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1.- Introduction 

Since the advent of quantum mechanics and its application to chemical systems, reduction 

became a regulative idea in the accounts of the relationship between physics and chemistry. In 

the famous introductory paragraph of his article of 1929, Paul Dirac described the central idea of 

what later would be known as quantum chemistry: “The underlying physical laws necessary for 

the mathematical theory of a large part of physics and the whole of chemistry are thus completely 

known, and the difficulty is only that the exact application of these equations leads to equations 

much too complicated to be soluble. It therefore becomes desirable that approximate practical 

methods of applying quantum mechanics should be developed, which can lead to an explanation 

of the main features of complex atomic systems without too much computation” (Dirac 1929, p. 

714). The approximate methods referred to by Dirac, which are the core of quantum chemistry, 

constitute the field in which the discussion about reduction acquires particular relevance. In fact, 

the strategies of approximation that make possible the description of chemical phenomena in 

quantum terms, such as the Born-Oppenheimer approximation or the models of Valence Bond 

and Molecular Orbital, do not satisfy the conditions of Nagelian reduction (Nagel 1961): they not 

only establish loose and non-continuous connections between chemistry and physics, but also 

introduce assumptions that are incompatible with quantum mechanics itself.  

In this article we will address the problem of the relation between chemistry and physics 

with the focus on the problem of optical isomerism and the so called “Hund’s paradox.” For this 

purpose we will begin by framing the problem in the context of the discussions about the 

possibility of explaining molecular structure in quantum terms. Then, we will consider the 

particular case of optical isomers, stressing that quantum mechanics cannot account for the 

difference between isomers of opposite chirality, and that this fact does not depend on 
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idealizations or approximations but is the consequence of the peculiar form of the Hamiltonian of 

the chiral molecules. This will lead us to introduce Hund’s paradox, which points to the difficulty 

to give a quantum explanation to chirality. On this basis, next we will describe the solution 

proposed from the perspective of the theory of quantum decoherence. Finally, we will question 

this solution in the light of a precise interpretation of the phenomenon of decoherence. Our 

closing suggestion will be that a satisfactory solution to Hund’s paradox can only be reached by 

means of an adequate interpretation of quantum mechanics. 

2.- The problem of molecular structure 

The approximate methods used in quantum chemistry play a leading role in deciding about the 

referent of chemical concepts, such as orbital or chemical bond (Hettema 2009). In this context, 

the concept of molecular structure is particularly relevant, since considered as “the central dogma 

of molecular science” (Woolley 1978, p. 1074): molecular structure is the main factor in the 

explanation of reactivity. The problem consists in the fact that the concept seems to find no place 

in the theoretical framework of quantum mechanics, since it appeals to classical notions such as 

the position of the atomic nuclei or the individuality of electrons, both ideas strongly challenged 

in the quantum context. Although this problem has attracted the attention of several authors, the 

discussion is far from settled: the opinions about the link between quantum concepts and the 

notion of molecular structure diverge markedly. 

Guy Woolley (1976, 1978, 1982, 1998) is one of the first authors in dealing with the 

implications of the approximation Born-Oppenheimer and the quantum theory of molecular 

structure in a specifically chemical context. According to the author, by means of the description 

of a molecule from “first principles”, that is, as an isolated dynamical system composed of nuclei 

and electrons that interact through electromagnetic forces, “one cannot even calculate the most 

important parameters in chemistry, namely, those that describe the molecular structure” 

(Woolley 1978, p. 1074). Woolley considers that the impossibility of determining the geometry 

of a molecule by means of quantum mechanics is a proof of the fact that molecular shape is not 

an intrinsic property of molecules, but it is only a “powerful and illuminating metaphor” 

(Woolley 1982, p. 4). 
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In the field of the philosophy of chemistry, Robin Hendry (2004, 2008, 2010) has largely 

treated the issue of molecular structure in the context of the problem of reduction. According to 

the author, reduction has to be discussed in the ontological domain, because the impossibility of 

epistemological (inter-theoretical) reduction of chemistry to physics is already indisputable: even 

the reductionist knows that “the exact equations are insoluble, […] the semi-empirical models 

are approximations to rigorous treatments, standing in for them in explanations of special- 

science phenomena.” (Hendry 2010, p. 184). On this basis, Hendry considers that the relationship 

between quantum mechanics and molecular chemistry, embodied in the way in which the 

molecular structure of a system of several electrons and one nucleus is explained, must be 

conceived in terms of emergence. 

Whereas Woolley and Hendry insist on the difficulties of explaining molecular structure in 

exclusively quantum terms, Hinne Hettema (2012, Chap. 3) adopts a position explicitly 

reductionist by claiming that the inter-theoretic relationship between molecular chemistry and 

quantum mechanics has not been properly formulated in present-day philosophy of chemistry. 

