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Abstract

Dilation occurs when an interval probability estimate of some event E
is properly included in the interval probability estimate of E conditional on
every event F of some partition, which means that one’s initial estimate of E
becomes less precise no matter how an experiment turns out. Critics main-
tain that dilation is a pathological feature of imprecise probability models,
while others have thought the problem is with Bayesian updating. How-
ever, two points are often overlooked: (i) knowing that E is stochastically
independent of F (for all F in a partition of the underlying state space) is
sufficient to avoid dilation, but (ii) stochastic independence is not the only
independence concept at play within imprecise probability models. In this
paper we give a simple characterization of dilation formulated in terms of
deviation from stochastic independence, propose a measure of dilation, and
distinguish between proper and improper dilation. Through this we revisit
the most sensational examples of dilation, which play up independence be-
tween dilator and dilatee, and find the sensationalism undermined by either
fallacious reasoning with imprecise probabilities or improperly constructed
imprecise probability models.

1 Good Grief!

Unlike free advice, which can be a real bore to endure, accepting free information
when it is available seems like a Good idea. In fact, it is: I. J. Good (1967) showed
that under certain assumptions it pays you, in expectation, to acquire new infor-
mation when it is free. This Good result reveals why it is rational, in the sense of
maximizing expected utility, to use all freely available evidence when estimating a
probability.

Another Good idea, but not merely a Good idea, is that probability estimates
may be imprecise (Good 1952, p. 114).1 Sometimes total evidence is insufficient
to yield numerically determinate estimates of probability, or precise credences as

1Other notable pioneers of imprecise probability include B. O. Koopman (Koopman 1940), Al-
freds Horn and Tarski (Horn and Tarski 1948), Paul Halmos (Halmos 1950), C. A. B. Smith (Smith
1961), Daniel Ellsberg (Ellsberg 1961), Henry Kyburg, Jr. (Kyburg 1961) and Isaac Levi . Notable
contemporary advocates include Isaac Levi, Peter Walley, Teddy Seidenfeld, James Joyce, Fabio
Cozman (Cozman 2000), Gert de Cooman and Enrique Miranda (de Cooman and Miranda 2007,
2009).



some may say, but instead only yield upper and lower constraints on probability
estimates, or indeterminate credal states, as Isaac Levi likes to say (Levi 1974,
1980). The problem is that these two commitments can be set against one another
by a phenomenon called dilation.2 An interval probability estimate for a hypoth-
esis is dilated by new evidence when the probability estimate for the hypothesis
is strictly contained within the interval estimate of the hypothesis given some out-
come from an experiment. It is no surprise that new information can lead one to
waver. But there is more. Sometimes the interval probability estimate of a hy-
pothesis dilates no matter how the experiment turns out. Here merely running the
experiment, whatever the outcome, is enough to degrade your original estimate.
Faced with such an experiment, should you refuse a free offer to learn the out-
come? Is it rational for you to pay someone to not tell you?

Critics have found dilation beyond the pale but divide over why. For the rear-
guard, the prospect of increasing one’s imprecision over a hypothesis no matter
how an experiment turns out is tantamount to a reductio argument against the the-
ory of imprecise probabilities. Conditioning on new information should reduce
your ignorance, tradition tells us, unless the information is irrelevant, in which
case we should expect there to be no change to your original estimate. However,
dilation describes a case where the specific outcome of the experiment is irrelevant
but imprecision increases by conditioning, come what may.

The conservatives lament that the proponents of imprecise probabilities trade
established distinctions and time-honored methods for confusion and ruin. Simply
observing the distinction between objective and subjective probabilities and stick-
ing to Laplace’s principle of indifference (White 2010), or the distinction between
known evidence and belief (Williamson 2007, pp. 176-7) and calibrating belief by
the principle of maximum entropy (Williamson 2010, Wheeler 2012), they argue,
would avoid the dilation hullabaloo. The real debate for conservatives concerns
which traditions to follow—not whether to abandon numerically determinate prob-
abilities. Even some who think that belief states should be indeterminate to “match
the character” of the evidence despair of imprecise probability theory ever being of
service to epistemology (Sturgeon 2008, 2010, Wheeler 2013).

For the vanguard, imprecision is an unavoidable truth, and dilation is but an-
other reason to reject Good’s first idea in favor of selective but shrewd updating.
Henry Kyburg, for example, long interested in the problem of selecting the appro-
priate reference class (Kyburg 1961, Kyburg and Teng 2001), avoids dilation by
always selecting the most unambiguously precise estimate available.3 There is no

2The first systematic study of dilation is (Seidenfeld and Wasserman 1993), which includes histor-
ical remarks that identify Levi and Seidenfeld’s reaction to (Good 1967) as the earliest observation of
dilation and Good’s reply in (1974) as the first published record. Seidenfeld and Wasserman’s study
is further developed in (Herron et al. 1994) and (Herron et al. 1997). See our note 10, below, which
discusses a variety of weaker dilation concepts that can be articulated and studied.

3Although evidential probability avoids strict dilation, there are cases where adding new infor-
mation from conflicting but seemingly ad hoc reference classes yields a less precise estimate. See,
for example, Seidenfeld’s hollow cube example in (Seidenfeld 2007) and Kyburg’s reply in the same
volume (Kyburg 2007).
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possibility for dilation to occur within his theory of evidential probability, but this
policy is what places evidential probability in conflict with Bayesian conditional-
ization (Kyburg 1974, Levi 1977). Even so, the general idea of selective updating
may not be incompatible with classical Bayesian methods (Harper 1982). Indeed,
one recent proposal to avoid dilation replaces Good’s first principle by a second-
order principle purported to determine whether or not it pays you in expectation
to update a particular hypothesis on a particular item of evidence (Grünwald and
Halpern 2004). This approach faces the problem of how to interpret second-order
probabilities (Savage 1972, p. 58), but that is another story.

A point often overlooked by dilation detractors—conservatives and progres-
sives alike—is that dilation requires that your evidence about pairs of events in
question to not rule out the possibility for some interaction between them (Sei-
denfeld and Wasserman 1993). This is a crucial point, for the most sensational
alleged cases of dilation—recent examples include (Sturgeon 2010, White 2010,
Joyce 2011), but also consider (Seidenfeld 1994)—appear to involve stochasti-
cally independent events which nevertheless admit some mysterious interaction
to occur. Yet each of these recent examples rests on an equivocation concerning
whether the events in question are indeed stochastically independent. If one event
is completely stochastically independent of another, an implication of Seidenfeld
and Wasserman’s fundamental results on dilation tells us that there is no possibility
for one event to mysteriously dilate the other. Claims to the contrary are instances
of mishandled imprecise probabilities—not counterexamples to a theory of impre-
cise probabilities.

Another source of confusion over indeterminate probabilities is the failure to
recognize that there are several distinct concepts of probabilistic independence and
that they only become extensionally equivalent within a standard, numerically de-
terminate probability model. This means that some sound principles of reasoning
about probabilistic independence within determinate probability models are invalid
within imprecise probability models. To take an example, within the class of im-
precise probability models it does not follow that there must be zero correlation
between two variables when the estimate of an event obtaining with respect to one
of the variables is unchanged by conditioning on any outcome of the other: one
event can be epistemically irrelevant to another without the two events enjoying
complete stochastic independence.

The aim of this essay is to help demystify dilation by first giving necessary
and sufficient conditions for dilation in terms of deviations from stochastic inde-
pendence. Our simple characterization of dilation is new, improving on results
of Seidenfeld, Wassermann and Heron, who have provided necessary but insuffi-
cient conditions, sufficient but unnecessary conditions, and characterization results
which apply to some classes of models but not to all. We also propose a measure
of dilation.

Second, we delineate three distinct but logically related independence concepts
and explain how those notions behave within a very general family of imprecise
probability models. This account is then used to explain what goes wrong in a
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recent line of attack against the theory of imprecise probabilities, and to explain
how the theory of imprecise probabilities is more accommodating than some of its
advocates have suggested. It should be stressed that this essay offers neither an
exhaustive treatment of independence within imprecise probability models,4 nor
an exhaustive defense of imprecise probabilities.5 Yet, as should become clear, our
characterization results and the role these three independence concepts play are
fundamental to understanding imprecise probabilities and their application.

The general class of imprecise probability theories considered in this essay
cover several proper extensions of familiar, numerically determinate models: the
underlying structure of numerically determinate probability models drop out as a
special case of the more general indeterminate theory. This means that the plu-
rality of independence concepts, and therefore the underlying mechanics which
govern dilation, run deeper than the particular philosophical interpretations which
normally lead discussions of theories of probability. As a result, we will make a
judicious effort, to the extent we can, to place the mathematics driving dilation in
the foreground and the interpretations advanced for different probability models in
the background. Proceeding this way is not to devalue questions concerning inter-
pretations of probability models. On the contrary, since numerically determinate
probability models are simply a special case of this family of imprecise probability
models, a large part of the philosophical discussion over proper interpretations can
and indeed should be conducted on neutral grounds. This essay may be viewed as
a guide to finding that neutral ground.

2 Preliminaries

When you are asked to consider a series of fair coin tosses, what you are being in-
vited to think about, in one fashion or another, is an idealized mathematical model:
a sequence of independent Bernoulli trials with probability 1/2 for the outcome
heads occurring on each toss.

In this section we explain each piece of this mathematical model. In the next
we discuss variations of a coin toss experiment consisting of two tosses.

Probability. A probability function is a real-valued function p defined on an al-
gebra A over a set of states Ω satisfying the following three conditions:

(P1) p(E) ≥ 0 for every E ∈A ;

(P2) p(Ω) = 1;

(P3) p(E ∪ F) = p(E) + p(F) for all pairwise disjoint elements E and F in A .

4See (Couso et al. 1999), (Cozman 2012), and (de Cooman and Miranda 2009).
5For instance, Adam Elga’s (2010) alleged counterexample to imprecise decision models con-

flates extensive and normal form games, which is a valid reduction within standard, numerically
determinate decision models, but invalid within an imprecise decision model (Seidenfeld 1994).
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In plain terms, p is a single probability function assigning to each event in the
algebra A a numerically determinate real number. The triple (Ω,A , p) is called a
probability space.

For arbitrary events E and F in A , an immediate consequence of properties
(P1) – (P3) is a generalization of (P3):

(P3′) p(E ∪ F) = p(E) + p(F) − p(E ∩ F).

According to one way of understanding imprecision, even though p is a single,
well-defined function, by strategically withholding information about (Ω,A , p), it
may be only possible to derive an interval constraint for a probability assignment
rather than a numerically determinate value.

For example, suppose that numerically precise estimates have been evaluated
for a subcollection E ⊆ A of events including, say, E and F , but not their joint
occurrence, E ∩F . In particular, suppose that p(E) = 1/2 and p(F) = 1/2, while
a precise value for the binary meet of E and F , E ∩ F , has not been specified:
Solving for β = p(E∩F) admits any real number within [0, 1/2] as a feasible value
for β . This calculation for binary meets and binary joins when only the marginal
probabilities of a pair of events have been specified conforms to the pair of rules
from the following proposition.

Proposition 2.1 Suppose that p(E) and p(F) are defined. Then:

1. If p(E ∩ F) = β , then:

max
[

0,
(

p(E) + p(F)
)
− 1

]
≤ β ≤ min

[
p(E), p(F)

]
;

2. If p(E ∪ F) = β , then:

max
[

p(E), p(F)
]
≤ β ≤ min

[
p(E) + p(F), 1

]
.

In view of this proposition, a first remark about imprecise probability assign-
ments is that they may arise naturally when some information has not been speci-
fied. Nothing exotic or heterodox need obscure them.

