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Abstract

Suppose that one thinks that certain symmetries of a theory reveal “surplus
structure”. Whatwould a formalismwithout that surplus structure look like? The
conventional answer is that it would be a reduced theory: a theory which tra�cs
only in structures invariant under the relevant symmetry. In this paper, I argue
that there is a neglected alternative: one can work with a sophisticated version of
the theory, in which the symmetries act as isomorphisms.

1. Introduction

It is widely held that the symmetries of a theory reveal “surplus structure”: structure
which, in some sense, the theory could do without. (For example, the boost sym-
metry of Newtonian mechanics indicates the super�uousness of absolute space; the
gauge symmetry of electromagnetism reveals the super�uousness of absolute poten-
tials; and so on and so forth.) In this paper, I compare and contrast two ways of taking
that claim on board (although I do not intend to assess the scope or validity of the
claim itself). The �rst is to replace the theory by (what I shall call) a reduced theory: a
theory that deals only in quantities which are invariant under the relevant symmetry.
The second is to replace the theory by (what I shall call) a sophisticated theory: a theory
in which models related by a symmetry are isomorphic.
In the next section, I set up some necessary apparatus, by de�ning what symme-

tries are of interest to us in this paper: namely, symmetries of �rst-order relational
theories, and internal symmetries of local �eld theories. In section 3, I outline the use
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of reduction to expunge surplus structure from a theory, and suggest that it is some-
what problematic as a general strategy—even though it is standardly assumed to be
the ne plus ultra of ways to enact the lessons of symmetries. In section 4, I outline so-
phistication as an alternative way to enact those lessons. Finally, in section 5, I discuss
the senses in which these really are alternatives (and how the original theory relates
to its reduced and sophisticated versions). Section 6 concludes.

2. Symmetry

Here, I outline the kinds of symmetries that will be the topic of this paper. I consider
symmetries for two kinds of theories: for theories formulated in terms of �rst-order
model theory, and for theories formulated as local �eld theories.
Here is what I mean by a theory formulated in terms of relational �rst-order model

theory.1 In this context, the basic notion is that of a signature: a set Σ of monadic
and polyadic predicates. Given a signature Σ, one can de�ne the set Form(Σ) of well-
formed Σ-formulae, using the standard compositional rules of predicate logic. The set
of Σ-sentences is the set of closed Σ-formulae (formulae with no free variables).
The semantics for a language with signature Σ is given by Σ-pictures.2 A Σ-picture

M consists of a set |M | (the domain ofM ), equipped with a function ·M with domain
Σ. For each n-ary predicate Π ∈ Σ, ΠM is a set of n-tuples with members drawn from
|M |: that is, ΠM ⊆ |M|n. A Σ-pictureM determines the truth or falsity of elements of
Form(Σ), relative to a variable-assignment v forM , via the standard recursive clauses.
If M makes a formula φ true relative to v, we writeM |=v φ; if φ is a sentence, then
the variable-assignment no longer matters, and we write simplyM |= φ.
A theory T in the signature Σ (for short, Σ-theory) is a set of Σ-sentences.3 A Σ-

pictureM is said to be amodel of T if it satis�es each member of T ; we denote the class
of all models of T by Mod(T ). Finally, T entails a Σ-sentence φ just in caseM |= φ for
everyM ∈ Mod(T ); this will be denoted by T � φ.4 For example, consider the theory
TH of handedness. Letting ΣH = {L,R}, TH is the theory consisting of the following

1Notation and concepts mostly follows [Hodges, 1997].
2This terminology is non-standard. The more standard term is a Σ-structure: I have changed the ter-
minology in order to avoid confusion between informal use of “structure” and its use as a term of
art.

3In accordance with standard practice in model theory, I don’t require theories to be deductively
closed.

