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1 Introduction

The aim of this paper is to introduce and explain the conceptual role played by the de

Finetti’s representation theorem (henceforth dFRT) in the modern theory of statistical

inference. dFRT had a strange destiny. Published first by Bruno de Finetti (Innsbruck,

1906 - Roma, 1985) in an paper in French language, it was rediscovered years later after

translation into English [1]. It has been recognized as a fundamental result for Bayesian

Statistics and interpreted as a kind of justification for the subjective interpretation of

probability. For many reasons dFRT does not find a place in undergraduate Statistics

textbooks. First, undergraduate Statistics textbooks follow mainly the frequentist approach

with Bayesian methods relegated (if lucky) in one final chapter close to the appendix.

Second, dFRT involves some mathematical technicalities that are not easily accessible to

undergraduates. Third, and perhaps most important, dFRT has a conceptual relevance

rather than practical one and this makes it usually more compelling for philosophers than

for statisticians. It has to be properly interpreted, i.e. to assign it a meaning, that properly

locates it conceptually inside the theoretical framework of modern inferential statistics. The

usual interpretation of dFRT stressed its role both as a formal justification of the “degrees

of belief” school of Probability theory and as a link between the latter and the frequentist

School [14]. Due to its borderline and foundational role, dFRT has been approached with

deference and awe in some technical presentation. On the other hand, the scope and

power of this theorem is usually under-represented in popular Statistics expositions or

introductory textbooks. In what follows I will re-explore and clarify the meaning of the

dFRT, stressing its pivotal role in particular in the induction process that was also the crux

and motivation behind de Finetti efforts concentrated in its theorem [1].

1.1 Independence and prediction: some clarifications

In life there are no difficult things to understand, everything depends on the path we follow

on the way to reach the truth and clarify the terms used. For a full understanding of

dFRT its important to review some basics facts about inferential statistics [3, 4, 5]. In

what follows I will use the term induction as a synonymous of being able to probabilistically

infer about future outcomes looking at the past relative frequencies. At the outset some
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important clarification are in order. The bad thing of Statistics is that sometimes topics

are presented in a way that mathematical formalism covers the concepts behind them so

that the main point is not easy to be grasped by the novice. The good thing is that

in Statistics we can explain a lot of things with the use of a very common and simple

object: the coin. Nonetheless its simplicity and ubiquity, the coin tossing model has some

important disadvantages and can lead to serious misunderstandings. The limitation is that

when we consider a (even not fair) coin, we are adopting an underlying independent and

identically distributed assumption (IID henceforth) that is quite strong but that makes life

very easy for the inferential exercise. But this does not represent the whole story. What

if, for whatever reason, the tossing are not independent? What if they are not identically

distributed1? Will we be able in these condition for example to predict the next toss given

the past results?

p(xn+1|x1, . . . , xn) (1)

Is induction possible in this case? Here is where the dFRT shows all its power since it

clarify at least conceptually what we can and what we cannot do and know about induction

in the the dangerous lands outside the safe IID enclosure. An important clarification has

to be stated at the outset:

1This is not an exotic possibility even in a simple coin tossing experiment. With some practice, after

many tosses, a person can become able to affect the outcome for example introducing a bias in favor of head.

The probability of getting head can thus change during the experiment, invalidating the IID assumption.
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Statement n. 1 Independence alone in general is not enough for induction, since

p(xn+1|x1, . . . , xn) = p(xn+1) (2)

so this prevents the possibility to learn from the past. But if other than indepen-

dent our random variables are also identically distributed, the IID case, then we

can learn from the past using the relative frequency of the occurrence of the event

of interest. This fact is usually given for granted in a first year undergraduate

statistics course. As I will show below, the theoretical rationale behind this is

another core result springing from the dFRT.

2 inferential statistics: a bird’s eye view

The usual “statistical inference” tale follows some traditional steps: a) we are interested

in a natural phenomenon that can be properly described by a given random variable;

b) it follows that the outcome of a possible experiment regarding the phenomenon can be

described by an appropriate statistical model; c) a parametric statistical model M is defined

in terms of the parametric family of densities that depend on one or more parameters θi; d)

we observe data {x1, . . . , xn} as a particular realization of the random sample {X1, . . . , Xn};

e) we use the sample to infer the value of the parameter(s); f) we use the fully specified

model for prediction of future realization of the event of interest. The exact way in which

this recipe is put into practice depends on the paradigm adopted. We know that in life

matters rarely can be separated strictly in black and white, there is always a fuzzy shade

of gray. This is also true for this long standing debate about the conflict frequentist versus

Bayesian. By and large the main line of fracture lies in the way each group interpret

probability statements and how this is reflected in the approach to statistical inference.