Affirming a range of solutions βE for each event E is to say that there is a set
P of probability functions assigning real numbers βE to each such event E. Each p
in P is defined with respect to the same set of states Ω and algebra A . Since the
set of numbers βE is bounded below, there is a greatest number βE bounding these
numbers from below. Similarly, since the set of numbers βE is bounded above,
there is a least number βE bounding these numbers from above. These numbers
correspond to the lower and upper probabilities for E: The lower probability of
E in P is βE , and the upper probability of E in P is βE , denoted by P(E) and
P(E), respectively. Putting this in formal terms, these numbers are defined by the
following equations:
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(P4.1) P(E) = inf{ p(E) : p ∈ P}.

(P5.1) P(E) = sup{ p(E) : p ∈ P}.6

If P(F) > 0, then conditional lower and conditional upper probabilities are
defined, respectively, as follows:

(P4.2) P(E | F) = inf{ p(E | F) : p ∈ P}.

(P5.2) P(E | F) = sup{ p(E | F) : p ∈ P}.

Of course, if F is the sure event Ω, conditional lower probability and conditional
upper probability reduce to unconditional lower probability and upper probability,
respectively.

When lower probability and upper probability agree for all events in the alge-
bra A , then the set P is a singleton set consisting of a unique precise numerical
probability function on A which realizes the upper and lower probability function:

(P6) If P = P, then {p} = P and p = P = P.

Lower probabilities may be defined in terms of upper probabilities, and vice
versa, through the following conjugacy relation:

(P7) P(E) = 1 − P(Ec).7

Thus, we may restrict attention to lower probabilities without loss of generality.
We remark that lower probabilities are superadditive:

(P8) P(E ∪F) ≥ P(E) + P(F) − P(E ∩F).

By the conjugacy relation (P7), upper probabilities are therefore subadditive. Given
a set of probabilities over an algebra A on a set of states Ω, let us as before call the
triple (Ω,A ,P) a probability space, and call the quadruple (Ω,A ,P,P) satisfying
properties (P4) – (P5) a lower probability space.

Finally, we point out that the set of lower probabilities for an event E, P(E) =
{p ∈ P : p(E) = p(E)}, need not be unique. This is true for the set of upper proba-
bilities, P(E) = {p∈ P : p(E) = p(E)}, and the corresponding sets of lower condi-
tionals probabilities, P(E|F) = {p ∈ P : p(E|F) = p(E|F)}, and upper conditional
probabilities, P(E|F) = {p ∈ P : p(E|F) = p(E|F)}, too.

Think of the conditions for lower probability this way. If we consider a single
probability space, Proposition 2.1 tells us that a gap between lower and upper prob-
ability can open only by closing off some part of the algebra from view. Properties
(P4) – (P8) accordingly furnish a barebones structure governing sets of probabil-
ities to incorporate this game of peekabo directly within the model itself. These
properties underlie a proper extension of the standard probability model: there is

6Alternative approaches which induce lower and upper probability are discussed in (Wheeler
2006) and (Haenni et al. 2011).

7Ec is the complement Ω\E of E.
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no reason to deviate from what the fully defined probability function says about
events unless some information about the probability space has not been specified.

Although it can be useful to imagine the basic model as codifying the conse-
quences of unknown parts of the algebra, do not assume that every lower proba-
bility model has precise probabilities kept out of sight in a game of peekabo. For
example, imagine that a sample of eligible voters is asked whether they intend to
vote for Mr. Smith or for his sole opponent in an upcoming election. The lower
probability of voting for Smith is the proportion of respondents who pledge to
vote for Smith, while the upper probability of voting for Smith is the proportion
who have not pledged to vote for his opponent. Rare is the pre-election poll that
finds these two groups to be one and the same, for some voters may be undecided,
choosing neither to commit to Smith nor to commit to his opponent. The differ-
ence between lower probability and upper probability in this case is not due to the
pollster’s ignorance of the true strict preferences of the voters but to the presence
of truly undecided voters in the sample.

To be sure, if voters must cast a ballot for one of the two candidates, then Smith
and his opponent will split the votes on election day, so the proportion of votes cast
for Smith will be precisely the proportion of votes not cast for his opponent. But the
pre-election poll is designed to estimate voter support for Smith, not to predict the
vote count for Smith on election day. The precision of the vote count is irrelevant
to resolving the imprecision in a poll of pre-election attitudes. Indeed, often the
very point of a pre-election poll is to identify undecided voters as part of an effort
to influence how they will cast their ballots on election day.

Stochastic Independence The textbook definition of probabilistic or stochastic
independence is formulated in terms of a single probability function. Thus, two
events E and F in A are said to be stochastically independent just in case:

(SI) p(E ∩F) = p(E)p(F).

In a standard probability space for a precise probability function p, events E and
F are stochastically independent just in case conditioning on F is irrelevant to
estimating E, and vice versa. Formally, an event F is said to be epistemically
irrelevant to an event E precisely when:

(ER) p(E | F) = p(E), when p(F) > 0.

Accordingly:

(EI) E is epistemically independent of F if and only if both E is epistemically
irrelevant to F and F is epistemically irrelevant to E.

Although conditions (SI), (ER) and (EI) are logically equivalent with respect to a
precise probability function, it turns out that these three conditions are logically
distinct concepts with respects to imprecise probability models. We will return to
this point in Section 6.
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In addition, the degree to which two events diverge from stochastic indepen-
dence, if they diverge at all, may be characterized by a simple measure of stochastic
independence:

Sp(E,F) =df
p(E ∩F)
p(E)p(F)

.

This measure is just the covariance of E and F , Cov(E,F) = p(E∩F)− p(E)p(F),
put in ratio form. Observe that Sp(E,F) = 1 just in case E and F are stochas-
tically independent; Sp(E,F) > 1 when E and F are positively correlated; and
Sp(E,F) < 1 when E and F are negatively correlated.8 The measure S naturally
extends to a set of probability functions P as follows:

S+
P (E,F) =df {p ∈ P : Sp(E,F) > 1};

S−P (E,F) =df {p ∈ P : Sp(E,F) < 1};
IP(E,F) =df {p ∈ P : Sp(E,F) = 1}.

The set of probability functions IP(E,F) from P with E and F stochastically in-
dependent is called the surface of independence for E and F with respect to P.
Subscripts shall be dropped when there is no danger of confusion.

Bernoulli Trials. A Bernoulli trial is an experiment designed to yield one of two
possible outcomes, success or failure, which may be heuristically coded as ‘heads’
or ‘tails,’ respectively. Given a set of states Ω, the experiment C of interest will
result either in heads or in tails, so either the event (C = heads) obtains or the
event (C = tails) obtains. A fair coin toss is a Bernoulli trial C with probability
1
2 for heads—that is, a Bernoulli trial such that the probability that (C = heads)
obtains is 1/2, written p(C = heads) = 1/2. In general, a Bernoulli trial C with
probability θ for success is such that the probability that (C = success) obtains is
θ , p(C = success) = θ .

For a series of coin tosses, let Ci be the experimental outcome of the ith coin
toss. To take an example, consider a sequence of fair tosses for which the probabil-
ity that the outcome of the second toss is heads given that the outcome of the first
toss is tails, a property which may be expressed as:

p(C2 = heads |C1 = tails) = 1/2. (1)

Notation may be abbreviated by letting Hi denote the event that the outcome Ci is
heads on toss i, and by letting Ti refer to the event that the outcome Ci is tails on
toss i. With this shorthand notation, Equation (1), for example, becomes:

p(H2 | T1) = 1/2.

8 The measure S has been given a variety of interpretations in philosophy of science and formal
epistemology, including as a measure of coherence Shogenji (1999) and a measure of similarity
Wayne (1995), and is a variation of ideas due to Yule (1911, Ch. 3). See Wheeler (2009a) for
discussion and both Schlosshauer and Wheeler (2011) and (Wheeler and Scheines 2013) for a study
of the systematic relationships between covariance, confirmation, and causal structure.
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A sequence of fair coin tosses is a series of stochastically independent Bernoulli
trials C1, . . . ,Cn with probability 1

2 —that is, a stochastically independent sequence
of fair coin tosses C1, . . . ,Cn with p(Ci = heads) = p(Hi) = 1/2 for every i =
1, . . . ,n and p

(
(C1 = o1)∩ (C2 = o2)∩ ·· · ∩ (Cm = om)

)
= p(C1 = o1)p(C2 =

o2) · · · p(Cm = om) for every m≤ n such that oi ∈{heads, tails} for each i = 1, . . . ,m.
A useful piece of terminology comes from observing that the subset of events

B =
{

(C = heads), (C = tails)
}

partitions the outcome space Ω since, in the model under consideration, the out-
come of any coin toss must be one element in B. In general, given a probability
space (Ω,A ,P), call a collection of events B from A a positive measurable par-
tition (of Ω) just in case B is a partition of Ω such that P(H) > 0 for each partition
cell H in B. Note that elements of B are assumed to be events in the algebra A
under consideration unless stated otherwise. In the coin example, the assumption
that B is a positive measurable partition may be reasonable to maintain unless, for
example, the coin is same-sided.

3 Dilation

Lower probabilities have been introduced in response to a mischievous riddler who
blocks part of the algebra of events from your view in a game of peekaboo, but the
question of how to interpret a set of probabilities has been intentionally set in the
background. The reason for this is that the barebones model we have presented for
a set of probabilities is sufficient to bring into focus the main components needed
for dilation to occur, which number fewer than the properties needed to flesh out
some natural interpretations for a set of probabilities.

In exchange for leaving the interpretation of a set of probabilities largely un-
specified, it is hoped that readers will come to see that dilation does not hinge on
whether the set of probabilities in question has been endowed with an interpretation
as a model for studying sensitivity and robustness in classical Bayesian statistical
inference, or as a model for aggregating a group of opinions, or as a model of
indeterminate credal probabilities.

This said, we need to pick an interpretation to run our examples, so from here
on we will interpret lower probability as a representation of some epistemic agent’s
credal states about events. To make this shift clear in the examples, ‘You’ will
denote an arbitrary intentional system, and the set of probabilities P in question
will denote that system’s set of credal probabilities. We invite you to play along.9

With these preliminaries in place, we turn now to dilation.

9Alas, ‘You’, you will find, is also a Good idea. This convention has been followed by de Finetti
(1974a,b) and Walley (1991), too, among others.
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Dilation. Let (Ω,A ,P,P) be a lower probability space, let B be a positive mea-
surable partition of Ω, and let E be an event. Say that B dilates E just in case for
each H ∈B:

P(E | H) < P(E) ≤ P(E) < P(E | H).

In other words, B dilates E just in case the closed interval
[
P(E), P(E)

]
is con-

tained in the open interval
(
P(E | H), P(E | H)

)
for each H ∈B. The remarkable

thing about dilation is the specter of turning a more precise estimate of E into a
less precise estimate, no matter what event from the partition occurs.10

Coin Example 1: The Fair Coin. Suppose that a fair coin is tossed twice. The
first toss of the coin is a fair toss, but the second toss is performed in such a way
that its outcome may depend on the outcome of the first toss. Nothing is known
about the direction or degree of the possible dependence. Let H1,T1,H2,T2 denote
the possible events corresponding to the outcomes of each coin toss.11

You know the coin is fair, so Your estimate of individual tosses is precise.
Hence, from P6 it follows that Your upper and lower marginal probabilities are
precisely 1/2:

(a) P(H1) = P(H1) = 1/2 = P(H2) = P(H2).

It is the interaction between the tosses that is unknown, and in the extreme the first
toss may determine the outcome of the second: while the occurrence of H1 may
guarantee H2, the occurrence of H1 may instead guarantee T2. Recalling Proposi-
tion 2.1, suppose Your ignorance is modeled by:

(b) P(H1∩H2) = 0 and P(H1∩H2) = 1/2.

Now suppose that You learn that the outcome of the second toss is heads. From (a)
and (b), it follows by (P4) and (P5) that:

10We mention that while our terminology agrees with that of Herron et al. (1994, p. 252), it differs
from that of Seidenfeld and Wasserman (1993, p. 1141) and Herron et al. (1997, p. 412), who call
dilation in our sense strict dilation.

