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An approach to testing theories describing a multiverse, that has gained interest of late, involves
comparing theory-generated probability distributions over observables with their experimentally
measured values. It is likely that such distributions, were we indeed able to calculate them unam-
biguously, will assign low probabilities to any such experimental measurements. An alternative to
thereby rejecting these theories, is to conditionalize the distributions involved by restricting atten-
tion to domains of the multiverse in which we might arise. In order to elicit a crisp prediction,
however, one needs to make a further assumption about how typical we are of the chosen domains.
In this paper, we investigate interactions between the spectra of available assumptions regarding
both conditionalization and typicality, and draw out the effects of these interactions in a concrete
setting; namely, on predictions of the total number of species that contribute significantly to dark
matter. In particular, for each conditionalization scheme studied, we analyze how correlations be-
tween densities of different dark matter species affect the prediction, and explicate the effects of
assumptions regarding typicality. We find that the effects of correlations can depend on the con-
ditionalization scheme, and that in each case atypicality can significantly change the prediction.
In doing so, we demonstrate the existence of overlaps in the predictions of different “frameworks”
consisting of conjunctions of theory, conditionalization scheme and typicality assumption. This con-
clusion highlights the acute challenges involved in using such tests to identify a preferred framework
that aims to describe our observational situation in a multiverse.

I. INTRODUCTION

A central concern regarding contemporary cosmolog-
ical theories that describe a multiverse, such as those
involving inflationary scenarios [1–5], possibly in combi-
nation with the string theory landscape [6–9], is: how
do we elicit testable predictions from these theories? A
particularly natural class of predictions are those derived
from theory-generated probability distributions over ob-
servables, such as parameters of the standard models
of particle physics and cosmology, or indeed observables
generated from the outcomes of experiments we have yet
to perform. But the task of extracting such predictions
has been elusive.

It is expected, owing to the variety of conditions that
are likely to obtain in any multiverse scenario, that a
theory-generated probability of our observations in such
a scenario will turn out to be low. In this case, short of
disfavoring (all) such theories, one can restrict attention
to domains in the multiverse in which our observational
situation might obtain, and then compare the new (renor-
malized) probability distribution with our observations.

As described by Aguirre and Tegmark [10] (see
also [11]), this process of conditionalization can occur
in a variety of different ways. One possibility, termed
the “bottom-up” approach, is to not conditionalize one’s
distribution at all, and corresponds to accepting the raw
theory-generated probability distribution as the primary
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means of generating a prediction. At the opposite end
of the spectrum, “top-down” conditionalization restricts
attention to domains that share all observational features
that we have thus far measured, except for the quantity
whose value we are aiming to predict [12–16]. Intermedi-
ate approaches between these two ends of the spectrum
propose to conditionalize on some characterization of our
observational situation without demanding that all (rel-
evant) known features be included. This last approach is
termed “anthropic”, and can be thought of as according
with Carter’s “weak anthropic principle” [17] (see Hartle
[18] for a clear discussion).

There are, as one might expect, inherent difficulties
in implementing either anthropic or top-down condition-
alization schemes, arising from how best to characterize
“us” in the anthropic case, or how to characterize our ob-
servational situation in a practicable way in the top-down
case. Even if one is able to address these issues, there re-
mains a further assumption that needs to be made in
order to extract a crisp prediction. This amounts to an
assumption regarding how typical we are of the domains
that these conditionalization schemes explicitly restrict
attention to. For a renormalized probability distribution
function (and, indeed, for distributions exhibiting the ap-
propriate shape), this amounts to an assumption about
how far away from the peak of a distribution we can allow
our observations to be, while still taking those observa-
tions to have been predicted by the conjunction of theory,
conditionalization scheme and typicality assumption—a
conjunction we will refer to as a framework, in accord
with the terminology of Srednicki and Hartle [14].

What typicality assumptions one should support is
controversial. There are essentially two camps: those
who assert that we should always assume typicality
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in the context of an appropriately conditionalized the-
ory, that is, those who support the “principle of medi-
ocrity” [13, 19–22], and those who see typicality as an as-
sumption that can be subject to error, and that therefore
we should not necessarily demand typicality, whatever
our specification of the conditionalized theory [14, 23–
26]. If one allows for the latter possibility, then one is
faced with a spectrum of possible typicality assumptions.
Given some theory, it is then by some appropriate choice
in each of the spectra of conditionalization and typicality
that one must extract predictions.

In this paper, we take seriously the need to consider
the existence of these two spectra, and investigate the
manner in which they interact, for a range of condition-
alization schemes and typicality assumptions. This in-
vestigation is carried out in the concrete context of an
attempt to predict the total number of species that con-
tribute significantly to dark matter. In particular, we
extend the work of Aguirre and Tegmark [10] by consider-
ing cases where probability distributions over densities of
dark matter species can be correlated, and then analyze
the effects of bottom-up (Sec. II), top-down (Sec. III),
and anthropic (Sec. IV) conditionalization schemes, in
addition to the effects of atypicality in each of these cases.
We find that (i) atypicality can significantly change the
prediction in each case studied in such a way that (ii)
different frameworks can overlap, as regards their pre-
dictions; that is, different frameworks can lead to the
same prediction for the number of dominant species of
dark matter (Sec. V). These results leave open the chal-
lenge, in more realistic settings, of constructing these sets
of equivalent frameworks (as judged by the equivalence
of their predictions); while also highlighting how difficult
it may be to use such tests to identify a preferred frame-
work.

A. The general cosmological setting

We begin by briefly outlining the general cosmological
scenario within which we will be working. The current
favored theory regarding the composition of dark matter
does not rule out the possibility of multiple (new, non-
baryonic) particle species contributing to the total dark
matter density [10, 27, 28]. The general argument of this
paper will build upon this possibility: we will assume
that some theory T describes a multiverse consisting of
distinct domains, in each of which a total of N distinct
species of dark matter can exist, but where the relative
contributions of each of these species to the total dark
matter density can vary from one domain to the next.
The densities of each of these components will be given
by a dimensionless dark-matter-to-baryon ratio (we will
also assume that the density of baryons can vary from
one domain to the next), with the density of component
i given by ηi ≡ Ωi/Ωb, so that the densities of all N com-
ponents are represented by ~η = (η1, η2, . . . , ηN ). Note
that our observations currently constrain the total dark

matter density ηobs ≡
∑N
i=1 ηi. From results recently re-

leased by the Planck collaboration, this quantity can be
shown to be ηobs ≈ 5 [29].