4The symbols for satisfaction and entailment are unfortunately similar: the former is |=, whilst the
latter is �. Context will make clear what is meant in any given case, however.
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sentences:

∀x(Lx ∨Rx) (1a)

∀x¬(Lx ∧Rx) (1b)

Think of this as a (very simple) theory about worlds in which there is nothing but
gloves: everything is either left-handed or right-handed, but nothing is both.
For theories formulated in terms of relational �rst-order model theory, the relevant

notion of symmetry is this: a symmetry is a translational equivalence between a the-
ory and itself.5 First, de�ne a dictionary map from Σ1 to Σ2 to be any functionD : Σ1 →
Form(Σ2) such that for anym-ary predicate-symbol Π,DΠ is a formula with precisely
the m variables x1, . . . , xm free. Intuitively, we can think of D as a foreign-language
dictionary, assigning each de�niendum (primitive symbol of Σ1) to a de�niens (for-
mula of Σ2). A dictionary map gives us a means of converting any Σ1-formula into a
Σ2-formula, through a process of substitution: given a Σ1-formula φ, simply replace
any atomic subformula Πy1 . . . ym occurring in φ by (DΠ)(y1/x1, . . . , ym/xm).6 Let us
denote the result of applying such a substitution to φ as Dφ. For the sake of brevity, I
will write D : Σ1 → Σ2 to indicate that D is a dictionary map from Σ1 to Σ2.
Now suppose that we have two theories T1 and T2, in signatures Σ1 and Σ2 respec-

tively. Then we say that a dictionary map D : Σ1 → Σ2 is a translation of T1 into T2 if,
for every φ such that T1 � φ, T2 � Dφ: that is, ifD converts all consequences of T1 into
consequences of T2. In such a case, we will write D : T1 → T2. We can then say what
it is for a pair of theories to be translationally equivalent:

De�nition 1. Theories T1 and T2 are translationally equivalent if there are translations7
D : T1 → T2 and D′ : T2 → T1 such that, for any Σ1-formula φ(x1, . . . , xm), and any

5The notion of a translational equivalence is taken from [Barrett and Halvorson, 2015]; it should be
noted that translational equivalence is, modulo trivial relabellings of predicates, equivalent to def-
initional equivalence.

6Here, ψ(y/x) denotes the result of uniformly substituting y for x everywhere in ψ(x).
7It is crucial thatD andD′ be translations. For instance, suppose thatΣ1 andΣ2 are a pair of signatures
such that D is a one-to-one arity-preserving bijection between them (or rather, is the dictionary
map corresponding to such a bijection), and that D′ is the inverse (strictly, is the dictionary map
corresponding to the inverse). Then the conditions below will be satis�ed with respect to any pair
of theories T1 and T2; but D and D′ will not, in general, be translations.
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Σ2-formula ψ(x1, . . . , xn),

T1 � ∀x1 . . . ∀xm(φ(x1, . . . , xm)↔ D′Dφ(x1, . . . , xm)) (2a)

T2 � ∀x1 . . . ∀xn(ψ(x1, . . . , xn)↔ DD′ψ(x1, . . . , xn)) (2b)

That is, T1 and T2 are translationally equivalent if there are translations between
them which are “almost inverse”: the compositions of the two translations need not
take every formula back to itself, but must take it to a formula which is equivalent
(modulo T1 or T2, as appropriate). We will refer to a pair (D,D′) satisfying (2) as a
translational equivalence between T1 and T2.
A symmetry is then simply a translational equivalence under the special case T1 =

T2. Of course, for any theory, the trivial translational equivalence (Id, Id) is a symme-
try. But many theories have non-trivial such symmetries. For example, in the theory
TH , consider the dictionary map E such that

E(L) = Rx1 (3a)

E(R) = Lx1 (3b)

It is easy to see that E is a translational equivalence between TH and itself, with E as
its own inverse.
Here is what I mean by a theory formulated as a local �eld theory. The role of

a signature is played by a set Ψ of q �eld-variables ψ1, . . . , ψq, and a set X of n base-
variables x1, . . . , xn. The role of Σ-pictures is played by Ψ-�elds, where a Ψ-�eld is a
map from Rn to Rq. We will use the �eld-variables as coordinates for the copy of Rq

that is the range of the Ψ-�elds, and the base-variables as coordinates for the copy of
Rn that is the domain of the Ψ-�elds. The role of Σ-sentences is played by di�erential
equations, constructed using the members of Ψ and standard di�erential operators.
A Ψ-�eld is a solution of a di�erential equation just in case it satis�es the equation at
every point of Rn. A Ψ-theory T is just a set of di�erential equations constructed from
Ψ in the manner described. A Ψ-�eld is amodel of T if it is a solution to every member
of T ; we will denote the class of all models of T by Mod(T ).
For example, consider the theoryTP of instantaneous electrostatics in terms of potentials.

