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ABSTRACT

This paper provides a philosophical analysis of Bree equation and its role in
evolutionary theory. Traditional models in popudatigenetics postulate simplifying
assumptions in order to make the models mathenfigticactable. On the contrary, the
Price equation implies a very specific way of theag, starting with assumptions that
we think are true and then deriving from them thethamatical rules of the system. |
argue that the Price equation is a generalizatketch, whose main purpose is to
provide a unifying framework for researchers, hajpihem to develop specific models.
The Price equation plays this role because, likeerotscientific principles, shows

features as abstractness, unification and invaeiaBg underwriting this special role for
the Price equation some recent disputes aboutib#rer evolutionary equations could
be diverted. This move also links Price’s equatiath Newton’s second law of motion,

and therefore vindicates the Newtonian analogy.

KEYWORDS: Price equation, generalization-sketch, abstractness, unification,
Newtonian analogy.

1. INTRODUCTION

The Price equation, first presented by George Riicke beginning of the 1970s, is one
of the key equations in evolutionary theory. Prloelieved that he had found an
equation so special that it could describe any whaslary situation and any

evolutionary problem —in other words, Price develb@n abstract way of theorizing
and thinking about evolution. Nevertheless, thisatgpn has been involved in a great
dispute the last decade due to its special nasditey, a long period of oblivion when it

was used by very few researchers. Some authors\(gaten 2005, van Veelen et al.
2012, Nowak and Highfield 2011) claim that Priceguation is not more than an
identity and, therefore, is not even a model, st its scope and power should be

significantly reduced. On the other hand, a largmiper of researchers (see section 4)



have been using the Price equation in their thexaleand empirical work, developing
models and analysing empirical data through it.

In this paper, | offer a philosophical analysistioé ongoing controversy on the
interpretation and significance of the Price equati argue that critics are right when
they claim that the Price equation is not a modelite own. But at the same time,
defenders of the Price equation are right when tisyit in their research. | argue that
this special character of the Price equation istdughat Thomas Kuhn (1970) called a
“generalization-sketcH”

The structure of the paper is as follows. Secti@x@lores the traditional way of
theorizing in population genetics and the use ftsion theory. Section 3 introduces
the Price equation and explains the key conceptnitains. Section 4 develops the idea
of interpreting the Price equation as a generatimagketch and its key features
(abstractness, unifying power, invariance), exptagjrwhat special role play these sort
of generalizations inside scientific theories. #ect5 exposes, firstly, the recent
controversy surrounding the interpretation of Haomls rule, and secondly how
understanding the Price equation as a generalizaketch helps to overcome the
dispute. Section 6 argues that the Price equatibomfs a fundamentalist approach to
theorizing, links it with Newton’s second law of tram, and therefore vindicates the

Newtonian analogy.

2. POPULATION GENETICS AND DIFFUSION THEORY

Population genetics studies the genetic structdr@opulations and the causal
factors, i. e. evolutionary forces, which act onpglations changing allele and/or
genotype frequencies (Gillespie 2004). Populati@megics textbooks usually start
formulating the Hardy-Weinberg law: a diploid argkal infinite population, where
there is random mating (panmictic population) arftbse individuals are viable and
fertile, will remain or return to equilibrium (i.allele and genotype frequencies will
remain stable) if no force acts on it. Its simplesimulation says that for one locus with
two alleles A anda, with frequencie® andq respectively, the frequencies for the three

genotype AA, Aa andaa) arep?, 2pq andq? respectivel§. The Hardy-Weinberg law

! Structuralists (Diez and Lorenzano 2012) use ¢nm t‘guiding principle”. | am not committed to the
structuralism program and its formal apparatus.
% The allele and genotype frequencies must add tespectivelyp + q = 1, andp? + 2pq + q% = 1.



(Wakeley 2005) postulates six-dimensional sfragloid organisms{ = 2), infinite
population size N = o), no mutation(u = 0), no migration = 0), no selection
(s = 0), and random mating- = 1).

Therefore relaxing these assumptions, we can edsbolynamic models in order
to predict the allele frequencies provided that onmore evolutionary forces are acting
on populations. For differences in fitness, thamedifying the zero value fg; one of
the simplest examples is one locus with two allefeanda, with frequencyp andq
(respectively), non-overlapping generations, anith wonstant genotypic fithess#s 4,
Wya, Waa- The model deals with viability selection, whéteis the average probability
of survival from zygote to reproductive age. AssognHardy-Weinberg equilibrium
before selection, the frequencyAfn the next generation is

; Waap? + Waapq
w
whereW is the mean population fitne$®/,,p? + 2W,,pq + W,,q?). The expected

change in the frequency of A is

In the same way, if we relax the infinite populatigize assumption postulating a
finite population we can include drift. The basiodel is the Wright-Fisher model
(Gillespie 2004), a binomial sampling process idi@oid population in which a new
generation is formed as a sample2df allele$. The transition matrix foi copies ofA;

toj copies ofA; is given by:
2Ny 7 j j
P =7 )(aw) (1-25)

And we might continue relaxing some other assumgtio the Hardy-Weinberg

2N—-i

law, including mutation, migration, etc. The diffities arise when we want to see how
different evolutionary forces interact together m@opopulation. As far as we introduce
more interacting forces, the complexity of the mlodlecreases, turning their
mathematics less tractable. The basic problemaisvile are dealing with deterministic
processes as selection, migration, mutation anoimbmation, and also with stochastic

% Actually, Wakeley (2005) claims that there areefjvarameters, but | think migration should be also
considered. So | introduce migration and | chareyameters notation.