The space in which ~η will take values will be referred
to as “parameter space”. The variation of this vector of
densities from one domain to the next is described by
a probability distribution P (~η |T ). The construction of
such probability distributions is a difficult, open problem,
and to make progress we will specify simple, example dis-
tributions as we proceed. We begin then by considering
the least restricted case: that of bottom-up conditional-
ization.

II. BOTTOM-UP CONDITIONALIZATION

According to bottom-up conditionalization, one as-
sumes that the raw probability distribution P (~η |T ) con-
stitutes the primary means of generating predictions.
We will assume, following the general line of argument
in Aguirre and Tegmark [10], that in principle, the range
in which each of the component densities ηi in ~η could
take values is large (and is the same for each species
i). Assume also that the joint probability distribution
P (~η |T ) is unimodal, that is, has a single peak that could
fall anywhere in the range over which P (~η |T ) could pos-
sibly be significant [in this section, we make no assump-
tions regarding the nature of any correlations between
the component densities for any particular P (~η |T )]. In
the absence of any further information, we are interested
in the following two questions: (i) how many of the N
components share the highest occurring density, and (ii)
how does this prediction depend upon the assumption of
typicality?

To make this problem tractable, let us discretize the
range over which each of the densities could take values
into M equal-sized bins, such that the central density of
each bin is significantly different from its neighbors. We
thus have an N -dimensional grid containing MN boxes,
where we assume the peak of P (~η |T ) is equally likely
to fall into any box, and we are interested first [i.e., in
(i) above], in the probability that a total of j of the N
components share the highest occupied density box. To
be clear, a particular T will indeed give rise to a single
P (~η |T ) where the peak of this distribution will have a
single location in the grid—we are looking into the sit-
uation where we have no further information about the
location of this peak, and are interested in predictions
about where the peak will lie, assuming that it is equally
likely to fall into any of the boxes we have constructed.

It should be intuitively clear that for N ≥ 2 and high
enough M (i.e., M � N), the chance of the peak falling
along the equal density diagonal of the N -dimensional
grid is small. We can formalize this intuition with
the following amendment to the corresponding argument
in Aguirre and Tegmark [10, Sec. 3.2]. In this amended
argument, the final result we obtain for the probability of
j components sharing the highest occupied density box,
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namely P(j), is different from their result [their equation
(1)], but the overall conclusion of the analysis of bottom-
up conditionalization remains the same.

The problem as stated in the previous paragraph can
be recast in the following (dimensionally-reduced) form
where we consider M distinguishable bins, correspond-
ing to the discretized densities in the range over which
any dark matter species can take values, and N distin-
guishable balls, where the i’th ball represents the peak of
the i’th marginal distribution Pi(ηi |T ). Our assumption
that the peak of P (~η |T ) is equally likely to fall into any
box is equivalent to the statement that the probability of
any ball falling into any bin is the same. Let P(j) rep-
resent the probability that exactly j of the N balls fall
into the highest occupied density bin. Then the following
closed-form expression, obtained through a simple count-
ing argument gives us the required probability P(j):

P(j) =
1

MN

(
N

j

)[M−1∑
k=1

kN−j + δj,N

]
, (1)

where δ is the Kronecker delta function.

To understand where this result comes from, consider
the case where some j < N balls share the highest occu-
pied density bin. If that bin is the k’th from the lowest
density bin of the M possible bins (where 1 ≤ k ≤M−1),
then all the remaining N − j balls can be arranged in the
k lower density bins in kN−j ways. The sum in Eq. (1)
corresponds to the sum over all possible choices of k. The
prefactor

(
N
j

)
just counts the number of ways of select-

ing exactly j of the N balls. This product is then divided
by the total number of possible arrangements of balls in
bins, i.e., MN , giving the appropriate probability. The
Kronecker delta function keeps track of the particular
case where j = N , in which case there exists an extra
arrangement in which the j balls sharing the highest oc-
cupied density bin (i.e., all N of them) can indeed be
placed in the lowest density bin. It is straightforward to
show that this distribution is appropriately normalized:∑N
j=1 P(j) = 1.

Our intuition that the chance is small of the peak of
P (~η |T ) falling along the equal density diagonal in the N -
dimensional grid (i.e., in the dimensionally-reduced de-
scription in the paragraph above, of all N balls falling
into the same bin), suggests that 〈j〉 ∼ 1. We will out-
line how for the most likely relative values of N and M ,

this is indeed the case. We find for 〈j〉:

〈j〉 ≡
N∑
j=1

jP(j)

=
1

MN

N∑
j=1

j

(
N

j

)[M−1∑
k=1

kN−j + δj,N

]

=
1

MN

M−1∑
k=1

N∑
j=1

j

(
N

j

)
kN−j +

N

MN

=
N

MN

M−1∑
k=1

N∑
j=1

(
N − 1

j − 1

)
kN−j +

N

MN

=
N

MN

[
M−1∑
k=1

(1 + k)N−1 + 1

]

=
N

MN

M∑
k=1

kN−1, (2)

where the binomial theorem has been used in obtaining
the fifth line. For M � N , one can show that 〈j〉 ∼ 1
(formally: for fixed N , limM→∞〈j〉 = 1). In the case
where N � M , 〈j〉 can take values much greater than
1, that is, it is possible for multiple components to dom-
inate (formally: for fixed M , limN→∞〈j〉 = ∞). The
upshot is that as long as the range over which each of
the dark matter densities can take values, namely M , is
much larger than the total number of dark matter species
under consideration, namely N , the average number of
species sharing the highest occurring density will be 1.

