
1 
 

One Equation To Rule Them All:  

A philosophical analysis of the Price equation 

Victor J. Luque 
 
 
 
ABSTRACT 

This paper provides a philosophical analysis of the Price equation and its role in 
evolutionary theory. Traditional models in population genetics postulate simplifying 
assumptions in order to make the models mathematically tractable. On the contrary, the 
Price equation implies a very specific way of theorizing, starting with assumptions that 
we think are true and then deriving from them the mathematical rules of the system. I 
argue that the Price equation is a generalization-sketch, whose main purpose is to 
provide a unifying framework for researchers, helping them to develop specific models. 
The Price equation plays this role because, like other scientific principles, shows 
features as abstractness, unification and invariance. By underwriting this special role for 
the Price equation some recent disputes about it and other evolutionary equations could 
be diverted. This move also links Price’s equation with Newton’s second law of motion, 
and therefore vindicates the Newtonian analogy.  
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1. INTRODUCTION 

The Price equation, first presented by George Price at the beginning of the 1970s, is one 

of the key equations in evolutionary theory. Price believed that he had found an 

equation so special that it could describe any evolutionary situation and any 

evolutionary problem –in other words, Price developed an abstract way of theorizing 

and thinking about evolution. Nevertheless, this equation has been involved in a great 

dispute the last decade due to its special nature, after a long period of oblivion when it 

was used by very few researchers. Some authors (van Veelen 2005, van Veelen et al. 

2012, Nowak and Highfield 2011) claim that Price’s equation is not more than an 

identity and, therefore, is not even a model, so that its scope and power should be 

significantly reduced. On the other hand, a large number of researchers (see section 4) 
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have been using the Price equation in their theoretical and empirical work, developing 

models and analysing empirical data through it.      

In this paper, I offer a philosophical analysis of the ongoing controversy on the 

interpretation and significance of the Price equation. I argue that critics are right when 

they claim that the Price equation is not a model on its own. But at the same time, 

defenders of the Price equation are right when they use it in their research. I argue that 

this special character of the Price equation is due to what Thomas Kuhn (1970) called a 

“generalization-sketch”1. 

The structure of the paper is as follows. Section 2 explores the traditional way of 

theorizing in population genetics and the use of diffusion theory. Section 3 introduces 

the Price equation and explains the key concepts it contains. Section 4 develops the idea 

of interpreting the Price equation as a generalization-sketch and its key features 

(abstractness, unifying power, invariance), explaining what special role play these sort 

of generalizations inside scientific theories. Section 5 exposes, firstly, the recent 

controversy surrounding the interpretation of Hamilton’s rule, and secondly how 

understanding the Price equation as a generalization-sketch helps to overcome the 

dispute. Section 6 argues that the Price equation follows a fundamentalist approach to 

theorizing, links it with Newton’s second law of motion, and therefore vindicates the 

Newtonian analogy.  

 

2. POPULATION GENETICS AND DIFFUSION THEORY 

Population genetics studies the genetic structure of populations and the causal 

factors, i. e. evolutionary forces, which act on populations changing allele and/or 

genotype frequencies (Gillespie 2004). Population genetics textbooks usually start 

formulating the Hardy-Weinberg law: a diploid and ideal infinite population, where 

there is random mating (panmictic population) and whose individuals are viable and 

fertile, will remain or return to equilibrium (i.e. allele and genotype frequencies will 

remain stable) if no force acts on it. Its simplest formulation says that for one locus with 

two alleles, A and a, with frequencies �	and � respectively, the frequencies for the three 

genotype (AA, Aa and aa) are ��, 2�� and �� respectively2. The Hardy-Weinberg law 

                                                           
1 Structuralists (Diez and Lorenzano 2012) use the term “guiding principle”. I am not committed to the 
structuralism program and its formal apparatus. 
2 The allele and genotype frequencies must add to 1, respectively: � + � = 1, and �� + 2�� + �� = 1. 
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(Wakeley 2005) postulates six-dimensional space3: diploid organisms (	 = 2), infinite 

population size (� = ∞), no mutation (� = 0), no migration (� = 0), no selection 

(� = 0), and random mating (� = 1). 
Therefore relaxing these assumptions, we can elaborate dynamic models in order 

to predict the allele frequencies provided that one or more evolutionary forces are acting 

on populations. For differences in fitness, that is, modifying the zero value for s, one of 

the simplest examples is one locus with two alleles, A and �, with frequency � and � 

(respectively), non-overlapping generations, and with constant genotypic fitnesses ���, 

���, ���. The model deals with viability selection, where � is the average probability 

of survival from zygote to reproductive age. Assuming Hardy-Weinberg equilibrium 

before selection, the frequency of A in the next generation is 

�� = ����� +�����
��  

where ��  is the mean population fitness (����� + 2����� +�����). The expected 

change in the frequency of A is 

∆�= �� − � = � �����
�� + ����

�� − 1� 

In the same way, if we relax the infinite population size assumption postulating a 

finite population we can include drift. The basic model is the Wright-Fisher model 

(Gillespie 2004), a binomial sampling process in a diploid population in which a new 

generation is formed as a sample of 2� alleles4. The transition matrix for � copies of A1 

to � copies of A1 is given by: 

 !" = �2�� � �
�
2��

!
�1 − �

2��
�#$!

