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Abstract

Coordinate-based approaches to physical theories remain standard in
mainstream physics but are largely eschewed in foundational discussion
in favour of coordinate-free differential-geometric approaches. I defend
the conceptual and mathematical legitimacy of the coordinate-based ap-
proach for foundational work. In doing so, I provide an account of the
Kleinian conception of geometry as a theory of invariance under symmetry
groups; I argue that this conception continues to play a very substantial
role in contemporary mathematical physics and indeed that supposedly
“coordinate-free” differential geometry relies centrally on this conception
of geometry. I discuss some foundational and pedagogical advantages of
the coordinate-based formulation and briefly connect it to some remarks
of Norton on the historical development of geometry in physics during the
establishment of the general theory of relativity.

1 Introduction

There is a rather sharp difference between elementary theories of mechanics
as presented in the mainstream physics literature on the one hand, and in the
foundational and philosophical literature on the other. A scalar field in special
relativity, for instance, is typically presented in the physics literature as a smooth
(i. e. , infinitely-often differentiable) function ϕ : R4 → R, satisfying the equation

ηµν
∂2ϕ

∂xµ∂xµ
+m2ϕ+

λ

3!
ϕ3 = 0 (1)

where(as always in this paper) the indices µ, ν take values 0, 1, 2, 3, ηµν denotes
the components of the diagonal 4x4 matrix with diagonal elements −1, 1, 1, 1,
and the Einstein summation components applies.

Of course, the choice of coordinates here has to be understood as to some
degree arbitrary, and this is captured by the fact that certain coordinate trans-
formations leave the form of this equation invariant. Specifically, it is invariant
under any transformation of form

xµ → Λµνx
ν + aµ (2)
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where Λµν are the components of a matrix satisfying ΛηΛ−1 = η and the aµ

are arbitrary: that is, it is invariant under the standard action of the Poincaré
group on R4.

In foundational discussions, the theory is characterised instead as something
like the ordered quadruple 〈M, g,∇, ϕ〉, where

• M is a differentiable manifold diffeomorphic to R4;

• g is a smooth symmetric tensor field of rank (0, 2) and signature (−1, 1, 1, 1);

• ∇ is a flat symmetric affine connection satisfying ∇g = 0;

• ϕ :M→ R is a smooth real function on the manifold satisfying

g(∇,∇)ϕ+m2ϕ+
λ

3!
ϕ3 = 0. (3)

(Use of an abstract-index notation (as per Wald 1984) makes (3) look somewhat
more like (1) but the equations remain completely different sorts of mathemat-
ical object.)

The former version is usually called ‘coordinate-based’ or ‘coordinate-dependent’;
the latter, ‘coordinate-free’. In the case of general relativity in particular,
coordinate-free formulations based upon differential geometry have been widely
used in physics for decades (Misner, Thorne and Wheeler’s classic Gravitation
(1973) was written with the explicit aim of making them standard), but a wide
range of pre-general-relativistic theories, including the special-relativistic field
theory above, but also other special-relativistic field and particle theories, and
pretty much the whole of non-relativistic dynamics, can also be formulated
in the framework of differential geometry. The work of, in particular, Ander-
son(1964, 1967, 1971), Trautman(1966), Earman(Earman 1970; Earman 1974)
and Friedman (Earman and Friedman 1973) brought this coordinate-free for-
mulation onto widespread use in foundational discussions; this was solidified
by hugely influential books by Friedman (1983) and Earman (1989). In con-
temporary philosophy of physics it is close to an orthodoxy that spacetimes,
and theories written on spacetimes, should be formulated in this way (see, for
instance, Malament (2012), Pooley (2013), Pitts (2006) and Weatherall (2014)
for recent examples).

The use of differential geometry as the standard language for spacetime
theorising is by now so uniform that it is scarcely defended explicitly. But
those defences which are made (in particular, in the work of Earman, Friedman,
Trautman and Anderson, ibid) generally cite two reasons. Firstly, an important
foundational topic in spacetime theory is the comparisons of the different struc-
tures posited by different theories of spacetime; such comparisons require, or at
any rate are greatly facilitated, by phrasing all such theories in a common lan-
guage. And since general relativity (it is said) is most naturally expressed in the
coordinate-free differential-geometric language, the clearly preferred strategy is
to formulate all spacetime theories in this language.
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Secondly, the traditional physics approach (it is claimed) is based upon an
untenable understanding of coordinates. Expressions like (1) are not invariant
under arbitrary changes of coordinates: in this particular case, the form of the
equation is preserved only under coordinate changes of form (2); under more
general coordinate changes, the equation will change form.

So it is tempting to say that the theory can only be expressed in certain
special coordinate systems. But of course this is not correct: coordinates are
just ways of labelling points in a space, and we can, if we choose to, describe
any theory we like with respect to any coordinates we like. This suggests that
if we want to get out the physical content of a theory, we need to move away
from a characterisation in terms of particular coordinate systems and find some
intrinsic way of describing the structure of the theory. This suggests a move to
a framework which does not intrinsically privilege one coordinate system above
another, and in due course away from coordinate systems altogether: in other
words, to differential geometry.

This objection is generally first attributed to Kretschmann, and was influen-
tial in the development of general relativity and in particular in the understand-
ing of general covariance (see Norton (1993) for a detailed discussion and a more
nuanced account of Kretschmann’s actual view). In the standard (and reason-
ably accurate) account, Einstein originally saw the move from special to general
relativity as a move from a theory which could be formulated only with respect
to a certain collection of coordinate systems (any two of which being related
via a Poincaré transformation) to a ‘generally covariant’ theory which could be
formulated with respect to any coordinate system. Kretschmann objected that
(plausibly) any theory can be so formulated, since coordinates per se are simply
labels, and that any genuinely substantive sense of general covariance had to be
understood some other way.

In contemporary discussions, the most common understanding has been that
general relativity — unlike other spacetime theories — contains no ‘absolute
objects’, understood intuitively to be those differential-geometric objects in a
theory which represent background structure rather than anything dynamical:
in the case of the scalar field theory above, for instance, the absolute objects
are taken to be g and ∇. Anderson and Friedman (ibid.) were influential
both in developing this no-absolute-object interpretation of substantive general
covariance and in proposing a concrete definition of absolute objects; the task
of refining this definition continues today (see Pitts (2006), Pooley (2015), and
references therein for a contemporary summary; see also section 6).

This perspective also informs the consensus view in foundational work on
how the coordinate-based approach is to be understood. Firstly, the spacetime
symmetry group of the theory is declared to be the subgroup of the diffeomor-
phism group which leaves the absolute structures invariant. In the case of the
scalar field theory, this group turns out to be the Poincaré group.

It is then noted that, if the equations defining the theory are expressed with
respect to two coordinate systems (that is, if global issues are put aside, two
smooth injective maps from the manifold to R4) related by an element of the
spacetime symmetry group, then the numerical values of the components of the
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absolute objects will be the same in each. If in particular we can find some
coordinate system in which those components take a particularly simple form,
then we will actually have found a family of such coordinate systems — and the
standard coordinate-based way of writing a theory is to be understood simply as
the differential-geometric theory described with respect to one of these simple
coordinate systems.

For instance, given that∇ is flat, in the scalar field theory we can find coordi-
nates in which the components of g are just the components of the matrix η and
in which the covariant derivative reduces to the ordinary derivative. In those
coordinates, equation (3) reduces to (1). Physics orthodoxy is recovered, but
only derivatively on the more sophisticated differential-geometric framework.