This result has been derived under the assumption of
typicality, in that the peak of the joint distribution dic-
tates the prediction. To be clear, the average in Eq. (2)
is taken over all possible locations of the peak of P (~η |T ),
and assumes that we do not in fact know where this might
be. Of course, for any fixed T , the peak of the joint dis-
tribution P (~η |T ) will be located in a single box, and the
argument following Eq. (2) indicates that this box will
probably correspond to a single dominant dark matter
component.

Indeed, irrespective of the location of the peak of any
particular distribution P (~η |T ), there will presumably ex-
ist directions in parameter space in which more than a
single component would contribute significantly. There-
fore atypicality can lead to a range of different predictions
for the total number of species that contribute signifi-
cantly. Of course, we are constrained here in that only
those theories (and their associated typicality assump-
tions) that predict a total density that agrees with our ob-

served value, i.e., that satisfy
∑N
i=1 ηi = ηobs ≈ 5, would

be favored. Nevertheless, the combination of bottom-
up conditionalization and atypicality presents us with a
large amount of freedom regarding predictions that may
arise.
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III. TOP-DOWN CONDITIONALIZATION

Our arguments thus far have been rather general, and
it will be instructive in what follows to restrict attention
to particular distributions so as to extract more concrete
predictions. We turn now to the most restrictive type of
conditionalization scheme—that of top-down condition-
alization.

Consider, again, the case where we have a total of N
species of dark matter and we are interested in ascer-
taining the total number of species that contribute sig-
nificantly to the total observed dark matter density ηobs.
Assume that the joint probability distribution function
given some theory T is locally Gaussian (near ηobs), with

P (~η |T ) ∝ exp

−1

2

N∑
i,j=1

(ηi − η?i )(C−1)ij(ηj − η?j )

 ,

(3)
where each component has substantial probability near
ηobs, i.e., for each i, η?i ∼ ηobs (where we allow for some
tolerance in the precise relationship between η?i and ηobs
here), and C is the covariance matrix (a symmetric, pos-
itive definite, N × N matrix). This matrix, of course,
encodes potential correlations between each of the com-
ponents. Note that if Cij ∝ δij then the right hand side of
Eq. (3) reduces to a product of independent Gaussians.

Top-down conditionalization in this scenario amounts
to demanding that the prediction extracted from this dis-
tribution agrees with the totality of our data regarding
dark matter (see Sec. I A); namely, that the sum over
the densities of dark matter components agrees with the
total observed dark matter density, that is:

N∑
i=1

ηi = ηobs. (4)

Generating a prediction under the assumption of typical-
ity amounts to finding ~η such that Eq. (3) is maximized,
subject to Eq. (4), and it is to this task that we now turn.

A. Typicality

We proceed as in Aguirre and Tegmark [10], and focus
on the constrained optimization problem in which we op-
timize the logarithm of the distribution P (~η |T ), that is,
we aim to maximize

I(~η) ≡ lnP (~η |T )− λ
N∑
i=1

ηi, (5)

where λ is a Lagrange multiplier. A quick calculation
shows that for each k, ∂I(~η)/∂ηk = 0 when

N∑
i=1

(ηi − η?i )(C−1)ik = −λ. (6)

Multiplying through by Ckj and summing over k gives

ηj − η?j = −λ
N∑
k=1

Ckj . (7)

By summing the N equations implicit in Eq. (7), rear-
ranging, and using the constraint [Eq. (4)], we can solve
for the Lagrange multiplier:

λ =

∑N
j=1 η

?
j − ηobs∑N

k,j=1 Ckj
. (8)

Substituting Eq. (8) into Eq. (7) we find that the max-
imum of P (~η |T ) subject to the top-down constraint oc-
curs at

ηi = η?i +

(
ηobs −

∑N
j=1 η

?
j∑N

k,l=1 Ckl

)
N∑
m=1

Cmi. (9)

A judicious choice of the η?i ’s and/or the sums of the
columns of the covariance matrix C, therefore, can lead
to substantial contributions by less than all N species.

However, this conclusion is overturned, i.e., all N
species contribute equally, in the case where (i) no sym-
metries are broken with regard to the location of the peak
of the joint probability distribution, namely, if for each
i,

η?i = η̄ (10)

for some η̄ ∼ ηobs, and (ii) we choose an appropriate
functional form for the covariance matrix. In particular,
let us assume that the N ×N covariance matrix is given
by C̃ where

C̃ = σ̄2


1 α · · · α
α 1 · · · α
...

...
. . .

...
α α · · · 1

 (11)

with α ∈ (−(N − 1)−1, 1), so that C̃ is indeed positive
definite, and σ̄ is a free parameter. This choice fixes all
variances to be the same, and all pairs of covariances to
be the same, that is,

〈(ηi − η̄)2〉 = σ̄2 ∀i, (12)

〈(ηi − η̄)(ηj − η̄)〉 = α σ̄2 ∀i 6= j. (13)

Then substituting Eq. (10) and Eq. (11) into Eq. (9)
gives, for each i,

ηi = η̄ +

[
ηobs −Nη̄

Nσ̄2 +N(N − 1)ασ̄2

] [
σ̄2 + (N − 1)ασ̄2

]
= η̄ +

1

N
(ηobs −Nη̄)

=
1

N
ηobs. (14)
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So for a rather simple probability distribution [defined
by Eqs. (3), (10) and (11)] with (marginal) probability
distributions over distinct dark matter species that are,
in effect, the same: the most probable, i.e., most typical,
solution to the ensuing constrained maximization prob-
lem is that all N components contribute equally to the
total dark matter density.

This extends the argument of Aguirre and Tegmark
[10, Sec. 3.3] to the case where correlations are now
explicitly built into the joint probability distribution
P (~η|T ). Note that the results above include the case of
probabilistically independent dark matter species, that
is, for the special case of α = 0 we would again find that
Eq. (14) holds.

So how does atypicality affect the picture? We will
now show that under an assumption of atypicality, there
exists a region in parameter space where just a single
dark matter component dominates. That is, atypicality
can dramatically change the prediction.

