
Duality and ‘particle’ democracy

Elena Castellani∗

1 Introduction

Among the significant philosophical issues raised by the central role of physical
dualities in recent fundamental research, one has a specific ontological flavor, as
it concerns ‘dual entities’, i.e. entities exchanged by a duality mapping between
theories. In particular, the type of duality that is known as weak/strong duality,1

or S-duality according to current terminology,2 seems to imply new surprising
features from an ontological point of view.

Weak/strong duality has become a basic ingredient in field and string theo-
ries, especially since the 1990s (see Polchinski, this issue). In general terms, it
is described as an equivalence map between two different theories of the same
physics, such that the weak coupling regime of one theory is mapped to the
strong coupling regime of the other theory. Hence the special interest in this
form of duality, seen as a new tool for getting information on physical quantities
in the case of large values of the coupling constant (where the usual perturbative
methods fail) by exploiting the results obtained in the weak coupling regime of
the dual description.

This duality is usually accompanied by a novel, puzzling feature: the fact
that under this kind of duality it often happens that what is viewed as ‘elemen-
tary’ in one description gets mapped to what is viewed as ‘composite’ in the
dual description. To use the words of Ashoke Sen – one of the physicists who
significantly contributed in the 1990s to extend dualities to the string setting –
“the classification of particles into elementary and composite loses significance
as it depends on which particular theory we use to describe the system” (Sen,
2001, p. 3). What does this mean? At first sight, this interchanging role of
elementary and composite seems to have strong implications for reductionism
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1Or, indifferently, strong/weak duality.
2The term “S-duality” started to be used in connection with the first proposals for ex-

tending the weak/strong duality conjecture from the case of supersymmetric four dimensional
Yang-Mills theories to the context of superstring theory (first of all, Font, Ibanez, Lüst and
Quevedo (1990)). The name was “a historical accident”, to quote Harvey (1996, p. 30): it
was introduced, for reasons of practicality, to indicate the discrete symmetry group SL(2, Z)
of the ten-dimensional heterotic string theory compactified to four dimensions. More details
can be found, for example, in Schwarz (1996, p. 3).
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and fundamentality issues. According to Sen, for example, it implies a radical
change in our understanding of the ultimate constituents of matter “by bringing
in a sort of democracy between all particles, elementary and composite” (Sen,
1999, p. 1642). Another leading string theorist, Leonard Susskind, goes further:
in the section significantly entitled “The End of Reductionism” of his contribu-
tion to a Foundations of Physics’s 2013 special issue on “Forty Years of String
Theory”, he gives a clearly anti-reductionist reading of the apparent ontological
ambiguity connected with weak/strong duality (Susskind, 2013, pp.177-178).3

Philosophers, on their side, cannot draw such quick conclusions. If they want
to go this route and discuss weak/strong dualities in relation to fundamentality
and reductionism, it is their task to address some basic issues before: first of all,
how to understand fundamentality, whether to ascribe it to objects or just to
structures, and how to substantiate the link between elementary and fundamen-
tal.4 This is not the route followed in this paper. The stance adopted is rather
to avoid a literal reading of the elementary/composite interchange and, on this
basis, to avoid mixing the question of its meaning with the question of physi-
cal fundamentality. The attitude is analogous to the one shared in this volume
about how to understand apparently puzzling features such as the interchange of
tiny and huge dimensions connected with T -duality in string theory5, or the du-
ality of dimension under the AdS/CFT (gauge/gravity) correspondence.6 The
underlying idea is that, what the dual descriptions do not agree upon, should
not be attributed a real physical significance.7 In fact, this means nothing else
than saying that the physics (including its ontology) remains the same under
the duality. What changes, is just the way of looking at it.

This paper elaborates a bit on this shared view on dualities, in the spe-
cific case of weak/strong duality and related ‘elementary’/‘composite’ corre-
spondence. In order to have a better informed view on the meaning of this
correspondence, Section 2 is devoted to examining the history of weak/strong
duality by following the main developments of the idea of electric-magnetic du-
ality (EM duality) from which it originates – from the origin of EM duality with

3He concludes the section in the following way: ‘‘I could go on and on, taking you on a tour
of the space of string theories, and show you how everything is mutable, nothing being more
elementary than anything else. Personally, I would bet that this kind of anti-reductionist
behavior is true in any consistent synthesis of quantum mechanics and gravity” (Susskind,
2013, p. 178).

4A discussion of the metaphysical implications of weak/strong duality, especially in regard
to the fundamentality question, is provided in McKenzie, this issue. Concerning the ontological
significance of dualities, a common attitude in previous philosophical literature has been to
envisage some form of ontological structural realism (in short, the thesis that “all that there
is, is structure”) as the only viable option for escaping the antirealist conclusions apparently
implied by the elementary/composite ambiguity. This has been usually discussed in connection
with the issue of theoretical equivalence and, in particular, the question as to whether the
equivalence between dual theories should be read as an instance of underdetermination of
scientific theory by empirical evidence. See Rickles, this issue, for an updated discussion of
this point. Previous references are Dawid (2007), Rickles (2011) and Matsubara (2013).

5See Huggett, this issue.
6See de Haro, this issue.
7In this sense some authors propose to view duality as a ‘gauge’. This is discussed by

Rickles, this issue, and in the contribution of de Haro, Teh and Butterfield, this issue.
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Dirac’s theory of magnetic monopoles and its successive generalizations in the
context of (Abelian and non-Abelian) field theory, to arrive at its first extension
to string theory. The aim is to clarify, in the light of this history, the nature
of the correspondence between ‘dual particles’. This analysis is then used as
evidential basis for discussing, in Section 3, the philosophical implications of
weak/strong duality.

2 Electric-magnetic duality and its generaliza-
tions

“Electromagnetic duality is an idea with a long pedigree that addresses a num-
ber of old questions in theoretical physics, for example: Why does space-time
possess four dimensions? Why is electric charge quantised? What is the ori-
gin of mass? What is the internal structure of the elementary particles? How
are quarks confined?”. These are the introductory remarks on EM duality by
David Olive, in his contribution to the collective volume on Duality and Super-
symmetric Theories (Olive and West, 1999). He then continues by pointing out
how the “old idea of electromagnetic duality” could be considerably enhanced
in the light of crucial and apparently unrelated developments in the quantum
field theory of the last forty years, such as “unified gauge theories with Higgs,
supersymmetry, instanton theory, the theory of solitons, the idea of integrable
quantum field theories as deformations of conformally invariant QFTs”, with
the bonus of obtaining “a compelling framework of ideas within which these
apparently disparate developments become much more unified” (Olive, 1999, p.
62).