The purpose of this paper is to attempt a rehabilitation of the coordinate-
based approach to physical theories as a legitimate and informative way to
formulate them, and not simply as a crude first stab at a more sophisticated
approach. My intention is not to deny the usefulness for many purposes of the
differential-geometry, coordinate-free approach: that approach is indisputably
useful for a great many purposes. It is to deny its primacy: it is (I will ar-
gue) perfectly possible to make sense of the coordinate-based approach in its
own terms, and doing so, in some circumstances, has advantages pedagogical,
technical and conceptual. Furthermore, when the coordinate-based approach is
understood properly, it will be realised that the ‘coordinate-free’ approach isn’t
as coordinate-free as all that.

2 Kleinian geometry and the concept of a struc-
tured space

Coordinates are rules that assign to each point in a space some N -tuple of real
numbers representing that point. Formally, that makes a coordinate system a
1:1 map f : S → RN from a space S into the N -fold product of the real numbers.
(In due course we will consider local coordinate systems, which coordinatise only
patches of a space; for the moment, we treat all coordinate systems as global.)
S may have some intrinsically characterised structure, in which case we can

use that structure to pick out certain coordinate systems as preferred. For
instance, suppose that S is an N -dimensional vector space. Then certain 1:1
maps from S to RN will be linear, and we can restrict our attention to that
collection of coordinate systems.

Given two coordinate systems f, f ′, we can consider the coordinate transfor-
mation map f ·f ′−1 which maps us from one coordinatisation scheme to another.
In our vector space example, any transformation map between preferred coor-
dinates will have the form

xi →M i
jx
j (4)

where M i
j are the components of an invertible matrix; conversely, given any

preferred (i. e. , linear) coordinate system f and any map g of this form, g · f
will also be preferred.
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A vector space is defined by the operations of addition of vectors and mul-
tiplication of vectors by scalars. And if xi are the coordinates of some vector x
with respect to a given system of coordinates, these operations look like

(ax+ by)i = axi + byi. (5)

Now suppose that we are given S, with its collection of preferred coordinati-
sations but without the intrinsic vector-space structure on S. We can recover
that structure just by defining addition and multiplication via (5), with respect
to a quite arbitrary coordinatisation in the preferred set. How can it be arbi-
trary? Because the requirement that transformations between coordinatisations
have the form (4) guarantees that if that definition holds with respect to one
coordinate system, it holds with respect to any coordinate system.

This means that we have an alternative definition of a (finite-dimensional)
vector space available. Instead of defining it in the usual way, define it as an
unstructured set, plus a collection of bijections from the set to RN , such that
given any one such bijection f in the set, any other bijection f ′ is in the set iff
f · f ′−1 has form (4).1

In what sense are these coordinatisations ‘preferred’? Not in the sense that
the space can only be coordinatised by them. (No law prohibits us coordinatising
a vector space any way we like, after all — for all that is usually unprofitable to
coordinatise it any way except via linear coordinate functions.) Rather, in the
austerely mathematical sense that a set equipped with a family of mappings in
this way is a perfectly respectable mathematical object whose properties can be
studied.

The framework can be generalised. Suppose that G is a group of bijections
of RN . Then a G-structured space is a set S together with a nonempty collection
C of bijections from S to RN (the ‘coordinatisations’ of S), such that if f ∈ C,
then f ′ ∈ C iff f · f ′−1 ∈ G.

This is, in effect, a form of the definition of geometry in Klein’s famous
Erlangen program (Klein 1892). A space coordinatised by only a single map to
RN (that is, a space structured by the trivial group) is effectively just a copy of
RN , with all the associated structure. As the group is made larger, the space
becomes less structured, because any operation defined on the space will have
to be defined in terms of the coordinate systems (there is no other structure
available) and will have to be defined in a way that works equally well for any
such coordinate system (because no one coordinatisation is preferred).

For instance, consider these groups of transformations of R:

1. x→ x

2. x→ λx, λ > 0

3. x→ λx, λ 6= 0

1Formally speaking: the category whose objects are sets equipped with coordinates in this
way, and whose morphisms are maps whose coordinatisations are linear, is equivalent to the
category of vector spaces and linear maps.
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4. x→ ±(x+ a)

5. x→ λx+ a, λ 6= 0

6. x→ f(x), f smooth and with smooth inverse

7. x→ f(x), f continuous and with continuous inverse

8. x→ f(x), f invertible.

These groups each define a structured space (call them S1 through S8). To
discuss their structure, I use unprimed letters x, y, z to discuss the coordinates
of points of the space with respect to one coordinate system and primed letters
x′, y′, z′ to discuss the coordinates of those same points with respect to another
system. So x′ = f(x) where f is some element of the appropriate group.

So: S1 is just a copy of R: any of its features (multiplicative structure,
additive structure, ordering) can be carried over to S1 via the single coordi-
natisation. S2 has discarded the multiplicative structure of R, for (xy)′ 6= x′y′

and so the definition of multiplication is not coordinate-independent. But it
maintains the linear structure ((ax + by)′ = ax′ + by′) and the ordering (if
x > y, x′ > y′). S3 discards the ordering but keeps the linear structure. S4
discards the linear structure but preserves the distances between points (dis-
carded in S2 and S3): |x′ − y′| = |x − y|. S5 discards both distance and
linear structure, but retains the latter for the differences of pairs of points:
(a(x− y) + b(z −w))′ = a(x− y)′ + b(z −w)′. S6 discards even this, but main-
tains enough structure that we can say of a function from S6 to R whether it is
smooth. In S7, all we can do is say if such a function is continuous. And S8 has
no structure at all beyond the bare cardinality of the real line: it is has as many
elements as R but that is all that can be said. (This by no means exhausts the
range of structures that can be so defined; taking f(x) to be monotonic, for
instance, gives a structured space with the same order structure as the real line
but no other structure.)

This Kleinian framework is extremely powerful, as the real-line examples
demonstrate: all that is necessary to define a space is to give a group of trans-
formations of RN . To illustrate further:

• As already noted, a vector space can be defined as having structure group

xi →M i
jx
j (6)

for M i
j invertible. Putting further restrictions on the form of the matrix

M whose components are M i
j defines further spaces:

– Requiring M has positive determinant gives an oriented vector space.

– Requiring M−1 = MT gives an inner product space. (Requiring only
M−1 = λMT for nonzero λ gives a weakening of an inner product
space in which angle but not length is defined.)
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– Requiring M to have determinant ±1 gives a vector space with vol-
ume.

In each case, the structure-defining group is smaller than (i. e. , a subgroup
of) the general linear group that defines a vector space, so more concepts
can be consistently defined. In an oriented vector space, it’s consistent to
define whether two N -tuples of vectors have the same orientation; in an
inner product space the quantity

∑
i v
iwi is well-defined — i. e. coordinate-

independent — and so can be taken to define a bilinear map from vectors
to real numbers; in a vector space with volume the volume enclosed by
an N -tuple is well-defined. (And any of the concepts can be combined to
yield, for instance, an oriented inner-product space).

Alternatively, the second requirement can be replaced by MηM−1 = η.
This makes the space into a Minkowski vector space; its structure group
can be recognised as the Lorentz group.

• An affine space can be defined as having structure group

xi →M i
jx
j + aj (7)

for M i
j invertible. This affine group is larger than (i. e. contains) the gen-

eral linear group, so fewer concepts are definable within it: in particular,
addition of points is no longer defined. However, we have

(yi − xi)→ (M i
jy
j + aj −M i

jx
j − aj) = M i

j(y
j − xj)

so the space of differences between points inherits a vector-space structure.
We can then consistently define, given two pairs of points A,B and C,D,
whether the vector from A to B is the same as, or a multiple of, the vector
from C to D.