For the author, the problem lies, at least partially, in the scarce impact that the recent 

developments in quantum chemistry have had in the present day philosophy of chemistry. Among 

these developments, he particularly points out the “Quantum Theory of Atoms in Molecules” 

(QTAiM, Bader 1994), which would make possible to reconstruct the structure of a molecule by 

means of the topology of its electronic density. According to Hettema, this approach fulfills the 

conditions required by the traditional model of reduction (Nagel 1961). 

Interestingly, during the last years also Woolley has begun to soften his view. In particular, 

in his recent works with Brian Sutcliffe (Sutcliffe and Woolley 2011, 2012), the impossibility of 

deriving molecular structure from quantum mechanics is not conceived as the result of a 

conceptual obstacle, but as the consequence of our partial knowledge of the molecular systems in 

the theoretical framework of quantum mechanics: “We have never claimed that molecular 

structure cannot be reconciled with or reduced to quantum mechanics, or that there is something 

‘alien’ about it; our claim is much more modest. We do not know how to make the connection.” 

(Sutcliffe and Woolley 2011, p. 94). 

A central element in the discussion about molecular structure is the role played by the 

Born-Oppenheimer approximation, whose fundamental premise is the possibility of decomposing 



 

 4 

the Hamiltonian of the molecule into its electronic and its nuclear components. This move relies 

on assuming the nuclei as classical-like particles at rest in a definite position: on this basis, the 

terms of kinetic energy associated to the nuclear motion are removed (clamped nuclei 

assumption). In the Hamiltonian resulting from that assumption, the positions of the nuclei are 

what describe the molecular structure. In turn, the potential energy surface (PES) that affects the 

electrons of the molecule can be calculated by means of this Hamiltonian. Nevertheless, from the 

viewpoint of reduction, the Born-Oppenheimer approximation faces some difficulties. First, it 

introduces the molecular structure into the quantum description from the very beginning, when 

the positions of the nuclei are established with the appeal to classical geometric considerations. 

Second, the assumption of the nuclei at rest in fixed spatial positions is in contradiction with the 

Heisenberg principle, which prevents quantum systems from having definite values of position 

and velocity simultaneously (see Lombardi and Castagnino 2010). 

As indicated above, the discussion around the nature of molecular structure, often related 

with the interpretation of the Born-Oppenheimer approximation, is far from settled. However, 

there is a specific problem related with chemical structure that has been gaining ground in the 

foundations of chemistry as a relevant point in the debate about the relationship between 

molecular chemistry and quantum mechanics. This is the problem of isomerism, and in this case 

the difficulties are independent from the assumptions involved in the Born-Oppenheimer 

approximation. 

3.- Isomerism and optical activity 

As it is well known, isomerism the existence of molecules that have the same numbers of the 

same kinds of atoms (and hence the same formula) but differ in chemical and physical 

properties is a phenomenon particularly relevant in chemistry to explain the difference in the 

behavior of substances with the same composition. Here we will restrict our attention to optical 

isomers: the members of a pair of optical isomers are non-superposable mirror images. The 

property that distinguishes the members of the pair is chirality. Chiral molecules have an 

important function in the enzymatic reactions of biological systems: many pharmacological drugs 

are chiral, and generally only one of the members of the pair exhibits biological activity. 
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Let us recall that the peculiarity of optical isomers of a same compound is that they share 

almost all their chemical and physical properties. Physically, they only differ in their interaction 

with polarized light: they rotate the plane of polarization of plane-polarized light. Depending on 

the direction of the rotation, dextro-rotation (clockwise) or levo-rotation (anticlockwise), optical 

isomers are called D or L optical isomers. When a compound contains equal quantity of D and L 

optical isomers, it is called racemic mixture; in this case, the net rotation is zero. In general, an 

optically active substance tends to become an optically inactive mixture of equal amounts of 

dextro-rotatory and levo-rotatory isomers: this process is called racemization. 

When a molecule is described from a quantum perspective, the Coulombian Hamiltonian 

only depends on the distances between the particles composing the molecule; in particular, if only 

the atomic nuclei are considered, the Hamiltonian depends exclusively on the inter-nuclear 

distances. In the case of structural isomers molecules with the same molecular formula but 

different in the structure or bonding, the difference between them is manifest in the Hamiltonian 

itself and, with it, in their energies. But in the case of optical isomerism, all the inter-atomic 

distances are the same for the two members of the pair of isomers and, as a consequence, the 

Hamiltonian is exactly the same for both. This means that quantum mechanics supplies the same 

description for two structures that can effectively be distinguished in practice through their 

optical activity. 