* The model make the subsequent assumptions: therea-overlapping generations; the population size
is constant; there is no selection, mutation orratign; adults make an infinite number of gameted a
every parent contributes equally to the gamete;@loembers breed; all members mate randomly.
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processes like drift (here | follow Rice 2004). Thensequence is that we cannot
calculate with certainty the changes in a particplapulation, but only the probability
distribution of populations. In order to do this weed, instead of using a discrete time
model (like Wright-Fisher model), a continuous tinmeodel (continuous allele-
frequency approximation). The appropriate methodhisn,diffusion theory that allows
us to combine deterministic and stochastic prosesBéfusion equations, used
originally in physics to describe the behaviounaflecules diffusing by random motion
(Charlesworth and Charlesworth 2010), allow usdtednine the change in the density
probability using the mean and the variance of geam the allele frequency per
generation. In order to make the model matheméticihctable, the diffusion
approximation makes some simplifying assumptiomsy Varge pool of gametes (large
population size); mutations occur at the time ahgse production; selection operates
on a large pool of the diploid offspring; selectiomutation, and migration are weak.
The problem is that finding solutions for discretedels, like the Wright-Fisher
model, is not easy and resolution of partial ddfdral equations is much more
advanced than discrete equations. So diffusionryherakes a transition from discrete
to continue models when the population size teralsinfinite (N — o). The
Kolmogorov forward and backward equations are thsidomathematical models in
diffusion approximations. The Kolmogorov forwarduatjon characterizes population

dynamics as

2

oW(p,t) 2
dp?

) 1
> _—%[‘P(p,t)M(p)]+§ [¥(p, )V (p)]

where? (p, t) is the probability density of populations witheddl frequency at timet,

M represents the probability distribution governgddeterministic forces (selection,
mutation, migration), and represents the variance in allele frequency duecto-
directional forces (drift). From this equation wenc obtain specific equations
combining several evolutionary factors, especitdlyequilibrium distribution (see Rice
2004, chap. 5 for mathematical details). For examfadr the equilibrium probability
distribution of allele frequency under selectionytation, and drift we obtain

~

Y = Ce—ZNespZ(l _ p)4Neu1—1p4Neu2_1



where C is a constants the selection coefficienty the mutation rate, and the
population size. Nevertheless, the diffusion apgmodnas limitations, and these
limitations are tied to the simplifying assumption#’/hen evolutionary forces as
selection, mutation or migration are not weak, gonantity of gametes is low, and so
forth, these models lose a great deal of theialdlty, requiring computer simulations
(Charlesworth and Charlesworth 2010).

3. THE PRICE EQUATION

All models exposed in the previous section, inalgdall models in population
and quantitative genetics in general, make a numbassumptions in order to simplify
the target system under study. Nevertheless, tleranother way, a simplifying-
assumptions-free model way to constructing theorfscording to this approach,
instead of starting with an idealized model contajndeliberate simplifications, we
begin by asking what is actually going on in thetegn, what are its basic properties
and its appropriate mathematical principles. Inlgvonary biology, the Price equation,
also labelled as Price’s theorem, plays this iBied 2004, Frank 2012).

Developed originally by George Price (1970, 197R¢ Price equation describes
the evolution of a population from one generationahother in a simple algebraic
language. Price’s theorem is expressed in termsowériances and expectations for
describing evolution. There are equivalent deroraiof the Price equation (Rice 2004,
Frank 2012, McElreath and Boyd 2007, Okasha 200) slightly different notations,
so | follow Frank’s standard derivation: think ofpapulation where each entity is
labelled by index and each one has the characteiwherei can be instantiated by
different elements (alleles, genotypes, phenotygesup of individuals, etc.). The
frequency ofi elements in the overall population is denajgdand the average value of
z in the population (the arithmetic mean)isj;z;. So, if a descendant population has
the traitsz; and frequencieg;, then the change in average character valukzis
Y.qiz; — Y. q;z;. Letq; be the frequency in the descendant populatiothefraction of
the descendants of the elemeits the parent population. Let; be the contribution of
eachi parent to the descendant population, i.e. thedgrof theth type. Therefore we
_ qiwi

can expressg; asq; = 7 wherew = Y q;w; is the average fitness. In a similar way,
refers to the average measurement of the propeofythe descendants from ancestors

with index i, and the average trait value in the descendantlabpn isz’' =), q;z;.