The �eld-variables of this theory are ρ and φ (so q = 2), and the base-variables are x1,
x2 and x3 (so n = 3); this theory has one equation,

∇2φ = 4πρ (4)
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where ∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3).
Alternatively, consider the theory TA of electromagnetism in terms of potentials. The

�eld-variables of this theory are Aµ and Jµ, and the base-variables are xµ, with 0 ≤
µ ≤ 3 (so q = 8 and n = 4); this theory has four equations,

∂µ(∂µAν − ∂νAµ) = Jν (5)

with 0 ≤ ν ≤ 3. In the above, the Einstein summation convention is used, and raised
indices are raised by application of the (inverse) Minkowski matrix gµν (e.g. Aµ :=

gµνAν), where

gµν =


1 if µ = ν = 0

−1 if µ = ν = 1, 2, 3

0 otherwise

(6)

For such a theory, the notion of symmetry we shall consider is this: a symmetry is a
vertical bundle automorphism of the theory’s total space which maps solutions to so-
lutions. (Thus, we are only considering so-called internal symmetries.) That is, regard
the total space Rq × Rn as a (trivial) �bre bundle. Any vertical bundle automorphism
can be expressed as a map η : Rn → (Rq → Rq).8 That is, η assigns, to every point
p ∈ Rn, a map ηp : Rq → Rq. Any such map η naturally induces a transformation
of any Ψ-�eld into another Ψ-�eld: if the original �eld has the value ψi(p) at point
p ∈ Rn (for 1 ≤ i ≤ q), then the new �eld has value ηp(ψi(p)) at p. We then say that η
is a symmetry of T if η induces a bijection on the space of solutions of T .
For example, in the theory TP , let k be some real number, and for every p ∈ R3, let

ηp be the map such that
ηp(φ, ρ) = (φ+ k, ρ) (7)

One can quickly verify that (7) transforms solutions of (4) into other solutions. For
another example, in the theory TA, let λ : R4 → R be any smooth scalar function, and
let ηp be the map such that

ηp(Aµ, J
µ) = (Aµ + ∂µλ|p, Jµ) (8)

Again, one can verify (although a little less straightforwardly) that this transforms all
and only solutions of (5) into other solutions.

8This is the same function-type as Rn × Rq → Rq ; but expressing it in the curried form makes its
conceptual import a little clearer.
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At �rst, it might seem a little opaque how these two notions of symmetry relate to
one another. In fact, however, there is good reason to think that they are expressions
of the same basic idea. To see this, observe �rst that a dictionary-map D : Σ → Σ

could be thought of as a map from the “value-space” of a �rst-order theory to itself: if
we regard predicates (both simple and complex) as indicating ways for n-tuples to be,
and remind ourselves that �eld-values serve to indicateways for points of a base space
to be, then we can see how a dictionary-map D and a vertical bundle automorphism
η do the same kind of thing. Furthermore, just as η transforms Ψ-�elds into other Ψ-
�elds, so D transforms Σ-pictures into other Σ-pictures. In fact, any dictionary map
D : Σ1 → Σ2 naturally induces a dual map D∗ from Σ2-pictures to Σ1-pictures. Given
any Σ2-pictureM , D∗M is the Σ1 picture given by

|D∗M | = |M | (9a)

(a1, . . . , an) ∈ ΠD∗M ⇐⇒ (a1, . . . , an) ∈ (λx1 . . . xn.DΠ)M (9b)

Finally, we have the following important result from model theory:9

Proposition 1. Suppose that we have translationsD : T1 → T2 andD′ : T2 → T1. Then
D andD′ implement a translational equivalence between T1 and T2 i�D∗ is a bijection
Mod(T2)→ Mod(T1), with (D′)∗ as its inverse.

Proof. See Appendix A.