B. Atypicality

We focus on the case where the underlying probabil-
ity distribution is given by Eq. (3), but is subject to the
assumption that the peak of the distribution does not
privilege any dark matter species, that is, Eq. (10) holds,
and the covariance matrix is given by Eq. (11)—these
latter two assumptions are made in order to mitigate ob-
vious biases in the search for a single dominant species.
We will label the resulting distribution PE(~η |T ) (‘E’ for
‘equal’); so that, from Eqs. (3), (10) and (11),

PE(~η |T ) ∝ exp

−1

2

N∑
i,j=1

(ηi − η̄)(C̃−1)ij(ηj − η̄)

 .

(15)
To highlight the effects of atypicality, we will look for a
region in parameter space away from the maximum of the
probability on the constraint surface [which occurs when
Eq. (14) is satisfied], while remaining on the constraint
surface [i.e., respecting Eq. (4)]. So, from Eq. (14), the
maximum of the probability on the constraint surface,
denoted by PMAX, is given by

PMAX ≡ PE

({
ηi =

1

N
ηobs

}N
i=1

∣∣∣∣∣T
)
. (16)

Our excursion on the constraint surface will explore the
possibility of just a single species dominating, and we will
take that species to be the first species (though of course,
nothing physical depends on this choice). Hence, follow-
ing Azhar [25, Sec. 3.2.2], we remain on the constraint

surface by demanding that

η′1 = ε
1

N
ηobs, (17)

η′j =
(

1− ε

N

) 1

N − 1
ηobs ∀j 6= 1, (18)

for 0 ≤ ε ≤ N . Notice that
∑N
i=1 η

′
i = ηobs, and species 1

dominates when ε→ N . The parameterization is chosen
in such a way that any excess in η′1 over the most probable
value, η′1 = 1

N ηobs, is drawn equally from among the
remaining N − 1 components. We gauge the degree of
typicality (and thereby the degree of atypicality) by the
ratio of the probability PE(~η ′ |T ), with ~η ′ ≡ ~η ′(ε) using
the parameterization in Eqs. (17) and (18), to PMAX.
A lengthy (but straightforward) calculation reveals that
this ratio is given by

PE(~η ′(ε) |T )

PMAX
= exp

{
− ηobs

2

2σ̄2(1− α)

(ε− 1)2

N(N − 1)

}
, (19)

where as before, α describes correlations between differ-
ent species [cf. Eq. (13)]. We point out two interesting
features of the result in Eq. (19):

(i) The dominance of species 1 indeed relies on an as-
sumption of atypicality. To illustrate this, consider
the case where there exist two total dark matter
components (N = 2) where the density of species
1 is three times that of species 2 (ε = 3N/4). If we
further assume that σ̄ = ηobs/5 and α = 1/2, the
degree of typicality that achieves this dominance is
small: PE(~η ′(ε) |T )/PMAX = exp(−25/8) ≈ 0.04;

(ii) Correlations affect the degree of typicality required
to achieve the same dominance. Hence in the exam-
ple in (i) above: setting α = 0 [i.e., no correlations,
cf. Eq. (13)], while keeping all other parameters the
same, gives PE(~η ′(ε) |T )/PMAX = exp(−25/16) ≈
0.21.

In this way, an assumption of atypicality can change the
prediction from N equally dominant components to a
single dominant component.

C. Non-Gaussianities and typicality assumptions

Thus far, we have focussed on the Gaussian case. But
it is interesting to explore the situation where we explic-
itly break this Gaussianity—for as we will show, this can
change predictions under various assumptions regarding
typicality. In particular, we will show that our earlier
conclusion, which established equal contributions to the
total dark matter density under typicality, as expressed
in Eq. (14), can be overturned when we break Gaussian-
ity.

We will establish this result numerically and by con-
struction, in the case where N = 2. We will assume that
the underlying distribution Q(η1, η2|T ) is non-Gaussian,
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where the non-Gaussianity is controlled by a single posi- tive parameter µ, such that µ = 0 recovers the Gaussian
case. Assume, then, that

Q(η1, η2|T ) ∝

[
1 + µ

2∑
k=1

(ηk − η?k)4

]
exp

−1

2

2∑
i,j=1

(ηi − η?i )(C̃−1)ij(ηj − η?j )

 , (20)

where C̃ is the two-dimensional version of Eq. (11), and so
α ∈ (−1, 1). We want to maximize Q(η1, η2|T ) subject
to the constraint that the sum of the densities is the
observed dark matter density:

η1 + η2 = ηobs. (21)

So proceeding as in section III A, we wish to maximize

J(η1, η2) ≡ lnQ(η1, η2|T )− λ
2∑
i=1

ηi (22)

where λ is a Lagrange multiplier. Setting
∂J(η1, η2)/∂ηk = 0, gives the following two equa-
tions (for k = 1, 2):

4µ(ηk − η?k)3

1 + µ
∑2
i=1(ηi − η?i )4

−
2∑
j=1

(ηj − η?j )(C̃−1)jk = λ. (23)

The set of equations given by Eq. (23) and Eq. (21) con-
stitute three equations for the three unknowns {η1, η2, λ}.

We proceed to solve these numerically, and plot the
resulting solutions in Fig. 1. The free parameters in the
problem are {µ, η?1 , η?2 , α, σ̄, ηobs}. Figure 1 displays re-
sults such that for each of two values of σ̄ (each value
corresponds to a row of the plot), the parameter control-
ling the non-Gaussianity, namely µ, is varied over three
possible values from 0 to 0.1 to 1 (from left to right).
Each value corresponds to a column of the plot. We
choose ηobs = 5 (which is, recall, approximately the ex-
perimentally observed value), η?1 = 3.6 = η?2 (so that the
distribution has weight near the experimentally observed
value), and α = −0.5 (for illustrative purposes).

We see that in the Gaussian case (µ = 0, Fig. 1a,
1d), there is a single maximum (blue circle) which oc-
curs at η1 = ηobs/2 = η2 in accord with the general re-
sult derived earlier [Eq. (14)]. When we break Gaussian-
ity we overturn this result. For smaller deviations from
Gaussianity (µ = 0.1, Fig. 1b, 1e), the maxima on the
constraint surface correspond to (two symmetric cases in
which) one component slightly dominates over the other
(with a roughly 3:2 split in Fig. 1b and a roughly 3.4:1.6
split in Fig. 1e). There is also a single (local) minimum
on the constraint surface between these maxima, whose
probability is close to theirs. This result is amplified in
the case where the non-Gaussianity is stronger (µ = 1,
Fig. 1c, 1f). The maxima on the constraint surface have

a probability that is significantly greater than the single
(local) minimum (by a factor of & 2), and the dominance
of one component is also greater than in the µ = 0.1 case,
with a roughly 3.5:1.5 split in Fig. 1c, and a roughly
3.7:1.3 split in Fig. 1f.