Indeed, weaker notions of dilation can be articulated and subject to investigation. Say that a
positive measurable partition B weakly dilates E if P(E |H) ≤ P(E) ≤ P(E) ≤ P(E |H) for each
H ∈B. If B weakly dilates E, say that (i) B pseudo-dilates E if in addition there is H ∈B such that
either P(E |H) < P(E) or P(E) < P(E |H) and that (ii) B nearly dilates E if in addition for each
H ∈B, either P(E | H) < P(E) or P(E) < P(E | H). Thus, B pseudo-dilates E just in case the
closed interval

[
P(E), P(E)

]
is contained in the closed interval

[
P(E |H), P(E |H)

]
for each H ∈B,

with proper inclusion obtaining for some partition cell from B, while B nearly dilates E just in case
the closed interval

[
P(E), P(E)

]
is properly contained in the closed interval

[
P(E |H), P(E |H)

]
for

each F ∈B. Seidenfeld and Wasserman (1993) and Herron et al. (1994, 1997) also investigate near
dilation and pseudo-dilation.

11This is Walley’s canonical dilation example (Walley 1991, pp. 298-299), except that here we are
using lower probabilities instead of lower previsions.
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inf
{

p(H1∩H2)
p(H2)

: p ∈ P
}

= inf
{

p(H1∩H2)
1/2

: p ∈ P
}

= 2 · inf
{

p(H1∩H2) : p ∈ P
}

= 0

and

sup
{

p(H1∩H2)
p(H2)

: p ∈ P
}

= sup
{

p(H1∩H2)
1/2

: p ∈ P
}

= 2 · sup
{

p(H1∩H2) : p ∈ P
}

= 1.

This yields:

(c) P(H1 | H2) = 0 and P(H1 | H2) = 1.

So although Your probability estimate for H1 is precise, Your probability estimate
for H1 given that H2 occurs is much less precise, with lower probability and upper
probability straddling the entire closed interval [0,1]. An analogous argument holds
if instead You learn that the outcome of the second toss is tails. Since B = {H2,T2}
partitions the outcome space, these two cases exhaust the relevant possible obser-
vations, so the probability that the first toss lands heads dilates from 1/2 to the
vacuous unit interval upon learning the outcome of the second toss. Your precise
probability about the first toss becomes vacuous no matter how the first coin toss
lands. �

One way to understand the extremal points P(H1 | H2) = 0 and P(H1 | H2) = 1
is as two deterministic but opposing hypotheses about how the second toss is per-
formed. One hypothesis asserts that the outcome of the second toss is certain to
match the outcome of the first, whereas the second hypothesis asserts that the sec-
ond toss is certain to land opposite the outcome of the first. However, after observ-
ing the second toss, Your estimate of the first toss becomes maximally imprecise
because the two hypotheses predict different outcomes.

4 Dilation Explained

As made clear by Seidenfeld and Wasserman (1993), deviation from stochastic
independence is essential for dilation to occur. Here are two of their observations.
To give the reader a sense of the argumentation involved in demonstrating each
result, we also supply proofs.
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Theorem 4.1 (Seidenfeld and Wasserman, 1993, Theorem 2.2) Let (Ω,A ,P,P)
be a lower probability space, let B be a positive measurable partition of Ω, and
let E ∈A . Suppose that B dilates E. Then for every H ∈B :

P(E|H) ⊆ S−P (E,H) and P(E|H) ⊆ S+
P (E,H).

Proof. Let H ∈B, and suppose that p ∈ P(E | H). Then:

p(E ∩H)
p(H)

= P(E | H)

< P(E)
≤ P(E)
≤ p(E).

Hence, Sp(E,H)< 1, whereby p∈ S−(E,H), establishing that P(E|H) ⊆ S−P (E,H).
An analogous argument for a representative p∈ P(E |H) shows that Sp(E,H) > 1,
establishing P(E|H) ⊆ S+

P (E,H).

Theorem 4.2 (Seidenfeld and Wasserman, 1993, Theorem 2.3) Let (Ω,A ,P,P)
be a lower probability space, let B be a positive measurable partition of Ω, and
let E ∈A . Suppose that for every H ∈B :

P(E) ∩ S−P (E,H) 6= /0 and P(E) ∩ S+
P (E,H) 6= /0.

Then B dilates E.

Proof. Let H ∈B, and let p ∈ P(E)∩ S−P (E,H). Then p(E) = P(E), and since
S−p (E,H) < 1, it follows that p(E ∩H) < p(E)p(H), whence:

P(E | H) ≤ p(E | H)
= p(E)
= P(E).

Therefore, P(E|H) < P(E) for each H ∈B. A similar argument establishes that
P(E) < P(E|H) for each H ∈B.

In plain terms, Theorem 4.1 states that when an event E is dilated by a positive
measurable partition B, any probability function realizing the infimum P(E|H)
must be such that E and H are negatively correlated, and each probability function
from the supremum P(E|H) must be such that E and H are positively correlated.
While Theorem 4.1 gives a necessary condition for strict dilation, Theorem 4.2
gives a sufficient condition: If for every partition cell H from a positive measurable
partition B, the infimum P(E) is achieved by some probability function for which
E and H are negatively correlated, and the supremum P(E) is achieved by some
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probability function for which E and H are positively correlated, then B dilates
E.12

We mention that the conclusion of Theorem 4.1 is trivially satisfied for each
partition cell H for which P(E|H) or P(E|H) is empty. Similarly, the hypothesis
of Theorem 4.2 is vacuously satisfied whenever P(E) or P(E) is empty. Indeed,
Seidenfeld and Wasserman (1993) frame their results with respect to regularity
conditions on the set of probability functions P, requiring that it be at once a closed
and convex set.13 Together, these requirements entail that P(E|H) and P(E|H) are
nonempty for any event H with positive lower probability.

Authors working on imprecise probabilities often require that the set of proba-
bilities P under consideration be a closed convex set. Accordingly, we make some
brief remarks about the elementary mechanics of imprecise probabilities with re-
spect to the important, interdependent roles of closure and convexity. These re-
marks are a technical digression of sorts, but they place our later discussion in
sharper focus. Readers may wish to skim or skip the next few paragraphs and refer
back to them later.

On the one hand, to say that a set of probabilities P is closed is to assert that
the set enjoys a topological property with respect to a topology called the weak*-
topology of the topological dual of a particular collection of real-valued functions
equipped with the sup-norm ‖ f ‖= supω∈Ω | f (ω)|: the set of probabilities in
question includes all its limit points, so it is identical to its (topological) closure.
Accordingly, in this context, a closed set is called weak∗-closed. In the finite set-
ting, where only finitely many events live in the algebra, a set of probabilities P
is weak*-closed just in case it is closed with respect to the total variation norm
‖ p ‖tv = supA∈A |p(A)|.14

Intuitively, a set of probabilities is closed if the only probability functions
“close” to the set are elements of the set: the set of probabilities includes its “end-
points,” or boundary. Put differently, any probability function falling outside the
set of probabilities can be jiggled around a small amount and remain outside the
set. To illustrate, consider a probability space for a coin toss for which the set of
probabilities includes all probability functions assigning probability greater than
1/4 to the event that the coin will land heads. This set of probabilities is not closed
because it is missing an endpoint, the probability function assigning 1/4 to the event
that the coin will land heads and 3/4 to the event that the coin will land tails. By
adding this probability function to the set of probabilities, however, the resulting
set of probabilities becomes closed.

12 Seidenfeld and Wasserman’s results are about dependence of particular events, not about de-
pendence of variables. Independence of variables implies independence of all their respective values,
but not conversely.

13Specifically, P is assumed to be closed with respect to the total variation norm Seidenfeld and
Wasserman (1993, p. 1141).

14To maintain brevity, we shall not go into details. See, for example, (Walley 1991, Chapter
3, Chapter 6 , Appendix D) for further details. (Rao and Rao 1983, Chapter 5) contains useful
background.
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On the other hand, to say that a set of probabilities P is convex is to assert that
the set enjoys a vectorial property with respect to pointwise arithmetic operations:
the set of probabilities in question is closed under convex combinations—that is,
for all p1, p2 ∈ P and λ ∈ [0,1], λ p1 + (1− λ )p2 ∈ P—so it is identical to its
convex hull:

co(P) =df

{
n

∑
i=1

λi pi : λi ≥ 0, pi ∈ P, and
n

∑
i=1

λi = 1

}
.

That is, a set of probabilities P is convex just in case P = co(P).
Informally, a set of probabilities is convex if each probability function on a line

segment formed from a convex combination of probability functions from the set
is also an element of the set. For example, the set of probabilities from the coin
toss discussed above is convex since each convex combination of two probability
functions from the set of probabilities functions assigning probability greater than
1/4 to the event that the coin will lands heads is also an element of the set. However,
the set of probabilities consisting of two probability functions—one probability
function assigning 1/4 to the event that the coin will land heads and 3/4 to the event
that the coin will land tails, the second assigning 3/4 to the event that the coin will
land heads and 1/4 to the event that the coin will land tails—is not convex: A 50-50
convex combination of the two probability functions is not a member of the set of
probabilities.

In the finite setting, closure with respect to the total variation norm is equiva-
lent to closure with respect to any favored norm of Euclidean space (as they are all
equivalent), so a (sequentially) closed set of probabilities is (sequentially) compact.
Importantly, when the set of probabilities is in addition convex and lower proba-
bility is defined to be the lower envelope P of the set P, as we have done above in
(P4) and (P5), then the lower probability of an event is in fact the minimum num-
ber assigned to the event by all probability functions in the set (and not merely the
infimum). Indeed, a probability function from the collection of extreme points of
the set witnesses the lower probability of the event, and in this setting any compact
convex set of probabilities is the convex hull of its extreme points (Walley 1991,
pp. 145 ff.).15 Thus, in the finite setting, only some conventional machinery must
be employed to get things up and running.

In the general setting, where infinitely many events live in the algebra, some-
what fancier machinery must be employed. We discuss the general case in more
detail in the Appendix. The upshot is that in both the finite setting and the gen-
eral setting, given a nonempty weak*-closed convex set of probabilities P and an
event E, the lower probability of E, P(E), is given by P(E) = min{p(E) : p ∈ P}.
More generally, when the set of probabilities P is no longer required to be weak*-
closed and convex, then where co(P) denotes the weak*-closed convex hull of P,
we have P(E) = min{p(E) : p ∈ co(P)}. The following proposition records this

15An extreme point of a set of probabilities is a probability function from the set that cannot be
written as a nontrivial convex combination of elements from the set.

14



property of lower probabilities. We include the proof in the Appendix to illustrate
the mechanics discussed above in action.

Proposition 4.3 Let (Ω,A ,P,P) be a lower probability space. Then for every
E,H ∈A such that P(H) > 0 :

P(E) = min
{

p(E) : p ∈ co(P)
}

;

P(E|H) = min
{

p(E|H) : p ∈ co(P)
}
.

We thus see that specifying P in the quadruple (Ω,A ,P,P) does not render
P superfluous. To be sure, two different sets of probability functions may yield
the same lower probability function. To take a simple example, consider a coin
that with lower probability 1/4 will land heads and with lower probability 1/4 will
land tails. Such a lower probability function may be realized by, for example, the
two point set P1 =df {p,q}, where p assigns probability 1/4 to heads and q assigns
probability 1/4 to tails, or by the convex closure P2 =df co(P1) = co(P1) (also a
weak*-closed set).

Returning to our discussion of dilation, although the conclusion of Theorem 4.1
is necessary for dilation, it is easily seen that the conclusion is not sufficient, even
if the set of probabilities P is weak*-closed and convex, as implied by Proposition
4.3. Assuming that P is weak*-closed and convex, perhaps a second necessary
condition will be enough for sufficiency.