Thus, in the special case where T1 = T2, the demand that a dictionary map D be a
translational equivalence is the same as demanding that it (or rather, its induced map
D∗) act as a bijection on Mod(T ). This parallels the characterisation of symmetries
in local �eld theories as those vertical bundle automorphisms which take solutions
to solutions. Hopefully, this is enough to suggest that we are indeed dealing with a
reasonably uni�ed concept here. To some extent, the remainder of this paper should
serve as a further defence of the claim that they are analogous: as we shall see, the
same issues show up in the one case as in the other.
With this setup complete, let us turn to the main task. In this paper, I will suppose

that, at least under certain circumstances and for certain theories, the following claim
is true:

9This result is standard (although the statement of it has been tweaked to mesh with the above de�ni-
tion of translational equivalence): see, for example, [de Bouvère, 1965, Theorem 2] or [Hodges, 1997,
p. 54].
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For a theory containing symmetries, we should not interpret that theory
in such a way that the symmetry-related models (i.e., models related by a
map induced by a symmetry) represent distinct ways for the world to be.

What those circumstances might be (indeed, whether there are such circumstances) is
contentious, as is the question ofwhy symmetries, under those circumstances, warrant
such interpretational circumspection.10 However, rather than become involved in that
debate, I wish to investigate the issue of what we should do next. That is, suppose that
we do indeed have a theory which contains symmetries, and to which (for whatever
reason)we have become convinced that the above applies. What should our nextmove
be?
In the next section, I consider one popular account of what the next move should

be. This account says that we should seek a reduced theory: a theory which deals only
in quantities which are invariant under the relevant symmetry. After explicating this
account, I o�er some reasons to think that this is not the best way of implementing the
above lesson. In section 4, I consider an alternative way of implementing the lesson
above: that of leaving the theory alone, but seeking instead a di�erent semantics for
interpreting it (what I will call a sophisticated semantics). Section 5 discusses how the
results of applying these two strategies compare to one another.

3. Reduction

In many discussions about the proper way to implement the above interpretational
principle for symmetries, it is taken for granted that what we seek is a theory which
is the result of a reduction by the relevant symmetry. In very general terms, the idea
is that we (i) identify some collection of invariants of the original theory; (ii) specify a
theory in terms of those invariants; and (iii) show that the new theory captures all the
symmetry-invariant content of the old theory. Before getting more speci�c, it will be
best to introduce examples.
First, consider the case of the handedness theory TH . The invariant which we use to

specify our reduced theory is the congruence relation: that is, we introduce a relation

10The literature addressing these questions is very large: see, for example, [Saunders, 2003a], the essays
in [Brading and Castellani, 2003], [Baker, 2010], [Dasgupta, 2014], [Caulton, 2015], and references
therein.
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C that is de�ned by

∀x∀y(Cxy ↔ ((Lx ∧ Ly) ∨ (Rx ∧Ry))) (10)

Informally, congruence is just the relationship that holds between two objects i� they
have the same handedness. Let us use θC as a shorthand for the formula (10). If we
supplement TH by this de�nition, then we get its de�nitional extension T+

H := TH ∪
{θC}, in signature {L,R,C}. The �rst observation is that agreement on the congruence
relation su�ces for agreement on all invariant content, in the following sense: if M
and N are two models of T+

H , such that |M | = |N | and CM = CN , then eitherM = N ,
or elseM = E∗N .
Now consider the theory TC , in signature ΣC := {C}, comprised by the following

axioms:

∀xCxx (11a)

∀x∀y(Cxy → Cyx) (11b)

∀x∀y∀z((Cxy ∧ Cyz)→ Cxz) (11c)

∀x∀y∀z((¬Cxy ∧ ¬Cyz)→ Cxz) (11d)

Informally, this theory states thatC is an equivalence relation, with at most two equiv-
alence classes. Models of TC closely correspond tomodels of T+

H (and hence, tomodels
of TH). On the one hand, for any model M of T+

H , its reduct M |ΣC
is a model of TC .