 

 

And we might continue relaxing some other assumptions in the Hardy-Weinberg 

law, including  mutation, migration, etc. The difficulties arise when we want to see how 

different evolutionary forces interact together upon a population. As far as we introduce 

more interacting forces, the complexity of the model increases, turning their 

mathematics less tractable. The basic problem is that we are dealing with deterministic 

processes as selection, migration, mutation and recombination, and also with stochastic 

                                                           
3 Actually, Wakeley (2005) claims that there are five parameters, but I think migration should be also 
considered. So I introduce migration and I change parameters notation. 
4 The model make the subsequent assumptions: there are non-overlapping generations; the population size 
is constant; there is no selection, mutation or migration; adults make an infinite number of gametes and 
every parent contributes equally to the gamete pool; all members breed; all members mate randomly.  
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processes like drift (here I follow Rice 2004). The consequence is that we cannot 

calculate with certainty the changes in a particular population, but only the probability 

distribution of populations. In order to do this we need, instead of using a discrete time 

model (like Wright-Fisher model), a continuous time model (continuous allele-

frequency approximation). The appropriate method is, then, diffusion theory that allows 

us to combine deterministic and stochastic processes. Diffusion equations, used 

originally in physics to describe the behaviour of molecules diffusing by random motion 

(Charlesworth and Charlesworth 2010), allow us to determine the change in the density 

probability using the mean and the variance of change in the allele frequency per 

generation. In order to make the model mathematically tractable, the diffusion 

approximation makes some simplifying assumptions: very large pool of gametes (large 

population size); mutations occur at the time of gamete production; selection operates 

on a large pool of the diploid offspring; selection, mutation, and migration are weak. 

The problem is that finding solutions for discrete models, like the Wright-Fisher 

model, is not easy and resolution of partial differential equations is much more 

advanced than discrete equations. So diffusion theory makes a transition from discrete 

to continue models when the population size tends to infinite (� ⟶ ∞). The 

Kolmogorov forward and backward equations are the basic mathematical models in 

diffusion approximations. The Kolmogorov forward equation characterizes population 

dynamics as  

 

&'(�, ))
&) = − &

&� *'(�, ))+(�), +
1
2
&�
&�� *'(�, ))-(�), 

 

where '(�, )) is the probability density of populations with allele frequency � at time ),  
+ represents the probability distribution governed by deterministic forces (selection, 

mutation, migration), and - represents the variance in allele frequency due to non-

directional forces (drift). From this equation we can obtain specific equations 

combining several evolutionary factors, especially for equilibrium distribution (see Rice 

2004, chap. 5 for mathematical details). For example, for the equilibrium probability 

distribution of allele frequency under selection, mutation, and drift we obtain 

 

'. = /0$�#12�3(1 − �)4#156$7�4#153$7 
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where / is a constant, � the selection coefficient, � the mutation rate, and � the 

population size. Nevertheless, the diffusion approach has limitations, and these 

limitations are tied to the simplifying assumptions. When evolutionary forces as 

selection, mutation or migration are not weak, the quantity of gametes is low, and so 

forth, these models lose a great deal of their reliability, requiring computer simulations 

(Charlesworth and Charlesworth 2010). 

 

3. THE PRICE EQUATION 

All models exposed in the previous section, including all models in population 

and quantitative genetics in general, make a number of assumptions in order to simplify 

the target system under study. Nevertheless, there is another way, a simplifying-

assumptions-free model way to constructing theories. According to this approach, 

instead of starting with an idealized model containing deliberate simplifications, we 

begin by asking what is actually going on in the system, what are its basic properties 

and its appropriate mathematical principles. In evolutionary biology, the Price equation, 

also labelled as Price’s theorem, plays this role (Rice 2004, Frank 2012).  

Developed originally by George Price (1970, 1972), the Price equation describes 

the evolution of a population from one generation to another in a simple algebraic 

language. Price’s theorem is expressed in terms of covariances and expectations for 

describing evolution. There are equivalent derivations of the Price equation (Rice 2004, 

Frank 2012, McElreath and Boyd 2007, Okasha 2006) with slightly different notations, 

so I follow Frank’s standard derivation: think of a population where each entity is 

labelled by index � and each one has the character 8!, where � can be instantiated  by 

different elements (alleles, genotypes, phenotypes, group of individuals, etc.). The 

frequency of � elements in the overall population is denoted	�!, and the average value of 

8 in the population (the arithmetic mean) is ∑�!8!. So, if a descendant population has 

the traits 8!� and frequencies �!�, then the change in average character value is ∆8̅ =
∑ �!�8!� − ∑�!8!. Let �!� be the frequency in the descendant population, as the fraction of 

the descendants of the elements � in the parent population. Let ;! be the contribution of 

each � parent to the descendant population, i.e. the fitness of the �th type. Therefore we 

can express �!� as �!� = <=>=
>�  where ;� = ∑�!;! is the average fitness. In a similar way, 8!� 

refers to the average measurement of the property 8 of the descendants from ancestors 

with index �, and the average trait value in the descendant population is 8̅� = ∑�!�8!�. 
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Finally, we represent ∆�! = �!� − �! as the change associated with differential survival 

and reproduction and ∆8! = 8!� − 8! as the property value change. Following these 

definitions, the Price equation expresses the total change in the average property value 

as  ∆8̅ = 8̅� − 8̅. Now we can substitute and derive: 

∆8̅ = 8̅� − 8̅ 
= ∑�!�8!� − ∑�!8!  
=?�!�( 8!� − 8!) +?�!�8! −?�!8! 