Any of the various restrictions on M i
j imposed in the case of vector spaces

can be imposed here too. Imposing M−1 = MT , for instance, restricts the
affine group to the Euclidean group, and defines Euclidean space, in which
the lengths and angles of the vectors joining points are defined. Imposing
MηM−1 = η — that is, taking the structure group to be the Poincaré
group — defines Minkowski spacetime.

• The various spacetimes of pre-relativistic dynamics can also be defined
as structured spaces, just as Minkowski spacetime can. Such spacetimes
are coordinatised by points in R4, and in accordance with normal usage I
label such points (t, x1, x2, x3). They are defined by these groups of maps
(here I follow the terminology of Earman (1989, ch.2)):

1. t→ ±t+ τ, xi → Rijx
j + ai :Newtonian spacetime.

2. t→ ±t+ τ, xi → Rijx
j + vit+ ai: Galilean spacetime.

3. t→ ±t+τ, xi → Rijx
j+ai(t): Maxwellian spacetime (called Newton-

Huygens spacetime by Saunders (2013)).
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4. t→ ±t+ τ, xi → Rij(t)x
j + ai(t) : Leibnizian spacetime

5. t→ f(t) for monotonic f , xi → Rij(t)x
j + ai(t): Machian spacetime.

In each case Rij is orthogonal and any functions of t are smooth.

The first two of these are subgroups of the affine group, so that these
spacetimes can be regarded as affine spaces with extra structure. The last
three cannot be so regarded, due to the arbitrary functions of t that they
contain. Each group is a subgroup of those below it, so that we can see
the move from one spacetime to the next as a successive discarding of
structure.

• Finally, for some structured spaces with even larger structure groups, we
can simply require that the transition functions between coordinatisations
are diffeomorphisms (that is, smooth and with smooth inverse) or home-
omorphisms (continuous with continuous inverse). These two structure
groups give rise, respectively, to a globally trivial differentiable manifold
or to a globally trivial topological manifold, two familiar examples to which
I return in the next section.

I close this section with three general observations about structured spaces.
Firstly, any two such spaces S1, S2 for given G (with coordinatisations C1, C2),
are mathematically equivalent, in the sense that there is a bijection ϕ : S1 → S2
such that f ∈ C2 iff f · ϕ ∈ C1. (Pick arbitrary f1 ∈ C1, f2 ∈ C2, and define
ϕ = f−12 ·f1.) So we can speak (in the same way that we speak of “the torus” or
“the complex field”) of “the G-structured space”: there are no mathematically
salient differences between any two such spaces.

Secondly, if H is a subgroup of G, then any H-structured space can be turned
into a G-structured space just by closing the set of coordinatisations under the
action of G. This amounts to ‘forgetting’ those features of the structure that
are given by H in particular. (Hence, we can forget the inner-product structure
of an inner-product space by widening its structure group from the orthogonal
to the general linear group, and thus obtain a vector space; we can widen it
further to the affine group, obtaining an affine space.)

Finally, the requirement that coordinatisations take values in RN does no
formal work in the definitions above (though it does in each of the specific
examples). We can perfectly well ‘coordinatise’ spaces by complex numbers, or
even by points in more abstract spaces like a vector space. An affine space, for
instance, can be understood as a space structured by the transformation group
x → x + a on a vector space, reflecting the heuristic idea that an affine space
is a vector space whose origin has been discarded. In this characterisation, the
interpretation of the coordinate maps as providing coordinates in the ordinary
sense has fallen away (unlike tuples of real numbers, points in an abstract vector
space are not uniquely individuated and so make poor coordinates) but we
retain the idea of characterising the structure of a space in terms of a class of
identifications of that space with a more richly structured space.
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3 Local coordinate systems and locally struc-
tured spaces

The structured spaces we have discussed are all globally coordinatised by points
in RN . But of course many spaces — the surface of the sphere, for instance —
can be coordinatised only in patches. A coordinatisation of such a space is a
1:1 map, not from the space to RN , but from some subset of the space to some
subset of RN . And the compatibility condition between two coordinatisations
can be imposed only on their overlap.

The framework of structured spaces can be extended to cover this case.
Firstly, recall that an injective partial function from X to Y is a function from
some subset of X to Y such that if f(x) = f(y), then x = y. Local coordi-
natisations of a space S will then be injective partial functions from S to RN .
We can define the domain Dom(f) ⊂ X of the partial function f as the set of
points x for which f(x) is defined, and the range Ran(X) = f(Dom(X)) as the
set of points y for which f(x) = y for some x. The composite g ·f of two partial
functions is defined by g ·f(x) = g(f(x)) whenever that is defined; it is a partial
function with domain

Dom(g · f) = Dom(f) ∩ f−1(Dom(g); Ran(g · f) = Ran(g) ∩ g(Ran)(f). (8)

(If these are empty, the partial function is the trivial empty function, uniquely
defined by the fact that its domain is the empty set.) And the domain set
Dom(G) of a collection G of partial functions is the collection of all domains of
functions in G; the range set Ran(G) is defined similarly.

Given two coordinatisations f and f ′, we can consider the partial function
f ′ · f−1, which is a partial function from RN to itself and which represents the
transformation between the two coordinate systems for those points coordina-
tised by both. Imposing a structure on the allowable coordinatisations is now
a matter of restricting these partial compositions. The relevant notion is the
pseudogroup, a generalisation of a transformation group introduced by Cartan
(1904): a pseudogroup G is a collection of injective partial functions on some
space XG (normally RN ) satisfying these two properties:

Closure: G is closed under composition and taking the inverse.

Local definedness: If f is an injective partial function on XG, and if {Xi} is
a collection of sets in Dom(G) whose union contains Dom(f), then f is in
G whenever its restriction to each of the Xi is.

(Unlike a group, a pseudogroup is an essentially geometric rather than algebraic
object, defined directly as a collection of maps. Various definitions of pseu-
dogroup are in use (cf, e. g. , Veblen and Whitehead (1932, p.37), Kobayashi
and Nomizu (1963, pp.1–2); it is common, though not universal, to include var-
ious topological assumptions about the domains of the mappings, which I here
omit.)

It follows from these definitions that if X ∈ Dom(G), then idX ∈ G. Since
for any f , idX · f is the restriction of f to X, it follows that G is also closed
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under restriction to any set in Dom(G), and hence that Dom(G) is closed under
intersections.

Any nonempty collection of total functions from some X to itself closed under
composition and inversion is a pseudogroup, so transformation groups are special
cases of pseudogroups. A less trivial example is the collection Diffloc(R

N ) of local
diffeomorphisms of RN : the 1:1 partial functions on RN which (i) have open sets
as their domains; (ii) are smooth; (iii) have smooth inverses. Similarly, we can
define the group of local homeomorphisms (maps which are homeomorphisms
between open sets in RN (continuous 1:1 maps between open sets in RN with
continuous inverses), local affine maps (1:1 maps between open sets in RN that
are affine — xi → Rijx

j + ai with Rij invertible — on any connected subset),

local Euclidean maps (1:1 maps between open sets in RN that are Euclidean —
xi → Rijx

j + ai with Rij self-adjoint — on any connected subset), and so forth.

If we use CN in place of RN as a coordinate space, the group of locally analytic
maps is also a pseudogroup.

Now, given a pseudogroup G, a locally G-structured space is then defined by:

• A set S.

• A collection C of 1:1 partial functions from S to XG — the local coordi-
natisations (or charts)— such that

1. Every point in S lies in the domain of some element of C;
2. Ran(C) ⊂ Dom(G), i. e. the range of every local coordinatisation is

the domain of one of the partial functions in G.