Indeed, suppose thatM |= T+
H ; thenM satis�es the sentences (1) and (10); but the sen-

tences (11) of TC are simply a consequence of those sentences, and so M must make
(11) true as well; since these refer only to C, it follows thatM |ΣC

|= TC . On the other
hand, for any model N of TC , there is a Σ+

H-expansion N+ ofM (i.e., a Σ+
H-picture N+

such that N+|ΣC
= N ) which is a model of T+

H . Indeed, if N is a model of TC , then
it is clear from equations (11a)–(11c) that CN is an equivalence relation over |N |, and
from (11d) that it partitions the domain into at most two equivalence classes. So just
let LN+ be one of these equivalence classes, and letRN+ be the other (if such there be).
It is then obvious that N+ satis�es (1) and (10), i.e. that N+ |= T+

H .
Thus, there is a natural sense in which TC captures the “invariant part” of TH . On

the one hand, anymodels of TH which agree with respect to all the structure invariant
under E∗ will correspond to a single model of TC ; and on the other, every model of TC
corresponds to some (indeed, more than one) model of TH .
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Second, consider the case of electrostatics. This time, the chosen invariant is the
electric �eld E, de�ned by

E := ∇ϕ (12)

Again, the �rst thing we want is some kind of indication that the electric �eld su�ces
to capture all the invariant content of the electrostatic theory. So, let T+

P be the def-
initional extension of TP by (12), and suppose that M and N are two models of T+

P ,
such that EM = EN . Then by elementary integration, their potentials agree to within
a symmetry transformation: that is, for some constant k,

ϕN = ϕM + k (13)

So now consider the following theory, TE . The �eld-variables of TE are ρ and Ei

(where 1 ≤ i ≤ 3); I will use vector notation, E, for the latter. The base-variables are
the same as TP . The equations of the theory are

∇× E = 0 (14a)

∇ · E = 4πρ (14b)

Again in analogy to the handedness case, we have the following pair of observations
about how the models of TE relate to those of TP . First, for any model M of T+

P , the
electric �eldEM satis�es equations (14). This is obvious just from plugging the de�ni-
tion (12) into (14). Second, for any modelN of TE , there is a modelN+ of T+

P such that
EN+

= EN . This is also standard: an irrotational vector �eld over a simply connected
base space admits some scalar �eld of which it is the gradient.
Finally, consider the case of electromagnetism. The invariant we use here is the

electromagnetic �eld
Fµν := ∂µAν − ∂νAµ (15)

Let T+
A be the result of supplementing TA with the de�nition (15). Once again, we

observe �rst that the electromagnetic �eld determines all gauge-invariant quantities.
That is, for any models (Aµ, Fµν) and (A′µ, F

′
µν) of T+

A , if Fµν = F ′µν then for some scalar
function λ, A′µ = Aµ + ∂µλ. This is, again, a standard result.
Now consider the theory TF . The �eld-variables of TF are Jµ and Fµν , where 0 ≤

µ, ν ≤ 3 (so q = 20), whilst the base-variables are the same as those of TA. The equa-
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tions are

Fµν = −Fνµ (16a)

∂[µFνρ] = 0 (16b)

∂µF
µν = Jν (16c)

where, again, indices (all of which range from 0 to 3) are raised using the Minkowski
matrix (and the square bracket [. . . ] indicates anti-symmetrisation). Then, once more,
we �nd a certain kind of alignment between the models of TF and the models of T+

A .
That is, for any modelM of T+

A , the �eld FM
µν is a solution of (16); and for any model

N of TF , there is a model N+ of T+
A such that FN+

µν = FN
µν .

These examplesmake fairly clearwhat ismeant by a reduced theory; let us nowo�er
a general de�nition. Suppose that T is the target theory, admitting some group G of
symmetries (and let us denote the action of g ∈ G onmodels byM 7→ g∗M ). Say that a
collectionQ of symmetry-invariant quantities/predicates (inT , or in somede�nitional
extension T+) is complete if agreement on Q guarantees agreement to within G: i.e., if
it is the case that for any modelsM andN of T (+), if qM = qN for every q ∈ Q, then for
some g ∈ G, N = g∗M . A reduction of T to Q is a theory T ′, of signature Q, such that:

(i) for any model M of T ′, there exists some model N of T (+) such that for every
q ∈ Q, qM = qN ; and

