both equations yields

g(p(X|C), p(X|¬C)) · g(p(E|X), p(E|¬X)) = g

(
∑
±X

p(X|C)p(E|C, X), ∑
±X

p(X|¬C)p(E|¬C, X)

)

With the variable settings

α = p(X|C) β = p(E|X)

ᾱ = p(X|¬C) β̄ = p(E|¬X)

equation (4) follows immediately.
Third, we are going to show that

g(x, y) = g(x− y, 0) (5)

To this end, we first note a couple of facts about g:5

Fact 1 g(α, 0)g(β, 0) = g(αβ, 0). This follows immediately from equation (4) with
ᾱ = β̄ = 0.

Fact 2 g(1, 0) = 1. With β = 1, the previous fact entails that g(α, 0)g(1, 0) = g(α, 0).
Hence, either g(α, 0) ≡ 0 for all values of α (which would trivialize g) or g(1, 0) =
1.

Fact 3 g(0, 1) = −1. Fact 1 entails (with α = β = 0, ᾱ = β̄ = 1) that g(0, 1) · g(0, 1) =
g(1, 0) = 1. Hence, either g(0, 1) = −1 or g(0, 1) = 1. If the latter were the case,
then g would take positive values although p(E|do(C)) = 0 and p(E|do(¬C)) >
0, in violation of Inference to the Only Explanation. Thus, g(0, 1) = −1.

Fact 4 g(−1, 0) = −1. By Fact 1, g(−1, 0) · g(−1, 0) = g(1, 0) = 1. Then we apply the
same reasoning as in the proof of Fact 3.

Fact 5 g(0, 1) · g(β, β̄) = g(β̄, β). Follows immediately from equation (4) with α = 0,
ᾱ = 1.

These facts will allow us to derive Equation (5). Note that (5) is trivial if y = 0. So we
can restrict ourselves to the case that y > 0. We choose the variable settings

α =
y− x

y
β = 0

ᾱ = 0 β̄ = y

5In the proof, negative arguments of g figure. This may look problematic, but it isn’t. We just show
that any g(·, ·) that satisfies Equation (4) on[0, 1]2 has an extension to a function on R2 that satisfies
certain properties, which can in turn be used for saying something about the behavior of g on [0, 1]2.
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Then we obtain by means of Equation (4) and the previously proven facts

g(x, y) = g((y− x)/y, 0) · g(0, y)

= g(y− x, 0) · g(1/y, 0) · g(0, y) (Fact 1)

= g(y− x, 0) · g(1/y, 0) · g(y, 0) · g(0, 1) (Fact 5)

= g(y− x, 0) · g(1, 0) · g(−1, 0) (Fact 1+3+4)

= g(x− y, 0) (Fact 1+2)

This implies

η(C, E) = g(p(E|do(C)), p(E|do(¬C))) = g(p(E|do(C))− p(E|do(¬C)), 0)

Hence, η(C, E) is a function of p(E|do(C))− p(E|do(¬C)) only. It is easy to see that this
function must be monotonic, that is, g is monotonically increasing in its first argument.
Otherwise there would be x, y ∈ [0, 1] with x > y and g(x, 0) < g(y, 0). In that case,
application of Equation (5) and Inference to the Only Explanation yields

0 > g(x, 0)− g(y, 0) = g(x− y, 0) ≥ 0

and a contradiction results. This concludes the proof of the Theorem. �
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