This section will try to highlight some of the key moments and notions of the
fascinating history of the electric-magnetic duality idea in field theory, setting
the basis for its successive extension to supergravity and string theory.

2.1 First steps

As is well known, the idea of a close similarity between electricity and mag-
netism, going back to Ampère and Faraday, was first made more precise with
Maxwell’s formulation of his famous equations for a unified theory of electric
and magnetic fields.

Maxwell’s equations display an evident similarity in the role of electric and
magnetic fields. In the absence of source terms, the similarity is complete and
the equations are invariant under the duality transformation D exchanging the
role of the electric field ~E and the magnetic field ~B as follows:

D : ~E → ~B, ~B → − ~E. (1)

Generalizing D to duality rotations parameterized by an arbitrary angle θ and
reformulating in terms of the complex vector field ~E + i ~B, Maxwell’s equations
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then display the following duality rotation symmetry:

~E + i ~B → eiθ( ~E + i ~B). (2)

The first natural extension of this duality was to include the presence of charges.
For the duality to still obtain, the existence of magnetic charges had to be
assumed beside the presence of electric charges. The accordingly modified
Maxwell’s equations were then invariant under the duality rotation exchang-
ing, at the same time, the role of electric and magnetic fields, and electric and
magnetic sources: that is, the duality rotation (2) augmented by the charge
transformation

q + ig → ei θ (q + ig) (3)

The following natural step was the extension of this EM duality to the quan-
tum context. This was achieved by Dirac (1931, 1948). His theory of magnetic
monopoles represented the first attempt to obtain a consistent quantum gene-
ralization of EM duality.8 In particular, Dirac proved that it was possible for
a magnetic charge g to occur in the presence of an electric charge q, without
disturbing the consistency of the coupling of electromagnetism to quantum me-
chanics, if the following quantization condition was satisfied:

qg = 2πn n = 0,±1,±2, . . . (4)

(using the unit system h̄ = c = 1).
This is the famous Dirac quantization condition, establishing an inverse re-

lation between electric and magnetic charge values.9 It has many important
consequences. First, it provided an explanation of why isolated magnetic poles
(magnetic monopoles) had never been observed.10 Second, it had the following
striking implication: the mere existence of a magnetic charge g somewhere in
the universe would imply the quantization of electric charge, since any electric
charge should occur in integer multiples of the unit 2π/g. For Dirac, this was
indeed one of the main reasons for interest in his theory of magnetic poles.11

8Dirac (1931) treated the case of an electrically charged particle moving in a fixed magnetic
monopole field. Dirac (1948) is a more general analysis of the relativistic classical and quantum
dynamics of a system of moving magnetic monopoles and electric charges in interaction.

9For more details on the development of this duality idea from the classical to the quantum
context, see for example Olive, 1999, pp. 65-68. On the physical meaning of this inverse
relation in association with electric-magnetic duality, see Polchinski, this issue, Section 2.5.

10The explanation was based on the great difference between the numerical values for the
quantum of electric charge and the quantum of magnetic pole. For example, two one-quantum
magnetic poles of opposite sign attract one another with a force (137/2)2 times as great as
that between two one-quantum electric charges at the same distance: hence the difficulty
of separating poles of opposite sign. Dirac’s conclusion was that “this explains why electric
charges are easily produced and not magnetic poles” (Dirac, 1948, p. 830).

11As he wrote in his 1948 paper (p. 817): “The interest of the theory of magnetic poles
is that it forms a natural generalization of the usual electrodynamics and it leads to the
quantization of electricity. [...] The quantization of electricity is one of the most fundamental
and striking features of atomic physics, and there seems to be no explanation for it apart from
the theory of poles. This provides some grounds for believing in the existence of these poles.”
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Much of the following developments in the history of EM duality can be
seen as progressive generalizations of Dirac’s theory. The next significant stage
was originated by the extension of the duality to the quantum field theories
of particle physics. A crucial development was its generalization to the non-
Abelian case represented by the Yang-Mills gauge theories used for describing
weak and strong interactions. Montonen and Olive (1977), presenting their cele-
brated electric-magnetic duality conjecture, was the seminal contribution in this
regard. The developments leading to this result and its successive generaliza-
tions were deeply interwoven with other contemporary threads in fundamental
physics: namely, the development of the theory of solitons in the quantum field
theory setting, the development of supersymmetry, and the intense theoretical
activity towards a unification of all fundamental physical forces (grand unifi-
cation theories and string theory, reinterpreted as a theory of all interactions
including gravity).

This intriguing history, however interesting, cannot be analyzed in detail
here. In what follows, the focus will be confined to those results and concepts
that seem of special relevance for discussing the apparent ontological implica-
tions of generalized EM duality. In particular: the interpretation of monopoles
as solitons, the role of monopoles in gauge theories and the Montonen-Olive
conjecture, including its successive generalizations.

2.2 Monopoles, solitons, and the Montonen-Olive duality

After Dirac’s pioneering work, we had to wait until the second half of the sixties
for the first development of a quantum field theory of electric and magnetic
charges: first, a theory of particles with either electric or magnetic charges
(Schwinger, 1966); then, also a theory of particles carrying both electric and
magnetic charges, named dyons by Schwinger (Zwanziger, 1968; Schwinger,
1969). This led, among other things, to the following generalized quantization
condition for the charges (q1, g1) and (q2, g2) of any pair of dyons:

q1g2 − q2g1 = 2πn n = 0,±1,±2, . . . . (5)

This condition, it is worth noting, is invariant under the duality rotation (3)
applied to both the dyons (that is, under the generalized duality rotation in the
(q, g)-plane), thus respecting the symmetry.12

The successive developments in the theory of magnetic monopoles were con-
siderably enhanced by the interplay of apparently different and independent
lines of thought, a feature that remarkably contributed to raise the physicists’
interest and confidence in the generalizations of EM duality. Here, we provide
a brief overview of the main threads leading to the Montonen-Olive conjecture
and its successive generalizations. In particular, we focus on: (Section 2.2.1) the
relevance of the concept of soliton to particle physics (starting with Skyme’s pio-
neering work and the quantum equivalence of sine-Gordon and massive Thirring
theories); (Section 2.2.2) the interpretation of monopoles as solitons, and their

12For details, see for example Olive, 1999, p. 67.
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appearance in grand unification theories (related to the issue of charge quan-
tization); (Section 2.2.3) the Montonen-Olive conjecture on EM duality in (a
specific case of) non-Abelian gauge theory: in short, the conjecture that “there
should be two ‘dual equivalent’ field formulations of the same theory in which
electric (Noether) and magnetic (topological) quantum numbers exchange roles”
(Montonen and Olive, 1977, p. 117). A few remarks on the generalization of
this conjecture, first to the supersymmetric context, then also to string theory,
conclude the Section.