It is very important to stress that the problem of optical isomerism is completely 

independent of the Born-Oppenheimer approximation. Let us suppose, for instance, that we could 

count with the exact Hamiltonian Ĥ  (with no approximation) of a molecule of alanine C3H7NO2, 

which includes three nuclei of carbon, one of nitrogen, and two of oxygen, plus all its electrons 

(Figure 1)  

 

 

 

 

 

Figure 1: Optical isomers of alanine 

   C 

   C 

 O  OH 

CH3 NH2 

  H 

  C 

  C 

HO  O 

H2N CH3 

  H 



 

 6 

Even if we cannot write down this Hamiltonian due to its complexity, we know that it only 

depends on the distance of the component particles and, therefore, not even the exact 

Hamiltonian can account for the difference between the D-alanine and the L-alanine. As Sutcliffe 

and Woolley claim: “Clearly then, an eigenstate of H does not correspond to a classical molecule 

with structure! That observation begs the question: what are the equations that determine the 

quantum state of molecules? Beyond the BO [Born-Oppenheimer] approximation we have no 

idea.” (Sutcliffe and Woolley 2012, p. 416; emphasis in the original). In short, the problem of the 

quantum mechanical distinction of optical isomers of the same substance is beyond the Born-

Oppenheimer approximation and its underlying assumptions. It is a problem that points to a deep 

difficulty in the attempts to account for molecular chemistry in quantum terms. 

4.- Optical isomerism and Hund’s paradox 

The problem embodied in optical isomerism and its relations with molecular structure was 

already suggested by Friedrich Hund, pioneer in the development of quantum chemistry. Hund’s 

paradox can be understood in two versions. In its first version, due to Hund himself (1927), it can 

be expressed as follows: given that the chiral states are not eigenstates of the Hamiltonian (since 

the Hamiltonian is parity invariant), and none of them corresponds to the basal state, ¿why certain 

chiral molecules display an optical activity that is stable in time, associated to a well-defined 

chiral state, and they are not in a superposition of the two possible chiral states? During the last 

decades, Hund’s paradox was formulated in a slightly stronger version (Berlin, Burin and 

Goldanskii 1996): ¿why chiral molecules have a definite chirality? Below we will face the 

problem in precise formal terms. 

Let us consider a chiral molecule from the perspective of quantum mechanics. For this 

purpose we have to construct the Hamiltonian of the complete molecule, taking into account all 

its components (nuclei and electrons) and their interactions. Let us suppose that the molecule 

consists of A atomic nuclei, and each nucleus has an associated momentum operator ˆ gp , a mass 

gm  and an atomic number gZ , with 1,2,...,g A . Since the components are charged particles, 

the interactions between them are Coulombian interactions: each particle interacts with all the 

rest, and the intensity of the interaction depends on the charge of each particle and the distances 

between them. The full Hamiltonian for this molecular system is (Szabo and Ostlund 1996): 
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where e  and em  are the charge and the mass of the N electrons respectively, ˆip  is the 

momentum operator of the electron i, with , 1,2,...,i j N , ijr  is the “distance”1 between the 

electron i  and the electron j , and igr  is the “distance” between the electron i  and the nucleus 

g . Since the Coulombian interaction only depends on the distance between the interacting 

particles, it is symmetric under spatial reflection; therefore, the Hamiltonian commutes with the 

parity operator P̂ : 

ˆ ˆ, 0P H  
 

 (2) 

This means that the eigenstates of the Hamiltonian have definite parity. Moreover, this feature is 

preserved during the time evolution of the system, because the parity operator commutes with the 

Hamiltonian and, as a consequence, is a constant of motion. 

With these elements, Hund’s paradox can be expressed in formal terms: 

1. On the one hand, the eigenstates n  of the Hamiltonian of this molecule have parity 

symmetry: 

ˆ
n nP      (3) 

This means that the geometry of the state n  is invariant under space reflections. Therefore, 

the ground state 0 , which is the state that quantum chemistry assigns to molecules, also has 

this symmetry. However, on the basis of experimental data it is possible to know that the states 

of optical isomers do not have this symmetry. In fact, if the two isomers corresponding to the 

two chiral states are represented by the quantum states L  and R , each isomer is the mirror 

image of the other, that is: 

LRP

RLP





ˆ

ˆ
 (4) 

Therefore, the states L  and R , as observed in the laboratory, cannot be eigenstates of the 

Hamiltonian. 

                                                           
1 Although, strictly speaking, in quantum mechanics there is no distance between particles because in general they do 

not possess a definite position, the difference i jr r  is usually called “distance between particles”, where ir  and 

jr  are the coordinates of each electron in the position representation. 
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2. On the other hand, the expression (2) shows that the parity symmetry is preserved through all 

the time evolution: P is a constant of motion. This has the following consequence: if the initial 

state 0  of the molecule has a definite parity, the state will preserve it at all later times: 

0 0
ˆ ˆ ( ) ( )P P t t        (5) 

Then, the process of racemization is very difficult to be explained in quantum terms, since it 

would imply the conversion of a dextro-rotating molecule into a levo-rotating molecule, or 

vice versa. 