Here a brief sketch of the two main schools of thought.
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2.1 frequentist approach

In this approach, probability is the long-run frequency of te occurrence of an event and

parameters in the statistical models are considered fixed but unknown quantities. In any

statistical problem, we have data that are generally sampled from some population or

data generating process that is repeatable. Probability statements cannot be made about

parameters because they cannot meaningfully be considered as repeatable. The main as-

sumption used here is that observation are independent and identically distributed (IID)

because when this is the case the statistical model of the joint distribution of (X1, . . . , Xn)

can be simplified tremendously by factorization:

p(x1, . . . , xn) =
∏
i

p(xi, θ). (3)

Notice that in the formula above I put a comma between the sample value xi and the

parameter θ because for the frequentist a parameter is indeed just a parameter: a constant

whose value is unknown. Any assumption about the term p(x1, . . . , xn) appearing in (3),

the joint distribution of (X1, . . . , Xn), is one of the fundamental starting points of the

inferential process and at the same time the entry point for a full understanding of dFRT.

2.2 The Bayesian approach

For the Bayesian parameters are not just parameters in the above sense but random vari-

ables, something that in the mind of the researcher can assume different values with different

probabilities attached to them. As any random variable, the parameter θ is specified by a

distribution or a density called prior π(θ) that is based on the state of knowledge that the

subject interested in the random experiment possesses about the parameters; it is here that

the concept of degree of belief enters into the picture: the prior is a (not necessarily sub-

jective) idea about the possible values of the parameter that can be different for different

subject according to the different knowledge that they possess about the data-generating

mechanism of event of interest. π(θ) is the terrible probability of a probability, a concept

that frequentists simply abhor. It is not important from where the prior comes from, what

is important for the Bayesian framework is how we “update”our knowledge by combining
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the prior and the information collected by a random experiment in the form of a set of

data. This is given formally by the famous Bayes formula:

p(θ|x1, . . . xn) =
p(x1, . . . xn|θ)π(θ)

p(x1, . . . xn)
=

p(x1, . . . xn|θ)π(θ)∫ 1

0
p(x1, . . . xn|θ)π(θ)dθ

. (4)

The denominator of the previous formula is the again the joint distribution of (X1, . . . , Xn).

Here p(x1, . . . xn) is called marginal distribution because it does not depend on the param-

eter since it has been marginalized out by integration:

p(x1, . . . xn) =

∫ 1

0

p(x1, . . . xn|θ)π(θ)dθ. (5)

This equality can be easily derived by assuming that
∫ 1

0
p(θ|x1, . . . xn) = 1, a fact that makes

sense only in the head of Bayesians since θ is a random variable. the term p(x1, . . . xn|θ)

appearing on the right side of (4) is the so called Likelihood function, another hotshot of

the whole inferential statistics narrative. Furthermore, even Bayesians adopt a concept of

independence to simplify the joint distribution of (X1, . . . , Xn) but now this assumes the

following form of conditional independence:

Figure 1: The Bayesian cycle for prediction.
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p(x1, . . . , xn|θ) =
∏
i

p(xi|θ). (6)

In this case we have to put a bar | in the above formula to stress than we are conditioning

given the value of the random variable Θ = θ. There is a huge conceptual gap between

formula (6) and formula (3) reflecting the fracture that opposes frequentist and Bayesian

in the way they look at the inferential process.