2.2.1 Solitons and particles in field theories

Historically, the first explicit example of a dual interchange of ‘Noether charges’
and ‘topological charges’ in quantum field theory was provided in the frame-
work of the quantum equivalence of the so-called sine-Gordon theory and mas-
sive Thirring model. As shown by Coleman (1975) and Mandelstam (1975),
the sine-Gordon theory (describing a massless scalar field φ in one space and
one time dimension) is related by a duality to the so-called massive Thirring
model (a two dimensional theory of a massive self-coupled fermion). As will
be illustrated below, this duality implies, in particular, that there is a precise
correspondence between the soliton states of the quantized sine-Gordon theory
and the elementary particle states of the dual massive Thirring model. In which
sense this means an interchange between topological and Noether charges, will
be discussed in more detail in Section 2.2.2.

The idea that a soliton could be interpreted as a quantum particle, and
the related idea that a dual correspondence could be established between this
sort of particle and the familiar elementary particles of quantum field theory,
were first developed in some pioneering works of T. H. R. Skyrme in the late
1950s and early 1960s. In the framework of a particular type of classical non-
linear field theory considered for its relevance to the description of strongly
interacting particles, Skyrme found and studied soliton solutions of the classical
field equation which could be interpreted as particles (the so-called Skyrmions).
This interpretation could be fully established by investigating the nature of the
quantized solutions, and in particular by showing the existence of particle-like
states in the quantum version of the theory.

At first sight, particle-like solitons like the Skyrmions were very different
from the elementary particles of quantum field theory, i.e. structureless parti-
cles arising from the quantization of the wave-like excitations of the fields. To
begin with, solitons appear at the classical level: they are solutions of classi-
cal non-linear field equations. Morevover, they are endowed with an extended
(though finite) structure. First discovered in nineteenth century hydrodynamics
in the form of ‘solitary water waves’,13 they were named solitons by Zabusky and

13The story is that this kind of wave was first noticed by a Scottish engineer and naval
architect, J. Scott Russell, in 1834, while he was observing the motion of a boat rapidly drawn
along a narrow channel by a pair of horses. When the boat suddenly stopped, he made the
following observation: the mass of water which the boat had put in motion “accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
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Kruskal (1965) to indicate humps of energy propagating and interacting without
distortion.14 In that they were characterized as non-dispersive localized packets
of energy, solitons could be seen as a sort of particles, though extended and
solutions to classical non-linear wave equations. It was natural then to inves-
tigate, in the context of quantum field theory, the relation between these sorts
of particles and the familiar elementary particles, themselves localized packets
of energy (though structureless). This was achieved by studying the correspon-
dence between the soliton solutions of the classical field theory considered and
the extended-particle states of the quantized version of that theory.

As said, a seminal work in this direction was due to Skyrme. The Skyrmions
emerged from a model of nuclear interactions where the spin 1/2 nucleons were
considered to move in a non-linear, classical pion field (a “mesonic fluid”). The
particular non-linear theory for the scalar pion field studied by Skyrme allowed
also soliton solutions. Searching for the counterparts of these solutions in the
quantized version of the theory, Skyrme arrived at the remarkable conjecture
that the nucleons (spin 1/2 fermionic states) could emerge as the soliton states of
the purely bosonic field theory. This insight came from studying, for simplicity
reasons, a toy model of a two dimensional relativistic scalar field, which was in
fact the sine-Gordon model. Skyrme’s idea was that, in the complete quantum
theory, the soliton solution of the sine-Gordon equation could be interpreted
equivalently as a particle in the familiar sense of a quantum excitation of a field.
This required the construction of a new field operator (of which the soliton states
were quantum excitations), which Skyrme found to be fermionic and related in
a non-local way to the original field (Skyrme, 1961).15 He concluded that the
soliton modes of the sine-Gordon equation were fermions, interacting through a
four-fermion interaction (that is, an interaction of Thirring-model type).

Skyrme’s conclusion was a conjecture. It was rigorously confirmed some
years later by Coleman (1975) and Mandelstam (1975): their works proved the
dual equivalence of sine-Gordon and massive Thirring models in general terms,
by studying directly the quantum theory. Recall that the sine-Gordon model
describes a massless scalar field φ in 1 + 1 space-time dimensions with inter-
action density proportional to cosβφ (where β is a real parameter), while the
massive Thirring model is the theory of a two-dimensional self-coupled fermion
field ψ, with interaction of the form 1

2gψγ
µψψγµψ (where g is the coupling

constant). Coleman found that the parameter β of the sine-Gordon equation
and the coupling constant g of the Thirring model were related, in the following

forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth
and well-defined heap of water, which continued its course along the channel apparently
without change of form or diminution of speed”.

14More precisely, the name soliton was coined, after “solitary” and in analogy with fa-
miliar particles such as the photon, electron, and so on, to indicate “solitary-wave pulses ..
reappearing virtually unaffected in size or shape”, that is, without losing their identity, after
(nonlinearly) interacting (Zabusky and Kruskal, 1965, p. 240).

15More precisely, the new quantum field was related to the original sine-Gordon field by
what was later recognized as a “vertex operator construction”. A very detailed analysis of
Skyrme’s model and how it originated and developed is provided by Makhankov et. al. (1993).
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way:

β2h̄

4π
=

1

1 + gh̄/π
(6)

By using (6) and suitably adjusting other parameters, Coleman could then
demonstrate the quantum equivalence of the sine-Gordon and massive Thirring
models. Moreover, it followed that this equivalence was a weak/strong duality:
the weak coupling of the sine-Gordon fields (β << 1) corresponds to the strong
coupling limit of the massive Thirring model (g >> 1). Note that in the quan-
tum sine-Gordon theory the relevant parameter is not β but β2h̄. It follows
that the small-h̄ approximation is necessarily also a small-β approximation; or,
in other words, that weak coupling (small-β limit) corresponds to the classical
field limit (small-h̄ limit).16

Coleman (1975) obtained his results by comparing the two perturbation
series for the sine-Gordon and massive Thirring cases. The successive step by
Mandelstam (1975) was to provide a simpler re-derivation of Coleman’s results
without using perturbation theory. Mandelstam indeed showed that operators
for the creation and annihilation of bare solitons could be constructed “fairly
simply” from sine-Gordon operators and that they satisfied the commutation
relations and field equations of the massive Thirring model.