Atypicality therefore predicts either the existence of
two equally contributing components [corresponding to
the local minima (red squares) in Fig. 1c, 1f] or indeed
just a single dominant component (that is more domi-
nant than the prediction under typicality, that is, as one
moves along the constraint surface towards either axis in
Fig. 1c, 1f, say1).

Thus we have exhibited a scenario in the top-down
approach where: atypicality corresponds to equal con-
tributions, and typicality to unequal contributions (i.e.,
one dominant species), to the total dark matter density.
Non-Gaussianities can change the nature of the predic-
tion.

IV. ANTHROPIC CONDITIONALIZATION

Anthropic conditionalization represents an intermedi-
ate point between bottom-up and top-down approaches
in that some multiverse domains are indeed excised in the
computation of probabilities but the restriction is not as
stringent as in the case of top-down conditionalization.

From a calculational point of view, as discussed
in Aguirre and Tegmark [10], one can implement an-
thropic conditionalization by adopting a weighting fac-
tor W that multiplies the raw probability distribution
P (~η |T ) and expresses the probability of finding domains
in which we might exist, as a function of the relevant
parameter we are investigating. In Aguirre and Tegmark
[10], and in what follows, the assumption is made that
W ≡W (η) is a function of the total dark matter density

η ≡
∑N
i=1 ηi, and we will look into the effects of assum-

ing an η-dependent Gaussian fall-off for this weighting
factor. That is, we will assume, following [10] that

W (η) ∝ exp

{
− 1

2η 2
0

η2
}
, (24)

1 Note that one would need to worry about boundary conditions
of the distributions presented to give precise details in this case.
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FIG. 1. Contour plots of the distribution Q(η1, η2|T ) [see Eq. (20)]. In each panel, the black line denotes the constraint surface,
and the red line denotes the line of equal density. Along the constraint surface, blue circles correspond to (global) maxima and
red squares to (local) minima. Note that in (b,c,e,f), pairs of maxima have the same probability in each panel. Parameters
have been set as follows: ηobs = 5, η?1 = 3.6 = η?2 , and α = −0.5. (a–c) σ̄ = ηobs/6 with µ = 0, 0.1, and 1 respectively.
(d–f) σ̄ = ηobs/5 with µ = 0, 0.1, and 1 respectively. The Gaussian cases (a,d) exhibit a single maximum corresponding to
equal contributions to the total dark matter density from the two components (as discussed in section III A). The equality of
contribution is overturned in a significant way for µ = 1, that is (c,f), where in each case, the maxima correspond to unequal
contributions and the local minimum corresponds to equal contributions.

where we also assume that we have a way of calculating
the standard deviation η0.2 The optimization problem
that implements the assumption of typicality now de-
mands that we maximize the total probability distribu-

2 Note that for the sake of calculational simplicity, we extend
the domain of validity of the Gaussian fall-off for the anthropic
weighting factor W (η), beyond that explored in [10], where this
domain corresponded to η > η0. This raises a subtlety regarding
the value(s) of η that can appropriately be considered to max-
imize W (η). This is a debate that lies outside the scope of the
problem considered in this paper, but would need to be addressed
in a less stylized setting.

tion Ptot(~η |T ,W ), which takes this anthropic weighting
factor into account, where

Ptot(~η |T ,W ) ∝ P (~η |T )W (η). (25)

We will investigate the result of doing this for the corre-
lated Gaussian case discussed in Sec. III, beginning first
with the case where we do not restrict the covariance
matrix. In addition, in contrast to our discussion so far,
we will focus less on the equality of contribution of dif-
ferent components to the total dark matter density; and
more on a new feature that arises exclusively in the an-
thropic approach: that of the determination of precisely
how many components N contribute equally to the total
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dark matter density.

A. The optimization routine

We assume again, that there are N possible species
of dark matter and that we need to find the value of ~η

such that Ptot(~η |T ,W ) is maximized, where, substitut-
ing Eq. (3) and Eq. (24) into Eq. (25), we have

Ptot(~η |T ,W ) ∝ exp

−1

2

N∑
i,j=1

(ηi − η?i )(C−1)ij(ηj − η?j )

 exp

{
− 1

2η 2
0

η2
}
. (26)

For each k, setting ∂ lnPtot(~η |T ,W )/∂ηk = 0 gives

N∑
i=1

(ηi − η?i )(C−1)ik = − 1

η 2
0

η. (27)

Multiplying through by Ckj , summing over k and rear-
ranging, we find

ηj = η?j −
1

η 2
0

η

N∑
k=1

Ckj . (28)

As in section III A, choosing the η?j ’s and/or the sums of
the columns of the covariance matrix appropriately, one
can find contributions to the total dark matter density
such that all species do not contribute equally.

However, under the assumption that η?j = η̄ for all j
[i.e., Eq. (10)], and that the covariance matrix is given by
Eq. (11) say, we recover the case of equal contributions
discussed above. In particular, we obtain, for each j,

ηj = η̄ − 1

η 2
0

η [1 + (N − 1)α] σ̄2, (29)

where the right-hand side does not depend on j. The
solution to these equations is just ηj = γ, say, so that

η ≡
∑N
i=1 ηi = Nγ. Thus we find

ηj = γ =
η̄ η 2

0

η 2
0 +Nσ̄2 [1 + (N − 1)α]

. (30)

In addition, the optimal total density ηopt is given by

ηopt = Nγ = N
η̄η 2

0

η 2
0 +Nσ̄2 [1 + (N − 1)α]

. (31)

There is another way one can derive this last result
[Eq. (31)], which is helpful in understanding the nature of
the optimization being carried out, and so we outline the
results of this alternate derivation here. Namely, when
P (~η |T ) is Gaussian with mean vector (η?1 , η

?
2 , . . . , η

?
N )

and covariance matrix C [as in Eq. (3)], then the prob-

ability distribution over the sum
∑N
i=1 ηi ≡ η, denoted

by R(η), is also Gaussian with mean
∑N
i=1 η

?
i and vari-

ance
∑N
i,j=1 Cij (see for example [30, chapter II, Sec.