Finally, we represemMgq; = q; — q; as the change associated with differential sutviva
and reproduction andz; = z; — z; as the property value change. Following these
definitions, the Price equation expresses the ttahge in the average property value
as Az = 7' — z. Now we can substitute and derive:

Az=27 —2Z

=X qiz; — X4z

=D aiCzi=20+ ) aiz- ) ax
=) aiC8z) + ) (ba %

Switching the order of the terms and substitutind eearranging:

AZ:Z%’ (@— 1)Zi +ZQ1’Q(AZ£)
w w
Applying the standard definitions of covariance axgectation we obtain
WAZ = Cov(w, z) + E(wAz)

This is the Price equation in its usual form in letionary literature. The first
term on the right-hand side is the covariance betwfgnessw and characteg, so is
the change due to differential survival and repotidm. Usually this term is used as
representing natural selection because give usitaitive view of selection: if some
entities in a population have a positive assoaiatietween a character and fitness
because that character gives them more chancaswives and reproduce to a certain
selection pressure, the covariance will be positilewever, as the covariance term
only measures the statistical association betwéencharacter and fitness, it says
nothing about what causes this covariance andefibrey, it applies equally to drift (Rice
2004). The second term on the right-hand sideesitpected value (the average) of the
quantityAz weighted by fitness, that is, the change due tcesses involved in
reproduction. In other words, this term measuresrétationship between parents and
offspring, also called thransmission bias (Okasha 2006). This bias can be caused by
mutation, recombination, selection at a lower lefabrganization, and so on.

We can see that we have not specified what kinehtifies are in our derivation,
but we just stipulated a particular mapping betwssts and their relationships. So there
is no simplifying assumption or idealization of akipd in the Price equation. It is an
abstract representation of entities in a populatioanging in time. The Price equation

decomposes total evolutionary change in two teahanges in frequency and changes



in property values. These total effects are atteétuto different factors —actually,
causes— as selection, drift, mutation, migration, e
What makes the Price equation so powerful is igrabt nature and that we can

derive from it the relevant mathematical equatidognd in the last century. For
example, the covariance term for quantitative graids found by Robertson (1966) and
is known as the Secondary Theorem of natural sefedt says that the rate of change
in a character equals the additive genetic coveeidmetween fitness and character
WAZ = Cov,yy(w, z). Also, we can obtain Fisher's Fundamental Theooématural
selection, which states that the rate of changeaan fithess equals the additive genetic
variation in fitness. As fitness can be anotherati@r, we substitute the charactdor
fithessw in the covariance term, and theaw = Cov,y;q (W, w) = Var, qu(w).

It seems that the Price equation has a specialisstaifferent from the other
equations used in evolutionary theory. | will argnethe next section that the Price

equation is a “generalization-sketch”, in Kuhn’ems (1970).

4. THE PRICE EQUATION AS A GENERALIZATION-SKETCH
Kuhn suggested the existence of some generalizatioscientific theories which

are “schemes” rather than simple laws, and thekenses should be specified for
particular problems. These generalizations arellysegpressed in mathematical form
and play a programmatic role inside the theory:

“generalizations [like f = ma...] are not so much geizations as generalization-

sketches, schematic forms whose detailed symbaoipression varies from one

application to the next. For the problem of fred, fa = ma becomesng =

md?s/dt?. For the simple pendulum, it becomesgsina = —md?s/dt?. For

coupled harmonic oscillators it becomes two equatidhe first of which may be

written

2
m;d 1 4 ks, = k,(d + s, —s;). More interesting mechanical problems,

o
for example the motion of a gyroscope, would dig@idll greater disparity between
f = ma and the actual symbolic generalization tacivHogic and mathematics are
applied” (Kuhn 1970, p. 465).

Structuralists follow this idea as guiding prinegpland develop it with the notions
of specialization andtheory-net (Diez and Lorenzano 2012). It is quite naturat ti@h
philosophical traditions resort to classical medtsrand consider the second law of
motion as the fundamental schema. We can see thaitoN's second law takes



different forms in order to solve specific problertie puzzles with every physicist has
to deal in her day-to-day work. These specific forras Kuhn claims, may change
Newton’s second law in such a way that we canneh@apable to recognize it. This is
what the paradigmatical examples (simple pendulyuligys, inclined planes, etc.) are
for, they are used to familiarize physicists witte tsecond law and hence, when they
face a new problem, be able to find out a speoéw form of Newton’s second law in
order to compute any phenomena based on forcessemamd accelerations. This
characteristic gives to the second law its powerraakes it so fruitful.