The sine-Gordon quantum soliton was thus proved to be a particle (the
‘fundamental’ fermion of the massive Thirring model) in the usual sense that
the concept has in particle physics. This means that, in the full quantum theory,
particles could appear as solitons or as quantum excitations depending on the
way the theory was formulated: their status was equivalent. Quoting Coleman
(1975, p. 2096): “Thus, I am led to conjecture a form of duality, or nuclear
democracy in the sense of Chew,17 for this two-dimensional theory. A single
theory has two equally valid descriptions in terms of Lagrangian field theory:
the massive Thirring model and the quantum sine-Gordon equation.”

At this point, the natural step was to try to extend these ideas to the more
realistic case of a physical space-time of three space and one time dimensions.
This proved to be not so straightforward,18 but it did result very fruitful from the
viewpoint of theoretical progress. Different ideas and research threads - electric-
magnetic duality, monopoles as topological solitons, charge quantization, unifi-
cation of gauge theories, quark confinement, early string theory, supersymmetry
– all converged in this creative theoretical activity, leading to remarkable ad-
vances in fundamental physics.19 In what follows, we will focus on some seminal
developments in the monopole idea in the 1970s, starting with the interpreta-

16For a discussion of this point in the general context of quantum field theory, see Polchinski,
this issue, Section 1.

17The emphasis is mine. On Chew’s S- matrix program and the bootstrap idea leading to
“nuclear democracy”, see Section 3.2.

18“Speculation on extending these ideas to four dimensions is left as an excercise for the
reader” was the challenging conclusive remark of Coleman in his 1975 paper (p. 2096).

19A very effective overview of these different threads and their convergence is provided in
Olive (1999). The seminal paper in this respect is Goddard and Olive (1978).
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tion of monopoles as topological solitons in the context of spontaneously broken
field theories.

2.2.2 Monopoles as topological solitons

Solitons can be of different types and origins. In particular, they can be topo-
logical, as are the solitons of interest in relation to the physical dualities we are
discussing. This means that, in contrast with the familiar particles of quan-
tum field theory, the ‘soliton particles’ considered have a topological structure.
Such a structure is represented by a conserved quantity, the ‘topological charge’,
which is related to their behavior at spatial infinity and to which they owe their
stability. In the quantized theory, it becomes a conserved quantum number
characterizing the soliton state.

These topological quantum numbers are very different in origin from the
familiar Noether charges associated with manifest symmetries of the theory’s
Lagrangian. In fact, the topological charges characterizing soliton solutions
arise as boundary conditions, their conservation is due to the condition that the
energy be finite and it holds independently of the equations of motion. More-
over, in many cases, they are closely related to what is known as “spontaneous
symmetry breaking”.

A simple example is provided by the way in which solitons emerge in the
framework of the one spatial-dimension sine-Gordon theory seen in Section 2.2.1,
in connection with the vacuum degeneracy of the theory and the resulting spon-
taneous symmetry breaking of its discrete symmetry.

The sine-Gordon equation

∂2φ

∂t2
− ∂2φ

∂x2
= −α sinβφ. (7)

has an infinite number of vacuum solutions φn = 2πn
β (n = 0,±1,±2, . . . ), all

with the same minimum energy (equal to zero).20 The field equation (as well
as the Lagrangian) is invariant under the transformations φ → φ′ = φ + 2πn

β ,
but this discrete symmetry is not respected by the vacuum solutions. Hence,
after one of these vacua is chosen, the symmetry is broken and this is called a
“spontaneous symmetry breaking”.21

20The sine-Gordon equation may be derived from the Lagrangian density L =

1
2

{(
∂φ
∂t

)2
−

(
∂φ
∂x

)2
}
− V (φ), where V (φ) = α

β
(1 − cosβφ). The energy vanishes at the

absolute minima of V (φ), which are φn = 2πn
β

. Note that by expanding the Lagrangian den-

sity in powers of a coupling constant λ = αβ2, the theory can be seen as describing a scalar
field of ‘mass’ m =

√
αβ and a non-polynomial self-interaction (for λ → 0, we recover the

familiar free Klein-Gordon equation, whence, by the way, the name “sine-Gordon equation”).
For the soliton solutions, however, we must consider the full Lagrangian and solutions which
are non-perturbative in λ. For details, see for example Rajaraman, 1982, Chapter 2.

21The symmetry, however, is recovered in the ensemble of all vacuum solutions or ‘ground
states’: any two degenerate ground states are transformed into one another under the action
of the discrete symmetry group. In this sense the symmetry is said to be ‘hidden’.
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In correspondence to this situation of spontaneous symmetry breaking, the
quantized theory has two types of particles: the particles in the familiar sense
of the quanta of the fluctuations of the field φ about any of the vacua; and the
particles corresponding to the soliton solutions. In the case considered (a single
scalar field in one spatial-dimension), the soliton solutions are configurations of
the field φ that connect two successive vacua (corresponding, respectively, to
the solution’s values at spatial infinity, i.e. at x = ±∞).22 Accordingly, the
space of all finite-energy configurations can be divided into sectors topologically
unconnected, characterized by two integer indices (corresponding to the values
of the field at x = ±∞), the difference of which

φ(∞)− φ(−∞) =
2πN

β
(8)

gives an integer N . This number is called the topological charge, and it can be
regarded as a quantum number characterizing the state of the system.23

The connection among the existence of topological solitons, the topology of
the space boundary and the theory’s spontaneous symmetry breaking,24 above
described in the case of the one spatial-dimension sine-Gordon theory, is in fact a
general feature, holding also for higher spatial-dimension cases. In generalizing it
to the realistic case of three space dimensions, however, a general result known
as Derrick’s theorem implies a further condition: in order to have solitons,
systems with more than just scalar fields must be considered.25 It was found,
in particular, that topological soliton solutions could be obtained in the case
of gauge theories with scalar fields: that is, when gauge fields (spin-1 fields)
were introduced in addition to the scalar fields (the theory’s global continuous
symmetry being replaced by a local symmetry).26

22In order that the energy be finite, the field must tend to a minimum of the potential at
every point on spatial infinity (at every instant t).

23In the case considered, the solution going from φ0 = 0 to φ1 = 2π
β

(or, equivalently,

from 2π
β

to 4π
β

, etc.), corresponds to N = 1 and represents the soliton. The other solution,

corresponding to N = −1, represents the antisoliton. (These solutions are usually called
‘kink’ (N = 1) and ‘antikink’ (N = −1) in the physics literature; see however Rajamaran
[1982, pp. 21-22 and 38] for a finer distinction between a kink solitary wave and a genuine
soliton.) Solutions characterized by different topological charges cannot be transformed into
each other by any continuous deformation: they belong to different topological sectors, and a
field configuration from one sector cannot be deformed continuously into another of a different
sector without violating the requirement of finiteness of the energy (the change would require
an infinite amount of energy). In particular, a field configuration from any one sector stays
within it as time evolves, since time evolution is a continuous transformation. For more details,
see Rajamaran, 1982, Sections 2.4 and 2.5.