3. For any partial function f : S → RN whose range is in Dom(G),
f ∈ C iff for any f ′ ∈ C the compatibility condition

f · f ′−1 ∈ G (9)

is satisfied.

It should be apparent that this generalises our previous concept of structured
space. More interestingly, it contains the standard case of differentiable mani-
folds as a special case: on this definition (I claim) a differentiable manifold is a
space locally structured by Diffloc(R

N ).
This is worth dwelling on. A manifold M as typically defined (see, e. g. ,

(Kobayashi and Nomizu 1963, pp.2–3)) is a topological space equipped with an
atlas of local homeomorphisms between open subsets of M and open subsets
of RN , such that (i) any two charts in the atlas are compatible in the above
sense, and (ii) any point in M lies in the domain of at least one chart. An
atlas is maximal if additional charts cannot be added to it without breaking
the compatibility condition, but it is not usually required of a manifold that its
atlas be maximal.

However, any atlas has a unique extension to a maximal atlas; conversely,
it is tacit in differentiable topology that any notion defined on a manifold must
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remain well-defined if the manifold’s atlas is extended to be maximal. (A man-
ifold globally diffeomorphic to RN may be coordinatised by a single chart, but
it would not be legitimate in differentiable topology to define a function on the
manifold as linear simply because it is linear with respect to that one chart!)
Or, more precisely: sometimes the atlas is restricted so as not to be maximal,
but such restrictions are always used to define extra structure (as in the case of
analytic manifolds or fiber bundles, both of which I return to below).

Furthermore, the requirement that a manifold’s maps be local homeomor-
phisms is dispensible: the topology, as well as the differentiable structure, of
the manifold may be inherited from the charts of a maximal atlas. Specifically,
the set of all domains of charts in the atlas is closed under intersection and its
union is the whole manifold; this set forms a base, in the topological sense, for
the manifold, and with respect to this topology it may readily be verified that
all charts are in fact homeomorphisms.2

Just as Diffloc(R
N ) defines the differentiable manifolds, each of our other

examples of pseudogroups defines a locally structured space. The local homeo-
morphisms define the topological manifolds; the locally affine maps, the locally
affine manifolds; the locally Euclidean maps, the locally Euclidean manifolds;
the locally analytic maps, the analytic manifolds. In each case, a class of spaces
is defined, whereas for the global notion of structure, each group of transfor-
mations defined only a single space. However, the notion of atlas generalises
from the manifold case (an atlas is a collection of coordinatisations obeying the
compatibility condition and jointly coordinatising the space), as does the result
that any atlas determines a unique maximal atlas. For suppose that the charts
in the atlas are h1, . . . hi, . . . with Dom(hi) = Xi. and that charts f, f ′ are both
compatible with each hi. Then

(f ′ · h−1i ) · (hi · f−1) = f ′ · idX · f−1 ∈ G, (10)

Domf−1 ⊆ ∪if(Xi) (11)

and
f ′ · idX · f−1 = f ′ · f−1|Xi

. (12)

By the local definedness condition, f−1 · f ′ ∈ G and so the two charts are
compatible with each other; the set of all charts compatible with the atlas is
therefore a maximal atlas and is unique. (This is just a generalisation of the
well-known proof of the same result in manifold theory.)

For instance, the circle can be coordinatised by two charts f1, f2, with com-
patibility conditions

f2 · f−11 (x) = π − x 0 < x < π

f2 · f−11 (x) = −π + x − π < x < 0. (13)

The partial function f2 · f−11 is smooth, and so this pair of charts may be taken
as an atlas and the circle can be regarded as a differentiable manifold. However,

2See (Lang 1999, pp.22–23) for an author who defines manifold topology this way.
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the partial function also lies in the pseudogroups of local homeomorphisms,
local affine maps, and local Euclidean maps. Constructing a maximal atlas
with respect to each of these pseudogroups allows us to realise the circle as a
topological manifold, a locally affine manifold, or a locally Euclidean manifold,
including different amounts of the circle’s structure in each case. For instance,
on the circle qua locally Euclidean space we can say what the distance is between
any two points; we cannot do this for the circle qua locally affine space but we
can say of two pairs of points x, y and x′, y′ what the ratio is between the two
pairs of distances.

An important class of additional examples are the fiber bundles, also famil-
iar from mathematical physics. A fiber bundle is normally3 defined (cf, e. g. ,
(Nakahara 1991, pp.305–312) as a tuple 〈E,B, F,G,Φ〉, where:

• E (the total space), B (the base space), and F (the typical fiber) are
manifolds;

• G is a group of 1:1 diffeomorphisms of F ;

• Φ is a collection of diffeomorphisms fi between open subsets of F and sets
Ui × F , where U ⊆ B is open, where every x ∈ E lies in the domain of
some fi, where the fi satisfy the compatibility condition

fi · f−1j (x, y) = (x, ϕ(x) · y) (14)

whenever it is defined for ϕ a smooth map from Ui × Uj to G. (Φ is
typically not explicitly required to be maximal under this condition, but
as with manifolds, well-defined notions on a fiber bundle need to remain
well-defined if it is extended to be maximal.)

This clearly has the flavour of our local-structure definitions: the bundle is
defined as being locally isomorphic to a product space, and there is no single
preferred local product structure but rather a family related by some transfor-
mation group. We can shift it still closer by combining the charts that define
B itself with the charts that define the bundle. In this case, Φ is replaced with
a collection of partial functions from E to RN × F , where each partial function
has domain Ui×F for some open Ui ⊂ RN . The compatibility condition is then

fi · f−1j (x, y) = (h(x), ϕ(x) · y) (15)

where h is a local diffeomorphism of RN .
The family of partial functions satisfying this condition is readily identi-

fied as a pseudogroup, and a fiber bundle can be redefined simply as a space
locally structured by this pseudogroup. Indeed, we can readily generalise to
bundles over structured spaces that are not manifolds: simply define a bundle
pseudogroup as a collection of injective partial functions on some space T × F ,
where

3Specifically, this is the normal way to define a fiber bundle when the structure group
is intrinsic in the definition. An alternative approach characterises a fiber bundle without
specific mention of structure group, and adds the latter later.
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1. each such function has domain D×F and range R×F for some D,R ⊂ T ;

2. there is a group GF , the structure group, of (total) 1:1 functions on F ,
and a pseudogroup GT of partial functions on T , such that elements of the
bundle pseudgroup are exactly the functions of form

g(x, y) = (gT ·, ϕ(x) · y) (16)

where gT ∈ GT and ϕ is a smooth map4 from the domain of gT to GF .

A bundle can then be defined as a space locally structured by a bundle pseu-
dogroup. The equivalence relation u ∼ v if f(u) = (x, y) and f(v) = (x, y′),
defined locally on the bundle by an arbitrary chart f , is easily verified to be
chart-independent; the equivalence classes of this relation are the fibers, each of
which is structured by the structure group, and the quotient with respect to the
relation is the base space, coordinatised locally by the quotients of the charts
for the bundle and hence locally structured by the pseudogroup GT .

4 Physical theories on structured spaces

Let us return to the scalar field. The Kleinian language of structured spaces
allows us to define that theory as follows: it is a real function on a structured
space, satisfying equation (1) with respect to any one of the charts of that
structured space, and where the structure group of that space is the dynamical
symmetry group of that equation. (If we wanted to leave the global topology
of the theory open, we could stipulate simply that the function satisfies this
equation with respect to any one of the charts of a locally structured space.)