The value of these generalization-sketches is t ‘ipeomise”, a driving principle
for scientists whose work will be based on the ralestcharacter of the principle and in
their ability to transform an abstract schema iatooncrete expression for particular
cases. Thus, Newton’s second law guarantees tha Hfave any mechanical problem,
there are some dynamical equation for it basedore$, masses and accelerations; and
push us to work hard to find them. So generaliratiketches play a heuristic role and
work as an abstract formalism awaiting for empiregaplication. | claim that the Price
equation possesses these features and playslthis gvolutionary biology.

4.1.Abstractness

All authors stress abstractness as the fundamtsaalre of the Price equation.
This characteristic allows it to be applied to gnopulation (from bacteria to humans),
no matter their specific features. The Price eguaivorks as a schema, or in Okasha’s
words: “So [the Price equation] it is not a modwlf rather a schema that may be used
to understand all other evolutionary models. [linigecognition of this point that Rice
(2004) deliberately talks about Pricelseorem, rather than Price’sheory (p. 68)]”
(Okasha 2010, p. 426). More precisely, as a thedhenPrice equation represents the
consequence of particular mapping between setstlaid relationships. The Price
equation is a mathematical result or, in other g&rinis a mathematical identity. van
Veelen (2005) and other authors (van Veelen e2Gl2, Nowak and Highfield 2011)
have stressed this feature as a drawback for ilse Bquation and, therefore, not even
considering it as a model. This controversy hasoeshof those disputes about the
meaning of Newton’s second law. Since it was foated, Newton’'s second law
produced a long term discussion among physicisdspaiiosophers about its empirical
value (Sklar 2013, Barbour 2001). Some authorsnddithat it should be considered a

description of empirical situations while otheiikeld’Alembert and Mach, argued that



the second law was simply a definition of force \f@scan find in some textbooks, see
Corben and Stehle 1994, p. 28).

In this case, there is no doubt that the Price temués a theorem and, therefore, a
mathematical identity. But it should be noted thathough the Price equation is a
mathematical identity and therefore it follows frahe definitions of the terms (it is a
mathematical result), its underlying concepts anpidcally grounded. Rice (2004, p.
169) summarizes these concepts as: change over ameestor/descendant relations,
and phenotype. In our world a population changesr ¢wne, it is possible to assign
relations between ancestor and descendant, andaweadentify the property of an
individual (a phenotype) and represent it as a rermbhere is nothing a priori on these
features.

If I am right about the Price equation as a geimaabn-sketch, my approach may
solve the problem set out by van Veelen and calleagvhen they claim that the Price
equation is not a model on its own. Actually, the® equation is not a model, but a
schema that provides a unifying framework in ortdedevelop specific models. The
Price equation alone cannot play any empirical bieis not supplied by a specific
model. In the same way, Newton’s second law tedithing about what forces act on
bodies, and needs to be supplied by specific maoskiting the forces and empirical
information (masses, velocities, etc.). The Prigaation works as a consequence law
(Sober 1984). Sober describes two types of lawarceolaws, which describe the
circumstances that produce forces (such as Coukmali or the law of gravitation),
and consequence laws, which describe how forces they exist, produce changes in
the system (such as Newton’s second law of motibm)s, the Price equation describes
how evolutionary forces produce changes in a pojmabut do not determine how
many causes exists, how these causes are, and kotba same way, Newton’s second
law works as a consequence law, it tells nothingualhow forces arises only how to
compute them when they are in a system.

4.2 .Unification

From the Price equation we can obtain a great amourmportant results in
theoretical biology in the past century: Robertaod Fisher's theorems, the breeder’s
equation, etc. More important, if the Price equatmlay a role as a generalization-
sketch, new forms could be found in order to resalew specific problems. Actually,
that is exactly what happens in several branchesvofutionary biology (multilevel

selection, epidemiology, non-genetic inheritangediversity, etc.). Many researchers
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employ the Price equation as a unifying framewaok &nalysing and elaborating
specific models. In other words, the Price equatias become a generalization-sketch,
a puzzles solver tool if the researchers are aadaand skilled enough to find some
specific form for it. The Price equation has beppliad for several disciplines briefly

summarized (for equations based on Price’s equation see Tab.

» Sdlection processes. Since its first formulation by Price, the Pricguation has
been directly connected and developed for nateteacion models. In section
3 we have seen how key equations of natural sefectRobertson and
Fisher's theorems, can be derived directly from Brece equation. Other
follow the same path: breeder's equation (Frank2®0teplicator-mutator
equation, adaptive dynamics and evolutionary gdraery (Page and Nowak
2002, Rice 2004); multilevel selection (Okasha 20B&nk 2012, Gardner
2014); kin selection theory, inclusive fitness atamilton’s rule (Frank 2013,
Rice 2004, McElreath and Boyd 2007); and so onciapenention deserves
Grafen’s long term work (Grafen 2007, for an ow)incalled “The formal
Darwinism project”. Grafen’s aspiration is to edisiib a mathematical link
between population genetics and optimization pmogtain other words,
between see natural selection as a mechanism hage gene frequencies
and conceptualizing natural selection as a fitmaagimisation mechanism
that produceslesign. For this task of linking, Price’s equation playsrucial
role due to its generality, and because “The Regueation places individuals
at the center of its technical apparatus” (Graf@e@72 p. 1245).