24That is, the fact that the existence of this type of solitons requires the theory to have
degenerate vacua and a nontrivial map from the spatial boundary to the set of these vacua.

25Derrick 1964’s result shows that, with scalar fields alone, there exist no stable time-
independent solutions of finite energy of nonlinear equations in three spatial dimensions. This
implies that if we want soliton solutions in the realistic (3 + 1) dimensional case, we must
consider systems with higher-spin fields in addition to the scalar fields.

26A seminal paper illustrating the generalization of the results obtained in one space and one
time dimension to a physical space-time of three space and one time dimensions is Goddard
and Olive (1978). See, in particular, Sections 3.4 and 7.1 for an illustration of the role of
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Historically, this result was discussed and used in the case of four space-time
dimensions by ’t Hooft (1974) and Polyakov (1974) in searching for magnetic
monopoles. They independently showed that a certain spontaneously broken
non-Abelian gauge theory in four dimensional space-time, known as the Georgi-
Glashow model, possessed topological soliton solutions and these solitons could
be physically interpreted as monopoles (with the topological charge related to
the magnetic charge).27 Note that, in contrast with the Dirac monopole requir-
ing a point magnetic source to be put in by hand in the theory, the so-called
’t Hooft-Polyakov monopole was naturally contained in the theory, in that it
arises as a soliton solution of the field equation. This means, in particular, that
its properties (including its mass) are calculable from the theory.28

The Georgi-Glashow model was proposed in 1972 as a unified gauge the-
ory of weak and electromagnetic interactions which, in contrast to other unified
models such as Weinberg’s, didn’t imply the appearance of neutral lepton cur-
rents (not yet observed at the time). It was based on the symmetry gauge
group SO(3), spontaneously broken to a subgroup U(1) (identified with the
electromagnetic gauge group) by the so-called Higgs mechanism.29 For finding
magnetic monopoles, the model had the desired feature that the gauge group
SO(3) is a compact group, a condition required for the possibility of construct-
ing monopole solutions when the symmetry is appropriately spontaneously bro-
ken.30 What is of special relevance, here, is that this is closely connected with
the condition for the quantization of electric charge, provided for by the struc-
ture of the unified theory’s gauge group. In fact, the quantization of electric
charge and the mathematical concept of the compactness of the gauge group

the dimension of space-time in determining which theories are capable of supporting stable
finite-energy time-independent solutions.

27The work by ’t Hooft and Polyakov was inspired by 1973 work of Nielsen and Olesen in
the framework of early string theory. On the grounds that quantized magnetic flux lines in
a superconductor behave very much like the string, it was suggested that the string could be
interpreted as a soliton built of magnetic flux lines, arising in a non-Abelian spontaneously
broken gauge theory. This string, being built of magnetic lines of force, could only have mag-
netic charges as end points, which would be confined on the basis of a mechanism analogous
to the Meissner effect in superconductivity. This was the basis also for suggesting a way of
addressing the problem of the confinement of quarks, by interpreting them as monopoles.

28On this and other significant differences between Dirac monopoles and ’t Hooft-Polyakov
monopoles, see for example Goddard and Olive, 1978, Section 4.5.

29In standard terminology, the Georgi-Glashow model is a unified Yang-Mills–Higgs theory
with gauge group SO(3), or, equivalently, with gauge group SU(2). This non-Abelian group
is associated with a triplet of gauge fields, known as the Yang-Mills fields (from the famous
work on non-Abelian gauge field theory by Yang and Mills in 1954), self-coupled to form a
non-linear system. In the model proposed by Georgi and Glashow for a unified theory of
weak and electromagnetic interactions, the Yang-Mills fields are coupled to a triplet of scalar
fields (Higgs fields) leading to the Higgs mechanism (in short, the mechanism by means of
which a scalar field, the Higgs field, fails to vanish in the vacuum, with the consequence
that mass is produced without spoiling any of the advantages of gauge symmetry, such as
renormalizability).

30To put it a bit more precisely by quoting ’t Hooft (1974, p. 276), “in all those gauge
theories in which the electromagnetic group U(1) is taken to be a subgroup of a larger group
with a compact covering group, like SU(2) or SU(3), genuine magnetic monopoles can be
created as regular solutions of the field equations.”
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are intimately related, as highlighted in a seminal paper by Yang (1970).31

A new perspective on Dirac’s relation between electric charge quantization
and the existence of magnetic monopoles was thus provided.32

The Georgi-Glashow model was soon ruled out by experimental results (weak
neutral currents were discovered in 1973). The experimentally correct model for
a unified theory of weak and electromagnetic interactions was found to be the
Weinberg-Salam model, based on the gauge group SU(2) x U(1). But this group
didn’t satisfy the condition of having a compact covering group and therefore
the model couldn’t allow for monopoles to appear.33 This possibility, however,
was recovered in what are known as grand unification theories: that is, theories
of unified strong and electroweak interactions, based on compact gauge groups
– such as, for example, SU(5) – spontaneously broken to the gauge group SU(3)
x SU(2) x U(1) of the Standard Model for elementary particles.34

Thus, the ideas of charge quantization, monopoles as topological solitons,
grand unification theory and spontaneous symmetry breaking were found to be
intimately connected.35 This considerably enhanced the interest in EM duality
and provided, at the same time, the conceptual framework in which investigating
a four space-time dimensional analogue of the duality between Noether and
topological charges found in the two space-time dimensional case of the sine-
Gordon/Thirring duality. The seminal work in this respect is Montonen and
Olive (1977), to which we now turn.

31A Lie group (as gauge groups are) is said to be compact if its parameters vary over a
closed interval. Quoting Yang (1970, p. 2360): “For Lie groups, compactness is a property
of the global structure of the group, which has a determining influence on the nature of the
representations of the group. It is, in fact, through its influence on the representations that
the compactness of the gauge group has a bearing on the quantization of charges”. In short, if
the different charge ei’s of different fields ψi’s are not commensurate with each other (electric
charge is not quantized), the space-time-independent gauge transformation on charged fields
ψi → ψ′i = ψiexp(ieiα) is different for all real values of α, and the gauge group must be
defined so as to include all real values α. Hence, the group is not compact. On the other
hand, if all different charges are integral multiples of a universal unit of charge e, it is easy to
show that the gauge group is compact (the phase factors may all be parameterized by a finite
range of values of α, e.g., between 0 and 2π).