=?�!�( ∆8!) +?(∆�!) 8! 
Switching the order of the terms and substituting and rearranging: 

∆8̅ =?�! @;!
;� − 1A 8! +?�! ;!

;� (∆8!) 
Applying the standard definitions of covariance and expectation we obtain 

;�∆8̅ = /BC(;, 8) + D(;∆8) 
This is the Price equation in its usual form in evolutionary literature. The first 

term on the right-hand side is the covariance between fitness ; and character 8, so is  

the change due to differential survival and reproduction. Usually this term is used as 

representing natural selection because give us an intuitive view of selection: if some 

entities in a population have a positive association between a character and fitness 

because that character gives them more chances to survive and reproduce to a certain 

selection pressure, the covariance will be positive. However, as the covariance term 

only measures the statistical association between the character and fitness, it says 

nothing about what causes this covariance and, therefore, it applies equally to drift (Rice 

2004). The second term on the right-hand side is the expected value (the average) of the 

quantity	∆8 weighted by fitness, that is, the change due to processes involved in 

reproduction. In other words, this term measures the relationship between parents and 

offspring, also called the transmission bias (Okasha 2006). This bias can be caused by 

mutation, recombination, selection at a lower level of organization, and so on.  

We can see that we have not specified what kind of entities are in our derivation, 

but we just stipulated a particular mapping between sets and their relationships. So there 

is no simplifying assumption or idealization of any kind in the Price equation. It is an 

abstract representation of entities in a population changing in time. The Price equation 

decomposes total evolutionary change in two terms, changes in frequency and changes 
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in property values. These total effects are attributed to different factors –actually, 

causes– as selection, drift, mutation, migration, etc. 

What makes the Price equation so powerful is its abstract nature and that we can 

derive from it the relevant mathematical equations found in the last century. For 

example, the covariance term for quantitative traits was found by Robertson (1966) and 

is known as the Secondary Theorem of natural selection. It says that the rate of change 

in a character equals the additive genetic covariance between fitness and character, 

;�∆8̅ = /BC�EE(;, 8). Also, we can obtain Fisher’s Fundamental Theorem of natural 

selection, which states that the rate of change in mean fitness equals the additive genetic 

variation in fitness. As fitness can be another character, we substitute the character 8 for 

fitness ; in the covariance term, and then ;�∆;� = /BC�EE(;,;) = -���EE(;). 
It seems that the Price equation has a special status, different from the other 

equations used in evolutionary theory. I will argue in the next section that the Price 

equation is a “generalization-sketch”, in Kuhn’s terms (1970). 

 

4. THE PRICE EQUATION AS A GENERALIZATION-SKETCH 

Kuhn suggested the existence of some generalizations in scientific theories which 

are “schemes” rather than simple laws, and these schemes should be specified for 

particular problems. These generalizations are usually expressed in mathematical form 

and play a programmatic role inside the theory: 

“generalizations [like f = ma…] are not so much generalizations as generalization-

sketches, schematic forms whose detailed symbolic expression varies from one 

application to the next. For the problem of free fall, f = ma becomes mg =
md�s/dt�. For the simple pendulum, it becomes mg sin α = −md�s/dt�. For 

coupled harmonic oscillators it becomes two equations, the first of which may be 

written 
O6P3Q6
PR3 +	k7s7 = k�(d + s� − s7). More interesting mechanical problems, 

for example the motion of a gyroscope, would display still greater disparity between 

f = ma and the actual symbolic generalization to which logic and mathematics are 

applied” (Kuhn 1970, p. 465). 

Structuralists follow this idea as guiding principles and develop it with the notions 

of specialization and theory-net (Díez and Lorenzano 2012). It is quite natural that both 

philosophical traditions resort to classical mechanics and consider the second law of 

motion as the fundamental schema. We can see that Newton’s second law takes 
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different forms in order to solve specific problems, the puzzles with every physicist has 

to deal in her day-to-day work. These specific forms, as Kuhn claims, may change 

Newton’s second law in such a way that we cannot even capable to recognize it. This is 

what the paradigmatical examples (simple pendulums, pulleys, inclined planes, etc.) are 

for, they are used to familiarize physicists with the second law and hence, when they 

face a new problem, be able to find out a specific new form of Newton’s second law in 

order to compute any phenomena based on forces, masses and accelerations. This 

characteristic gives to the second law its power and makes it so fruitful.  

The value of these generalization-sketches is to be a “promise”, a driving principle 

for scientists whose work will be based on the abstract character of the principle and in 

their ability to transform an abstract schema into a concrete expression for particular 

cases. Thus, Newton’s second law guarantees that if we have any mechanical problem, 

there are some dynamical equation for it based on forces, masses and accelerations; and 

push us to work hard to find them. So generalization-sketches play a heuristic role and 

work as an abstract formalism awaiting for empirical application. I claim that the Price 

equation possesses these features and plays this role in evolutionary biology.  

4.1.Abstractness 

All authors stress abstractness as the fundamental feature of the Price equation. 