Sochastic evolution. The Price equation, in its classic form, is aaltot
description of evolutionary change because takdh poesent and future
states as given or, in other words, is a detertnigdescription of
evolutionary change. Nevertheless, sometimes allpdrameters cannot be
specified exactly, before reproduction (or any fatatate) has taken place. In
this case, evolution turns out a stochastic proeesisthen, some parameters
should be changed to random variables. Thus, Ridecallaborators (Rice
2008, Rice and Papadopoulus 2009; but see alsoeiraD00) have
developed a stochastic version of the Price equdtiat can deal with random

® The most relevant bibliography is reviewed butintnded to exhaust it.
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variables as stochastic fithness and stochastic atidgr, demographic
stochasticity or random environmental change. Foiig this path, Engen
and Saether (2013) analyse how demographic andoanvental stochasticity
generate random genetic drift and fluctuating selac

Ecology. Fox and collaborators (Fox 2006, Fox and Hapa@é8, Fox and
Kerr 2012) extend and use the Price equation asnargl framework for
biodiversity and ecosystem function, analyzing atéhces in ecosystem
function between sites. Collins and Gardner (2@@3)elop a new form of the
Price equation in order to express the total chastghe community level as
the sum of the separate effects of physiologiocabugionary and ecological
change, providing a way for integrating and linkitigese three different
levels. Ellner et al. (2011) study how evolutiorgnrheritable phenotypic
change and environment affect ecological dynandesgeloping a continuous-
time version of the Price equation that they calehotype-Phenotype-
Environment equation”.

Epidemiology. Day and Gandon (2006 and 2007) deal with theutioolary
and epidemiological dynamics of host-parasite adgons focusing on a
continuous model of pathogen evolution, providing cantinuous-time
derivation of the Price equation with mutation. §ltian be generalized to
multiple habitats and as a formalism to model thelgionary dynamics of
pathogen populations (for example, S-I-R model)usThusing the Price
equation as a framework, Day and Gandon offer a twagtegrate different
theories of host-parasite interactions. Based @aapproach, Alizon (2009)
develops a framework that combines within-host pefian dynamics
models, population genetics, theory and data, tmlystdisease intrahost
evolution for any parasite trait. Alizon argues tt@his Price equation
framework has four advantages: (i) it helps to idgmow (and which) trade-
offs can affect within-host evolution; (ii) it alis for predicting the short-
term evolutionary dynamics of a trait from the geneomposition of the
parasite population in the host; (iii) it helpsKitheory and data; and (iv) it
can be applied to most existing models of withisthgopulation dynamics”
(Alizon 2009, p. 1124).

Non-genetic inheritance and proximate causes. Modern Synthesis based their

mathematical and empirical results on genetic itdr@ce. However, other
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non-genetic systems of inheritance may have a tao$a on evolution.
Halentera and Uller (2010) use the Price equatiorahalysing and gathering
four different inheritance systems (genetic, epagien behavioral, and
symbolic) on a common framework. Day and Bonduk&r{2011) developed
several evolutionary models based on the Price tieguahat unifies the
effects of genetic and non-genetic inheritance ffamsmissible
environmental noise, indirect genetic effects, sgmerational epigenetic
inheritance, RNA-mediated inheritance, etc.). O&suyR015) develops a
unified framework to translate “proximate causesSudh epigenetic
inheritance, maternal effects, niche constructiot) “ultimate evolutionary
response” based on the Price equation and cauegath ¢ineory. EI Moulden et
al (2014) explore how cultural transmission can dmnceptualized as
evolutionary systems, using the Price equation amifying framework,
analyzing how cultural and genetic evolution interdaut also differentiating
each other.

These are some of the most important and interpstivestigations, but not unigje

using the Price equation as cornerstone.

4.3. Invariance

The Price equation shares with other scientifia@ples the feature of invariance
or symmetry, the property of remaining unchangedeursome transformation. For
instance in Cartesian axes, for Newton’s laws otiemp we can shift a coordinate
system to a new point or change the orientatioth®faxes, and the bodies motion will
stay the same. Therefore Newton’s laws are invariaith respect to translations
(shifting of the origin) and rotations” (Barbour@Q p. 30).