Theorem 4.4 (Seidenfeld and Wasserman, 1993, Theorem 2.1) Let (Ω,A ,P,P)
be a lower probability space such that P is weak*-closed and convex, let B be a
positive measurable partition of Ω, and let E ∈A . Suppose that B dilates E. Then
for every H ∈B :

P ∩ IP(E,H) 6= /0.

In other words, a necessary condition for dilation is that the surface of indepen-
dence cuts through P. As Seidenfeld and Wasserman indicate, however, the condi-
tions comprising the conclusions of Theorem 4.1 and Theorem 4.4 are again easily
seen to be insufficient for the occurrence of dilation.16 Likewise, although the hy-
pothesis of Theorem 4.2 is sufficient for dilation, the hypothesis is not necessary,
even if P is weak*-closed and convex.

Seidenfeld and Wasserman (1993) claim that the aforementioned theorems
show that “the independence surface plays a crucial role in dilation” (p. 1142).

16We note that in their article, Seidenfeld and Wasserman (1993) assume that the set of probabili-
ties under consideration is convex and closed with respect to the total variation norm. In the special
case they consider, Seidenfeld and Wasserman (1993, p. 1142) correctly point out that their Theorem
2.1 goes through without the assumption of closure and that their Theorem 2.2, Theorem 2.3, and
Theorem 2.4 (below) go through without the assumption of convexity (p. 1143). However, we have
shown that their Theorem 2.2 and Theorem 2.3 trivially go through even without the assumptions of
convexity and closure.
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Observing that Theorem 4.1 and Theorem 4.4 offer necessary but jointly insuffi-
cient conditions for dilation while Theorem 4.2 provides a sufficient but unneces-
sary condition for dilation, they assert that “a variety of cases exist in between”
(Seidenfeld and Wasserman 1993, p. 1142). This remark may leave the impression
that the “variety of cases” in between are somehow irreconcilable, resisting a uni-
form classification, an impression which may perhaps be supported by Seidenfeld
and Wasserman’s hodgepodge of results in a series of articles. While Seidenfeld
and Wasserman may have maintained that the “variety of cases” in between resist
uniform classification as a result of an analysis tied to viewing dilation through the
properties of supporting hyperplanes rather than neighborhoods, which we intro-
duce in the next section, it may very well be that the purpose of pointing to the
“variety of cases” in between is simply to frame their research program.

Whatever the case, Seidenfeld and Wasserman (1993), along with Herron (1994,
1997), have explored a number of different cases, sometimes offering necessary
and sufficient conditions for dilation with respect to certain regularity assumptions
consistent with paradigmatic models.17 While focusing on special classes of proba-
bility spaces to explore their status with respect to the phenomenon of dilation may
be a valuable exercise, the presence of dilation can be straightforwardly shown to
admit a complete characterization in terms of rather simple conditions of deviation
from stochastic independence. We articulate this characterization in the next sec-
tion. Such a characterization may facilitate a smoother, integrated investigation of
the existence and extent of dilation as well as questions concerning the preservation
of dilation under coarsenings, questions Seidenfeld, Wasserman, and Herron have
addressed in their articles. Importantly, investigations and explanations of dilation
need not be tied to the particular way in which Seidenfeld and Wasserman have
framed their own research program.

5 A Simple Characterization of Dilation

In this section, we offer simple necessary and sufficient conditions for dilation
formulated in terms of deviation from stochastic independence, much like the con-
ditions from Theorem 4.1. We illustrate an immediate application of such a char-
acterization with measures of dilation. To begin, we introduce some notation.

Given a nonempty set of probabilities P, events E, H ∈ A with P(H) > 0,
and ε > 0, define:

P(E|H,ε) =df {p ∈ P : |p(E|H) − P(E|H)| < ε};

P(E|H,ε) =df {p ∈ P : |p(E|H) − P(E|H)| < ε}.

We call the sets P(E|H,ε) and P(E|H,ε) lower and upper neighborhoods of E
conditional on H, respectively, with radius ε . Thus, a probability function is an

17They also discuss total variation neighborhoods and ε-contamination neighborhoods, but these
neighborhoods are distinct from the neighborhoods we discuss.
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element of a lower neighborhood of E conditional on H with radius ε if p(E|H) is
within ε of P(E|H), and similarly for an upper neighborhood.

Given a nonempty set I, we let RI
+ denote the set of elements (ri)i∈I of RI

such that ri > 0 for each i ∈ I. We now state a proposition characterizing (strict)
dilation and then deduce a few immediate corollaries. The proof can be found in
the Appendix.

Proposition 5.1 Let (Ω,A ,P,P) be a lower probability space such that P is weak*-
closed and convex, let B = {Hi : i ∈ I} be a positive measurable partition, and let
E ∈A . Then the following are equivalent:

(i) B dilates E;

(ii) There is (εi)i∈I ∈ RI
+ such that for every i ∈ I :

P(E|Hi,εi) ⊆ S−(E,Hi) and P(E|Hi,εi) ⊆ S+(E,Hi);

(iii) There are (ε i)i∈I ∈ RI
+ and (ε i)i∈I ∈ RI

+ such that for every i ∈ I :

P(E|Hi,ε i) ⊆ S−(E,Hi) and P(E|Hi,ε i) ⊆ S+(E,Hi).

Furthermore, each radius ε i may be chosen to be the unique positive minimum
of |p(E|Hi)−P(E|Hi)| attained on C+

i =df {p ∈ P : Sp(E,Hi)≥ 1}, and similarly
each radius ε i may be chosen to be the unique positive minimum of |p(E|Hi)−
P(E|Hi)| attained on C−i =df {p ∈ P : Sp(E,Hi)≤ 1}.

Accordingly, Proposition 5.1 implies that a positive measurable partition B di-
lates an event E just in case for each partition cell H, there are upper and lower
neighborhoods of E conditional on H such that the lower neighborhood of E con-
ditional on H lies entirely within the subset of the set of probabilities in question
for which E and H are negatively correlated, while the upper neighborhood of E
given H lies entirely within the subset of the set of probabilities in question for
which E and H are positively correlated.

Proposition 5.1 immediately yields a corollary for arbitrary nonempty sets of
probabilities. For the sake for readability in what follows, given a nonempty set of
probabilities P, let P∗ =df co(P) (i.e., the weak*-closed convex hull of P). Thus,
P∗(E|F,ε) = co(P)(E|F,ε) and P∗(E|F,ε) = co(P)(E|F,ε), the written expres-
sions themselves justifying introducing abbreviations. Similarly, let S+

∗ (E,F) and
S−∗ (E,F) be defined by:

S+
∗ (E,F) =df {p ∈ co(P) : Sp(E,F) > 1}

S−∗ (E,F) =df {p ∈ co(P) : Sp(E,F) < 1}.

The next corollary of Proposition 5.1 follows immediately from Proposition 4.3.
The proof can also be found in the Appendix.
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Corollary 5.2 Let (Ω,A ,P,P) be a lower probability space, let B = {Hi : i ∈
I} be a positive measurable partition, and let E ∈ A . Then the following are
equivalent:

(i) B dilates E;

(ii) There is (εi)i∈I ∈ RI
+ such that for every i ∈ I :

P∗(E|Hi,εi) ⊆ S−∗ (E,Hi) and P∗(E|Hi,εi) ⊆ S+
∗ (E,Hi);

(iii) There are (ε i)i∈I ∈ RI
+ and (ε i)i∈I ∈ RI

+ such that for every i ∈ I :

P∗(E|Hi,ε i) ⊆ S−∗ (E,Hi) and P∗(E|Hi,ε i) ⊆ S+
∗ (E,Hi).

Furthermore, each radius ε i may be chosen to be the unique positive minimum of
|p(E|F)−P(E|Hi)| attained on C+

i =df {p∈ P∗ : Sp(E,Hi)≥ 1}, and similarly for
each radius ε i.

The above corollary simplifies in the particularly relevant case in which the
positive measurable partition B is finite.

Corollary 5.3 Let (Ω,A ,P,P) be a lower probability space, let B = (Hi)n
i=1

be a finite positive measurable partition, and let E ∈ A . Then the following are
equivalent:

(i) B dilates E;

(ii) There is ε > 0 such that for every i = 1, . . . ,n :

P∗(E|Hi,ε) ⊆ S−∗ (E,Hi) and P∗(E|Hi,ε) ⊆ S+
∗ (E,Hi).

Thus, whereas Proposition 5.1 and Corollary 5.2 can ensure a positive real
number εi for each i ∈ I, Corollary 5.3 can ensure a unique positive ε playing
the role of each εi. Like the proof of Corollary 5.2, the proof of Corollary 5.3 is
straightforward, and it may be found in the Appendix.

Proposition 5.1 and its corollaries should hardly be surprising. The correlation
properties that dilation entail are rather straightforward consequences of the defini-
tion of dilation. Moreover, these correlation properties entail that each dilating par-
tition cell and dilated event live on the surface of independence under some prob-
ability function from the closed convex hull of the set of probabilities in question.
Albeit straightforward results, Proposition 5.1 and its corollaries show that by look-
ing beyond the upper and lower supporting hyperplanes P∗(E|H) and P∗(E|H) to
the upper and lower supporting neighborhoods P∗(E|H,ε) and P∗(E|H,ε), it be-
comes possible to characterize dilation completely in terms of positive and negative
correlation. The results also show that dilation, properly understood, is a property
of the convex closure of a set of probabilities.
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Seidenfeld, Wasserman, and Herron define a function intended to measure the
extent of pseudo-dilation with respect to several statistical models (see footnote
10). Thus, in the present notation and terminology, given a nonempty convex set
of probabilities P, a finite positive measurable partition B = (Hi)n

i=1 and an event
E ∈ A , Herron et al. (1994, 1997) define what they call the extent of dilation,
∆(E,B), by setting:

∆(E,B) =df min
i=1,...,n

[(
P(E) − P(E|Hi)

)
+
(

P(E|Hi) − P(E)
)]

.

Seidenfeld, Wasserman, and Herron study how the proposed function measuring
the extent to which a finite positive measurable partition B pseudo-dilates E may
be related to a model-specific index. Of course, for dilation proper, such a function
is useful insofar as dilation is known to exist with respect to a model. To be sure, if
∆(E,B) > 0, it does not generally follow that B dilates E. Although Seidenfeld,
Wasserman, and Herron obtain a number of results reducing ∆ to model-specific
indices, while sometimes even offering necessary and sufficient conditions for dila-
tion stated in terms other than ∆, their results in connection with ∆ cannot generally
be translated to results for dilation proper, as the measure they offer does not re-
liably measure the extent of bona fide dilation. This limitation, however, can be
overcome by exploiting the above results.

To illustrate, let P be a nonempty set of probabilities. Given a positive measur-
able partition B = {Hi : i ∈ I}, an event E ∈A , and i ∈ I, let εE,i and εE,i be
real-valued functions defined by setting:

εE,i(p) =df |p(E|Hi) − P(E|Hi)|;

εE,i(p) =df |p(E|Hi) − P(E|Hi)|.

As above, let C−E, i =df {p∈P∗ : Sp(E,Hi)≤ 1} and C+
E, i =df {p∈P∗ : Sp(E,Hi)≥

1}.
We may define the ρ∗-maximum dilation, ρ∗, by setting for each event E ∈A

and positive measurable partition B = {Hi : i ∈ I}:

ρ
∗(E,B) =df η

∗(E,B) · ε(E,B)

where:

η
∗(E,B) =df sup

i∈ I

(
min

p∈C+
E, i

εE,i(p) + min
p∈C−E, i

εE, i(p)

)

measures the η∗-maximum extent of dilation, while:

ε(E,B) =df min
i∈ I

max
p∈P∗

1IP(E,Hi)(p)

⌈
min

p∈C+
E, i

εE, i(p) · min
p∈C−E, i

εE, i(p)

⌉
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measures the existence of dilation. The pair of brackets d·e denotes the ceiling
function. Note the role of the surface of independence in the indicator functions
1I(E,Hi) (where 1I(E,Hi)(p) = 1 if p∈ I(E,Hi), and 0 otherwise). In addition, observe
that ρ∗(E,B) = 0 if and only if B does not dilate E, and ρ∗(E,B) > 0 if and
only if ε(E,B) = 1, so positive values of ρ∗ properly report the maximum extent
of dilation. We may say that P admits dilation if:

min
(E,B) ∈A×Π(P)

ε(E,π) > 0

where Π(P) is the collection of all positive measurable partitions of Ω with respect
to P.