13]). Under the simplifying assumptions introduced ear-

lier, namely, if we set η?i = η̄ for all i, and C → C̃ as

in Eq. (11), we have:
∑N
i=1 η

?
i = Nη̄ and

∑N
i,j=1 Cij =

Nσ̄2 [1 + (N − 1)α]. Thus

R(η) ∝ exp

{
− 1

2Nσ̄2 [1 + (N − 1)α]
(η −Nη̄)2

}
. (32)

The resulting probability distribution over the sum of the
densities η, denoted by Ptot(η|T ,W ), can be shown to be:

Ptot(η|T ,W ) ∝ R(η)W (η)

= exp

{
− 1

2Nσ̄2 [1 + (N − 1)α]
(η −Nη̄)2

}
exp

{
− 1

2η 2
0

η2
}

= exp

{
− 1

2Σ2
(η − Φ)2

}
, (33)

where

Σ2 =
η 2
0Nσ̄

2 [1 + (N − 1)α]

η 2
0 +Nσ̄2 [1 + (N − 1)α]

, (34)

Φ = N
η̄η 2

0

η 2
0 +Nσ̄2 [1 + (N − 1)α]

. (35)

Thus Ptot(η|T ,W ) is also Gaussian with its maximum
occurring at Φ; in agreement with the optimal value ηopt
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displayed in Eq. (31).

B. Prediction and fine tuning

How then, in light of the above discussion, do we pro-
pose to extract a prediction from Ptot(η |T ,W ) while al-
lowing for variations in assumptions regarding typicality?
We know that the probability distribution Ptot(η |T ,W )
is Gaussian [see Eqs. (33), (34), and (35)], and so it has a
single maximum; moving sufficiently far away from this
maximum takes us into regions of atypicality. Hence, in-
troducing a factor F > 0 that measures deviations from
the maximum, we propose that the framework specified
by the theory T , together with the anthropic conditional-
ization factor W (η), and the typicality assumption char-
acterized by F , is

predictive if
1

F
ηopt = ηobs, (36)

where F = 1 corresponds to the assumption of ‘maxi-
mum’ typicality, and deviations from F = 1 correspond
to some degree of atypicality.

In addition, following Aguirre and Tegmark [10], we
do not want this prediction to be too finely tuned, in
the sense that increasing the value of the prediction
(i.e., 1

F ηopt) should not take us too far into the tail of
the anthropic conditionalization factor W (η) [given by
Eq. (24)]. In this way, we will assume that the value of
the prediction for the total observed dark matter density
is

not finely tuned if
1

F
ηopt ≤ 2η0, (37)

namely, within two standard deviations, 2η0, of the mean
of the Gaussian conditionalization factor W (η). The pre-
cise tolerance here is less important than the general con-
clusions we will develop below.

We will show (as indeed mentioned by Aguirre and
Tegmark [10]) that the criteria expressed in Eqs. (36)
and (37) can be used to predict the total number of
equally contributing components to the total dark mat-
ter density, and it is within the context of this type of
prediction that we will analyze the effects of atypicality.
To gain intuition about how these two criteria operate,
we begin by analyzing the case of independent species of
dark matter.

C. Independent species and typicality assumptions

In the case of independent species of dark matter,
namely, when α = 0, a quick calculation reveals that
the prediction that 1

F ηopt = ηobs [Eq. (36)], in combina-
tion with Eq. (31), can be translated into a prediction

for N , with

N =
Fηobsη

2
0

η 2
0 η̄ − Fηobsσ̄2

. (38)

The demand that the original prediction is not finely
tuned, namely, that 1

F ηopt ≤ 2η0 [Eq. (37)], bounds N
such that

N ≤ 2Fη 2
0

η0η̄ − 2Fσ̄2
, (39)

for η0η̄ > 2Fσ̄2; otherwise no such upper bound exists.
Equations (38) and (39) imply that if 0 < F < 1, both
the value of N that is predictive and the upper bound on
N such that the prediction is not finely tuned, decrease
relative to the case of typicality (i.e., relative to F = 1).
When F > 1, these values increase relative to the case of
typicality. In this way, atypicality can change the nature
of the prediction.

D. Correlated species and typicality assumptions

For nonzero α, again using Eq. (31), we find that the
framework we are examining is predictive, i.e., satisfies
Eq. (36), when

αηobsσ̄
2N2 +

[
(1− α)ηobsσ̄

2 − 1

F
η̄η 2

0

]
N + ηobsη

2
0 = 0,

(40)
and this prediction is not finely tuned, i.e., satisfies
Eq. (37), when

−2ασ̄2N2 +

[
1

F
η̄η0 − 2σ̄2(1− α)

]
N − 2η 2

0 ≤ 0. (41)

We note that now, depending on the balance of the pa-
rameters in the problem, it is possible that under the
inclusion of nonzero correlations, there exist two distinct
solutions to the prediction for the total number of species
that contribute equally to the total dark matter density.
We focus first on this effect in more detail, before study-
ing the effects of atypicality on the resulting predictions.
In particular, we will be interested in two different ques-
tions: (1) under the assumption of typicality, how does
a nonzero α change predictions for N (relative to the
α = 0 case, and assuming these predictions are not finely
tuned), and (2) for a fixed nonzero α, how does atypi-
cality change the prediction for N (again assuming these
predictions are not finely tuned)?