Something at this point must be clear to the reader. Inference for the frequentist means

to find an approximate value of the (unknown) constant θ using the collected sample

(x1, . . . , xn) at hand. Inference for the Bayesian means to improve his initial knowledge

about the distribution of the parameter. Both will use their findings about θ to use the

statistical model for prediction of future events. This will be a recurrent theme if what

follows. The issue of trying to predict the future using the past information is a crux for

both frequentists and Bayesian and will be stressed again below since is a key ingredient

in the elucidation of dFRT. Inferences about the parameter θ uses (4). What we need is to

specify the prior and this of course is a subjective ingredient. For the Bernoulli case, the

Bayesian machinery uses the Beta distribution:

π(θ) = Beta(θ, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1, for 0 ≤ θ ≤ 1 (7)

This combined with the likelihood function generate the posterior according to Bayes

rule (4). Different choice of the parameters a and b will generate different classes of priors.

In figure (2) the initial prior (green line) is the uniform density generated with the choice

a = 1 and b = 1. The black curve refers to the density of a the Beta(47,55), representing

the posterior in the case of fair coin tossing.

3 To the de Finetti’s representation theorem

The starting point to the dFRT is different and lies in the more general concept of ex-

changeability instead of independence. Informally this means that given the set of sampled

observations {xi}i=1...n, the order of these observations does not matter. This applies in
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the case of usual understanding of multiple tosses of a coin. The “coin tossing\number of

heads” experiment is modeled via the random variable:

X(E) =

 1 E = {Head}

0 E = {Tail}
(8)

The observed list of outcomes, for example {0, 1, 0, 0, 1, 0}, are expected to be exchange-

able since the probability of this sequence does not change if we change the order of digits.

What seems relevant here is not the order but the numbers of 1’s. Exchangeability expresses

a kind symmetry of beliefs about the random quantities in which the future observation

are expected to be similar to past observation [17, 13, 2, 8]. The next, is a very important:

Statement n. 2 The condition of exchangeability is weaker than independence

but it is stronger than the identically distributed property. It can be easily proven

that IID random variables are exchangeable.

There are many situations in which this assumption is reasonable like in the coin toss-

Figure 2: From a uniform prior (horizontal line) and after 100 tosses of a fair coin where

#H ∼ #T . The resulting posterior is a Beta.
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ing experiment, and others where is not true or questionable. Consider the following

example. A football player who is practicing to score in a penalty: The sequence scored

penalties FAIL, FAIL, FAIL,GOAL,GOAL has presumably a higher probability than

GOAL,GOAL,FAIL, FAIL, FAIL, because the player accuracy improves with practice

so we can expect the future will be different from the past. For the mathematician taste,

here I give a more formal definition of exchangeability:

Definition. A set of random variable {Xn} is said to be exchangeable if, given the joint

density p(x1, . . . , xn), we have

p(x1, . . . , xn) = p(xσ(1), . . . , xσ(n)) (9)

for all permutations σ of 1, ..., n.

If, like in the example of the IID coin toss, we are in presence of exchangeability, this has

important conceptual consequences in terms of predictive inference. Being exchangeable

means that the past is similar to the future and this symmetry can be translated saying

that knowing the past is telling us something about the future and helps to predict the

future. As already mentioned, this is strictly related to the problem of predictive inference,

that is to estimate:

p(xn+1|x1, . . . , xn) (10)

Equipped with the concept of an exchangeable sequence we can now state the dFRT

for Bernoulli distributed random variables. Various forms of extension and generalization

of exchangeability and de Finetti result can be found in literature. The interested reader

can refer to [6, 7, 10].
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Theorem (De Finetti, 1930). let {Xi}∞i=1 be a sequence of finitely exchangeable

random variables i.e. ∀n > 0 each finite sub-sequence {Xi}ni=1 is exchangeable.

Then there exists a random variable Θ and a distribution function F (θ) such that:

p

(
lim
n→∞

∑
Xi

n
= Θ

)
= 1 with Θ ∼ F (θ) (11)

and

p(x1, . . . , xn) =

∫ 1

0

[∏
i

θxi(1− θ)1−xi

]
dF (θ) (12)

A detailed proof can be found in Chapter 4 of [3] or in [9]. Here I will try to motivate

the relevance of dFRT with some examples. First let me clarify some points. As previously

mentioned, the main ingredient of inferential statistics is given by the hypotheses over

the structure joint probability distribution p(x1, . . . , xn). The dFRT tells us that under

exchangeability (not necessarily IID) the correct form of this joint probability is given by

(12). F (θ) in (11) is sometimes referred to as the mixing distribution of the exchangeable

random variable. dF (θ) can be thought of as equivalent to π(θ)dθ (in the sense of the

Stieltjes integral) when F (θ) is continuous ([16] chapter 10 p 524). This said, (12) becomes:

p(x1, . . . , xn) =

∫ 1

0

[∏
i

θxi(1− θ)1−xi

]
π(θ)dθ (13)

where π(θ) is what is usually interpreted as the density function of the prior over Θ.