Similarly, we may define the ρ∗-minimum dilation, ρ∗, by setting for each
event E ∈A and positive measurable partition B = {Hi : i ∈ I}:

ρ∗(E,B) =df ε(E,B) ·max
(

η∗(E,B),1 + η∗(E,B)
)

where ε is defined as before and:

η∗(E,B) =df inf
i∈I

(
min

p∈C+
E, i

εE, i(p) + min
p∈C−E, i

εE, i(p)

)

measures the η∗-minimum extent of dilation. Observe that ρ∗(E,B) = 0 if and
only if B does not dilate E, and ρ∗(E,B) ≥ 1 if and only if ε(E,B) = 1.

The measure ∆ may also be used. Replacing the ‘min’-operator in the definition
∆ with the ‘inf’-operator to ensure generality for partitions of infinite cardinality,
we may define the ∆-minimum dilation, ρ∆, by setting for each event E ∈A and
positive measurable partition B = {Hi : i ∈ I}:

ρ∆(E,B) =df ε(E,B) · max
(

∆(E,B),1 + ∆(E,B)
)

where ε is defined as before. Other measures of dilation may prove to be more
useful in some respects, admitting, for example, more or less straightforward re-
ductions to model-specific indices.

6 A Plurality of Independence Concepts

Another important point which will be made clearer in the next two examples is
that the familiar logical equivalence between independence of a joint distribution
as the product of its marginal distributions (SI) and independence as irrelevant in-
formation (ER) does not hold in imprecise probability models. For one thing, in
the imprecise probability setting, irrelevance is not symmetric: F may be epistem-
ically irrelevant to E without E being epistemically irrelevant to F . For another,
even when E is epistemically independent of F , that itself does not guarantee that

20



the set of probabilities factorize. In other words, within imprecise probability mod-
els, even if each event has no effect on the estimate of the other, it still may be that
they fail to be stochastically independent events.

The existence of a plurality of independence concepts is a crucial difference
between imprecise probability models and precise probability models, for within
precise probability models we may reckon that two events are stochastically in-
dependent from observing that the probability of one event is unchanged when
conditioning on the other. However, this step, from observed irrelevance of one
event to the probability estimate of another to concluding that the one event is
stochastically independent of the other, is fallacious within imprecise probability
models. What this means is that the straightforward path to providing a behavioral
justification for judgments of stochastic independence is unavailable when at least
one of the outcomes has an imprecise value.18 Even so, when the decision modeler
knows that one event is irrelevant to another, there are ways to parameterize a set
of probabilities to respect this knowledge which, in some cases, suffices to defuse
dilation.19

The upshot from these two points is that there are two kinds of dilation phenom-
ena, what we call proper dilation and improper dilation. Theorem 4.1, Theorem
4.2, and Theorem 4.4, as well as Proposition 5.1 and its corollaries, hold for both
notions. Dilation occurs only if stochastic independence does not hold. However,
whereas proper dilation occurs within a model which correctly parameterizes the
set of distributions to reflect what is known about how the events are interrelated,
if anything is known at all, improper dilation occurs within a model whose pa-
rameterization does not correctly represent what is known about how the events
interact. If a decision modeler knows that one event is epistemically independent
of another, for example, he knows that observing the outcome of one event does
not change the estimate in another. That knowledge should constrain how a set
of probabilities is parameterized, and that knowledge should override the diluting
effects of dilation when updating. Rephrased in imprecise probability parlance,
our results and Seidenfeld and Wasserman’s results hold for a variety of natural
extensions—including unknown interaction, irrelevant natural extensions, and in-
dependent natural extensions (Couso et al. 1999)—but do not discriminate between
models which correctly and incorrectly encode knowledge of either epistemic ir-
relevance or epistemic independence. Our proposal is that irrelevant natural exten-
sions, which correspond to a parameterized set of probabilities satisfying epistemic
irrelevance, and independent natural extensions, which correspond to a parameter-
ized set of probabilities satisfying epistemic independence, can provide principled
grounds for avoiding the loss of precision by dilation that would otherwise come
from updating. The upshot is that, even if the conditions for Proposition 5.1 hold,
there are cases where enough is known about the relationship between the events in

18 However, Seidenfeld et al. (2010) give an axiomatization of choice functions which can separate
epistemic independence from complete stochastic independence. See (Wheeler 2009b) and (Cozman
2012) for a discussion of these results.

19This strategy is outlined in (Haenni et al. 2011, §9.3).
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question to support a parameterization that defuses the diluting effect that dilation
has upon updating.

An extension in this context is simply a parameterization of a set of probabil-
ities, and there are several discussions of the properties of different kinds of ex-
tensions (Walley 1991, Cozman 2012, de Cooman et al. 2011, Haenni et al. 2011).
Since our focus here is on independence, we will discuss three different classes of
parameterizations that correspond to the analogues within imprecise probabilities
of our three familiar independence concepts:

(ER) Given P(F), P(Fc) > 0, event F is epistemically irrelevant to E if and only
if:

1. P(E | F) = P(E | Fc) = P(E);

2. P(E | F) = P(E | Fc) = P(E).

For imprecise probabilities, epistemic irrelevance is not symmetric: F may be epis-
temically irrelevant to E without E being epistemically irrelevant to F .

(EI) E is epistemically independent of F just when both F is epistemically irrel-
evant to E and E is epistemically irrelevant to F .

(SI) E and F are completely stochastically independent if and only if for all p∈P,
p(E ∩F) = p(E)p(F).

We observe that (SI) ⇒ (EI) ⇒ (ER). For suppose that (SI) holds and that
both P(F), P(Fc) > 0 and P(E), P(Ec) > 0. Then for every p ∈ P, since p(E ∩
F) = p(E)p(F), we have p(E|F) = p(E), so {p(E|F) : p ∈ P} = {p(E) : p ∈
P} and therefore P(E|F) = P(E) and P(E|F) = P(E). Similarly, P(E|Fc) =
P(E), P(E|Fc) = P(E), P(F |E) = P(F), P(F |E) = P(F), P(F |Ec) = P(F), and
P(F |Ec) = P(F). Thus, (SI)⇒ (EI), and (EI)⇒ (ER) follows immediately.

However, (ER) 6⇒ (EI): although epistemic independence is symmetric, by
definition, epistemic irrelevance is not symmetric. Moreover, (EI) 6⇒ (SI): two
experiments may be epistemically independent even when their underlying uncer-
tainty mechanisms are not stochastically independent. A joint set of distributions
may satisfy epistemic independence without being factorizable (Cozman 2012).
However, with some mild conditions, when P is parameterized to satisfy epistemic
independence, some attractive properties hold, including associativity, marginal-
ization and external additivity (de Cooman et al. 2011).

7 A Declaration on Independence
We hold these truths to be self-evident, that not all independence concepts

are equal, but are endowed with increasing logical strength, that among these
are epistemic irrelevance, epistemic independence, and complete stochastic
independence. To secure equivalence, a set of probabilities must be governed
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by regularity conditions instituted by its Creator, deriving just power from
the consent of the epistemic agent—that whenever any governing regularity
conditions become destructive of its epistemic ends, it is the right, it is the
duty, of the epistemic agent to alter or to abolish them, and to institute new
governing conditions, laying its foundation on such principles and organizing
its powers in such form, as to them shall seem most likely to effect the agent’s
epistemic aims.

Probabilistic independence only appears to be a singular notion when look-
ing through the familiar lens of a numerically precise probability function. Thus,
constructing an imprecise probability model requires one to make explicit what in-
dependence concepts (if any) are invoked in a problem. Example 1, recall, states
that the interaction between the tosses is unknown. Compare this example to Ex-
ample 2, below, which states that the tosses are independent but does not specify
which notion of independence is operative.

Coin Example 2: The Mystery Coin. Suppose that there are two coins rather
than one.20 Both are tossed normally, but only the first is a fair coin toss. The
second coin is a mystery coin of unknown bias.

(d) p(H1) = 1/2 for every p ∈ P;

(e) 0 < P(H2) ≤ P(H2) < 1, written p(H2) ∈ (0,1).21

Since both coins are tossed normally, the tosses are performed independently. So,
the lower probability of the joint event of heads is approximately zero, and the
upper probability of heads is approximately one-half:

(f) P(H1∩H2) = P(H1)P(H2) ≈ 0;

P(H1∩H2) = P(H1)P(H2) ≈ 1/2.

Now suppose both coins are tossed and the outcomes are known to us but not to
You. We then announce to You either that the outcomes “match,” C1 = C2, or
that they are “split,” C1 6= C2. In effect, either:

(g) We announce that “H1 iff H2” (M), or we announce that “H1 iff T2” (¬M).

Since You are told that the first and the second tosses are performed indepen-
dently, and initially Your estimate that the outcomes are matched is 1/2, then since
for each p ∈ P:

p(H1) = p(H1 |M)p(M) + p(H1 | ¬M)p(¬M) = 1/2, (2)
20Variations of this example have been discussed by (Seidenfeld 1994, 2007), (Sturgeon 2010),

(White 2010), and (Joyce 2011).
21The open interval (0,1) includes all real numbers in the unit interval except for 0 and 1. This

means that we are excluding the possibility that the second coin is either double-headed or double-
tailed. Conveniently, this also allows us to avoid complications arising from conditioning on measure
zero events, although readers interested in how to condition on zero-measure events within an impre-
cise probability setting should see (Walley 1991, §6.10) for details.
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it follows:
p(H1 |M) = 1 − p(H1 | ¬M). (3)

Also, since for each p ∈ P:

p(H2) = p(H2 |M)p(M) + p(H2 | ¬M)p(¬M) ∈ (0,1), (4)

it follows from Equation 3:

p(H2) = p(H2|M)p(M) + (1 − p(H1|¬M))p(¬M)

= 2p(M)p(H2|M)

Hence, for each p ∈ P:
p(H2 |M) = p(H2). (5)

Equation 5 implies that our announcing that the two tosses are matched is epistem-
ically irrelevant to Your estimate of the second toss landing heads. Analogously,
one might also think that announcing that the two tosses are matched is epistemi-
cally irrelevant to estimating the first toss. It may seem strange to at once maintain
that our announcement is irrelevant to changing Your estimate of a coin that You
know nothing about while holding that our announcement is nevertheless relevant
to changing Your view about a fairly tossed coin, so one might think

p(H1 |M) = p(H1) (6)

must hold as well.
However, learning the outcome of the first toss dilates Your estimate that the

pair of outcomes match. After all, for all You know, the second coin could be
strongly biased heads or strongly biased tails:

P(M|H1) < 1/2 < P(M|H1).

Yet since p(M) = 1/2 for each p ∈ P, it follows:

P(M|H1) < P(M) = 1/2 = P(M) < P(M|H1). (7)

and a symmetric argument holds if instead the first coin lands tails, so the first coin
toss dilates your estimate that toss match.