32This point is emphasized by many authors in the literature on magnetic monopoles. For
example Olive (2001, p. 5) makes the following comment: “The first conclusion is that Dirac’s
explanation of charge quantisation is triumphantly vindicated. At first sight it seemed as if
the idea of unification provided an alternative explanation, avoiding monopoles, but this was
illusory as magnetic monopoles were indeed lurking hidden in the theory, disguised as solitons”.

33See fn. 30.
34For more details on this connection between charge quantization and the existence of

monopoles in unified gauge theories with compact gauge groups, see for example Weinberg,
1996, Section 23.3.

35In this respect, Goldhaber (1983, p. 9) speaks about a “golden triangle”: “we have found
that among the trio of concepts, charge quantization, spontaneously broken non-Abelian gauge
theories, and magnetic monopoles, each suggests the other two. While some of the links appear
more heuristic than others, all of the connections are so close that one is tempted to view the
trio as three aspects of a single phenomenon”.
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2.2.3 The Montonen-Olive conjecture

As we have seen, in the mid-seventies it was known that monopole solutions
could exist in a unified Yang-Mills-Higgs theory if the gauge group was sponta-
neously broken to a residual subgroup containing an explicit U(1) factor (iden-
tified with the electromagnetic gauge group). At about the same time, Julia
and Zee succeeded in extending this result by showing that a SU(2) gauge the-
ory with a Higgs triplet admitted also solutions with both magnetic and electric
charges (“dyons”, according to the terminology introduced by Schwinger in 1969,
as seen in Section 2.2). Still in 1975, an exact analytic solution for both the
’t Hooft-Polyakov monopole and the Julia-Zee dyon was found by Prasad and
Sommerfield, but in the special case where the Higgs self-coupling is zero, i.e.
where the Higgs field is massless. Soon after, the existence and stability of such
kind of solutions was thoroughly clarified by Bogomol’nyii, and it became usual
to indicate them as “Bogomol’nyi-Prasad-Sommerfield (BPS) solutions”.36

In view of these results and in analogy with the case of sine-Gordon/Thirring
duality, it was natural to investigate the possibility of a dual version of the
Yang-Mills theory, with quantum field operators creating magnetic monopoles
rather than the original gauge particles,37 just as the Thirring model provided
the quantum field theory of the sine-Gordon solitons (now seen as created by
massive Thirring quantum fields).

This was the issue addressed by Montonen and Olive in their 1977 seminal
paper. More precisely, their declared aim was to present evidence for the follow-
ing conjecture: “when quantized, the magnetic monopole solutions constructed
by ’t Hooft and Polyakov, as modified by Prasad, Sommerfield and Bogomol’nyi,
form a gauge triplet with the photon, corresponding to a Lagrangian similar to
the original Georgi-Glashow one, but with magnetic replacing electric charge”
(p. 117).38

Thus, a perfect duality in the treatment of electric (Noether) and magnetic
(topological) charges was suggested: when proved, this meant a successful gen-
eralization of Dirac’s electric-magnetic duality to its quantum field theoretical
form. Note that also in this case the duality is a self-duality, that is, the dual de-
scription (the description with the roles of electricity and magnetism reversed)
is formally the same as the original one.39 Indeed, the dual quantum field the-

36In his 1976 paper “Stability of Classical Solutions”, Bogomolnyi showed that the field
equations for topological defects can be reduced to first-order provided the coupling constant
of its potential takes certain values, namely in what has become known as the Bogomolnyi-
Prasad-Somerfield (BPS) limit.

37That is, the electrically charged particles, now occurring as solitons in the dual description.
38The reason for choosing the Georgi-Glashow model in the special BPS limit for substan-

tiate their conjecture was that this model provided the simplest Lagrangian with monopoles
occurring as solitons. A very clear reconstruction of the physical ideas and results motivating
the Montonen-Olive paper, including the preceding conjecture for the structure of the dual
gauge group by Goddard, Nuyts and Olive (considering a more general context with a less
restrictive exact symmetry group), is provided in Olive, 1999. An almost contemporary and
very detailed illustration of all these developments is Goddard and Olive, 1978.

39In this sense, there is a difference with the case of the sine-Gordon-Thirring duality,
where the Lagrangians of the two dual model are different. See, for a comment on this point,
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ory of the monopole solitons considered by Montonen and Olive was based upon
exactly the same Lagrangian as the original Georgi-Glashow one (though with
the coupling strength inversely related to the original ‘electric’ coupling). In the
original description, “the heavy gauge particles carry the U(1) electric charge,
which is a Noether charge, while the monopole solitons carry magnetic charge,
which is a topological charge”, to use their own words. In the equivalent dual
field theory, “the fundamental monopoles fields play the role of the heavy gauge
particles, with the magnetic charge being now the Noether charge” (Montonen
and Olive, p. 117).

Although Montonen and Olive were unable to prove their conjecture, they
could present some important evidence in its favour: namely, the fact that the
classical properties of the monopole in the dual field theory were precisely related
to the corresponding properties of the heavy gauge particle, as predicted.40 The
real problem, as Montonen and Olive pointed out, was with calculating the
quantum properties of the monopole. In particular, the following issues had to
be addressed: how could the magnetic monopole soliton possess unit spin (in
order to be seen as a heavy gauge particle), given the spherical symmetry of
the classical solution? How to calculate the quantum corrections to the classical
properties in order to avoid that they could vitiate the mass formula? And how
to include the dyon states and how this would affect the conjectured duality?41

In fact, all these problems could find a consistent solution by introducing
supersymmetry into the picture. The first step in this direction was due to
Witten and Olive (1978): they showed that in a supersymmetric extension of
the Georgi-Glashow model – the N = 2 supersymmetric version – there were no
quantum corrections to the classical mass spectrum and the calculation of the
exact masses could be obtained.42 The problem related to the monopole’s unit
spin remained for this N = 2 case, but soon after a solution to it was obtained
for the case of N = 4 supersymmetry: Osborn (1979) was able to show that
when spontaneous symmetry breaking is imposed in the N = 4 supersymmetric

Montonen and Olive, 1977, p. 117.
40In particular, the properties of the particle spectrum (the particle masses, charges and

spins) in the BPS limit of the SU(2) theory supported the idea that the charged gauge particles
might be solitons in a dual version of the theory. By applying the duality transformation
reversing the role of ‘electric’ and ‘magnetic’ components (which could be seen as described
by π/2 rotations in a complex plane of charges q+ ig), the entries for the gauge particles and
the monopoles were interchanged, but the overall spectrum of masses and charges remained
the same. Further evidence was supplied by the calculation of the long-range forces between
monopoles, which turned out to be precisely analogous to the forces between the charged
gauge particles. For details, see Montonen and Olive, 1977, p. 118, and Goddard and Oliver,
1978, p. 1429.