Another important point of the theorem rests primarily on the existence result (11). it

assures the existence of a random variable that encapsulate the maximum possible knowl-

edge about the underlying data-generating mechanism that produces data. we defined in

(11) such that any finite subset of {Xi}∞i=1 can be considered as a random sample of the

model
{
θ
∑

xi(1− θ)n−
∑

xi
}
. Another point usually stressed since the first de Finetti philo-

sophical interpretation is that dFRT justifies the use of a probability distribution over the

parameter Θ = p(X = 1). The (11) is extremely important. It is in fact a Law of Large

Numbers for exchangeable random variables, a very important result embedded inside the

dFRT. Under exchangeability condition the relative frequency
∑

Xi/n tends to a random
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variable, not necessarily “degenerate” (i.e. constant with probability one) as in the IID

classical Large Number Law case. Summarizing, the condition of exchangeability implies:

� There exists a random variable Θ such that:

P(x1, . . . , xn|Θ = θ) = θk(1− θ)n−k;

� Θ is the limit of the relative frequencies: this is the the more general Law of Large

Numbers for exchangeable random variables and

F (θ) = lim
n→∞

P
(∑n

i=1Xi

n
≤ θ

)
� if F has density, dF (θ) = π(θ)dθ where π(θ) is the density of Θ. Before observing

the data, any hypotheses about π(θ) (right or wrong that it can be) corresponds to

the prior: it is the idea about the underlying structure of the parameter Θ before the

data are collected;

Combining dFRT and Bayes rule, and after some calculus “gymnastic”, it is possible

to show that:

Figure 3: dFRT: the overall picture.
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p(xn+1 = 1|x1, . . . , xn) =

∫ 1

0

θπ(Θ|x1, . . . , xn)dθ = E (π(Θ|x1, . . . , xn)) . (14)

This means that, after the posterior is obtained, the best prediction about a future

observation is the expected value of the posterior (figure 3).

It is clear now how much dFRT is important for the problem of induction. Before

observing the sample {xn+1 = 1|x1, . . . , xn}, there is an idea about the distribution of Θ

that corresponds to an idea about its density π(θ). This is strictly related the the un-

derlying data-generating mechanism that describe the structure of the joint distribution

p(x1, . . . , xn). The idea about π(θ) can be more or less “close” to the correct, real, distri-

bution of θ, but after observing the data, something important happens for the possibility

of the induction process (i.e. making probabilistic statements about the future using ob-

servation from the past):

Statement n. 3 Given the exchangeability hypotheses, and whatever is the

observer’s idea about the prior density π(θ), the induction about the probability

of the next observation of the event of interest given the data, will be strongly

“guided” by the relative frequency of the observed event of interest.

In what follows I will motivate it with some examples where I will stress how the theorem

helps to solve the theoretical problem of induction.

3.1 Case I: {Xi}∞i=1 IID.

In this case, since {Xi}ni=1 are IID, by the law of large numbers we have that ∑
Xin

converges

to a degenerate random variable Θ, that is a random variable for winch there exist one

value θ such that P (Θ = θ0) = 1 and such that E(Xi) = θ0. This case is equivalent to say

that (in what follows we assume k =
∑

xi):

p(X1 = x1, . . . , Xn = xn) = θk0(1− θ0)
n−k (15)
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Figure 4: Distribution of
∑n

i Xi/n in the case p(
∑

Xi = k) =
(
n
x

)
(0.5)n(0.5)n−k for different

values of n. From the left to the right n = 5, 20, 100. It clearly shows that the limit

distribution is equal to degenerate case with θ0 = 0.5

.