Once it is concluded that the states L  and R  are not eigenstates of the Hamiltonian, it is 

necessary to explain why those states are observed in the laboratory. One strategy consists in 

maintaining the Coulombian Hamiltonian, identifying the states L  and R  as superpositions of 

the eigenstates of the Hamiltonian, and then supplying a reason why the molecule does not decay 

to the ground state, eigenstate of the Hamiltonian. This is Hund’s strategy, which will be 

considered below in formal terms. 

The Coulombian Hamiltonian has eigenstates n  with definite parity: the even levels 

have even parity, and the odd levels have odd parity. For instance, the ground state is symmetric:  

0 0P̂      (6) 

By contrast, the first excited state is anti-symmetric: 

1 1P̂      (7) 

These two eigenstates of the Hamiltonian are sufficient to construct a pair of chiral states L  and 

R : 

 

 

0 1

0 1

1

2

1

2

L

R

   

   

 (8) 

These two states satisfy the relations of the expression (4) and, therefore, they can represent the 

states of the members of a pair of optical isomers. 

By focusing only on the minimal elements that describe the situation, Hund poses the 

problem in a simpler system, with the advantage of the graphical visualization of the argument. 
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Let us consider a quantum system with a potential )(xV  with mirror reflection symmetry, such as 

that of Figure 2. In this case, the fact that the potential has two minima leads to suppose that the 

system will tend to “move” toward one of the minima and, therefore, the stable states of the 

system are “at rest on the left” or “at rest on the right.” From a classical viewpoint this is correct, 

but it is not correct in the quantum theoretical context. In quantum mechanics, the stable states of 

a system are the eigenstates of its Hamiltonian, and they always have the same symmetry of the 

Hamiltonian.  

 

 

 

 

 

 

 

The states “at rest on the left” and “at rest on the right” break the symmetry of the situation and, 

for this reason, they cannot be eigenstates of the Hamiltonian. 

Given the potential )(xV , the Schrödinger equation independent of time can be solved to 

find the eigenfunctions n  of the Hamiltonian. If the wavefunctions of the ground state 0  

and of the first excited state 1  are graphed, the results of Figure 3 are obtained: 

 

 

 

 

 

 

 

 

Figure 2: Potential ( )V x  with mirror symmetry 

  

Figure 3. Form of the eigenfuncions of a particle subject to the potential ( )V x . On the left, the 
ground state, symmetric under space reflections. On the righ, the first excited state, anti-
symmetric under space reflections. 
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Figure 3 clearly shows that the eigenfunctions of the Hamiltonian preserve parity, that is, they are 

symmetric or anti-symmetric (as the expressions (6) and (7) of the original problem). These 

eigenstates do not correspond to states localized on the left or on the right, since both occupy 

both “wells.” 

Experimentally it is possible to place a quantum particle in one of the two minima of the 

potential, for instance, on the left. It is clear that this particle is not in an eigenstate of the 

Hamiltonian, but in a superposition. The left state L  and the right state R , represented by the 

expressions (8), correspond to wavefunctions as those shown in Figure 4. 

 

 

 

 

 

 

 

 

 

According to Hund, the fact that the states L  and R  cannot be stable is manifested by the 

quantum tunnel effect. Due to the dynamics imposed by Schrödinger equation, a particle in the 

state L  has non-zero probability of passing to state R . This probability can be computed as:  

2ˆ

1 0sin
2

H
i t

L RP R e L t




  
   

 
 (9) 

This expression says that, after a tunnel-time  1 22 /L Rt      , the particle will have passed 

to the other side with certainty, and after a time RLt 2 , with certainty it will have returned to the 

original side. 

Hund’s idea is that the behavior of chiral isomers is analogous to that just described. Given 

the symmetry of the Coulombian Hamiltonian, the states L  and R  cannot be stable states of 

  

Figure 4. Form of the eigenfuncions of a particle in the states L  and R . On the left, the 
state L  corresponds to a particle located on the left side. On the right, the state R  
corresponds to a particle located in the right side. 
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the molecule. Once it is admitted that, for some reason, certain molecules are not in their ground 

states, it is necessary to study the dynamics of such molecules. In the case of optical isomers, this 

would lead to accept that the molecules pass continuously from the state L  to the state R  and 

vice versa. Hund’s view relies on admitting this behavior, but with the addition of certain 

restrictions. If the possibility of transmutation of isomers is accepted, then racemization can be 

explained; but for that explanation be acceptable, it is necessary that the tunnel-time L Rt   be 

extremely long, in such a way that the probability of transition be non-zero but very low during a 

long time. In this way, racemization turns out to be a process slow enough to be macroscopically 

observed. 