1. The effect of correlations, α 6= 0, on N , under typicality

In addressing the first question, we are interested in
comparing, for F = 1, Eq. (38) and the solution(s) to
Eq. (40). To make the comparison more tractable, we
make two simplifying assumptions: namely, (i) that the
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original probability distribution P (~η|T ) has significant
probability near the observed value; more precisely, we
will assume

η̄ ≡ ηobs, (42)

and (ii) that the variance of the conditionalization factor
W (η) is related in a simple way to the variances of the
dark matter components,

η 2
0 = Xσ̄2, (43)

for some positive X whose range will be specified shortly.
Under these assumptions then, the prediction for the

number of uncorrelated species, as derived from Eq. (38),
and which we will now refer to as N0, is

N0 =
X

X − 1
. (44)

In order that N0 is a physically realizable prediction (and
so that we do not, at this stage, discount the framework
that gave rise to this prediction), we choose X > 1, so
that N0 > 1.

Similarly, these assumptions imply that Eq. (40) re-
duces to

αN2
α + (1− α−X)Nα +X = 0, (45)

where we now denote N by Nα; the solution of which is

Nα =
X + α− 1±

√
(1− α−X)2 − 4αX

2α
. (46)

Let us note a couple of cases of interest here. Firstly,
if (1−α−X)2 = 4αX, then there is just a single solution
Nα = (X+α−1)/2α. Setting α = 0.25 for example, gives
X = 2.25 and so Nα = 3 whereas N0 ≈ 2 (one can show
that both of these solutions are not necessarily finely
tuned). In the case that (1−α−X)2 > 4αX, N0 will ex-
hibit just a single solution, whereas Nα may exhibit two
(physical) solutions. Figure 2 displays some illustrative
examples of what these solutions look like. There we ex-
hibit solutions N0 (red circles) and Nα (blue squares) for
α = 0.25, under the assumption that X = 2.35, 2.5, or 2.7
(corresponding to Fig. 2a, 2b, or 2c respectively). We
see that in Figs. 2a and 2b, the introduction of correla-
tions leads to two distinct solutions for Nα, the greater
of which is significantly different from N0. In the case
of Fig. 2c, the smaller of the two solutions for Nα is
discounted as unphysical (as only those solutions in the
correlated case make sense where Nα ≥ 2).

2. How does atypicality change the prediction when α 6= 0?

The second question we are interested in is the nature
of the change in the prediction as a result of atypical-
ity in the correlated Gaussian case. To investigate this
in a simple setting, we again invoke the assumptions of

section IV D 1 as expressed in Eqs. (42) and (43). The
equation expressing predictivity, Eq. (40), reduces to

αN2
α + (1− α− 1

F
X)Nα +X = 0, (47)

and the bound on Nα such that the prediction is not
finely tuned, namely Eq. (41), reduces to

−2ασ̄N2
α +

[
1

F
ηobs
√
X − 2σ̄(1− α)

]
Nα − 2Xσ̄ ≤ 0.

(48)
For illustrative values of the parameters, the effects of

these equations on the prediction of the total number of
species of dark matter contributing equally to the total
dark matter density are explored in Fig. 3. We see there
that the prediction under the assumption of atypicality
[as determined by the appropriate x-axis-intercept(s) of
the black parabola in each panel; recall that only those
solutions where Nα ≥ 2 are considered physical] changes
significantly from the prediction under the assumption
of typicality [corresponding to the appropriate x-axis-
intercept(s) of the gray parabola in each panel].

V. DIFFERENT FRAMEWORKS, SAME
PREDICTION

So let us recapitulate what we have found thus far,
in order to better understand the nature of the overlaps
that exist between different frameworks as regards their
predictions for the total number of species of dark matter
that we should expect to observe.

In the case of bottom-up conditionalization (Sec. II),
where we assumed the underlying probability distribu-
tion P (~η|T ) was unimodal and could, in principle, take
nonzero values within some N -dimensional cube in pa-
rameter space, the expected number of dominant dark
matter components, under the assumption of typicality,
was shown to be 1. In the terminology of Sec. II, 〈j〉 ∼ 1
for M � N . However, atypicality can change this pre-
diction to a range of other possibilities, including equal
contributions from all N components.

In the case of top-down conditionalization (Sec. III),
we found the opposite prediction, that for a correlated
Gaussian distribution P (~η|T ), all N components, un-
der typicality, contribute significantly to the total dark
matter density [Eq. (14)]. This result holds for proba-
bilistically independent (α = 0) dark matter species as
well; and it generalizes the previous result of Aguirre and
Tegmark [10, Sec. 3.3] for a particular P (~η|T ). How-
ever, there exist regions of parameter space such that
assumptions of atypicality lead to the prediction of just
a single dominant dark matter component [generalizing
the argument in Azhar [25, Sec. 3.2], again, for a par-
ticular P (~η|T )]. In this case also, we found that non-
Gaussianities can overturn the equality of contribution,
such that typicality corresponds to a single dominant
species (for the N = 2 case studied there), and atypi-
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FIG. 2. Change in the prediction for N in the presence of correlations under the assumption of typicality. (a,b,c) exhibit
solutions for the choices X = 2.35, 2.5, and 2.7 respectively. The red circles correspond to N0, the prediction for independent
species of dark matter [see Eq. (44)—each of these solutions is not finely tuned under the choice of parameters described herein].
The parabolas correspond to the left-hand side of Eq. (45), whose x-axis-intercepts are the predictions for Nα, shown in blue
squares, where α = 0.25 in each case [a prediction of Nα < 2, as for the smaller of the two predictions in (c), is discounted as
‘unphysical’]. The gray segments overlapping the x-axes correspond to the range of solutions that are not finely tuned for the
correlated case (namely, the region of the x-axis where the constraint given by Eq. (41) is satisfied—recall that F = 1 under
the assumption of typicality, and we have set η̄ = ηobs, and η 2

0 = Xσ̄2). We have set ηobs = 5 in accord with the experimentally
observed value, and for the sake of illustration, we have set σ̄2 = 2.8. We note that in (a,b), there exist two, distinct, physically
acceptable predictions for Nα, the greater of which is also significantly different from the case where there are no correlations.

cality corresponds to equal contributions, or indeed to a
single species dominating to a greater degree than in the
case of typicality (as in Fig. 1c and 1f).