This is a quit special situation. In general things are more complicated as I will mention

below. In this case Θ does not have a density but, according to the discussion in (??),

we can still manage the integral (12) “as if” it’s density is represented by a Dirac delta

function (for a “refresh” of its properties, see appendix A):

π(θ) = δ(θ − θ0) (16)

and the corresponding step CDF:

F (x) =

∫ x

−∞
δ(θ − θ0)dθ. (17)

In this case we have:

∫ {
θk(1− θ)n−k

}
δ(θ − θ0)dθ = θk0(1− θ0)

n−k, (18)

where the natural choice for approximating θ0 is

θ̂0 =
k

n
(19)

This is the case where frequentist and Bayesan meet.
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Figure 5: Distribution of
∑n

i Xi/n in the case p(
∑

Xi = k) = 1
n+1

for different values of

n. From the left to the right n = 5, 20, 100. It clearly shows that the limit distribution is

equal to θ

3.2 Case II: {Xi}∞i=1 exchangeable but not independent.

A very instructive example due to Bayes himself ([15], p.29). Let’s imagine that we have a

sequence of Bernoulli random variable (X1, X2, . . . ) such that

p

(
n∑
i

Xi = k

)
=

1

n+ 1
, fork = 1 . . . n. (20)

In this case {Xi}∞i=1 are exchangeable, they are identically distributed since p(Xi = 1) =∫ 1

0
θdF but they are not independent since for example p(X2|X1) 6= p(X2). dFRT applies,

so we can specify the joint probability using (12). Since {Xi}∞i=1 are not IID the dFRT

tells us that
∑n

i Xi/n still converges to a random variable whose “structure” is now more

complicated than the degenerate case saw in the classical IID example above. It can be

easily shown analytically that F (θ) = θ. This is equivalent to say that the prior π(θ) = 1,

i.e θ has a uniform distribution in (0, 1). Here I will motivate this intuitively with the help

of some software computation. Figure (3.2) shows the distribution function of
∑n

i Xi/n for

our random variables at different values of n. It clearly shows what happen if n becomes

large.
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3.3 The general case.

In general the possible structure of p(Sn = k) for the binary case is limited because of the

constrain of the probability properties. The previous cases are only particular situations

and in general it is possible to show that the formula for the general form of p(Sn = k) is

given by:

p(Sn = k) =

(
n

k

)∫ 1

0

θk(1− θ)n−kΓ
(
b
c

)
Γ
(
r
c

)
Γ
(
b
c
+ r

c

) dθ, (21)

where Γ stands for the Gamma function, n is the number of successes over the total n and

and a, b, r, c are suitable parameters. The (21) is called Pólya urn model (for more details

the reader can refer to [11]). It follows that:

lim
n→∞

∑
Xi

n
= Θ ∼

∫ θ

0

1

B
(
b
c
, r
c

)u b
c
−1(1− u)

r
c
−1du (22)

3.4 An “extreme” case

Let’s now consider the situation depicted in figure (6). Given Xi ∼Bernoulli(θ), such that

p(Xi) = θ and:

p(Xn+1 = 1|Xn = 1) = 1 and p(Xn+1 = 0|Xn = 0) = 1 (23)

{Xi}∞i=1 are exchangeable and satisfy the dFRT conditions, the relative frequency can direct

successfully the induction process.

Figure 6: An “extreme” case of exchangeable RV.
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4 What if {Xi}∞i=1 are not exchangeable?

Let’s try to summarize the story so far. dFRT is an important theoretical tool since it can

shed light on the meaning and role of the prior in the whole Bayesian cycle. It shows how

the IID case represents just one among many different possibilities about the distribution

over the parameter of interest θ. It is important to stress that if we are interested in a

predictive exercise:

p(xn+1|x1, . . . xn), (24)

even if initial hypotheses about the joint distribution differ, after the data they tend to

“’converge”. This is clearly shown in the following example.

Given Xi, before the data:

� IID assumption: p(1, 0, 1, 0, 1, 0, 1, 0, 1, 0) = 1
25

= 1
1024

� Uniform prior assumption: p(1, 0, 1, 0, 1, 0, 1, 0, 1, 0) = 1
2772

given the data: 1, 0, 1, 0, 1, 0, 1, 0, 1, 0

� IID assumption: p(1|1, 0, 1, 0, 1, 0, 1, 0, 1, 0) = 1
2

� after updating the uniform: p(1|1, 0, 1, 0, 1, 0, 1, 0, 1, 0) = 1
2

This is a well known fact in Statistical practice: irrespective of the idea about the prior,

different posterior will tend to be close to each other after data are collected (figure 7) .