I want to claim that this presentation of a theory is on just as solid math-
ematical and physical grounds as the differential-geometric presentations more
normally used in foundational discussions. Firstly (and counter-intuitively) it
is a coordinate-independent specification of the theory. For to say that a state-
ment is coordinate-dependent is to say that its truth value depends on the
coordinate system in which it is evaluated. If I say that I am standing at coor-
dinates (0,0,1), without saying which coordinate system I have in mind, or that
I have velocity zero, I say something coordinate-dependent. But a statement
does not become coordinate-dependent simply because it refers to a coordinate
system. If I say that I am standing at latitude 51.7519 N, longitude 1.2578
W in standard longitude-latitude coordinates, I communicate my location as
coordinate-independently as if I tell you that I am in Oxford. Similarly, to say
that I have velocity zero in a reference frame comoving with respect to Oxford,
my statement is as coordinate-independent as if I say that my world line and
Oxford’s are parallel.

To stress this point, note that there is no prohibition on describing the scalar
field in a coordinate system that isn’t in the preferred set of coordinatisations

4This definition requires, therefore, that notions of smoothness are defined in the spaces F
and T , and so that each has (at least) the structure of a differentiable manifold.
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that structures the space. A coordinate system is just a map from the space
to R4; the scalar field can be described with respect to any such map. Indeed,
if we use a set of coordinates X0, X1, X2, X3 expressible as twice-differentiable
functions of some set x0, x1, x2, x3 of preferred coordinates, elementary calculus
tells us that the equation of motion with respect to these coordinates is

ηµν
{(

∂Xσ

∂xµ

)(
∂Xτ

∂xν

)
∂2ϕ

∂Xσ∂Xτ
+

∂2Xσ

∂xµ∂xν
∂ϕ

∂Xσ

}
+m2ϕ+

λ

3!
ϕ3 = 0 (17)

More elementary calculus tells us that if (and only if) the new coordinates are
actually in the original set, this reduces to the original equation.

This is not of the same form as the original equation, of course. But what
of it? Kretschmann may have had a point that any theory can be cast in a form
where its equations of motion are form-invariant, but that is far from saying
that a theory must be so cast. But in any case, the same moral applies in
generally covariant theories. They have preferred coordinate systems too: all
the elements of a maximal atlas, which is to say all the coordinate systems where
the coordinate functions are smooth. But nothing prohibits us from using a set
of coordinates that are continuous but not smooth. Indeed, nothing (beyond the
fact that life is short) prohibits us from “coordinatising” a manifold via a wildly
discontinuous map from the manifold into R, if we so choose, say by using an
ordinary coordinate system and then applying one of the standard maps from
R4 onto R. The equations of motion of the theory will not be simple in such a
coordinatisation (to put it mildly) but it’s a free country: we can use it if we so
choose.

A critic might object: your account is coordinate-independent, but the differential-
geometry account is coordinate-free, in that it does not refer to coordinates at
all. And if a “coordinate-free” account of a theory is one that makes no use of
functions from spacetime to RN in characterising the structure of that space-
time, fair enough: the structured-space account is not coordinate-free. But in
the first place, it is not clear why this should matter. The “coordinate systems”
to which we refer here — for better or for worse — are not definitionally things
to be understood operationally, as ways in which humans label events. They are
pieces of mathematical structure, as abstract as any metric or affine connection,
and — prior to physical interpretation — as devoid of operational content.

More importantly, if this is what “coordinate-free” means, the differential-
geometry account is not coordinate-free either. For as we have seen, the man-
ifolds on which differential geometry is defined are themselves just structured
spaces in the Kleinian sense, structured by the diffeomorphism group (or the
local diffeomorphism pseudogroup in the case of globally nontrivial manifolds).
So if there is something wrong with specifying the structure of a space a la
Klein, differential geometry does not right this wrong.

Nor is this unique to the case of manifolds. We have also seen that fiber
bundles, the workhorses of contemporary mathematical physics, are also locally
structured spaces, characterised by classes of coordinatisations just as manifolds
are.
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The notation of coordinate-free differential geometry hides this dependence,
building a hierarchy of geometrically defined entities on the manifold and char-
acterising those entities intrinsically in ways that make no explicit reference to
any coordinate system. But reference is there nonetheless. A vector field, for in-
stance, characterised in about the most abstract way available as a derivation of
smooth functions, is nonetheless a functional on a space of functions defined as
exactly those functions which, in coordinates, are infinitely-often differentiable.

(As a further reminder that differentiable structure is not innocent, it is
worth noting that there are uncountably many non-diffeomorphic manifolds all
topologically identical to R4 (the so-called “exotic R4s— Freedman and Taylor
1986). We are saying something real and substantive — at least mathematically
speaking — about a space when we give its differentiable structure.)

Ironically, genuinely coordinate-free theories are somewhat easier to come by
in simpler systems. Galilean and Minkowski spacetime, from a structured-space
perspective, are affine spaces with additional structure, and affine spaces can be
characterised intrinsically as sets on which a vector space acts freely and tran-
sitively as an additive group. (Stachel (1993) has stressed this alternative con-
ception of pre-general-relativistic spacetimes and its foundational significance.)
But whether or not characterising a space via the action of a group on that
space is somehow preferable to characterising it via a group of maps of that
space to another space, there is no elementary coordinate-free way to define a
differentiable manifold.5

5 Beyond real scalar fields

The appeal to symmetries of equations to determine the structure of the space
on which they are defined goes beyond the case of the real scalar fields we have
discussed so far. In the case of electromagnetism, for instance, the realisation
that the Maxwell equations had the Poincaré group as a symmetry was a central
part of the discovery of special relativity. But the action of that group is only
a symmetry if the field components as well as the spacetime coordinates are
transformed in the appropriate way, and ‘the appropriate way’ — mixing electric
and magnetic fields in a subtle combination — did not follow purely from the
geometry but required the equations themselves. (That is: why do the fields
transform this way? Because if they do, the form of the equations is invariant.)

The general framework of structured spaces can be extended straightfor-
wardly to more general fields fields. To begin with, suppose that we have a
theory which, in coordinates, is concerned with a field represented by some

5It can be defined as a topological space together with a ring of real functions on that
space, taken definitionally to be the smooth functions (see, e. g. , Nestruev (2003) for details,
and Rosenstock, Barrett, and Weatherall (2015) for conceptual discussion in the context of
general relativitiy); but (i) that ring, definitionally, must be locally isomorphic to the algebra
of smooth functions on RN , so use of RN as a coordinatisation of the space is not thereby
abandoned; (ii) it’s not clear to me that there is really a substantive conceptual advantage to
characterising a space via a preferred family of functions to RN3 rather than via a preferred
family of functions to R.
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function
f : RN → RK . (18)

(In electromagnetism, for instance, N = 4 and K = 6: fields assign to each
quadruple of spacetime coordinates a triple of E-field coordinates and a triple
of B-field coordinates.) A field symmetry (here, roughly, I follow Olver 2000) is
then a bijection of RN × RK of the particular form

(x, u)→ (ϕ(x), ψ(x, u)) (19)

— that is, the transformation of the field values can depend on the spacetime
coordinate but not vice versa. (In the physics literature, the common terminol-
ogy of dependent and independent variables reflects this.) Equivalently, for each
x ∈ RN , ψ(x, ·) is a bjiection of RK , and I write this bijection as ψx.6

This induces a transformation on fields:

f → f ′; f ′(ϕ(x)) = ψx · f(x) (20)

More succinctly (and in closer conformity with the physics literature), writing
x′ = ϕ(x) we have

f ′(x′) = ψx · f(x). (21)

We can now consider a group of such transformations; or, equivalently, the
action of an abstractly-characterised group G via such transformations:

g → (ϕg, ψg). (22)

The group composition rule becomes

ϕhg = ϕhϕg ψxhg = ψ
ϕg(x)
h ψxg . (23)

We can define the internal subgroup I of G as the group of elements which keep
the independent variable fixed:

g ∈ I iff ϕg = id. (24)

The spacetime group GS defined by the action of G is then just the quotient of
G by I; equivalently, it is the quotient of G by the equivalence relation

g ∼ g′ iff ϕg = ϕg′ . (25)

And of course, we can consider a structured space modelled on RN ×RK , with
this action of G as its structure group. Any such space will have associated with
it another structured space, modelled on RN , with GS (acting via g → ϕg) as its
structure group; we can consider this space, the base space S, as the spacetime
on which the fields are defined.