So, although the second toss is independent of our announcement (Equation 5),
and the first toss appears to be independent of our announcement (Equation 6), our
announcing to You that the outcomes match is not independent of the first toss
(Equation 7) generates a contradiction. So, what gives? �

The short answer is that the contradiction between Equation 6 and Equation 7
stems from equivocating over different concepts of independence. Equation 6 en-
tails that our announcement that the tosses match is epistemically irrelevant to Your
estimate that the first toss lands heads, and Equation 7 expresses that Your learning
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that the first toss lands heads is epistemically relevant to Your estimate of whether
the tosses match. Yet Equation 6, if understood to apply to all probability functions
from the set of probabilities in question, expresses complete stochastic indepen-
dence, which is stronger than mere irrelevance.

In any case, it should be clear that (f) does not entail that our announcement
is completely stochastically independent of the first toss. Equation (f) merely says
that the coin-tossing mechanism is independent: coins are flipped the same no
matter their bias. But suppose that β is the unknown bias of the second toss landing
heads. Then, condition (f) may be understood to say:

p(H1∩H2) = 1/2β

p(H1∩T2) = 1/2(1−β )
p(T1∩H2) = 1/2β

p(T1∩T2) = 1/2(1−β ),

which entails p(H1 |M) = β . Therefore, if 0≤ β ≤ 1 is not 1/2, our announcement
that the outcomes match cannot be stochastically independent of Your estimate for
the first coin landing heads.

This observation is what is behind Jim Joyce’s (2011) response to Example 2,
which is to reject p(H1 |M) = p(H1) in Equation 6.

There are two ways in which one event can be “uninformative about” an-
other: the two might be stochastically independent or it might be in an “un-
known interaction” situation. Regarding M and H1 as independent in Coin
Game means having a credal state p(H1 | M) = p(H1) = p(M) = 1/2 holds
everywhere. While proponents of [The principle of Indifference] will find
this congenial, friends of indeterminate probabilities will rightly protest that
there is no justification for treating the events as independent (Joyce 2011,
our notation).

According to both Joyce (2011) and Seidenfeld (1994, 2007), announcing “match”
or “split” dilates your estimate of the first toss from 1/2, and it should dilate Your
estimate because either announcement is “highly evidentially relevant to H1 even
when you are entirely ignorant of H2” (Joyce 2011).

Yet suppose you start with the idea that Your known chances about the first
toss should not be modified by an epistemically irrelevant announcement. After
all, how can You learn anything about the first toss by learning that it matches the
outcome of a second toss about which You know nothing at all? Yet this commit-
ment combined with (f) appears to restrict β to 1/2 and rule out giving the second
toss an imprecise estimate altogether. This observation is what drives Roger White
(2010) to view the conflict in Example 2 to be a decisive counterexample to impre-
cise credal probabilities.

Joyce and White each have it half right, for there is a mathematically consistent
imprecise probability model for Example 2 interpreted thus:
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◦ Idem quod Joyce, pace White:

The first toss and the announcement “match” are dependent; however,

◦ Idem quod White, pace Joyce:

The announcement “match” is irrelevant to Your estimate of the first toss.

Indeed, in presenting our blended set of conditions for the mystery coin exam-
ple, we are less interested in defending our proposal as the correct model for the
mystery coin than we are in demonstrating that imprecise probability models are
flexible enough to consistently encode seemingly clashing intuitions underpinning
the example. Put differently, both Joyce and White make a category mistake in
staking out their positions on the mystery coin case. The argument is over model
fitting—not the coherence of imprecise probability models.

White commits a fallacy in reasoning by falsely concluding that epistemic irrel-
evance is symmetric within imprecise probability models, and by falsely supposing
one event as epistemically irrelevant to another only if the two are stochastically in-
dependent. Joyce, failing to distinguish proper from improper dilation, concludes,
invalidly, that he is compelled by the internal logic of imprecise probability models
to maintain that the announcement dilates Your estimate of the first toss.

Blocking Dilation Through Proper Parameterization. Let us explore how to
consistently represent the two claims that set Joyce and White apart in Example 2.
Start with the observation that the pair of coin tosses yields four possible out-
comes. A joint probability distribution may be defined in terms of those four states,
namely:

p(H1∩H2) = α1 p(T1∩T2) = α4

p(H1∩T2) = α2 p(T1∩H2) = α3.

Given this parameterization, a set P of all probability measures compatible with
what we know about the tosses can be represented by a unit tetrahedron (3-simplex),
Figure 1 illustrates this parameterization, where maximal probabilities for each of
the four possible outcomes corresponds to the four vertices,

α1 = 1 (1,0,0,0),
α2 = 1 (0,1,0,0),
α3 = 1 (0,0,1,0),
α4 = 1 (0,0,0,1).

In a fully specified precise probability model for independent tosses, the αi’s are
identical and their value is a single point within the unit tetrahedron. (If both flips
are fair coin tosses, that value would be the point corresponding to 1/4.) At the
other extreme, in a completely unconstrained imprecise probability model for the
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set P of measures, the entire tetrahedron would represent the admissible values.22

So, what You know initially about the coin tosses will translate to conditions that
constrain the space of admissible probabilities, which we can visualize geometri-
cally as regions within the unit tetrahedron, and what You learn by updating will
translate to some other region within this tetrahedron. Different independence con-
cepts translate to different ways of rendering one event irrelevant to another, but not
every way of interpreting independence is consistent with the information provided
by Example 2.

Now consider how the key constraints in Example 2 are represented in Figure 1.

(d) Within the unit tetrahedron there are four edges on which the constraint 1/2

on outcome H1 appears: the points x on the edge α1α3, y on the edge α2α4,
z on the edge α2α3, and w on the edge α1α4. The omitted two edges specify
either that H1 is certain to occur or that T1 is certain to occur, respectively.
So, the hyperplane xwyz represents the constraint p(H1) = 1/2.

(e) The entire tetrahedron represents p(H2) ∈ [0,1].

(f) i. The upper and lower probabilities of both tosses landing heads is de-
picted by the shaded pentahedron, where the base of this polytope de-
fined by the coordinates α2, α3, α4 represents the lower probability
P(H1 ∩H2) = 0, and the top of the polytope defined by x,w and the
corresponding sharp value 1/2 marked on the α1α2 edge represents the
upper probability P(H1∩H2) = 1/2.

ii. Toss C1 is independent of C2,23 so I(C1,C2) 6= /0 but S+(C1,C2) =
S−(C1,C2) = /0. At minimum, the outcome of the first toss is epistem-
ically independent of the outcome of the second. This independence
condition is represented by the saddle-shaped surface of independence
connecting the orthogonal axes α1α2 and α2α4 in Figure 1, represent-
ing the p ∈ P such that

p(H2 | H1) = p(H2) = p(H2 | T1). (8)

Symmetrically, this is precisely the p ∈ P that connect the orthogonal
axes α1α3 and α2α4 and satisfy

p(H1 | H2) = p(H1) = p(H1 | T2). (9)

Equation 8 says that the outcome of the first toss is epistemically ir-
relevant to Your estimate of heads occurring on the second toss, and
Equation 9 says that the outcome of the second toss is epistemically
irrelevant to Your estimate of heads occurring on the first toss. Taken
together we have that the first toss is epistemically independent of the
second toss.

22If P is closed and convex, then every point in the tetrahedron is admissible if the constraint is
the closed unit interval [0,1].

23Recall that the random variables C1 and C2 were introduced in Equation 1.
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iii. The only region satisfying independence (ii), the interval constraint on
the joint outcome of heads on both tosses (i), the sharp constraint on
the first toss landing heads (d), and the interval constraint on the second
toss landing heads (e), is the line segment xy, which rests on the surface
of independence determined by Equations 8 and 9.

(g) Suppose that we announce that the outcomes match, C1 = C2. M is the edge
α1α4. Suppose instead that we announce that the outcomes split, C1 6= C2.
¬M is the edge α2α3.

α1 = 1

α2 = 1 α4 = 1

1
2 – w

z

x

y

Figure 1: The constraints on Coin Example 2.

On this parameterization, the pair of coin tosses are epistemically independent and
this relationship is represented by the saddle-shaped surface of independence satis-
fying Equations 8 and 9. Furthermore, Your initial estimate that we will announce
“match” is 1/2, which is the point at the dead center of the polytope: the intersection
of the lines zw and xy. This point also sits on the surface of independence.

However, the announcement “match” is the edge α1α4, which is entirely off of
the surface of independence for the two coin tosses. The same is true if instead we
announce “split”, which is the edge α2α3. So, announcing whether the two tosses
are the same or they differ is not independent of the outcome of the first toss. Here
we are in agreement with the first half of Joyce’s analysis.

The question now is whether this failure of independence between announcing
“match” and the first toss is sufficient to ensure that this announcement is epistem-
ically relevant to You. There is a sense in which learning whether the outcomes
match or split is epistemically irrelevant to Your estimate of heads. This raises two
questions. First, is there room within an imprecise probability model to accommo-
date this view? Second, if so, is it a rational view to maintain? Let’s address the
first question here and return to the second in the next section.

The irrelevant natural extension (Couso et al. 1999) of the marginal distribu-
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tions P1 and P2 is the the set P of all joint distributions p which have the form

p(H1∩M) = p1(M)p2(H1 |M),

for some p1 ∈ P1 and p2(· | M) ∈ P2. Here the point w in Figure 1 denotes
p2(H1 |M) = 1/2. Thus, the joint set of distributions constructed by any p1(M)∈P1
will do, since all are 1/2, but the set P2 is restricted to p2(H1 |M) = 1/2. With these
selections for the marginal set of distributions P1 and P2 and the judgment that
announcing “match” is epistemically irrelevant to Your probability estimate of the
first coin landing heads, the set of joint distributions P(H1∩M) encodes that learn-
ing M is an irrelevant extension of Your estimate of 1/2 that the first toss lands
heads. Thus, we may agree with Joyce that the first toss and our announcement are
probabilistically dependent but still maintain Equation 6 on the grounds that the
announcement is irrelevant to the first toss. Likewise, a dual argument holds for
point z where p2(H1 | ¬M) = 1/2.

However, learning that the first toss is heads is epistemically relevant to Your
estimate of whether we will announce “match” or announce “split.” After the first
coin is tossed, Your estimate of M dilates from 1/2 to (0,1) because You remain
completely ignorant of the bias of the second coin. This means that our method for
constructing the set of joint distributions, P(M∩H1), cannot be the same method
we used above to construct the irrelevant natural extension of P1(H1) and P2(H1 |
M). Here the points w,x,y,z in Figure 1 represent p1(H1) = 1/2, but conditioning
reduces to the line segment zw, since p(M | H1) ∈ (0,1) 6= p(M).

For this example we have an imprecise probability model which accommo-
dates the fact that our announcement is not independent of the first toss. Indeed, on
this model the two are neither stochastically independent nor epistemically inde-
pendent. Even so, there is room to accommodate the view that our announcement
is irrelevant information to Your estimate about whether the first coin toss lands
heads. Moreover, due to the asymmetry of epistemic irrelevance, You can maintain
that the announcement is irrelevant to the first toss even though the first toss dilates
Your estimate about the announcement!

Accommodating the conflicting intuitions about Example 2 involves exploit-
ing the distinction between epistemic independence, which is symmetric, and epis-
temic irrelevance, which is not. Even so, there is also a difference between stochas-
tic independence and epistemic independence. Equations 8 and 9 together express
that the coin tosses are epistemically independent, but they do not specify that the
tosses are completely stochastically independent. To get at the difference between
these two independence concepts, consider another example which illustrates a set
of distributions that satisfies epistemic independence but fails to satisfy complete
stochastic independence.

Coin Example 3: The Fat Coin. Imagine there is a fat coin that functions as
a three-sided dice. The heads side is painted black, the tails side white, and the
remaining fat edge is unpainted. The probability of heads is 0.3, tails 0.3, and edge
0.4. All this is known to You.
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Now consider the following procedure for constructing a joint distribution for
a pair of coin tosses with this coin, where the variable of interest is whether the
outcome of a toss is black or white. We toss a coin, but rather than show You the
outcome, we announce to You, truthfully, the outcome if the coin lands black or
lands white. However, if the coin lands edge, we announce white or we announce
black for reasons entirely unknown to You.