In their article “On the time dependence of optical activity”, Robert Harris and Leo 

Stodolsky (1981) face the problem of chiral isomers and emphasize the limitations of Hund’s 

proposal. First, since chiral states are not eigenstates of the Hamiltonian, it is necessary to admit 

the existence of an exceptional kind of molecules that do not remain in their ground states. On the 

other hand, the requirement that the tunnel-time L Rt   be extremely long imposes a strong 

condition on the difference of energies 1 2   between the ground state and the first excited 

state (see expression (9)): this difference must be extremely small. According to Harris and 

Stodolsky, this condition may be eventually fulfilled in very small molecules, but in general does 

not hold in most real systems.  

For these authors, the key to solve both difficulties is the interaction between molecules, 

and they modify the Hamiltonian of the system with the purpose to describe such interaction. The 

central idea is that the paradox arises when the molecule is considered in isolation, whereas a real 

system actually consists of many molecules in interaction. For this reason, they propose to study 

the molecules in collision to each other: intermolecular collisions modify the dynamics of the 

whole composite system, and makes possible to express the tunnel-time L Rt  , now conceived as 

a decay time, in terms of the parameters that define the collisions. 

The proposal of Harris and Stodolsky is flexible enough to compute the decay time L Rt   in 

very different situations. But the point to stress here is that the solution to Hund’s paradox 

offered by the authors is based on considering the interaction of the molecule with its 

environment, in this case composed of other molecules. This idea would be retaken soon later by 

the theory of decoherence. 
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5.- The appeal to decoherence 

In the field of quantum mechanics, one of the most serious interpretive problems is the so-called 

problem of quantum measurement, which consists in explaining how measuring devices record 

definite values of the observables (properties) of the measured quantum system when the system 

is in a superposition of the eigenstates of those observables. Hund’s paradox can be conceived as 

a particular case of quantum measurement. 

The usual formalism of quantum chemistry considers the molecule under study in its 

ground state, that is, in the lowest energy eigenstate 0  of the Hamiltonian. On the other hand, 

each observable of the molecule is represented by a mathematical operator. According to 

quantum mechanics, in order to compute the probability of measuring a certain value of an 

observable, it is necessary to express the state of the molecule in the basis of the eigenstates of 

the operator representing the observable to be measured: the eigenvalues corresponding to those 

eigenstates represent the possible definite values of the observable. In our case, the observable of 

interest is chirality, represented by the operator Q̂  with eigenstates L  and R . As explained in 

the previous section, the ground state of the molecule, expressed in the chiral basis, is: 

 0

1

2
L R    (10) 

In this case, the state of the molecule is a superposition of L  and R . In Schrödinger words: 

the cat is neither alive nor dead; he is in a superposition of both states. However, the result of a 

measurement is always L  or R . The question is then the same as in the case of the 

measurement problem: how to explain that we measure definite values of chirality when the state 

of the system is a superposition of L  and R . In this case, the problem is to account for the 

transition from the superposition to one of the chiral states, say, L : 

 0

1

2
L R L     (11) 

In the orthodox interpretation of quantum mechanics, this transition is simply postulated: 

when measured, the system “collapses” to one of the possible states. Since the final state is no 

longer a superposition, it is concluded that the measured observable acquires a definite value. 

This postulate, formulated for the first time by Werner Heisenberg in his famous article of 1927, 

is known as “the collapse postulate” (Heisenberg 1927). Collapse is an indeterministic process: 
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due to its form (see expression (10)), 0  has a probability of 0.5 of collapsing to the state L  

and a probability of 0.5 of collapsing to the state R . If many individual measurements are 

performed on identical systems with the same initial conditions, it is possible to define an 

ensemble, analogously to classical statistical mechanics (Ballentine 1998): the state of the 

ensemble after collapse can be represented by means of a density operator:  

1 1
ˆ

2 2
measured L L R R    (12) 

The density operator ˆ
measured  is interpreted as representing a mixed state: a statistical mixing of 

the states L  and R  of the individual members of the ensemble, that is, a state with the same 

structure of classical mixed states. This means that this mixed state can be interpreted as a 

measure of ignorance: in each measurement, the individually measured member of the ensemble 

is actually in one of the states L  or R , but the observer cannot predict in which particular 

state it is. 

Although simple, the hypothesis of collapse gives rise to several difficulties. Besides to 

being an ad hoc hypothesis that duplicates the kinds of quantum evolutions, it does not explain 

why and when collapse occurs. Moreover, collapse seems to introduce a kind of action-at-a-

distance when applied to entangled states of spatially separated particles, such as in the case of 

EPR-type experiments. For these reasons, alternative solutions to the measurement problem have 

been proposed. During the last decades, in the field of physics the measurement problem is being 

faced in the light of the theory of environment induced decoherence (EID). This program has 

been developed by the group led by Wojciech H. Zurek (1981, 1982, 1991, 1993, 2003) and 

based in the Los Alamos National Laboratory.  