6Readers familiar with category theory and/or functional programming will recognise the
operation of currying.
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For the moment, consider the case where the internal symmetry group is
trivial, so that the action of an element of G on spacetime points determines
its action on fields. We can distinguish two cases: the global case, where ψxg
is independent of x, and the local case, where ψxg generically depends on x. In
the former case, we can think of fields as (represented by) a kind of function to
some other space T ' RK ; in the latter case, as some kind of section, where
f(x) lives in its own space Tx ' RK . But in each case, the space in which
f(x) lives cannot be thought of as a structured space independent of S: any
coordinatisation of S determines a unique coordinatisation of T , or of the Tx.

For instance, taking K = N , a (contravariant) vector field is, by definition,
one that transforms like

V ′µ(x′) =
∂x′µ

∂xν
V ν . (26)

If the spacetime symmetry group is trivial, a vector field is just an arbitrary
N -tuple of real functions on RN . If — as in the cases of Euclidean space, and of
Newtonian, Galilean and Minkowski spacetime — it is nontrivial but linear (so
that the partial derivatives do not themselves depend on x), then the transfor-
mation rule does not depend on the point of spacetime at which it is evaluated,
and the vector field can be thought of as a function to a single space, which can
be identified with the associated vector space of the spacetime regarded as an
affine space. If the spacetime structure group is the full diffeomorphism group,
the transformation rule is itself spacetime-dependent, and the vector field at a
point must be thought of as defined in a space associated to that point, and
which can be identified as the tangent space to that point (so that the whole
structured space is the tangent bundle). And there are intermediate cases: in
Leibnizian or Maxwellian spacetime, for instance, the partial derivatives depend
on time but not on space, so that a vector at a point can be thought of as living
in a space defined for the entire spatial slice at that point (and which can be
identified as the vector space associated to the 3-dimensional affine space of
spacetime points at that fixed time).

Tensor fields of more general form can be defined in a way familiar from the
mainstream physics literature (see, e. g. , Weinberg (1972) or Zee (2013)): for
instance, a (1, 2) tensor transforms, by definition, like

T ′µαβ =
∂x′µ

∂xν
T νστ

∂xσ

∂x′α
∂xτ

∂x′β
(27)

As a slightly different example, taking K = N3, an affine connection can be
defined by the transformation law

T ′µαβ =
∂x′µ

∂xν
T νστ

∂xσ

∂x′α
∂xτ

∂x′β
− ∂xµ

∂x′τ
∂2x′τ

∂xα∂xβ
. (28)

If the spacetime coordinate transformations are linear, then the second term
vanishes identically, and so the transformation rule for a connection is the same
as for a (1,2) tensor — and so in this case, a connection is a (1,2) tensor. But
in the more general case (for instance, for a differentiable manifold), this term
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is nonvanishing and so, by definition, a connection is not a tensor in these cases.
A connection can be used to define a derivative operator on vector fields:

∇νV µ = ∂νV
µ + TµναV

α, (29)

and indeed the transformation rule (28) can be derived by requiring ∇νV µ to
transform as a (1,1) tensor.

Now consider the case of nontrivial internal symmetries. For a given point
x, the local internal symmetry group Ix of x is Ix = I/Kx, where

Kx = {g ∈ I : ψxg = idx}. (30)

Given x, y ∈ RN , suppose there is some ξ ∈ G such that ϕξ(x) = y. Then
a quick calculation gives g ∈ Ky iff ξ−1gξ ∈ Kx. It follows that Ix and Iy
are isomorphic as groups, related by the automorphism g → ξ−1gξ. If we
assume that the spacetime group is transitive, i. e. for any x, y there is such a
ξ (something that holds for all the spacetimes we have considered so far, and
which just codifies the fact that any point in RN can be used as a coordinate),
then the local internal symmetry groups of any two points are isomorphic and
we can speak unambiguously of ‘the’ local internal symmetry group Iloc.

We can now distinguish two important possibilities (these are mathemati-
cally non-exhaustive, but cover all the physical cases of which I am aware):

Global internal symmetries: I ' Iloc, so that the action ψx of the internal
symmetry group at any point determines its action everywhere.

Local internal symmetries: elements of I are smooth functions from RN to
Iloc, with the group rule defined pointwise: hg(x) = h(x)g(x).

To visualise the geometry here, first consder the scalar case: here G = GS × I,
and the action of (g, h) is

(g, h)→ (ϕg, ψ
x
h). (31)

In this case, the space of internal degrees of freedom of the field transform
trivially under spacetime transformations. If the internal symmetry group is
global, fields are then maps from spacetime (structured by GS) to an internal
space structured by I. If it is local, fields are instead sections of a fibre bundle
over spacetime, with Iloc as structure group. The nonscalar case, in which the
various field components transform under both internal and spacetime transfor-
mations, is more complicated but still describable in the general framework.

6 Virtues of the structured-space approach

I have argued that the structured space approach to defining a spacetime theory
— give the field’s equations in coordinates, and state that the theory is defined
on a structured space and that the structure group is the symmetry group of
the equations — is conceptually and mathematically well-motivated. But does
it have any actual advantages? Here I give several: my purpose is not to argue
for its preeminence in all circumstances but simply for its usefulness in some.
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Cohesion with physical practice

In physics — and in particular in particle physics — it is absolutely standard
to define theories via coordinate systems. While any such theory can usually
be cast into a coordinate-free form, doing so can often be complicated and can
render obscure pieces of physical reasoning that are fairly transparent from the
coordinate-based perspective. This in turn can make it unnecessarily difficult
to engage with arguments in the physics literature.

As an illustrative example, consider the case of a four-vector field on Minkowski
spacetime. It is normally claimed (e. g. , Lifshitz et al (1982, Ch.II)) that the
only viable equation of motion for such a field (in the absence of interactions)
is given (in coordinates) by

∂ν∂νA
µ − ∂µ∂νAν +m2Aµ = 0. (32)

(Here, as usual, ∂µ = ηµν∂ν .) This equation is readily cast into differential-
geometric form, on a flat pseudo-Riemannian manifold with metric g and co-
variant derivative ∇: since the connection is flat, ∇2 is a well-defined operator
on any vector or tensor field and we have

∇2A−∇(∇ ·A) +m2A = 0 (33)

where A is a vector field, i. e. a section of the tangent bundle.
Prima facie, there is at least one other equation of motion available. We can

equally well consider
∂ν∂νA

µ +m2Aµ = 0, (34)

which certainly looks like a dynamical equation for a vector field, and which
goes over perfectly happily into differential geometry as

∇2A+m2A = 0. (35)

So in what sense is this not a legitimate equation for a vector field? In the
coordinate-based approach, we need to look at the symmetry group of each
equation. The symmetry group of the first is simply the Poincaré group, acting
simultaneously on the coordinates and field values:

A
′µ(Λαβx

β + aα) = ΛµνA
ν(xα) (36)

for arbitrary Lorentz transformation Λ. In the coordinate-based approach this
is what it means for Aµ to be a vector field. On the other hand, the symmetry
group of the second is the product of the Poincaré group with the general linear
group GL(4,R), acting like

A
′µ(Λαβx

β + aα) = RµνA
ν(xα) (37)

where now R is an arbitrary invertible matrix, independent of Λ. So (again
in the coordinate-based approach) this means that Aµ is not a vector field at
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all, but rather a scalar field with a 4-dimensional space of internal degrees of
freedom (a Higgs scalar, that is).