From this description You know that the outcomes of two tosses are not nec-
essarily stochastically independent: the procedure for deciding how edges are as-
signed a color is unknown to You and, similar to Example 1, the bias of the second
coin toss might depend on the outcome of the first toss. Nevertheless, the con-
ditional probability of the second coin landing black is between 0.3 and 0.7, no
matter the color announced for the first toss, and the conditional probability of the
first coin landing black is between 0.3 and 0.7, no matter the color announced for
the second toss. In other words, despite knowing that the pair of tosses may be
stochastically dependent, the tosses are epistemically independent for You.

To walk through the example, given that the color outcome of the first toss is
epistemically independent of the color outcome of the second, we have the follow-
ing constraints

0.3≤ p1(B1)≤ 0.7 0.3≤ p2(B2)≤ 0.7

0.3≤ p1(B1 | B2)≤ 0.7 0.3≤ p2(B2 | B1)≤ 0.7

0.3≤ p1(B1 |W2)≤ 0.7 0.3≤ p2(B2 |W1)≤ 0.7.

To construct the set P of Your joint distributions for the two tosses {C1 ∈ {B,W},
C2 ∈ {B,W}} according to the principle of epistemic independence, P is the largest
set of joint probability distributions that are symmetrically epistemically irrelevant:

P(C1,C2) ={p1(C1)p2(C2 |C1)}∩{p2(C1)p1(C2 |C1)},
for p1 ∈ P1, p2 ∈ P2.

(10)

Your set of distributions over the possible outcomes, {B1B2,B1W2,W1B2,W1W2},
is just the closed convex set of distributions satisfying 0.3 ≤ p(Bi) ≤ 0.7, for i =
1,2. However, there are p′ ∈ P for which p′(C1 ∈ {B,W},C2 ∈ {B,W}) 6= p′(C1 ∈
{B,W})p′(C2 ∈ {B,W}). For example, the constraints on the construction of P
do not rule out p′ ∈ P such that p′(B1 | B2) 6= p′(B1). This illustrates that the
closed convex set of distributions constructed under epistemic independence (EI)
is a proper superset of the closed convex set of distributions constructed under
stochastic independence (SI). �

The fat coin example shows that we cannot ensure that two variables are stochas-
tically independent merely from knowing that two partitioned events are epistemi-
cally independent. But, by observing that two events can be epistemically indepen-
dent without being completely stochastically independent, have we merely traded
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a smaller problem for a much larger one? What, one may wonder, is gained by our
declaration on independence?

To put this worry to rest, notice that sometimes the reason for treating outcomes
as epistemically independent is because we know they result from stochastically
independent mechanisms. What is left is to show how to encode this information
into a model of Your epistemic state.

Consider again Example 2 but with this twist. Suppose that our announcement
of either M or ¬M is completely stochastically independent of the first toss and
completely stochastically independent of the second toss as well. In statistical par-
lance, the tosses are completely stochastically independent and so are the pivotal
variables, “match” and “split”. Notice that on these assumptions our announcement
is no longer a reliable report about the outcome of the pair of tosses. Like before,
whether we announce “match” or announce “split” is irrelevant to Your estimate
that the first coin toss lands heads. But unlike before, now it is true that learning
how the first toss lands is irrelevant to your estimate of whether we will announce
“match” or “split”. Surely, You should be able to handle our irrelevant announce-
ments in either direction without resorting to introducing phony precision into
Your model to maintain stochastic independence.

In this revised version of Example 2 the epistemic independence between the
tosses and our announcement is because we understand the underlying uncertainty
mechanisms governing each toss to be completely stochastically independent of
one another. To represent complete stochastic independence we consider another
parameterization of the second coin toss example in Figure 2 that explicitly repre-
sents that the pair of coin tosses described in Example 2 are epistemically indepen-
dent because they are stochastically independent, and similarly that each coin toss
is stochastically independent of random announcements. Suppose that

γ = p(H1) = 1− p(T1),
δ1 = p(T1 | H2) = 1− p(H1 | H2),
δ2 = p(T1 | T2) = 1− p(H1 | T2).

The two coin tosses are stochastically independent precisely when δ1 = δ2 (Haenni
et al. 2011, §8.1). Visually, we see within Figure 2 that there are two surfaces of
independence which are symmetric to one another, since each constraint can be
mapped in two different but symmetric ways into the unit cube.24

p(H2 | H1) = {a,d} p(T2 | T1) = {r,s}
p(H2 | T1) = {b,c} p(T2 | H1) = {q, t}.

One surface of independence is marked out explicitly by the hyperplane abcd bi-
secting the unit cube. Its dual, qrst, is the surface of independence for the second
toss landing tails rather than heads.

24The geometric representation of these constraints in Figure 2, similar to that presented in Haenni
et al. (2011), is due to Jan-Willem Romeijn. See also (Romeijn 2006).
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As for the numerical constraints provided in Example 2, the first toss is a fair
coin toss. So γ = 1/2, which is represented by the points x and y on the edges ab
and cd, respectively. Also, by stochastic independence, we know that δ1 and δ2 are
1/2, which is the line segment xy.

γ

δ1

δ2

x
1
2

s

r

t

q

y

w

z

a d

b c

Figure 2: Independence constraints in Coin example 2.

Now suppose we announce to You either (M) or (¬M). Announcing “match”
corresponds to telling You that either the line segment ad (both heads) or the line
segment rs (both tails). Symmetrically, announcing “split” corresponds to telling
You that either the line segment bc constrains Your estimate of H1 or the line seg-
ment qt does.

Clearly the announcements “match” and “split” form a measurable partition,
B. Since our focus here is the effect on Your estimate of H1 from our announce-
ment, the issue is whether our announcement dilates Your estimate of H1.

Because this model explicitly ensures that the tosses are completely stochas-
tically independent of our announcements, we see that conditioning on our an-
nouncement only yields probabilities within the set P that are on the surface of
independence. As a result, You know that the tosses are epistemically indepen-
dent: the outcome from one toss is irrelevant to estimating the outcome of the
other. Similarly, You know that there is no effect on Your estimate of H1 by us
announcing “match” or announcing“split.” In addition, You also know that Your
estimate of M is not affected by knowing that the first toss is heads.

8 Is Dilation Reasonable?

The motor driving Example 1 and Example 2 is uncertainty that arises from con-
structing a joint probability estimate for two coin flips, but the examples differ over
the source of that uncertainty. In the first example, the origin is an unknown inter-
action between the pair of tosses. In this case You know that the coin is fair but
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You do not know how the second toss is performed and You cannot rule out that
the outcome of the second toss depends on the outcome of the first. It is therefore
reasonable for You to dilate in this case.

The origin of imprecision in the second example is an unknown bias of the
second coin. In this case You know the tosses are performed independently, but
the conditions under which we announce the outcome of the fair toss partitions
the space and strictly dilates Your estimate of whether the outcomes of both tosses
match or split. This additional condition appears to make the tosses epistemically
relevant to one another after all, thereby creating the illusion that You do not know
how to estimate the probability of heads occurring on the first toss after we an-
nounce to You whether the outcomes match. This illusion is helped along by mis-
takenly assuming that probabilistic dependence ensures epistemic relevance. But,
epistemic irrelevance is not symmetric within imprecise probability models, and
in this case our announcement is epistemically irrelevant to Your estimate of the
first toss but the outcome of the first toss is epistemically relevant to Your estimate
of whether we will announce “match.” This error is compounded by mistakenly
assuming that epistemic independence is sufficient for stochastic independence,
creating the illusion of a mysterious interaction between events which are mistak-
enly thought to be stochastically independent.

The third example illustrates how knowing that two events are dependent is
nevertheless insufficient to ensure that there will be information for You to glean
about either event from observing the other. Furthermore, if one drops convexity,
it can become impossible to distinguish between this case and one where the two
events are completely stochastically independent.

Putting this together, we see that the first example is a clear and uncontrover-
sial case of dilation, but the second example is a mixed bag. In Example 2 our
announcement of how the first toss turned out is relevant information to Your esti-
mate of whether both outcomes match or differ, so this announcement would and
should dilate Your estimate of whether both outcomes match. However, the an-
nouncement of whether the outcomes match is irrelevant to Your original estimate
even though our announcement and the first toss are correlated. My announce-
ment about how both coins landed is epistemically irrelevant to Your estimate of
heads on the first toss. Hence, our announcement should not dilate Your original
estimate.

Finally, if one takes seriously the claim that the two events are completely
stochastically independent and models this correctly, then there is zero correlation
between the outcome of the tosses and our announcement. But then there is also
no dilation and no controversy, since Your initial estimate will not be affected by
our independent announcement.

The last section provided an explanation for how to give a coherent imprecise
probability model of Example 2, which reconciles the thought that the first toss and
our announcement that the outcomes match are dependent but that our announce-
ment that they match is epistemically irrelevant to Your estimate of the first toss.
It is one thing to find a way to model these conflicting intuitions, quite another to
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determine whether it is rational to adopt such a model. We will focus our remain-
ing remarks on the most controversial assumption of this model, at least from an
imprecise probability point of view, which is the endorsement of Equation 6.

Imagine that You maintain that p(H1 |M) = p(H1) = p(M) = 1/2 and are will-
ing to maintain that the probability of the first toss landing heads is 1/2 even after
we truthfully report to you that the outcomes of the first and second toss match.
Suppose that You are willing to use this estimate to post betting odds at a e1.00
stake for an unlimited number of trials. The question is this: Can You lose money
from refusing to change Your degree of belief when You learn that the coins match?

Here is the setup.25 You have a fair coin, we have a coin of unknown bias, and
You have some strategy for guessing heads or tails for Your coin on the nth flip of
an unbounded sequence of trials. We pay You e1.00 if Your guess is right, You
pay us e1.00 if Your guess is wrong. Payoffs are only made if the two coins are
both heads or both tails. The procedure in Example 2 is followed, but in addition
we make the following bets: On each trial, You flip Your coin but do not announce
Your guess and do not see the outcome. We flip our coin, which has a fixed bias β

for all trials. We observe the outcome of Your toss and our toss, then we announce
to You whether they match. If we announce that the two tosses match, You flip
another fair coin to decide whether to announce that the matched outcomes are both
heads or both tails. Note that You perform this secondary fair coin toss because, by
hypothesis, Your degree of belief that Your coin lands heads is 1/2 and is unchanged
by our announcement that the coins match. Without Your knowledge, suppose we
pick β < 1/2. Then our expected profit on each trial is zero: 1/2(1/2−β )+ 1/2(β −
1/2) = 0.

If, before we pick the bias β of the coin, we know Your betting strategy, and it is
other than flipping Your secondary coin, then we can bankrupt You by strategically
choosing β . If you know our choice for β , then You can alter your betting strategy
to bankrupt us. But if You choose heads with a long-run frequency equal to Your
undilated degree of belief of 1/2 in the first coin landing heads, then every strategy
has zero expected loss, regardless of the bias of the second coin. So the additional
information about equivalent outcomes, while probabilistically associated with the
first toss, is nevertheless both epistemically irrelevant and practically irrelevant.

Compare this to Example 1, where β is not fixed through each trial. You main-
tain that p(H2 | H1) 6= p(H2) and are unwilling to maintain that the probability of
the second toss landing heads is 1/2 after we faithfully report to you that the first
toss is heads.