Steven Frank has been the first author to show Wihdt of invariances contains
the Price equation. For that he connects the Rgcation, written in covariances and
expectations, with information theory, overcominge t problem of representing
nonlinear processes with statistic language. Thasgnk (2009) relates Fisher
information (a measure of distance between two giities distributions) and

Shannon information (entropy) with the propertiésnatural selection, and gives an

® Other works are: Kerr and Godfrey-Smith (2009eaging the Price equation for migration); Gardner
et al. (2007, relating multilocus population geegtand social evolution); Coulson and Tulkjapurkar
(2008, extending the Price equation for age-strecfy and Gardner 2015, Grafen 2015, Taylor 2009,
Rebke 2012, for study populations composition Elstsuctured populations, decomposition, etc.)
expressed with the Price equation.
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expression of the Price equation in terms of Fishérmation (see tab. 1). More
recently, Frank (2012) developed these ideas detnading different identities for the
evolutionary change caused by selection in theeReguation, relating the covariance
term with notions as information and geometry, vehawvariance is taken as a measure
of distance (see Frank 2012 for mathematical dgtdii this way, Frank claims:
“for any particular value for total selection, thas an infinite number of different
combinations of frequency changes and charactesunements that will add up
to the same total value for selection. All of thakierent combinations lead to
the same value with respect to the amount of sefectVe may say that all of
those different combinations arevariant with respect to the total quantity of
selection” (Frank 2012, p. 1007).
In other words, the covariance term allows us taluate selection completely since it
does not matter how frequency changes and chamae@surements are combined. All
this infinite number of combinations equals theatauantity of selection, remaining
unchanged, and so they are invariant. In additiois, evaluation is complete because
the covariance is taken as a measure of distarecea§ a measure of information) and
not as is usually used in statistics and, therefoeng applied also for nonlinear

processes.

Price equation in terms
of Fisher information Z=1Zp+ Zgp
(Frank 2009)
Selection identities AsZ = Cov(w, z)/w
(Frank 2012) = wp,wVar(w/w)
=Aq-z
=lAqllllzll cos¢
= WﬁZW(A/q\ ’ A@)
= WP, F (AQ)
Robertson’s theorem WAZ = Covggqa(W, 2)
Fisher’s theorem wAw = Varg 4(w)
Breeder’s equation 2
(Frank 2012) R'=Sh
Path analysis (Frank o
2012) wAzZ = By, Var(z) + By, Cov(y, z)
Replicator-mutator Price NN .
equation (Page and E(p) = Cov(f,p) + E(®) + E(fAnp)
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Nowak 2002)

Hamilston’s rule (Birch
2014)

rb—c>0

Stochastic evolutiof
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2008)
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2009)
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Function (Fox 2006)
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Collins/Gardner equatio
(2009)
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(Ellner et al. 2011)
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The Price equation wit
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Gandon 2006)
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The Price equation t
multiple habitats (Day
and Gandon 2006)
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Price equation (fo
overlapping generations
(Day and Bonduriansk
2011)

5)
y

WAh = Cov(W,h) + E(bAR?) + E(pAhP)

Interactions genetic an
nongenetic  inheritanc
(Day and Bonduriansk
2011)

d
e
y

_ . 1
AG = 045B,(G, 1) + ognPn(g. k) + WE(bAgb)

1
+ —E(pAgP
W(pg)

Epigenetic  inheritance -1 ) _ _
(Otsuka 2015) AZ = = Blok + oapi] + v(Ec = O)
Maternal effects (Otsuka -1 _ _
2015) AZ = Wﬁ[aj +op] + m(Zgp — Z)
Niche construction -

AZ = — (B + A,)0f

(Otsuka 2015)

BZ + R
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Cultural Price Equation

(El Moulden et al 2014) Az = cov(c,z) + Ec(Az)

The Price equation wit ) )
migration (Kerr and AX = cov (Cf,X“) + ave((AX)E) — cov (C;,Xd)
Godfrey-Smith 2009).

=)

Age-structured Pricg ) Cov(D, R)(a, t)
equation (Coulson an AZ(t) = — ‘
Tulkapurkar 2008) R(a,t)

o

Tab. 1. Identities, derivations and extension$efRrice equation, respectively.

5. HAMILTON’'S RULE AS A CASE

Hamilton’s rule is an inequality developed by Wil Hamilton inside kin
selection theory. Its aim is to explain the evantof social behaviour in populations.
Hamilton’s rule states that a social behaviour w#l favoured by natural selection if
and only ifrb — ¢ > 0, wherer represents the genetic relatedness of the retifm¢he
actor, b the benefits to the recipient, andhe costs to the actor (Davies et al. 2012).
Notwithstanding, Hamilton’s rule and kin selectitveory in general are recently under
dispute because some authors like Nowak et al.0(2011059) claim that Hamilton’s
rule “almost never holds”, while evolutionary biglsts like Gardner et al. (2011)
maintain a strong position for the correctness #mal unrestricted applicability of
Hamilton’s rule.