This characteristic allows it to be applied to any population (from bacteria to humans), 

no matter their specific features. The Price equation works as a schema, or in Okasha’s 

words: “So [the Price equation] it is not a model, but rather a schema that may be used 

to understand all other evolutionary models. [It is in recognition of this point that Rice 

(2004) deliberately talks about Price’s theorem, rather than Price’s theory (p. 68)]” 

(Okasha 2010, p. 426). More precisely, as a theorem the Price equation represents the 

consequence of particular mapping between sets and their relationships. The Price 

equation is a mathematical result or, in other terms, it is a mathematical identity. van 

Veelen (2005) and other authors (van Veelen et al. 2012, Nowak and Highfield 2011) 

have stressed this feature as a drawback for the Price equation and, therefore, not even 

considering it as a model. This controversy has echoes of those disputes about the 

meaning of Newton’s second law. Since it was formulated, Newton’s second law 

produced a long term discussion among physicists and philosophers about its empirical 

value (Sklar 2013, Barbour 2001). Some authors claimed that it should be considered a 

description of empirical situations while others, like d’Alembert and Mach, argued that 
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the second law was simply a definition of force (as we can find in some textbooks, see 

Corben and Stehle 1994, p. 28).  

In this case, there is no doubt that the Price equation is a theorem and, therefore, a 

mathematical identity. But it should be noted that, although the Price equation is a 

mathematical identity and therefore it follows from the definitions of the terms (it is a 

mathematical result), its underlying concepts are empirically grounded. Rice (2004, p. 

169) summarizes these concepts as: change over time, ancestor/descendant relations, 

and phenotype. In our world a population changes over time, it is possible to assign 

relations between ancestor and descendant, and we can identify the property of an 

individual (a phenotype) and represent it as a number. There is nothing a priori on these 

features.  

If I am right about the Price equation as a generalization-sketch, my approach may 

solve the problem set out by van Veelen and colleagues when they claim that the Price 

equation is not a model on its own. Actually, the Price equation is not a model, but a 

schema that provides a unifying framework in order to develop specific models. The 

Price equation alone cannot play any empirical role if it is not supplied by a specific 

model. In the same way, Newton’s second law tells nothing about what forces act on 

bodies, and needs to be supplied by specific models setting the forces and empirical 

information (masses, velocities, etc.). The Price equation works as a consequence law 

(Sober 1984). Sober describes two types of laws: source laws, which describe the 

circumstances that produce forces (such as Coulomb’s law or the law of gravitation), 

and consequence laws, which describe how forces, once they exist, produce changes in 

the system (such as Newton’s second law of motion). Thus, the Price equation describes 

how evolutionary forces produce changes in a population, but do not determine how 

many causes exists, how these causes are, and so on. In the same way, Newton’s second 

law works as a consequence law, it tells nothing about how forces arises only how to 

compute them when they are in a system.  

4.2.Unification  

From the Price equation we can obtain a great amount of important results in 

theoretical biology in the past century: Robertson and Fisher’s theorems, the breeder’s 

equation, etc. More important, if the Price equation play a role as a generalization-

sketch, new forms could be found in order to resolve new specific problems. Actually, 

that is exactly what happens in several branches of evolutionary biology (multilevel 

selection, epidemiology, non-genetic inheritance, biodiversity, etc.).  Many researchers 
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employ the Price equation as a unifying framework for analysing and elaborating 

specific models. In other words, the Price equation has become a generalization-sketch, 

a puzzles solver tool if the researchers are audacious and skilled enough to find some 

specific form for it. The Price equation has been applied for several disciplines briefly 

summarized5 (for equations based on Price’s equation see Tab. 1): 

 

• Selection processes. Since its first formulation by Price, the Price equation has 

been directly connected and developed for natural selection models. In section 

3 we have seen how key equations of natural selection, Robertson and 

Fisher’s theorems, can be derived directly from the Price equation. Other 

follow the same path: breeder’s equation (Frank 2012); replicator-mutator 

equation, adaptive dynamics and evolutionary game theory (Page and Nowak 

2002, Rice 2004); multilevel selection (Okasha 2006, Frank 2012, Gardner 

2014); kin selection theory, inclusive fitness and Hamilton’s rule (Frank 2013, 

Rice 2004, McElreath and Boyd 2007); and so on. Special mention deserves 

Grafen’s long term work (Grafen 2007, for an outline), called “The formal 

Darwinism project”. Grafen’s aspiration is to establish a mathematical link 

between population genetics and optimization programs, in other words, 

between see natural selection as a mechanism that change gene frequencies 

and conceptualizing natural selection as a fitness-maximisation mechanism 

that produces design. For this task of linking, Price’s equation plays a crucial 

role due to its generality, and because “The Price equation places individuals 

at the center of its technical apparatus” (Grafen 2007, p. 1245). 

• Stochastic evolution. The Price equation, in its classic form, is a total 

description of evolutionary change because takes both present and future 

states as given or, in other words, is a deterministic description of 

evolutionary change. Nevertheless, sometimes all the parameters cannot be 

specified exactly, before reproduction (or any future state) has taken place. In 

this case, evolution turns out a stochastic process and then, some parameters 

should be changed to random variables. Thus, Rice and collaborators (Rice 

2008, Rice and Papadopoulus 2009; but see also Grafen 2000) have 

developed a stochastic version of the Price equation that can deal with random 

                                                           
5 The most relevant bibliography is reviewed but not intended to exhaust it.  
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variables as stochastic fitness and stochastic migration, demographic 

stochasticity or random environmental change. Following this path, Engen 

and Saether (2013) analyse how demographic and environmental stochasticity 

generate random genetic drift and fluctuating selection. 