In particular the expected value of the posterior will be close to the relative frequency and

so it will be the prediction about the probability of the next observation of an event. So

the relative frequency plays an important role but this is true only if we are in presence of

exchangeable random variables. If they lack this property, relative frequency is no longer

able to “direct” the induction process. I will show this with the following example.

Given Xi ∼Bernoulli(θ), such that

p(Xn+1 = 1|Xn = 0) = 1 and p(Xn+1 = 0|Xn = 1) = 1 (25)
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Figure 7: Different opinions about θ will converge, with the expected value close to the

relative frequency.

The evolution with non zero probability are depicted in (8). Xi are not exchangeable and

induction fails since the relative frequency now is not a guide to the estimation of the under-

lying mechanism that produced the data. Indeed for example p(1|1, 0, 1, 0, 1, 0, 1, 0, 1, 0) = 1

and not the value suggested using the relative frequency that is 1/2 in this case.

Summarizing: if a sequence of random variable exchangeable, the relative frequency of

data leads to a proper evaluation of the predictive probability. If the random variables are

not exchangeable, the relative frequency will not guide to a proper inferential conclusion.

This is the case where the Bayes inferential machinery (4) goes haywire. This can be

synthesize in the following final:

Figure 8: A case of not exchangeable RV.
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Statement n. 4 If Xi are not exchangeable, the relative frequency is no longer

able to direct the induction process to a proper conclusions.

5 The moral of the story

Frequentist and Bayesian inference are usually pictured as irreconcilable paradigms in

Statistics and the main difference between the two (parameters fixed versus parameters

as random variables) often stressed as a the fracture between the two visions. The de

Finetti’s representation theorem is usually introduced in the context of Bayesian inference

and it is considered to play a role in the “justification” of the prior distribution of the

parameter of interest. In this expository work I tried to challenge this view with an under-

standing of the theorem that stresses its role at the frontline between Probability Theory

and Inferential Statistics, and its relation to the very problem of relating past observations

with future predictions. To conclude, a list of the main key-points:

� exchangeability is the key property for induction;

� the use of relative frequencies for prediction during the induction process makes sense

only in the presence of exchangeability;

� de Finetti’s theorem clarify the role played by the relative frequency in the Bayesian

framework;

� the IID case is a particular case;

� for non-exchangeable random variables, relative frequencies will fail to guide the

induction process;

� the theorem can be extended to arbitrary real-valued exchangeable sequences [6].

Finite version and generalizations can be found in [7]. Further generalizations in [10].

“This [theorem] is one of the most beautiful and important results in modern

statistics. Beautiful, because it is so general and yet so simple[12]”
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Appendix A Dirac delta

It is obvious that probability density is definite only for absolute continuous variables.

However, in some “pathological” situation can be useful to extend the concept of density.

The figure 4 below depicts the posterior shapes (described by Betas distribution) for differ-

ent valises of n. The when N increases the base of the bell-shaped density will be narrower

and narrower and the top higher and higher. For N very big we can imagine that the

density will tend to something with an infinitesimally narrow base whereas the height goes

to infinity. The limit density when N → ∞ is not a “traditional” density but an exotic

mathematical object called a Dirac delta generalized distribution. The Dirac delta - also

called generalized function is usually indicated as δ(θ−θ0) and formally it can be described

as follows:

δ(θ − θ0) =

 0 θ 6= θ0

∞ θ = θ0
(26)

with the property that

∫
R
δ(x)dx = 1 (27)

The delta function is not a distribution, technically it is not even a mathematical

function. Instead it can make sense to use it inside integrals in operation involving limits

of sequences of normalized (integral= 1) functions behaving like the Beta in (A). If we

have a sequence of such functions δn(x) it holds that:

lim
n→∞

∫ ∞

−∞
f(x)δn(x− x0)dx = f(x0) (28)

It should be emphasize that the integral on the left-hand side of is not a Riemann

integral but a limit. It can be treated as a Stieltjes integral if desired. δ(x)dx is replaced

by dH(x), where dH(x) is the Heaviside step function.
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Figure 9: The limit density of p(θ) will be a δ function
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