From a coordinate-free perspective, the “right” way to represent the second
theory is not as a section of the tangent bundle, but rather as a function from the
manifold to a vector space of internal degrees of freedom. But it is not so trivial
to say just what was ‘wrong’ about the representation of the theory as a vector
field. After all, it is perfectly meaningful to say, in a coordinate-free way, that
the dynamically allowed fields are just those satisfying (∇2 + m2)A = 0. The
right way to understand the problem is probably to observe that the spacetime
and dynamical symmetries of the theory do not match correctly (cf Earman
(1989, pp.46–7)). But the puzzle only arises to begin with because we are
determining the geometric representation of the theory before rather than after
looking at the dynamical symmetries of the equations of motion.

Identification of absolute structure, and the search for sub-
stantive general covariance

In the Anderson-Friedman absolute-objects program, the presence of preferred
coordinate systems (preferred, that is, beyond the family of smooth coordinate
systems preferred in the definition of a manifold) is taken to indicate the pres-
ence of absolute structure (Newtonian spacetime being the paradigm of such
structure) and the absolute structure can be identified by casting the theory
into generally covariant form and looking for those objects in the theory that
are invariant across models (in an appropriate sense, albeit one that has proven
awkward to make precise). ”Substantive general covariance”, the elusive prop-
erty which Einstein sought in general relativity, is then to be characterised as
the absence of any such absolute objects. From this perspective, leaving a the-
ory in a formulation that makes use of a preferred coordinatisation simply hides
the absolute structure from view.

I have already suggested that differential-geometric frameworks are not as
coordinate-free as they look, so pushing the Anderson-Friedman program to
its logical conclusion might suggest that even the differentiable and topological
structures on manifolds ought to be regarded as absolute structure in some sense
(a suggestion that periodically arises, usually informally, in conversations about
quantum gravity, though not one that has led to concrete results to the best of
my knowledge). But leaving that aside, the Anderson-Friedman program seems
to build in an a priori assumption that the absolute structures to be identified
can be naturally characterised in differential-geometric terms.

To expand: given a theory whose equations of motion, given in coordinates,
are invariant under smooth transformations, that theory will naturally end up
geometrised via differential geometry. But a theory whose invariance group is
much smaller might well have a very different geometry. We have seen that the
abstract geometries of vector and affine spaces can be characterised via their
structure groups; conversely, theories with such structure groups might most
naturally be thought of as vector or affine spaces and not as manifolds at all
(a point stressed by (Stachel 1993)). While the latter spaces can in turn be
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realised as certain manifolds, it is less clear that this is the most perspicuous
way of realising them.

Now, there may be concrete reasons why (a given version of) the Anderson-
Friedman program can justify a particular focus on differential geometry. Per-
haps we need to place all the spacetime theories under consideration in a single
framework; perhaps we are moved by Kretschmann’s point-coincidence argu-
ment to privilege topological (or perhaps differential-topological) features of a
theory above all others. But the issue is not much discussed and a reader of the
literature can be left with the impression that the differential-geometry char-
acterisation of a spacetime theory is used in this program not because of its
advantages over other approaches but because it is the only game in town.

Furthermore, even if we are concerned with comparison of general relativity
(where the differential-geometry framework is more or less compulsory) with
other spacetime theories, differential geometry is not the only way to make the
comparison, and hides features as well as revealing them. In particular, from a
differential-geometry perspective, the difference between spacetime geometry in
general relativity and in its predecessors comes down to whether that geometry
is flat or curved. From the alternative perspective, it is more a question of
whether it is global or local: that is, whether or not the geometry is differential.
Describing the global geometries of Newtonian or special-relativistic physics via
a locally-defined connection that just happens to be flat has its advantages but
obscures this global/local distinction.

Similarly, one way to work out what is distinctive about general relativity
is to cast it and its predecessors into differential-geometric form and look at
which objects are absolute. But another is to cast it and its predecessors into
structured-space form and compare the structure groups. From this perspective,
what is distinctive about general relativity in this framework is not that it can be
formulated on a space with as little (Kleinian) structure as the local diffeomor-
phism group, but that apparently it must be so formulated, whereas other the-
ories have straightforward formulations on much more structured spaces. This
is not a new idea in the substantive-general-covariance dispute (Norton’s exten-
sive review (1993) of that dispute attributes it first (p.828) to Bergmann (1942,
p.129)) and has recently been defended by Pooley (2015) (“The idea is that it
is the lack of a non-dieomorphism-invariant formulation, rather than the exis-
tence of a dieomorphism-invariant formalism, that is themark of a background-
independent theory”) but it seems to have received relatively little attention in
recent discussions.

Brown’s dynamical characterisation of geometry

Harvey Brown (most sustainedly in Brown 2005) has long advocated an ap-
proach to spacetime structure whereby the structure of spacetime is derivative
on the dynamical symmetries of the equations of motion, in contrast to the
(Brown claims) more usual view in philosophy of physics that we specify a dy-
namical theory by first specifying the spacetime on which it is defined and then
setting out equations of motion specified with respect to the structures present
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on that spacetime. (See Earman ibid, Friedman ibid, and Maudlin (2012) for
explicit advocacy of this latter view.)

As long as spacetime theories are automatically cast in differential-geometric
form, it is hard even to make sense of Brown’s program. (The best attempt I
know is Pooley 2013, s.6.3.2.) But it is clear that this is not what Brown has in
mind: indeed, his discussion makes extensive use of coordinate systems and co-
ordinate transformations and little use of differential geometry. The structured-
space way of formulating a dynamical theory offers a theoretical framework in
which Brown’s basic proposal is easier to state and thus to assess fairly. (I am
unclear whether my discussion should count as a development of Brown’s posi-
tion or simply as Brown exegesis; certainly Brown is aware of, and makes use
of, the Kleinian conception of spaces in terms of their symmetry groups.)

As a first attempt at realising Brown’s position in the structured-space
framework, we might try the following (for field theories): there is some co-
ordinatisation of spacetime (or perhaps, as Pooley suggests, of the various parts
of the field regarded as an extended body) and of the space of field values, such
that, with respect to that coordinatisation, the equations of motion are XYZ.
(Mathematically, this is perfectly definable: the theory is given by a family of
maps from unstructured space S to unstructured space F , each representing a
dynamically possible state of affairs. Which family of maps? One such that
there exist coordinate systems on S and T with respect to which the equations
of motion are XYZ.) The structure group can then be defined in terms of the
equations of motion, and need not be postulated prior to the stipulation of these
equations.

That is not to say that Brown’s approach is compulsory in a presentation
of spacetime theories based on structure (pseudo-)groups. I characterised such
theories as having structure groups tacitly determined by the equations of mo-
tion, but it’s mathematically coherent (if perhaps physically obscure) to start
with a structured space with group G and then write down on that space a the-
ory whose dynamical symmetry group is larger than G. (This is the realisation
in the structured-space format of Earman’s distinction between spacetime and
dynamical symmetries.) It is to say that the structure-group framework at least
provides a starting point for discussion of the approach.