• Ecology. Fox and collaborators (Fox 2006, Fox and Haporle 2008, Fox and 

Kerr 2012) extend and use the Price equation as a general framework for 

biodiversity and ecosystem function, analyzing differences in ecosystem 

function between sites. Collins and Gardner (2009) develop a new form of the 

Price equation in order to express the total change at the community level as 

the sum of the separate effects of physiological, evolutionary and ecological 

change, providing a way for integrating and linking these three different 

levels. Ellner et al. (2011) study how evolution, non-heritable phenotypic 

change and environment affect ecological dynamics, developing a continuous-

time version of the Price equation that they call “Genotype-Phenotype-

Environment equation”.   

• Epidemiology. Day and Gandon (2006 and 2007) deal with the evolutionary 

and epidemiological dynamics of host-parasite interactions focusing on a 

continuous model of pathogen evolution, providing a continuous-time 

derivation of the Price equation with mutation. This can be generalized to 

multiple habitats and as a formalism to model the evolutionary dynamics of 

pathogen populations (for example, S-I-R model). Thus, using the Price 

equation as a framework, Day and Gandon offer a way to integrate different 

theories of host-parasite interactions. Based on this approach, Alizon (2009) 

develops a framework that combines within-host population dynamics 

models, population genetics, theory and data, to study disease intrahost 

evolution for any parasite trait. Alizon argues that “This Price equation 

framework has four advantages: (i) it helps to identify how (and which) trade-

offs can affect within-host evolution; (ii) it allows for predicting the short-

term evolutionary dynamics of a trait from the genetic composition of the 

parasite population in the host; (iii) it helps link theory and data; and (iv) it 

can be applied to most existing models of within-host population dynamics” 

(Alizon 2009, p. 1124).   

• Non-genetic inheritance and proximate causes. Modern Synthesis based their 

mathematical and empirical results on genetic inheritance. However, other 
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non-genetic systems of inheritance may have a causal role on evolution.  

Halenterä and Uller (2010) use the Price equation for analysing and gathering 

four different inheritance systems (genetic, epigenetic, behavioral, and 

symbolic) on a common framework. Day and Bonduriansky (2011) developed 

several evolutionary models based on the Price equation that unifies the 

effects of genetic and non-genetic inheritance (nontransmissible 

environmental noise, indirect genetic effects, transgenerational epigenetic 

inheritance, RNA-mediated inheritance, etc.). Otsuka (2015) develops a 

unified framework to translate “proximate causes” (such epigenetic 

inheritance, maternal effects, niche construction) into “ultimate evolutionary 

response” based on the Price equation and causal graph theory. El Moulden et 

al (2014) explore how cultural transmission can be conceptualized as 

evolutionary systems, using the Price equation as a unifying framework, 

analyzing how cultural and genetic evolution interact but also differentiating 

each other.  

These are some of the most important and interesting investigations, but not unique6, 

using the Price equation as cornerstone.  

4.3. Invariance 

The Price equation shares with other scientific principles the feature of invariance 

or symmetry, the property of remaining unchanged under some transformation. For 

instance in Cartesian axes, for Newton’s laws of motion, we can shift a coordinate 

system to a new point or change the orientation of the axes, and the bodies motion will 

stay the same. Therefore Newton’s laws are invariant “with respect to translations 

(shifting of the origin) and rotations” (Barbour 2001, p. 30).  

Steven Frank has been the first author to show what kind of invariances contains 

the Price equation. For that he connects the Price equation, written in covariances and 

expectations, with information theory, overcoming the problem of representing 

nonlinear processes with statistic language. Thus, Frank (2009) relates Fisher 

information (a measure of distance between two probabilities distributions) and 

Shannon information (entropy) with the properties of natural selection, and gives an 

                                                           
6 Other works are: Kerr and Godfrey-Smith (2009, extending the Price equation for migration); Gardner 
et al. (2007, relating multilocus population genetics and social evolution); Coulson and Tulkjapurkar 
(2008, extending the Price equation for age-structured); and Gardner 2015, Grafen 2015, Taylor 2009, 
Rebke 2012, for study populations composition (class-structured populations, decomposition, etc.) 
expressed with the Price equation.  
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expression of the Price equation in terms of Fisher information (see tab. 1). More 

recently, Frank (2012) developed these ideas demonstrating different identities for the 

evolutionary change caused by selection in the Price equation, relating the covariance 

term with notions as information and geometry, where covariance is taken as a measure 

of distance (see Frank 2012 for mathematical details). In this way, Frank claims: 

“for any particular value for total selection, there is an infinite number of different 

combinations of frequency changes and character measurements that will add up 

to the same total value for selection. All of those different combinations lead to 

the same value with respect to the amount of selection. We may say that all of 

those different combinations are invariant with respect to the total quantity of 

selection” (Frank 2012, p. 1007).  

In other words, the covariance term allows us to evaluate selection completely since it 

does not matter how frequency changes and character measurements are combined. All 

this infinite number of combinations equals the total quantity of selection, remaining 

unchanged, and so they are invariant. In addition, this evaluation is complete because 

the covariance is taken as a measure of distance (i.e. as a measure of information) and 

not as is usually used in statistics and, therefore, being applied also for nonlinear 

processes.  