The EID program relies on the study of the effects of the interaction between a quantum 

system, considered as an open system, and its environment. As some authors claim (e.g., see 

Leggett 1987, Bub 1997), decoherence has become the “new orthodoxy” in the physical 

community. Nowadays, the theory of decoherence is studied in many fields such as atomic 

physics, quantum optics and condensed matter. In particular, it has acquired a high relevance in 

the domain of quantum computation, in which the phenomenon of decoherence represents the 

main obstacle to the implementation of hardware that takes advantage of superpositions to 

process information.  
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In its orthodox version, the EID theory of decoherence is an approach that applies to open 

systems since, as its name shows, it considers the system under study S  embedded in an 

environment E  that induces decoherence. The composite system U S E   is a closed system 

that evolves according the Schrödinger equation and whose initial state is the tensorial product of 

the initial states of its components:2 

ˆ ˆ ˆ
U S E     (13) 

Since the Schrödinger equation is unitary, ˆ ( )U t  never approaches a final state that could be 

interpreted classically. However, if the partial trace on the evolved total state ˆ ( )U t  is computed, 

the degrees of freedom of the environment E  are removed and the reduced state of the 

subsystem S  of interest is obtained: 

 ˆ ˆ( ) ( )S E Ut Tr t    (14) 

This reduced state, computed by ignoring the degrees of freedom of the environment, is not 

governed by the Schrödinger equation, but evolves according a non-unitary master equation, 

different in each particular case. Therefore, the dynamics of the reduced state can lead to a final 

stable state. For this reason, according to the EID approach, the study of decoherence is based on 

the analysis of the evolution of the reduced state, represented as an operator expressed in a certain 

basis. Either by explicitly calculating the state or by analyzing the master equation case by case, 

it is possible to determine if, under certain conditions, the reduced state operator becomes 

diagonal, that is, loses the interference terms that preclude classicality.  

In many models of physical systems, in which the number of degrees of freedom of the 

environment is huge, it can be proved that, after a time Dt  called “decoherence time’, the reduced 

state ˆ ( )S t  becomes diagonal in a basis representing the classically behaving observable. In the 

usual explanations of the phenomenon it is said that such diagonalization is the manifestation of 

the process of decoherence induced by an environment with a large number of degrees of 

freedom. In other words, the continuous “monitoring” exerted by the environment on the system 

produces the “degradation” of the quantum states of the system in diagonal states which, for this 

reason, represent a classical situation (Paz and Zurek 2002): “the environment distills the 

                                                           
2 The theory of decoherence works with the representation of the quantum state in the von Neumann-
Liouville space. The ket   is represented in this space by an operator ̂    . The advantage of this 
space is that more general states can be represented in it (see Landau and Lifshitz 1958). 
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classical essence of a quantum system.” (Zurek 2003, p. 3). This amounts to conceiving the 

operator ˆ ( )S t  as the physical-mathematical object that represents the state of a subsystem of the 

whole closed system, and to supposing that that subsystem became classical. 

In the Editorial 37 of the journal Foundations of Chemistry, its editor Eric Scerri (2011) 

explicitly considers the problem of isomerism, in particular, of optical isomerism; his purpose is 

to confront the opinion according to which this problem is a symptom of the inability of quantum 

mechanics to account for the chemical structure of a molecule. With a sharp observation, Scerri 

relates the problem of isomerism with the measurement problem in quantum mechanics, and 

states that the question about molecular structure “is part of a bigger problem that has long 

plagued the foundations of quantum mechanics, namely the problem of the collapse of the 

wavefunction. […] this problem has gradually begun to dissolve with the growing realization of 

the role of quantum decoherence in physics and other disciplines.” (Scerri 2011, p. 4). On the 

basis of the extensive literature on decoherence, Scerri claims that the problem of optical 

isomerism was dissolved with the interaction of the molecule with its environment: “The study of 

decoherence has shown that it is not just observations that serve to collapse the superpositions in 

the quantum mechanics. The collapse can also be brought about by molecules interacting with 

their environment.” (Scerri 2011, p. 4; for a similar claim, see Scerri 2013). 

These statements clearly show that Scerri is well acquainted with the recent developments 

in physical-chemistry. However, it is necessary to consider also the conceptual analysis of the 

explanations given by the theory of decoherence, coming from philosophy. This task may lead to 

conclusions different from those widespread in the chemistry and the physics communities. 