In this case, You have a fair coin and we have a fair coin, but only Yours is
tossed fairly. Just as before, we pay You e1.00 if Your guess is right, You pay us
e1.00 if Your guess is wrong. Payoffs are only made if Your coin lands heads. The
procedure in Example 1 is followed, but in addition we make the following bets:
On each trial, You flip Your coin but do not announce Your guess and do not see
the outcome. After viewing the outcome of Your toss, we either arrange our coin

25 Thanks to Clark Glymour for putting this argument to us.
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to match the outcome of Your toss, or we arrange our coin to ensure the pair are
different. You do not know which. Before each toss, Your degree of belief that
the outcome of Your toss is heads is 1/2, the same as Your degree of belief that the
outcome of our “toss” is heads. However, after we announce that Your coin landed
heads, Your probability that our coin is heads dilates to [0,1]. Given this evidence,
Your expectation on each trial is either −e1.00 or e1.00. Within an imprecise
probability model this translates to Your willingness to post odds of 1/2 on the
second coin landing heads prior to observing the first coin, but an unwillingness to
bet on the outcome of the second toss at any odds after learning the first toss land
heads.

Like Example 2, You might nevertheless choose to treat the outcome of the
first toss as practically irrelevant. Then your expected loss would be zero. Unlike
Example 2, there is not a shred of evidence for doing so, since the first toss is
epistemically relevant to Your estimate of the second toss. Here practical relevance
and epistemic relevance come apart.

9 Conclusion

The key to sorting genuine dilation examples from bogus examples is to focus on
the interaction between the dilator and the dilatee. The most sensational examples
of dilation are engineered to try to show that events which have nothing to do with
each other can nevertheless have mysterious effects on one or the other’s probabil-
ity estimates. But the sizzle in these examples invariably fizzles for one of three
reasons. One type of error is to equivocate over whether dilator and dilatee are
completely stochastically independent. If the events are completely stochastically
independent, then the examples cannot be true examples of dilation. Conversely,
where there is dilation, there is the possibility of an interaction between the events
of some kind or another which may or may not appear to be epistemically relevant
to Your probability estimates. A second error concerns whether the agent’s credal
state—the parameterized set of probabilities—correctly encodes what the agent
knows about how the events are related to one another. Proper dilation occurs
within a correctly parameterized model, whereas improper dilation occurs within
a model that fails to correctly encode what is known about the problem. A third
error concerns a distinction between practical relevance and epistemic relevance.
In cases where interactions are epistemically relevant, they may or may not be
practically relevant to rational decision making. This can depend on whether it is
more valuable to investigate the matter further before taking an action, or whether
the agent must take a decision on the best evidence available. Although dilation
degrades estimates, there is nevertheless information from proper dilation about a
possible dependency in the decision maker’s model. Having this information and
knowing when this possibility is “activated” can be useful to the decision maker,
which counts against a blanket policy that either expunges or embraces dilation
wholesale.
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So, to sum up, cases of proper dilation are far less mysterious than critics con-
tend because they only arise when your probability model allows for the possibility
for an unknown interaction between events and the effect of that interaction can be
a source of information. So, the message to conservative critics is that they should
not shoot the messenger: proper dilation merely reports to you a warning about the
live consequences of a possible, problematic interaction within your model. The
message to progressive critics is that there is more that goes into strategic updat-
ing than simply knowing Your probabilities and Your preferences: knowing what
the agent does not know about the interaction between events is also an important
consideration in deciding what his probability estimates should be in light of new
evidence. And to friends of indeterminate probabilities, much has been learned
about the properties of natural extensions in the last few years, especially inde-
pendent natural extensions. The nature of the controversy about dilation is not
existential; it is a run-of-the-mill model selection problem.

In any event, reckoning with dilation, while not a Good idea, is not a bad idea,
either.
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Appendix

We now return to our discussion of the technical machinery for the general case
from Section 5. In the general setting, where infinitely many events inhabit the
algebra A , closure with respect to the total variation norm topology (i.e., strong
topology) or with respect to the weak topology (distinct from the weak*-topology)
introduces more closed sets than the weak*-topology. The former topologies are
stronger and indeed too strong for the purposes of imprecise probabilities, which
demand a very weak topology, the weak*-topology. Hence, the discussion in (Sei-
denfeld and Wasserman 1993, pp. 1141-1443), which employs the total variation
norm, suits sets of probabilities over an algebra consisting of finitely many events.

A set of probabilities in this general setting is always norm-bounded (with re-
spect to the norm-dual), so a weak*-closed set of probabilities is weak*-compact.
Accordingly, every weak*-continuous functional on the dual space achieves its
minimum at the extreme points of a closed convex (i.e., a weak*-closed and con-
vex) set of probabilities, and since all and only evaluation functionals are weak*-
continuous, the lower probability of an event is the minimum number assigned to
the event by all probability functions in the set, where as in the finite setting a prob-
ability function from the collection of extreme points of the set witnesses the lower
probability of the event.
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Much as in the finite case, any compact convex set of probabilities is the closed
convex hull of its extreme points (i.e, any convex weak*-compact set of probabili-
ties is the weak*-closed convex hull of its extreme points). However, while in the
finite setting a compact convex set of probabilities is identified with the convex hull
of its extreme points, in the general setting a compact convex set of probabilities is
identified with the closed convex hull of its extreme points. In both the finite and
general setting, the convex hull of the set of extreme points is dense in the compact
convex set in question, but in the general setting, a compact convex set may prop-
erly contain the convex hull of its extreme points and so the hull must in addition
be closed.

Proof of Proposition 4.3. Let P(A ) be the set of all probability functions on A ,
and let D =df {p ∈ P(A ) : p(E) ≥ P(E) for all E ∈ A }. Observe that P ⊆ D
and that D is convex and weak*-closed and so weak*-compact. In addition, since
co(P) ⊆ D, it follows that the co(P) ⊆ D, a weak*-compact set, whence P(E) =
inf{p(E) : p ∈ P} = min{p(E) : p ∈ co(P)}, the minimum being achieved at an
extreme point of co(P).

Now given P(H) > 0, let D[H] be defined by:

D[H] =df {p ∈ P(A ) : p(E ∩H) ≥ P(E|H)p(H) for all E ∈A }.

As before, observe that P ⊆ D[H] and that D[H] is convex and weak*-closed and
so weak*-compact. Hence, co(P) ⊆ D[H]. Since P(H) > 0, by the first part it
follows that co(P) ⊆ {p ∈ P(A ) : p(H) > 0}. Since with respect to the weak*
topology on the dual space every evaluation functional f ∗ is a real-valued contin-
uous linear functional on the dual space with f ∗(p) = p( f ) for each p from the
dual space, it follows that (E∩H)∗

H∗ is a continuous explicitly quasiconcave func-
tion of p on co(P), so it attains a minimum at an extreme point of co(P) (thus,
min{ (E∩H)∗(p)

H∗(p) : p ∈ co(P)} = min{ p(E∩H)
p(H) : p ∈ co(P)} exists and is an extreme

point of co(P)), whence P(E|H) = inf{p(E|H) : p ∈ P} = min{p(E|H) : p ∈
co(P)}, as desired.

Proof of Proposition 5.1. We first show that (i)⇐⇒ (iii), and we then show that
(i)⇐⇒ (ii).

(i)⇒ (iii) Suppose that B dilates E. Then for each i ∈ I, P(E|Hi) < P(E) ≤ P(E) <
P(E|Hi). For each i∈ I, consider the real-valued function ε i(p)=df |p(E|Hi)−
P(E|Hi)| and the real-valued function Sp,i(E,Hi). We recall that the weak*
topology on the dual space is a locally convex topological vector space with
respect to which every evaluation functional f ∗ is a real-valued continuous
linear functional on the dual space. It follows that ε i(p) and Sp,i(E,Hi) are
continuous functions of p on P for each i ∈ I.

Now let i ∈ I. By hypothesis, there is p1 ∈ P such that Sp1,i(E,Hi) > 1, so
importantly, C+

i is nonempty. Then since C+
i =df {p ∈ P : Sp(E,Hi) ≥ 1}

is a weak*-closed and so weak*-compact set, it follows that ε i achieves a
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minimum value on C+
i (and the set of minimizers of ε i is also compact).

Choosing a minimizer pi ∈ P of ε i, we see that for every p∈ P, if |p(E|Hi)−
P(E|Hi)|< ε i(pi) = |pi(E|Hi)−P(E|Hi)|, then Sp(E,Hi) < 1. We have ac-
cordingly shown that P(E|Hi,ε i(pi)) ⊆ S−P (E,Hi). Of course, we may sup-
press reference to the minimizer pi in ε i(pi). The other inclusion P(E|Hi,ε i)⊆
S+

P (E,Hi) is established by a similar argument.

(iii)⇐ (i) Suppose that B does not dilate E. Then there is i ∈ I such that P(E|Hi) ≥
P(E) or P(E) ≥ P(E|Hi). We may assume without loss of generality that
P(E|Hi)≥ P(E) for some i∈ I. First, if P(E)≤ P(E)≤ P(E|Hi), then choos-
ing a minimizer p ∈ P of P(E|Hi), we see that Sp(E,Hi) ≥ 1. Second, if
P(E) < P(E|Hi) < P(E), then for every ε > 0 we can find a convex combina-
tion p ∈ P of p0, p1 ∈ P assigning a probability to E within ε-distance below
P(E|Hi), where P(E)≤ p0(E) < P(E|Hi) < p1(E)≤ P(E), so Sp(E,Hi) > 1.
Third, if P(E) = P(E|Hi) < P(E), then choosing a minimizer p ∈ P of P(E),
we see that Sp(E,Hi)≥ 1. Evidently, the conditions of the main claim cannot
be jointly satisfied.

(i)⇔ (ii) On the one hand, suppose that (i) obtains. Then since (iii) accordingly ob-
tains, define (εi)i∈I by setting εi =df min(ε i,ε i) for each i ∈ I. Clearly the
inclusions still obtain for the εi. On the other hand, if (ii) obtains, obviously
by setting ε i =df εi and ε i =df εi for each i ∈ I, condition (iii) obtains and so
(i) obtains.

Proof of Corollary 5.2. Only (i)⇐⇒(iii) requires proof. On the one hand, sup-
pose that B dilates E. Then for each i ∈ I, P(E|Hi) < P(E)≤ P(E) < P(E|Hi). By
Proposition 4.3 we have P(A) = min{p(A) : p ∈ P∗}, P(A|B) = min{p(A|B) : p ∈
P∗}, P(A) = max{p(A) : p ∈ P∗}, and P(A|B) = max{p(A|B) : p ∈ P∗} for every
A,B ∈A with P(B) > 0, so B dilates E with respect to P∗. It follows from Propo-
sition 5.1 that there are positive (ε i,ε i)i∈I in R such that P∗(E|Hi,ε i)⊆ S−∗ (E,Hi)
and P∗(E|Hi,ε i)⊆ S+

∗ (E,Hi) for every i ∈ I.
On the other hand, suppose that there are positive (ε i,ε i)i∈I in R such that

for every i ∈ I, P∗(E|Hi,ε i) ⊆ S−∗ (E,F) and P∗(E|Hi,ε i) ⊆ S+
∗ (E,Hi). Then by

Proposition 5.1, B dilates E with respect to P∗, so for every event i ∈ I, P(E|Hi) <
P(E)≤ P(E) < P(E|Hi), whence again by Proposition 4.3 it follows that B dilates
E with respect to P, as desired.

Clearly, that the radii ε i and ε i may be chosen in the way described follows
from Proposition 5.1. The other implications are trivial consequences of what we
have just shown.

Proof of Proposition 5.3. On the one hand, if B strictly dilates E, then by Corol-
lary 5.2 there are (ε i)i∈I ∈RI

+ and (ε i)i∈I ∈RI
+ such that for every i∈ I, P∗(E|Hi,ε i)⊆

S−∗ (E,Hi) and P∗(E|Hi,ε i)⊆ S+
∗ (E,Hi). Let

ε =df min
{

δ : δ = ε i or δ = ε i for some i ∈ I
}
.
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Then ε > 0, and clearly the inclusions still obtain. On the other hand, if (ii) obtains,
then part (ii) of Corollary 5.2 obtains, so B strictly dilates E.
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