In a recent paper, Birch (2014) argues that dissaossabout Hamilton’s rule arise
because there are two possible versions of it. @amsion comes from evolutionary
game theory, and is based on the one-shot two4g@&nesioner’s Dilemma (van Veelen
et al. 2012). Birch labels it as the special versocd Hamilton’s rule (HRS), and is
characterized by its simplifying assumptions. A sexuence of these simplifications is
that the applicability of HRS is constrained to wepecific cases and cannot handle
more complicated ones (for example, when the frequef cooperators matters). Is in
this sense that Nowak and collaborators claim thamilton’s rule “almost never
holds”. The other version comes from the Price ggngFrank 1998). It is not tied to
any simplifying assumption and fits to any soci@haviour system because it follows a
priori from the Price equation. Birch labels itthg general version of Hamilton’s rule
(HRG). It is this version that Gardner and collators have in mind when they defend
the generality of Hamilton’s rule. Here is the desh: if HRG is always true then it is

difficult to see how Hamilton’s rule keeps its expatory power (Gardner and
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colleagues’ aim); and if we are content with HR®&nthwe lose predictively power
because it is not widely applicable.

Nevertheless, thinking of the Price equation aereetplization-sketch may clarify
this issue. The question is how HRG, which deriviectly from an abstract
mathematical theorem, can give us any details awbigh particular social behaviour
will evolve by natural selection. The answer isaclaét cannot. The reason is that HRG
is a derivation of the Price equation and playssiém®e role as a generalization-sketch,
except that in this case it is applied to socididweour. In other words, no empirical
information is supplied by HRG, only says that aiagbbehaviour will be favoured by
natural selection whenb — ¢ > 0. Put another way: if there is some social traiain
population, look for the genetic relatedness ofrgmpient to the actor, the benefits to
the recipient, and the costs to the actor. If thhetations are greater than zero (they are
positive) then natural selection favoured thisttiai the population. This is how a
consequence law works. But the source of thesgiamtawill be related to specific
populations (paper wasps, meerkats, ground sgsiipedirie dogs, etc.), and concrete
predictions will be provided by specific models atfierefore, subject to simplifying
assumptions. HRS is precisely a specific modeleatlip simplifying assumptions and
then it only makes valid predictions in particukatuations. Birch detects these two
different roles played by HRG and HRS when he saj& therefore face a trade-off.
By construing Hamilton’s rule as HRG rather than SjRve buy generality at the
expense of predictive power” (Birch 2014, p. 400n the other hand, other HRG’s
characteristic, detected by Birch but omitted bywsk and colleagues, is the
explanatory value of unification: “HRG constitutasunifying principle: a means of
bringing together results from disparate modelseurdsingle conceptual framework”.
This unifying power of the Price equation, and tlaso of HRG, has been stressed in
the present article as one of its key features.

However, the problem is that, if we are seekingrttast general framework for
all the processes of social evolution under natse#ction, it seems that it would be
better to use Robertson’s theorem of natural selecMy reply is different from Birch
and is based on the hierarchical structure viewheftheory. HRG is derived from the
Price equation firstly by leaving aside the secterdh, and resting only the covariance

term. As we have seen in section 3, the covarigewwe was developed by Robertson

" Birch 2014, p. 401. Kitcher (1993, chap. 2) unided the unifying power of the theory of natural
selection as its greatest explanatory value.

16



and it is known as the secondary theorem of natsedtction. So it is true that
Robertson’s theorem is more general than HRG, RGHs a special form of this
theorem focused on the evolution of social behavi®obertson’s theorem tells us
when a trait, in general, will be favoured by natwelection, whereas HRG tells us
when a social trait will be favoured by naturaleséion. Thus, if we are focused on

social behaviour, using HRG is sufficient to proelgpecific models.

6. A FUNDAMENTALIST APPROACH

The use of the Price equation as a generalizaketcls implies a very specific
way of theorizing: we start with postulates or asptions that we think are true and
then derive the mathematical rules of the systeite Rnd Papadopoulus (2009) call
theories that follow this way of theorizing “axiotitatheories”, where postulates or
assumptions are the axioms of the theory. Philomapbf science conceptualize this
kind of thinking as “fundamentalism” (Cartwright 9% where “scientists [are] guided
by a commitment to find fundamental concepts amacpples sufficient for providing a
universal and unified account of nature” (Wateré 2. 232). For the fundamentalist
approach universality is the goal, and accordinGaotwright one clear example of this
approach is Newton’s second law of motion and thpiration to encompass all
dynamical processes through all forces acting uypahes or, in other words, that there
is a mechanical model for any dynamical situation.

A fundamentalist approach seeks generality, findirgmathematical expressions
that encompass all the special models and allote psoduce more special ones. At the
core of an axiomatic theory lies a unifying framekvand, at the same time, a formula
in order to produce specific models. When a speuiadlel is formulated, simplifying
assumptions are necessary for acquire predictiveepor dynamic sufficiency, but
these simplifications come at the end of the themalework, and not at the beginning.

6.1. The Newtonian analogy vindicated
Textbooks and most of the evolutionary literatuak about evolutionary forces

acting on a population (Gillespie 2004, Templet@&. Sober (1984) developed this

® The aim of Water’s article is to show that OkasHadok (2006) favours a “toolbox view” (which aig i
finding partial descriptions and denies a uniqueest description) based in his analysis on melel
selection and the appropriateness of the Pricetiequaersus Contextual analysis, although Okasha
devoted the first chapter of his book to the bdsedif Price’s equation (Okasha 2011 for a reply).
However, there is no confrontation between theePeiguation and contextual analysis because thex latt
is a form of path analysis which “follows as a matwextension of the Price equation (...) It does not
make sense to discuss the Price equation and palyse as alternatives” (Frank 2012, p. 1014).