6.- Decoherence, chirality and interpretation 

In Section 4, when Hund’s paradox was introduced, the focus was directed on the isolated 

molecule. According to the EID approach, this simplification is the result of an inadequate 

idealization. A real molecule is an object exposed to the interaction with the very large number of 

atoms and other molecules that form its environment. Then, a less idealized model consists in 

considering also the quantum states of the environment. In this model, given a chiral molecule, 

the initial state of the composite system molecule+environment is: 
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0 0 0 0

1 1

2 2
SE L R            (15) 

where 0  is the initial state of the environment. Following the usual arguments of the theory of 

decoherence (see Schlosshauer 2007), it is supposed that the j  are the states of the 

environment E , and that there is a particular Hamiltonian that describes the interaction between 

the system and the environment. This interaction produces two important effects: 

 The states of the two systems become correlated: 

0

0

L

R

L L

R R

    

    
 (16) 

 The states of the environment become rapidly (approximately) orthogonal: 

| 0L R    (17) 

The theory of decoherence presupposes that the interaction is capable of producing these two 

effects, which lead the state of the whole system to become:  

1 1

2 2
SE SE L RL R          (18) 

Since the evolution of the whole closed system is unitary, its state SE  cannot approach a final 

classical-like state. In other words, the state operator  

ˆ
SE SE SE     (19) 

always includes interference terms. However, by taking the partial trace of the environmental 

degrees of freedom on the state operator of the whole system, the reduced state of the molecule is 

obtained, in which the degrees of freedom of the environment vanished due to the orthogonality 

of the environmental states (see expression (17)): 

 
1 1

ˆ ˆ
2 2

S E SETr L L R R      (20) 

Because of the similarity between this reduced state ˆ
S  and the classical mixed state ˆ

measured  of 

the expression (12), the theorists of the EID approach consider that ˆ
S  denotes a mixed state 

containing only the representation of classical correlations and, as a consequence, it can be 

interpreted in terms of ignorance. According to their view, the system is in one of the states L  
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or R , and probabilities measure our ignorance about the definite state of the system. In this 

way, the theory of decoherence would have solved the problem underlying Hund’s paradox. 

In spite of the wide application of the decoherence program, the ability of the theory to 

solve the traditional measurement problem has been largely discussed, and serious doubts have 

been raised by means of different arguments (Healey 1995, Bacciagaluppi 2012). Let us recall 

that the collapse hypothesis establishes that the state of the system becomes instantaneously and 

indeterministically one of the states of the superposition and, as a consequence, the system 

acquires a well-defined value for the measured observable. The case of decoherence is 

completely different: here there is no collapse; as Zurek himself points out, the state “appears to 

have collapsed” (Zurek 1981, p. 1517). As a consequence, it cannot be concluded that the system 

acquires a well-defined value for the measured observable. In fact, the state SE  is a 

superposition at any time: the superposition never disappears through a unitary evolution. For this 

reason, although the reduced state operator ˆ
S  lacks interference terms, this does not allow us to 

suppose that what is observed at the end of the process is one of two definite events: either the 

event associated with L , or the event associated with R . On this basis, the theoretical 

physicist Stephen Adler concludes: “I do not believe that either detailed theoretical calculations 

or recent experimental results show that decoherence has resolved the difficulties associated with 

quantum measurement theory” (Adler 2003, p. 136). 

The criticism of the philosopher specialized in quantum mechanics Jeffrey Bub (1997) is 

even stronger: according to him, stating that what is observed at the end of the measurement 

process is a definite event not only is unjustified, but also contradicts some basic precepts of the 

theory. In fact, reading ˆ
S  as a classical statistical mixture amounts to interpreting the involved 

probabilities as measures of the ignorance about the well-defined underlying state that determines 

the precise value of the measured observable. But this stance is inconsistent with a standard 

assumption in quantum mechanics, the eigenstate-eigenvalue link, according to which a quantum 

observable has a definite value if and only if the state of the system is an eigenstate of this 

observable. In our case, without an effective collapse, the state ˆ
SE  of expression (19) is always a 

superposition of the states LL    and RR   : neither the system S  is in one of the states 

L  or R , nor the environment E  is in one of the states L  or R . Therefore, according to 

the eigenstate-eigenvalue link, even if decoherence occurs, the system S  cannot have a definite 

value of chirality. In other words, the reduced density operator ˆ
S  not only is unable to account 
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for the occurrence of a single event associated with a definite value of chirality, but the 

assumption of that occurrence is inconsistent with the eigenstate-eigenvalue link. 

Another criticism against the supposed solution to the measurement problem via 

decoherence is based on the difference between the state of the closed system and the reduced 

state assigned to the open system. Already in 1966, Bernard d’Espagnat established the difference 

between a proper mixture the mixed state of a closed system and an improper mixture the 

state of an open system, obtained by tracing off the degrees of freedom of its environment. 

According to d’Espagnat (see also 1976), although proper and improper mixtures are represented 

by the same mathematical object a density operator, they represent different concepts: 

improper mixtures cannot be interpreted in terms of ignorance. For instance, in his well-known 

book about decoherence, Maximilian Schlosshauer claims that: “Since the two systems A and B 

are entangled and the total composite system is still described by the superposition, it follows 

from the standard rules of quantum mechanics that no individual definite state can be attributed 

to either one of the subsystems. Reduced density matrices of entangled subsystems therefore 

represent improper mixtures” (Schlosshauer 2007, p. 48). This means that, strictly speaking, a 

reduced density operator is only “a calculational tool” for computing expectation values 

(Schlosshauer 2007, p. 48). For this reason, the author warns us “against a misinterpretation of 

reduced density matrices as describing a proper mixture of states” (2007, p. 69).  