41See Montonen and Olive, 1977, p. 119-120. A detailed discussion of these points is offered
in Olive, 1999, pp. 76 ff.

42N = 2 supersymmetry means that the theory has two types of supersymmetry transfor-
mations (two copies of the basic algebra). Due to supersymmetry, the BPS bound turned
out not to be violated by the quantum corrections (because of the mutual cancellation of the
bosonic and fermionic loop diagrams). Moreover, most of the remarkable results associated
with the BPS limit could be understood, afterwards, as consequences of supersymmetry. For
details on the reasons why supersymmetry helps answer this and the other questions raised
by Montonen-Olive conjecture, see in particular Olive, 1999, pp. 82 ff.
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gauge theory, the spins of the topological monopole states are identical to those
of the massive gauge particles.

Although in the immediately following years a number of important results
were obtained,43 the real interest in the Montonen-Olive conjecture and the
properties of monopoles in supersymmetric Yang-Mills theory exploded only
in the early 1990s. This was due to fascinating theoretical achievements and
significant progress in understanding non-perturbative dynamics which were
reached at that time, also thanks to the virtuous interplay of developments in
supersymmetric field theory and string theory – a major research field after
the so-called first superstring revolution in 1984.44 In the years 1992-94 in
particular, seminal works by Seiberg, Witten, Sen and Schwarz revitalized the
interest in the supersymmetric generalization of Montonen-Olive duality and
further motivated its extension to the string setting. Two especially influential
papers were Seiberg and Witten (1994) and Sen (1994). On the one side, Seiberg
and Witten (1994) showed that also for the case of N = 2 supersymmetric SU(2)
Yang-Mills theory a version of Montonen-Olive duality could hold. This duality,
however, exchanged monopoles with quarks (fractional charges), in contrast to
the case of N = 4 theory, where the duality exchanged monopoles with gauge
particles (integer charges). This version of Montonen-Olive duality, mapping
the quarks (‘electric’ degrees of freedom) which are strongly coupled to weakly
coupled monopoles (‘magnetic’ degrees of freedom), could thus be used to obtain
a weakly coupled effective description of QCD.45 On the other side, Sen (1994)
was able to present several evidences, including solving the dyon problem, for the
generalized Montonen-Olive duality for the case of N = 4 supersymmetric Yang-
Mills theory. More precisely, the theory he considered was the ten-dimensional
heterotic string theory compactified to four dimensions on a six dimensional
torus (the toroidal compactification of the heterotic string theory possesses a
local N = 4 supersymmetry in four dimensions) and he could obtain strong
(theoretical) evidence for the strong-weak coupling duality of this string theory
in four dimensions by studying its low energy effective field theory.46

3 Discussing particle democracy

In the light of the preceding analysis of the first developments of weak/strong
duality, we now turn to the philosophical discussion originated by the apparent

43See Olive, 1999, pp. 84-89.
44For the developments of string theory between its birth in the late 1960s as a theory of

strong forces and its outburst in the early 1980s as a unified theory of all interactions including
gravity, see Cappelli, Castellani, Colomo and Di Vecchia, 2012.

45In more detail, Seiberg and Witten used the duality to compute exact low-energy effective
Lagrangians and BPS soliton spectra of N = 2 supersymmetric QCD. Moreover, with a
suitable perturbation, quark confinement could be described by monopole condensation, thus
“giving for the first time a real relativistic field theory model in which confinement of charge
was explained in this long-suspected fashion” (p. 25).

46For details and the relevance of the results obtained by Sen at that time, see Olive (1999),
Section 6. The following developments of weak/strong duality in the framework of string
theory are described by Polchinski in his contribution to this issue.
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ontological implications of the dual correspondence between ‘elementary’ and
‘composite’ particles. The specific aim of this concluding section is to show
how the historical insight, beside its intrinsic interest, is also helpful (not to
say necessary) for clarifying the philosophical issue at stake. This will be done
in three steps: we start with some reflections on the ‘elementary’/‘composite’
divide (Section 3.1), then consider an historical analogy case (Section 3.2) and,
finally, draw some conclusions on the ‘democracy’ issue (Section 3.3).

3.1 Elementary/composite

The usual way of presenting what appears to be an intriguing ontological issue
raised by weak/strong dualities is in terms of the interchange (associated with
this duality type) between what is elementary and what is composite. This
corresponds to how the dual mapping between particles is typically described
in plain terms by the experts. Sen (1999), for example, uses the following lan-
guage: “we see that under duality, the elementary particles of the first theory
gets mapped to the composite particles of the second theory and vice versa. In
other words, the same particle may be considered elementary in one description
and composite in the other description. Thus, in theories possessing dual de-
scriptions, the question of whether a given particle is elementary or composite
has different answers depending on which description we use for the theory” (p.
1637).

While it is clear what is meant by “elementary particles”, here – i.e., those
particles that are associated with the quantum excitations of the fields –, the
terminology “composite particle” can indicate different things, depending on the
field theory and the duality considered. In general, as seen in Section 2, the dual
correspondence associated with weak/strong duality is between elementary par-
ticles and solitons (Skyrmions and magnetic monopoles, in the cases considered
above). Now solitons, though extended, are not necessarily composed of other
particles (in the sense in which neutrons or protons are composed of quarks,
say). They can be bound states, but also just ‘extended’ topological solutions
(such as the magnetic monopoles discussed in Section 2.2.3).

The impression is that the elementary/composite terminology can be mis-
leading, especially when discussing philosophical implications of weak/strong
duality. In fact, speaking in terms of ‘elementary vs composite’ is easily sug-
gestive of a connection with such issues as fundamentality and reductionism
(see Section 1). Such a suggestion is far less natural, however, when the dual
correspondence is presented in terms of an interchange between Noether and
topological charges, for example.. As we have seen in Section 2.2.3, the (gen-
eralized) electric-magnetic duality implies that what appear as an ‘electrically’
charged elementary particle (a Noether charge) in the original formulation of
the theory (the ‘electric’ formulation), will appear as a ‘magnetically’ charged
soliton in the alternative (dual or ‘magnetic’) formulation of the same theory.47

This is very different from a ‘composition’ correspondence in the ontological

47We ignore the dyon solutions here, for simplicity sake.
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sense. Both kinds of particles, either ‘electric’ or ‘magnetic’ charges, are present
on a par in the complete quantum theory: they are all parts of its ontology.