17



point of view according to which evolutionary thgas a theory of forces in the same
way that different forces of Newtonian mechanicaseachanges in the movement of
bodies, because evolutionary forces cause changeaiti frequencies. A lively debate
about the appropriateness of the forces analogyeas developed in the last decade
(Matthen and Ariew 2002, Hitchcock and Velasco 3014hink that most of these
attacks to the Newtonian analogy have been pokitaeswered so, | will not go into
detail about them. Rather | want focus on a pddicicontention on the force
interpretation since Sober formulated it: that etiohary theory does not contains any
law or equation comparable with Newton’s second ¢dwnotion. Thus, only two years
after the publication of Sober’s book, John Endlaste:
“First, if natural selection is a “force,” what itlsacting on? (A force is meaningless
without an object). If natural selection were actgrit should be possible to
decompose it into a mass and an acceleration. il dase “acceleration” is
phenotypic selection, but what is the “mass™? Thess” could be a frequency
distribution or the genetic system (condition ¢&yantance), but this is tantamount to
assuming that natural selection applies only taugso Natural selection arises from
biological differences among individuals (conditibnfitness differences); therefore
to make a proper analogy, the “mass” is the geretioposition of an individual.
This is reasonable because it also allows mutatidre a “force”. But the “mass” in
the physicist'sF = ma is a class of objects with defining properties amad an
individual, so the analogy either breaks down etrrets natural selection to group
selection” (Endler 1986, p. 31).
And most recently,
“[T]he Newtonian analogy does not work (...) We da mhaild evolutionary

models by beginning an analog of the force equaampressing Newton’s

second law of motionH = md, whereFis the forcem is the mass, and is the
acceleration) and substituting for the force te(@érkar 2011, p. 464).
Nevertheless, the present article demonstrategtuditionary theory counts with

an equation comparable to Newton’'s second law ofiano Both equations share
several key features like abstractness, unifyingggpand invariance. In turn, the Price
equation and the second law of motion work as aumesece laws, computing all
possible causes in a common framework in evolutioriaeory and in Newtonian
mechanics, respectively. Actually both equationarsha family resemblance, for
example in cases of equilibrium. When two evolutignforces, represented by the
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covariance term and the expected term respectiaedyacting upon a population with
equal magnitude but opposite sign, we obtaixz = 0, i. e.—E(wAz) = Cov(w, z). In
the same way, when two forceB1(and F2), are exerted on a body with the same
magnitude but opposite sense, we h@vwe m - a, i. e. F2 = —F1. This shows that,
contrary to Endler and Sarkar's claim, evolutiondoyces can be expressed by
covariance and expectations and not as a clumsy @bplewton’s second law trough
masses and accelerations. It is fair to say thetkihd of model building with the Price
equation, in a way analogous to the second law atfam, is relatively receft In this
line, the effort of Steven Frank (1995, 1997) toesp Price’s work was crucial. This
shift is an issue for sociology of science and thastion goes beyond the purview of
this paper, but | guess that the initial dismiggahe Price equation lies probably in the
reluctance of many (field) biologists on mathensdtiworks (a complain supported by
Grafen (2007)). Be that as it may, the presentlartand the works cited show that
many evolutionary biologists have taken the Pripea¢éion as a unifying framework, in
a similar way as physicists in the eighteenth agntook Newton’s second law of
motion. van Veelen and colleagues (2010, 2012)atepky complained that the Price
equation is usually considered by many evolutionaiglogists asE = mc? is

considered by physicists; rather the Price equasitike Newton’s second law.

7. CONCLUSION

My aim in this paper was to show the special natdirtne Price equation and the
role it plays in evolutionary theory. | have argubdt the Price equation has all the
characteristics of a generalization-sketch: (isifh schema that allows for elaborating
specific models with concrete symbolic expressidisjt shares with other scientific
principles such features like abstractness, urgfpawer and invariance, and (iii) many
researchers are actually using it as a generairaketch. Understanding Price’s
equation in this way solves many problems stateddnyVeelen and colleagues on the
supposed role it plays in evolutionary theory, atsb with other related equations like
Hamilton’s rule. Furthermore, attributing this rote the Price equation —i.e. a
generalization-sketch— favours a specific way ototizing (an axiomatic or
fundamentalist approach) in evolutionary biology damelates it with other

° Although, early approaches were developed by Hami(tL970, 1975), Seger (1981), Grafen (1985),
and Wade (1985), among others.
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generalization-sketches like Newton’s second lawnofion. This is a case, in the end,

for vindicating the Newtonian analogy.
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