Perhaps the fact that proper and improper mixtures cannot be distinguished from a 

mathematical viewpoint is what leads many authors to suppose that the reduced state ˆ
S  is the 

quantum state of the subsystem S  in the same sense as ̂SE  is the quantum state of the whole 

closed system S E . However, that mathematical feature essentially depends on the formalism 

used to express the theory, in particular, the Hilbert space formalism. But the situation might be 

different in other cases. For instance, it has been proved (Masillo, Scolarici and Sozzo 2009) that 

proper and improper mixtures are represented by different density operators in the so-called 

quaternionic formulation of quantum mechanics;3 hence they can be distinguished also from a 

mathematical viewpoint. Moreover, this mathematical representation is compatible with their 

different time-evolutions as represented in the orthodox Hilbert space formalism. 

                                                           
3 The quaternionic formulation of quantum mechanics is a formalism based on quaternion fields instead of 
complex fields (see Adler 1995). 
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The argumentation for the difference between quantum states (proper mixtures) and 

reduced states (improper mixtures) was further developed in a recent paper by Sebastian Fortin 

and Olimpia Lombardi (2014). The authors show that reduced states obtained by partial traces are 

not the quantum states of the subsystems of a closed system. In particular, it is proved that a 

reduced state is a kind of coarse-grained state of the composite system to which it belongs, and 

for this reason it cancels the correlations between the subsystem and other subsystems with which 

it interacts or is entangled. 

These and other arguments have led certain physicists, even some whose contributions 

were central in the development of the program of decoherence, to manifest their skepticism 

about the relevance of decoherence regarding the measurement problem. For instance, Erich Joos 

explicitly says: “Does decoherence solve the measurement problem? Clearly not.” (Joos 2000, p. 

14). In a recent article, Scerri (2012) recognizes that the question of whether decoherence 

explains quantum measurement is a subtle matter, and refers to the review paper of Guido 

Bacciagaluppi (2012); in this paper the author points out that, although naive claims of the kind 

that decoherence gives a complete answer to the measurement problem are still somewhat part of 

the “folklore” of the matter, decoherence as such does not provide a solution to the measurement 

problem, at least not unless it is combined with an appropriate interpretation of the theory. 

The above considerations lead us to conclude that, once the theory of decoherence is 

analyzed from a conceptual perspective, the appeal to the phenomenon of decoherence by itself 

does not seem to be a promising way to solve Hund’s paradox. If chiral states are not eigenstates 

of the Hamiltonian and each molecule is in a superposition of both states, decoherence does not 

make such superposition to disappear and, as a consequence, there is no adequate answer yet to 

the question about why chiral molecules have a definite chirality. 

7.- Conclusions 

Since the beginnings of quantum mechanics in the 1920s, chemistry and physics have converged 

at a common point: quantum chemistry. This domain has been the seat of the stronger debates 

about the relationship between the theories coming from the two disciplines. In this paper we 

have addressed the problem of optical isomerism and the challenges that it implies regarding the 

idea that chemistry, at the molecular level, can be explained by quantum mechanics. In this 
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context, we have formulated with precision Hund’s paradox and the solution proposed by its own 

author, pointing out the difficulties of such proposal. This has led us to consider in detail the 

currently most appealed solution, based on the phenomenon of decoherence. However, the 

conceptual analysis of the scope of the theory of decoherence has allowed us to conclude that the 

appeal to the diagonalization of the reduced state of the molecule in interaction with its 

environment is not sufficient to explain the definite value of chirality observed in laboratory. 

On the basis of these results it is possible to put forward the idea that, if the links between 

molecular chemistry and quantum mechanics are to be strengthened, it is necessary to adopt some 

interpretation of quantum mechanics that supplies an acceptable answer to the measurement 

problem and, derivatively, explains why certain observables adopt a definite value even in 

superposition states. Among the realist non-collapse interpretations, the Modal-Hamiltonian 

Interpretation (Lombardi and Castagnino 2008) seems particularly suitable for this purpose, 

because its selects the Hamiltonian as the observable that always acquires a definite value and 

that governs the selection of the remaining definite-valued observables of the system. This 

interpretation, besides being compatible with the EID program (Lombardi, Fortin, Castagnino 

and Ardenghi 2011), is in perfect resonance with molecular chemistry, in the context of which 

molecules are almost always described in their stationary states, that is, in eigenstates of the 

Hamiltonian. The modal-Hamiltonian perspective would explain the definite value of chirality if 

this observable commutes with the Hamiltonian of the whole system in which the chiral molecule 

is immersed. Nevertheless, this proposal is beyond the limits of the present article and will be the 

topic of a future work. 
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