Of course, electric-magnetic duality is a special case of weak/strong duality,
however historically significant. Many different examples of a dual correspon-
dence can be found in the extension of weak/strong duality to string theory
(see Polchinski, this issue). When focusing on the ‘particles’ of quantum field
theories, however, this is undoubtedly the relevant kind of duality to discuss.
But before turning to the very issue of particle democracy, let us make another
historical detour and consider an instructive analogy case.

3.2 An historical analogy: DHS duality and nuclear democ-
racy

In his 1975 work on the dual equivalence between the two-dimensional sine-
Gordon and massive Thirring theories, Coleman compares this form of duality
with “nuclear democracy in the sense of Chew” (as mentioned in Section 2.2.1).
This surely inspired successive views about the relationships between duality
and particle democracy, especially since the 1990s by Sen and others.48 Before
putting this particle-democracy view under the lens, it can be useful to go back
to Coleman’s own source of inspiration. In fact, there is a historical precedent
for connecting duality with the idea of particle democracy: the case of the
so-called Dolen-Horn-Schmid (DHS) duality, introduced in the context of the
S-matrix approach to describe the physics of strong interactions in the 1960s.
DHS duality was the first duality type of string theory: also known as the “dual
bootstrap”, it was at the core of the so-called dual resonance models from which
string theory was born between the late sixties and the early seventies.49

The S-matrix approach was motivated by the difficulties arising in a field
theoretic description of strong interactions. Inspired by earlier work of Heisen-
berg, it aimed at determining the relevant observable physical quantities – the
scattering amplitudes (the elements of the S-matrix) – on the grounds of general
principles such as unitarity, analyticity and symmetry, together with a minimal
number of additional assumptions. One of these was the “duality principle”
proposed by Dolen, Horn and Schmid in 1967. To find a formula for a scat-
tering amplitude that realized the DHS duality in a simple and clear way was
the great result obtained by Veneziano in 1968, giving rise to the very intense
model-building activity known as the Dual Theory and from which string theory
was born.

The DHS duality principle was the assumption, suggested by experimen-
tal data, that the contributions from resonance intermediate states and from
particle exchange each formed a complete representation of the scattering pro-

48In the context of string theory, the concept of ‘particle’ democracy is generalized to strings
and ‘branes’ (‘brane democracy’).

49Detailed accounts of this duality and its meaning in the context of the first developments
of string theory are provided in Cappelli, Castellani, Colomo and Di Vecchia, 2012, Parts I
and II. The S-matrix program pursued by Chew and his collaborators has been thoroughly
investigated from a historical and philosophical point of view in Cushing, 1990.
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cess; therefore, they should not be added to one another in order to obtain the
total amplitude. In terms of the Mandelstam’s variables s and t and in the
framework of the so-called Regge theory, to enter in some more detail, what the
duality principle established was the following relation between a low-energy
and a high-energy description of the hadronic scattering amplitude A(s, t): the
low-energy description in terms of direct-channel (s-channel) resonance poles
and the high-energy description in terms of the exchange of Regge poles in the
crossed-channel (t-channel) could each be obtained from the other by analytic
continuation.50

The duality principle was thus seen to represent an effective implementa-
tion of two inter-related ideas, defended in particular by Geoffrey Chew and
his school in the 1960s: the idea of nuclear democracy, according to which no
hadron is more fundamental than the others; and the bootstrap idea, that is
the idea of a self-consistent hadronic structure in which the entire ensemble of
hadrons provided the forces (by hadron exchange) making their own existence
(as intermediate states) possible.51 The real meaning of this duality, however,
emerged clearly only with the string interpretation of the dual models: in fact,
the duality principle was soon proved to be a direct consequence of the conformal
symmetry of the string amplitudes.52

Summing up, there are undoubtedly some similarities between this duality
case and the weak/strong dualities discussed in the previous Section: first of all,
the interchange of low-energy and high-energy descriptions and the connection
with conformal symmetry.53 However, the contexts are so different that the
comparison can hardly be taken to signify more than a suggestive analogy.54

The differences also regard the dual correspondence between particles in the
two cases. To this point, and more specifically to the meaning of the parti-
cle democracy associated with weak/strong duality are devoted the following
concluding remarks.

3.3 Concluding remarks

In the framework of the dual theory of strong interactions, the idea of nuclear
democracy had a clear ontological flavor: all hadrons were seen as composed
of the other hadrons (bootstrap), and therefore all hadrons were considered as
equal from the point of view of fundamentality. In that context, ‘composed of’
was clearly intended in the sense of ontological composition.

50See, for details, Cappelli et al., Part II.
51On the bootstrap idea in Chew’s program, see in particular Cushing, 1990, Chapter 6.
52On this point, and, more generally, on the group of conformal (or angle-preserving) trans-

formations in the plane, see Cappelli et al., Chapter 10, Sections 10.2.1 and 10.3.
53The relation between weak/strong duality and conformal symmetry is a very important

one and the topic would deserve a detailed analysis by itself. For what regards the relevance of
this relation in the case of the Montonen-Olive duality in N = 4 supersymmetric Yang-Mills
theory (displaying conformal symmetry), see in particular Olive, 1999, pp. 90 ff.

54Without counting the fact that hadrons are not elementary particles, but this is not the
relevant point, here: the point is whether duality is associated with a form of democracy (and
in which sense) among the particles of the theory.
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This is not the case, however, for the Montonen-Olive duality and its gen-
eralization. As we have seen in Section 2.2.3, all particles – ‘electric’ charges,
‘magnetic’ charges, dyons – exist on an equal footing in the complete quantum
theory. In this sense, they all are equally ‘fundamental’ from an ontological
point of view. What the duality specifically implies, here, regards not mutual
composition of the particles as rather their different modes of appearance when
considering the different classical limits of the quantum theory, i.e. the dual
perspectives. As seen, the particles interchangeably play the role of Noether
charges or topological charges depending on the perspective under which the
theory is considered. The democracy associated with the duality results from
this kind of modality in their appearance: we could say that it is a “represen-
tational” or “functional” democracy, rather than an ontological one.55

What is, then, the philosophical lesson to be drawn from this sort of par-
ticle democracy? Apparently, the following: the different characterizations of
the particles of the theory – as elementary particles or as solitons, in the case
considered – should not be taken too literally. As seen in Section 2, these
characterizations strictly depend on the particular formulations of the theory
in certain regions of its parameter space. And this – although supporting a
deflating conclusion as far as ontological speculations are concerned – is a very
interesting and fruitful result, as showed by the history of generalized electric-
magnetic duality and the successive developments of weak/strong duality in the
framework of supersymmetric field and string theory.56
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