Pedagogy

Last but not least, the structured-space way of defining spaces is very often much
simpler to explain and work with than the differential-geometry approach. To
characterise Newtonian spacetime — a conceptually fairly simple and intuitive
spacetime — even in qualitative differential-geometric terms takes Friedman
(1983, pp.71–78) some eight pages. To do it properly requires familiarity with
mathematics generally studied at graduate level. In contrast, it takes about a
line to define the spacetime in terms of its symmetry group, and that line needs
no mathematics beyond a little linear algebra.

Similarly, the five prerelativistic spacetimes discussed in section 2 can be
defined in the structured-space approach simply by giving their structure groups,
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and the relations between them can be seen simply in the fact that each structure
group contains its predecessors as subgroups. To define these spaces through
differential geometry is in each case quite nontrivial and unintuitive.7 (The
most elegant differential-geometric definition I know of Maxwellian spacetime,
for instance (Weatherall 2014) makes use of two degenerate metrics and an
infinite equivalence class of flat affine connections.)

The same can also be seen in the more abstract mathematical spaces dis-
cussed in section 2. It is rather striking that the move from a vector space, to an
oriented vector space, to a Euclidean vector space (oriented or not), to a vector
space with a notion of relative but not absolute distance, is achieved in each
case by a simple modification of the structure group. To define these various
notions in a coordinate-free way takes work, and often the work can be feel as if
it is just a reconstruction of something antecedently understood perfectly well
in terms of coordinate systems.

For one more example, consider the case of phase space (understood in its
own right and not as derivative on a configuration space). Foundational defini-
tions of phase space (e. g. Arnol’d 1989; Abraham and Marsden 1978) typically
define phase space as a symplectic manifold: a differentiable manifold of even
dimension equipped with a closed nondegenerate two-form ω. The dynamics on
that phase space is then defined as associating to any smooth function F on the
manifold a vector field XF , defined by

ω(XF , ·) = dF. (38)

The Poisson bracket of two functions is defined by

X{F,G} = [XF , XG]LB (39)

where [, ]LB denotes the Lie bracket.
This is undeniably concise and elegant, especially for those familiar with

differential forms. It is also strikingly unfamiliar even to those who have studied
abstract classical mechanics in more familiar forms. Fairly significant work is
required to relate the above definition to the usual talk of q and p.

From a structured-space starting point, we instead define the Poisson bracket
on R2N in an utterly familiar way: using q1, . . . qN to label the first N coordi-
nates and p1, . . . pN the second N , we define

{F,G} =
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
. (40)

A canonical transformation is then any smooth map of R2N to itself that pre-
serves the Poisson bracket, i. e. f is canonical iff {F · f,G · f} = {F,G} · f
for all F,G. The pseudogroup of local canonical transformations consists of
all local diffeomorphisms that are canonical transformations on their connected

7I concede that simplicity and intuitiveness in matters of pedagogy can be somewhat
subjective; not all share my intuitions here!
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components. And a phase space is a space locally structured by canonical trans-
formations. (This definition also has the advantage that it makes explicit that
any two phase spaces of the same dimension are locally isomorphic. This result
(Darboux’s theorem) is far from obvious in the symplectic manifold approach.)

This is not to say that the abstract symplectic definition does not sometimes
do important foundational work (it is crucial, for instance, in Wald’s (1994) dis-
cussion of quantization). But adopting that definition simply out of a misplaced
conviction that mathematical rigor demands it just seems to serve to make one’s
arguments less accessible than they might be.

Of course, true mastery of general relativity, or classical mechanics, or differ-
ential geometry requires a proper understanding of coordinate-free definitions of
concepts. But then true mastery also requires easy familiarity with coordinate-
based approaches. In exegesis, meanwhile, one ought to use whichever approach
is clearer and easier to understand. Often (by no means always) that is a
coordinate-transformation-based and not coordinate-free approach.

7 Kleinian vs. Riemannian conceptions of ge-
ometry

I have noted that much of the contemporary foundational literature on space-
time uncritically assumes that differential geometry is the only sensible way
to characterise spacetime structure. An important exception is Norton (2001,
1999, 1993), who explicitly discusses Klein’s Erlangen program and indeed at-
tributes much of the historical controversy over substantive general covariance
to confusion between transformation-based and differential-geometric ways of
characterising geometry.

Norton, however, regards the Kleinian approach to geometry as essentially
superseded in contemporary spacetime physics. Specifically, he draws a contrast
between two rival programs for the characterisation of geometry (as of the early
20th century): Klein’s, in which geometry is characterised via the invariance
groups of the geometry under transformations, and Riemann’s, in which geome-
try is characterised via metric tensors and similar differential-geometric objects.
As Norton sees it, the move from special to general relativity is really a move
from a Kleinian to a Riemannian conception of spacetime geometry. (He does
not claim originality for this observation, and attributes it (Norton 1993, p.832)
first to Cartan (1927).)

But it seems too strong to say that geometry simpliciter in modern physics
is Riemannian in character. For one thing, we have seen that even a general-
relativistic spacetime still has a Kleinian geometry, given by its atlas, and its
Riemannian geometry is not even definable until that Kleinian geometry is in
place. Furthermore, other spaces used in contemporary physics have significant
Kleinian geometry, as we have seen from our consideration of fiber bundles.
Even some contemporary formulations of general relativity (such as those on
spinor or SO(3, 1) vector bundles; cf Rovelli (2004) and references therein) have
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a Klein geometry significantly richer than that defined by smooth maps. And
of course, many of the more abstract spaces used in physics — vector spaces,
in particular — may have manifold structure but are not defined as manifolds
with additional structure; their geometries are Kleinian if they are either.

Rather than one conception of geometry having won out in modern physics,
we actually have peaceful coexistence. Spaces used in physics pretty much
always have a Kleinian geometry. Many also have a Riemann-type geome-
try. Sometimes, indeed, the same geometry can be characterised in Kleinian
or Riemann-type ways: symplectic or canonical-transformation definitions of
phase space; differential-geometric or structured-space characterisation of clas-
sical spacetimes.

But which is the true geometry? In a particular physical context this ques-
tion may be well posed: Knox 2013, 2014, for instance, building on Brown
(ibid, characterises spacetime geometry functionally in terms of inertial struc-
ture, and from this point of view spacetime geometry is realised a la Klein in
non-gravitational theories and a la Riemann in general relativity, just as Nor-
ton (and Cartan) observed. But abstracted from such particular contexts, the
question of which is the ‘true’ geometry is largely a question of semantics. Both
Riemann’s and Klein’s programs continue to play a major part in contemporary
mathematics, and a fortiori in those mathematical tools used in physics.

8 Conclusion

It is generally fine, and often actively useful, to characterise mathematical spaces
via classes of preferred coordinatisations of these spaces. Indeed, differentiable
manifolds themselves are standardly so characterised. It is, equally, generally
fine, and often actively useful, to specify dynamical equations in physics via
coordinate expressions.

Differential geometry is an extraordinarily powerful tool, and the coordinate-
free discipline in differential geometry has achieved remarkable results. This
paper advocates a move away from an insistence that all geometric structure in
foundational work is described via differential geometry, and from the eschewal
of coordinate systems, but it does not advocate an abandonment of these tools.
It is, more modestly, a call for pluralism. There are other tools, too, and
they are on a perfectly sound conceptual and mathematical footing. Aspects
of modern physical theories, and their relations to older theories, may be best
understood through coordinate-free differential geometry; other aspects may
best be understood through explicit use of coordinates. Or, to put it another
way: coordinate-free and coordinate-transformation-based approaches are both
valid coordinatisations of the underlying conceptual questions that we seek to
answer, and which coordinatisation is best depends on the particular question
being asked.
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