 

 

 

Price equation in terms 
of Fisher information 
(Frank 2009) 

8̅T = 8̅TU + 8̅TV∣U 

Selection identities 
(Frank 2012) 
 
 

∆28̅ = /BC(;, 8)/;�  
= ;�XY>-��(;/;�) = ∆Z · \ 
=∥ ∆Z ∥	∥ \ ∥ ^B� _ 
= ;�XY>(∆Z̀ · ∆Z̀) = ;�XY>a(∆Z̀) 

 
Robertson’s theorem ;�∆8̅ = /BC�EE(;, 8) 
Fisher’s theorem ;�∆;� = -���EE(;) 
Breeder’s equation 
(Frank 2012) b = cℎ� 

Path analysis (Frank 
2012) 

;�∆8̅ = X>Y-��(8) + X>e/BC(f, 8) 
Replicator-mutator Price 
equation (Page and DT (�) = /BC(g, �) + D(�T) + D(g∆h�) 
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Nowak 2002) 
Hamilston’s rule (Birch 
2014) �i − ^ > 0 

Stochastic evolution 
(general equation) (Rice 
2008) 

∆_kl = ^BCm_n ,l opq + ^BCr(_n , o)kkkkkkkkkkkkkkk + s̅ 
 

Demographic 
stochasticity (Rice 2008) 
 

ct ≈ ^BC(_, ;̀)
v(;�) − ^BCm_, C��(;)q

�;�. � + ^BC(_, wx(;))
��;�. x  

Random environmental 
change (Rice 2008) ct ≈ ^BC(_, ;̀)

v(;�) − ^BC @_, gyC��(;z)A
;�. � + ^BC(_, gy�wx(;z))

;�. x  

Stochastic fitness and 
stochastic migration 
(Rice and Papadopoulus 
2009) 

∆_kl = {| _nE}, opE ~ +≪ _nE , oE ≫kkkkkkkkkkkkkkkkkk+ sEkkkkl+≪ �, �	
≫ +�k @�� − sEkkkkl A 

Fluctuating selection and 
drift (Engen and Saether 
2013) 

� = ��$7�� + ��$7��� + ��$7��E 

Difference Ecosystem 
Function (Fox 2006) 

∆� = 8̅∆� + c�(;, 8) +?;!∆8!
!

 

Collins/Gardner equation 
(2009) 

∆8̅ = D� @D�!m∆8!"qA + D� @^BC�!m;!", 8′!"qA
+ ^BC�(;!, 8�!) 

Genotype-Phenotype-
Environment equation 
(Ellner et al. 2011) 

��
�) =

&�
&8 �

�8̅
�) − D*∆8,� + &�

&8 D*∆8, +
&�
&�

��
�)  

The Price equation with 
mutation (Day and 
Gandon 2006) 

�̅T = ^BC(�, �) − w(�̅ − �̅h) 
The Price equation to 
multiple habitats (Day 
and Gandon 2006) 

�̅T � = ^BC�(�, ���) − w(�̅� − �̅h� ) + ���
��� ^BC�

(�, ���)

+ ���
��� �

$��(�̅� − �̅�) 
Nongenetic inheritance 
Price equation (for 
overlapping generations) 
(Day and Bonduriansky 
2011) 

��∆ℎk = /BC(�, ℎ) + D(i∆ℎ�) + D(�∆ℎ�) 

Interactions  genetic and 
nongenetic inheritance 
(Day and Bonduriansky 
2011) 

∆�̅ = ���X�m�̅, ℎkq + ���X�m�̅, ℎkq + 1
�� D(i∆�

�)
+ 1
�� D(�∆�

�) 
Epigenetic inheritance 
(Otsuka 2015) ∆�̅ = 1

�� X���
� + ���!� � + C(Dk� − /̅) 

Maternal effects (Otsuka 
2015) ∆�̅ = 1

�� X*��
� + �h� , + �(�̅�U − �̅) 

Niche construction 
(Otsuka 2015) ∆�̅ = 1

X�̅ + b	(X + ��)��� 
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Cultural Price Equation 
(El Moulden et al 2014) ∆8̅ = ^BC(^, 8) + D (∆8) 
The Price equation with 
migration (Kerr and 
Godfrey-Smith 2009). 

∆�k = ^BC	m/¡∗�, ��q + �C0((∆�)E�) − ^BC	m/¡E∗, �Eq 
Age-structured Price 
equation (Coulson and 
Tulkapurkar 2008) 

∆�̅()) = /BC(	, b)(�, ))
bk(�, ))  

Tab. 1. Identities, derivations and extensions of the Price equation, respectively. 
 

 

5. HAMILTON’S RULE AS A CASE 

Hamilton’s rule is an inequality developed by William Hamilton inside kin 

selection theory. Its aim is to explain the evolution of social behaviour in populations. 

Hamilton’s rule states that a social behaviour will be favoured by natural selection if 

and only if �i − ^ > 0, where � represents the genetic relatedness of the recipient to the 

actor, i the benefits to the recipient, and ^ the costs to the actor (Davies et al. 2012). 

Notwithstanding, Hamilton’s rule and kin selection theory in general  are recently under 

dispute because some authors like Nowak et al. (2010, p. 1059) claim that Hamilton’s 

rule “almost never holds”, while evolutionary biologists like Gardner et al. (2011) 

maintain a strong position for the correctness and the unrestricted applicability of 

Hamilton’s rule. 