Finally, for the anthropic case (Sec. IV), we explored
the assumption of atypicality in a different way to the
first two approaches: namely, by tracking its impact on
the total number N of equally contributing components
(indeed, in Sec. IV, N could vary, unlike in the bottom-
up and top-down cases where it was fixed by assump-
tion at the outset). Now, under typicality, correlations
in the underlying probability distribution can change the
prediction for N relative to the independent case (see
Fig. 2), and it is possible for two physically acceptable
predictions to exist, which again, can change quantita-
tively under the assumption of atypicality (as in Fig. 3).

It is evident from the above discussion that the types of
prediction discussed here do not cleanly discriminate be-
tween frameworks consisting of theory, conditionalization
scheme and typicality assumption. For example, consider
first the prediction that dark matter consists of a single
dominant component. This could be derived from each
conditionalization scheme studied above in (at least) the
following ways:

— bottom-up: for an N -dimensional unimodal distri-
bution under typicality (Sec. II);

— top-down: for uncorrelated or correlated N -
dimensional Gaussians under atypicality [Eq. (19),
and items (i) and (ii) at the end of Sec. III B],
or the 2-dimensional non-Gaussian distribution of
Eq. (20) under typicality (Fig. 1c and 1f);

— anthropic: for uncorrelated Gaussians assuming
typicality, Eqs. (42), (43), and X � 1 [so that
Eq. (44) implies N0 ∼ 1].

The prediction of multiple species of dark matter does
not fare any better in terms of its ability to discrim-
inate between frameworks. Consider the prediction of
two equally dominant species of dark matter. This could
also be derived from each conditionalization scheme in
(at least) the following ways:

— bottom-up: for an N -dimensional unimodal distri-
bution under an appropriate assumption of atypi-
cality (as discussed at the end of Sec. II);

— top-down: for correlated 2-dimensional Gaussians
under typicality (see Fig. 1a and 1d), or the 2-
dimensional non-Gaussian distribution of Eq. (20)
under atypicality (see Fig. 1c and 1f);

— anthropic: for correlated Gaussians under typical-
ity (as in the smaller of the two distinct predictions
of Fig. 2a and 2b) or from the smaller of two dis-
tinct predictions under atypicality (as in Fig. 3b
and 3d).

In this sense, distinct frameworks can overlap as re-
gards their predictions. This possibility raises difficulties
for how we can confirm frameworks in cosmological mod-
els of the multiverse—as we discuss in the next section.
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FIG. 3. The effects of atypicality on the prediction of Nα, where α = 0.25. (a) X = 2.5, F = 0.875; (b) X = 2.5, F = 1.05;
(c) X = 2.7, F = 0.875; (d) X = 2.7, F = 1.05. In each case, we have also set ηobs = 5 and σ̄2 = 2.8. For each panel, the
intersection of the gray parabola with the x-axis corresponds to the prediction under typicality, whereas the intersection of
the black parabola with the x-axis, marked by blue squares, corresponds to the prediction under the assumption of atypicality
(recall that we accept only those solutions for which Nα ≥ 2). The gray segment overlapping the x-axis corresponds to the
range of solutions for the atypical scenario that are not finely tuned. We see in each case that predictions for Nα can shift
significantly.

VI. DISCUSSION

For theories that describe a multiverse, the confirma-
tion of these theories must—short of direct experimental
evidence—rest on tests such as those explored in this
paper. Any such theory will probably describe an over-
whelming number of domains that look nothing like ours,
in which case theory alone will not be enough to extract
meaningful predictions. Indeed, conditionalization will
be needed, in which we restrict attention to domains in
such a way as to sharpen the comparison between what
the theory predicts and what we observe.

Any of the conditionalization schemes outlined
by Aguirre and Tegmark [10] and studied herein, or in-

deed more sophisticated versions of these, are plausible
candidates; but there is an inherent arbitrariness in the
choice. And as explored in this paper, the situation is
further complicated by assumptions regarding typicality.

The argument that we need to question typicality in
multiverse settings has been made elsewhere [14, 16, 23,
25, 26]; but it is helpful to rehearse central features of
that argument to more clearly grasp the motivations that
underlie this paper. The main point is that, although
our observational situation might be unlikely according
to theories of the multiverse, they may well posit multi-
ple domains in which our observational situation exists—
as described by a conjunction of a theory and some ap-
propriate conditionalization scheme. And if observables
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(such as the outcomes of future experiments) can take
different values in these domains, the appropriate test of
the conjunction will be a comparison of what we observe
with what the conjunction predicts for our observations
(a first-person prediction, in the terminology of Srednicki
and Hartle [14]). We cannot know, of course, which of
these domains we are in and so to extract an appropri-
ate prediction, we need to make an assumption about
our typicality with respect to these domains. Under such
circumstances, the assumption that we are typical is cer-
tainly not guaranteed a priori; and so it makes sense to
then allow for a variety of assumptions regarding typ-
icality in order to identify the most predictive frame-
work [14, 26].

In this paper we have taken seriously the conclusions
of the last paragraph, and have applied them to the com-
parison of the total number of observed species of dark
matter with predictions generated from some theory of
the multiverse. A central feature has been that what
such a comparison tests is an entire framework, namely,
a conjunction of theory, conditionalization scheme, and
typicality assumption. Hence if the prediction of such a
conjunction does not match our observations, we must
disfavor the entire conjunction; and thus we have license
to change any of its conjuncts, and to then reassess the
predictive power of the resulting framework. What we
find under this scenario, as argued in this paper, is a com-
plex set of interconnected relationships between frame-
works and predictions. Indeed, as drawn out in Sec. V,

the same prediction can arise from distinctly different
frameworks.

It would be interesting to see how widespread these
‘overlaps’ are for more realistic cosmological scenarios. If
they are also robust to the choice of the physical observ-
ables we aim to predict the values of, and we believe that
truly distinct frameworks indeed give rise to the same
prediction, then we are forced to conclude that the pre-
diction cannot confirm any single framework taken on
its own. Of course, one has recourse to more intricate
confirmation schemes, such as those invoked in Bayesian
analyses—which would introduce priors over frameworks
to help in their demarcation (see [14, 23] for example).
But in the context where we focus solely on likelihoods
(as we have implicitly done in this paper), robust over-
laps between frameworks present an acute challenge for
the utility of such tests of the multiverse.
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