In a recent paper, Birch (2014) argues that discussions about Hamilton’s rule arise 

because there are two possible versions of it. One version comes from evolutionary 

game theory, and is based on the one-shot two-players Prisioner’s Dilemma (van Veelen 

et al. 2012). Birch labels it as the special version of Hamilton’s rule (HRS), and is 

characterized by its simplifying assumptions. A consequence of these simplifications is 

that the applicability of HRS is constrained to very specific cases and cannot handle 

more complicated ones (for example, when the frequency of cooperators matters). Is in 

this sense that Nowak and collaborators claim that Hamilton’s rule “almost never 

holds”. The other version comes from the Price equation (Frank 1998). It is not tied to 

any simplifying assumption and fits to any social behaviour system because it follows a 

priori from the Price equation. Birch labels it as the general version of Hamilton’s rule 

(HRG). It is this version that Gardner and collaborators have in mind when they defend 

the generality of Hamilton’s rule. Here is the problem: if HRG is always true then it is 

difficult to see how Hamilton’s rule keeps its explanatory power (Gardner and 
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colleagues’ aim); and if we are content with HRS then we lose predictively power 

because it is not widely applicable.  

Nevertheless, thinking of the Price equation as a generalization-sketch may clarify 

this issue. The question is how HRG, which derives directly from an abstract 

mathematical theorem, can give us any details about which particular social behaviour 

will evolve by natural selection. The answer is clear: it cannot. The reason is that HRG 

is a derivation of the Price equation and plays the same role as a generalization-sketch, 

except that in this case it is applied to social behaviour. In other words, no empirical 

information is supplied by HRG, only says that a social behaviour will be favoured by 

natural selection when �i − ^ > 0. Put another way: if there is some social trait in a 

population, look for the genetic relatedness of the recipient to the actor, the benefits to 

the recipient, and the costs to the actor. If these relations are greater than zero (they are 

positive) then natural selection favoured this trait in the population. This is how a 

consequence law works. But the source of these relations will be related to specific 

populations (paper wasps, meerkats, ground squirrels, prairie dogs, etc.), and concrete 

predictions will be provided by specific models and, therefore, subject to simplifying 

assumptions. HRS is precisely a specific model subject to simplifying assumptions and 

then it only makes valid predictions in particular situations. Birch detects these two 

different roles played by HRG and HRS when he says: “We therefore face a trade-off. 

By construing Hamilton’s rule as HRG rather than HRS, we buy generality at the 

expense of predictive power” (Birch 2014, p. 400). On the other hand, other HRG’s 

characteristic, detected by Birch but omitted by Nowak and colleagues, is the 

explanatory value of unification: “HRG constitutes a unifying principle: a means of 

bringing together results from disparate models under a single conceptual framework”. 7 

This unifying power of the Price equation, and then also of HRG, has been stressed in 

the present article as one of its key features. 

However, the problem is that, if we are seeking the most general framework for 

all the processes of social evolution under natural selection, it seems that it would be 

better to use Robertson’s theorem of natural selection. My reply is different from Birch 

and is based on the hierarchical structure view of the theory. HRG is derived from the 

Price equation firstly by leaving aside the second term, and resting only the covariance 

term. As we have seen in section 3, the covariance term was developed by Robertson 

                                                           
7 Birch 2014, p. 401. Kitcher (1993, chap. 2) underlined the unifying power of the theory of natural 
selection as its greatest explanatory value.  
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and it is known as the secondary theorem of natural selection. So it is true that 

Robertson’s theorem is more general than HRG, but HRG is a special form of this 

theorem focused on the evolution of social behaviour. Robertson’s theorem tells us 

when a trait, in general, will be favoured by natural selection, whereas HRG tells us 

when a social trait will be favoured by natural selection. Thus, if we are focused on 

social behaviour, using HRG is sufficient to produce specific models.      

 

6. A FUNDAMENTALIST APPROACH 

The use of the Price equation as a generalization-sketch implies a very specific 

way of theorizing: we start with postulates or assumptions that we think are true and 

then derive the mathematical rules of the system. Rice and Papadopoulus (2009) call 

theories that follow this way of theorizing “axiomatic theories”, where postulates or 

assumptions are the axioms of the theory. Philosophers of science conceptualize this 

kind of thinking as “fundamentalism” (Cartwright 1999) where “scientists [are] guided 

by a commitment to find fundamental concepts and principles sufficient for providing a 

universal and unified account of nature” (Waters 2011, p. 232)8. For the fundamentalist 

approach universality is the goal, and according to Cartwright one clear example of this 

approach is Newton’s second law of motion and the aspiration to encompass all 

dynamical processes through all forces acting upon bodies or, in other words, that  there 

is a mechanical model for any dynamical situation. 

A fundamentalist approach seeks generality, finding the mathematical expressions 

that encompass all the special models and allow us to produce more special ones. At the 

core of an axiomatic theory lies a unifying framework and, at the same time, a formula 

in order to produce specific models. When a special model is formulated, simplifying 

assumptions are necessary for acquire predictive power or dynamic sufficiency, but 

these simplifications come at the end of the theoretical work, and not at the beginning.    

6.1. The Newtonian analogy vindicated 

Textbooks and most of the evolutionary literature talk about evolutionary forces 

acting on a population (Gillespie 2004, Templeton 2006). Sober (1984) developed this 

                                                           
8 The aim of Water’s article is to show that Okasha’s book (2006) favours a “toolbox view” (which aim is 
finding partial descriptions and denies a unique correct description) based in his analysis on multi-level 
selection and the appropriateness of the Price equation versus Contextual analysis, although Okasha 
devoted the first chapter of his book to the benefits of Price’s equation (Okasha 2011 for a reply). 
However, there is no confrontation between the Price equation and contextual analysis because the latter 
is a form of path analysis which “follows as a natural extension of the Price equation (…) It does not 
make sense to discuss the Price equation and path analysis as alternatives” (Frank 2012, p. 1014).     
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point of view according to which evolutionary theory is a theory of forces in the same 

way that different forces of Newtonian mechanics cause changes in the movement of 

bodies, because evolutionary forces cause changes in trait frequencies. A lively debate 

about the appropriateness of the forces analogy has been developed in the last decade 

(Matthen and Ariew 2002, Hitchcock and Velasco 2014). I think that most of these 

attacks to the Newtonian analogy have been positively answered so, I will not go into 

detail about them. Rather I want focus on a particular contention on the force 

interpretation since Sober formulated it: that evolutionary theory does not contains any 

law or equation comparable with Newton’s second law of motion. Thus, only two years 

after the publication of Sober’s book, John Endler wrote:   

“First, if natural selection is a “force,” what is it acting on? (A force is meaningless 

without an object). If natural selection were a force, it should be possible to 

decompose it into a mass and an acceleration. In this case “acceleration” is 

phenotypic selection, but what is the “mass”? The “mass” could be a frequency 

distribution or the genetic system (condition c, inheritance), but this is tantamount to 

assuming that natural selection applies only to groups. Natural selection arises from 

biological differences among individuals (condition b, fitness differences); therefore 

to make a proper analogy, the “mass” is the genetic composition of an individual. 

This is reasonable because it also allows mutation to be a “force”. But the “mass” in 

the physicist’s a = �� is a class of objects with defining properties and not an 

individual, so the analogy either breaks down or restricts natural selection to group 

selection” (Endler 1986, p. 31). 

And most recently,  

“[T]he Newtonian analogy does not work (…) We do not build evolutionary 

models by beginning an analog of the force equation expressing Newton’s 

second law of motion (a£ = ��£, where a£ is the force, � is the mass, and �£ is the 

acceleration) and substituting for the force term” (Sarkar 2011, p. 464). 

Nevertheless, the present article demonstrates that evolutionary theory counts with 

an equation comparable to Newton’s second law of motion. Both equations share 

several key features like abstractness, unifying power, and invariance. In turn, the Price 

equation and the second law of motion work as consequence laws, computing all 

possible causes in a common framework in evolutionary theory and in Newtonian 

mechanics, respectively. Actually both equations share a family resemblance, for 

example in cases of equilibrium. When two evolutionary forces, represented by the 
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covariance term and the expected term respectively, are acting upon a population with 

equal magnitude but opposite sign, we obtain ;�∆8̅ = 0, i. e. −D(;∆8) = /BC(;, 8). In 

the same way, when two forces (a1 and a2), are exerted on a body with the same 

magnitude but opposite sense, we have 0 = � · �, i. e. a2 = −a1. This shows that, 

contrary to Endler and Sarkar’s claim, evolutionary forces can be expressed by 

covariance and expectations and not as a clumsy copy of Newton’s second law trough 

masses and accelerations. It is fair to say that this kind of model building with the Price 

equation, in a way analogous to the second law of motion, is relatively recent9. In this 

line, the effort of Steven Frank (1995, 1997) to spread Price’s work was crucial. This 

shift is an issue for sociology of science and that question goes beyond the purview of 

this paper, but I guess that the initial dismissal of the Price equation lies probably in the 

reluctance of many (field) biologists on mathematical works (a complain supported by 

Grafen (2007)). Be that as it may, the present article and the works cited show that 

many evolutionary biologists have taken the Price equation as a unifying framework, in 

a similar way as physicists in the eighteenth century took Newton’s second law of 

motion. van Veelen and colleagues (2010, 2012) repeatedly complained that the Price 

equation is usually considered by many evolutionary biologists as D = �^� is 

considered by physicists; rather the Price equation is like Newton’s second law.        

 

7. CONCLUSION 

My aim in this paper was to show the special nature of the Price equation and the 

role it plays in evolutionary theory. I have argued that the Price equation has all the 

characteristics of a generalization-sketch: (i) it is a schema that allows for elaborating 

specific models with concrete symbolic expressions, (ii) it shares with other scientific 

principles such features like abstractness, unifying power and invariance, and (iii) many 

researchers are actually using it as a generalization-sketch. Understanding Price’s 

equation in this way solves many problems stated by van Veelen and colleagues on the 

supposed role it plays in evolutionary theory, and also with other related equations like 

Hamilton’s rule. Furthermore, attributing this role to the Price equation –i.e. a 

generalization-sketch– favours a specific way of theorizing (an axiomatic or 

fundamentalist approach) in evolutionary biology and relates it with other 

                                                           
9
 Although, early approaches were developed by Hamilton (1970, 1975), Seger (1981), Grafen (1985), 

and Wade (1985), among others.  
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generalization-sketches like Newton’s second law of motion. This is a case, in the end, 

for vindicating the Newtonian analogy.   
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