(ii) for any modelM of T (+), the reduct ofM to Q is a model of T ′

I’ll refer to the pair of conditions (i) and (ii) as the Goldilocks conditions for symmetry
reduction: they state that the class of models of the reduced theory must be neither
too big nor too small.
Many discussions of symmetry assume, implicitly or explicitly, that changing one’s

theory to incorporate the lessons of a symmetry—to get rid of the “surplus structure”
the symmetry reveals—means moving from the original theory to a reduced theory.
It is worth pointing out, however, that there are problems with making reduction the
gold standard for expunging surplus structure. First, it is highly non-trivial to �nd
such a reduced theory—or even to demonstrate with con�dence that such a theory
could exist. All the examples above were chosen as cases where we know how to
specify the reduced theory. But doing so required that we could both �nd a complete
set of invariant quantities Q, and then provide a theory in terms of Q whose class
of models meets the Goldilocks conditions. Note that these tasks are somewhat in
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tension. Plausibly, the set of all invariant quantities will always be complete.11 But the
more invariant quantities one wants to use in Q, the harder it is going to be to �nd a
�nitely or recursively axiomatisable theory out of them (satisfying both theGoldilocks
conditions).12
As an illustration of these perils, consider the theory T̃A. The equations of this the-

ory are precisely the same as those of TA: the only di�erence is that models of this
theory are now taken to be maps of the form U → R20, where U is permitted to be any
open subset ofR4. So, in particular, models of this theory include cases where the base
space is topologically non-trivial. It is now no longer the case that the set {Fµν} com-
prises a complete set of quantities: there are gauge-invariant quantities which are not
determined by �xing the value of Fµν everywhere. To take the best-known example,
de�ne the holonomy of a loop γ to be

h(γ) = exp

(∮
γ

Aµdxµ
)

(17)

It is straightforward to verify that holonomies are gauge-invariant. Yet if U is not sim-
ply connected, the value of Fµν everywhere in U underdetermines the values of the
holonomies: two models of T̃+

A (both with base space U ) might agree on the former,
yet disagree on the latter.13 Of course, this does not mean that there can be no reduced
theory of T̃A. It certainly doesn’t mean that there is no complete set of invariant quan-
tities for T̃A: in fact, it can be shown that the set of all holonomies comprises just such a
complete set. However, it remains very much an open question whether one can give
some closed-form set of equations for holonomies, such that the solutions of those
equations satisfy the Goldilocks conditions (relative to the de�nitional extension of
T τA by (17)).14
The second problem with insisting that one must provide a reduced theory is that,

even if such a theory can be found, that theory may well have explanatory de�cits
relative to the original theory. For the reduced theory treats the invariant quantities

11Note that proving this will not be entirely straightforward: one could imagine certain global obstruc-
tions (e.g. topological issues) that might yield a pair of models agreeing on all invariants, yet lying
on di�erent symmetry orbits.

12The rider “�nitely or recursively axiomatisable” is necessary to rule out theories consisting simply
of all the logical consequences of T expressible in terms ofQ. Of course, in the context of �rst-order
theories, Craig’s Theorem prevents this from being a serious restriction; but in richer formalisms
(such as local �eld theory) the rider has bite.

13This fact is the essential kernel of the Aharonov-Bohm e�ect [Aharonov and Bohm, 1959]; for further
details, see [Healey, 2007].

14See [Loll, 1994] for discussion.
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Q as primitives; this means that if some q ∈ Q obeys some non-trivial condition as
a result of its de�nition (in the unreduced theory), it must be asserted to obey that
condition (in the reduced theory) as a simple posit. Let us consider some examples of
this phenomenon.
For the handedness theory, note that the reduced theory TC includes axioms to the

e�ect that C is an equivalence relation. No such axioms are needed in the theory T+
H ,

since—in that theory—the de�nition ofC (10) entails that it is an equivalence relation.
For example, the claim that C is symmetric becomes, when translated using (10), the
tautology

∀x∀y(((Lx ∧ Ly) ∨ (Rx ∧Ry))→ ((Ly ∧ Lx) ∨ (Ry ∧Rx))) (18)

In the case of electrostatics, one can see that the equation (14b) in TE corresponds
to the equation (4) of TP . Equation (14a) is a new addition, however; again, the reason
it is not needed in TP is because, translated using (12), it becomes the mathematical
truth that

∇×∇ϕ = 0 (19)

This example also demonstrates that this phenomenon is part of what makes �nding
a reduced theory so hard. In trying to �nd the reduced version of TP , one might be
encouraged by the observation that φ only ever appears in (4) in the form∇φ—which
is a complete invariant. Even then, though, one still has work to do. It’s not enough to
merely substituteE for∇φ in (4); one also has to add in further equations to recapture
conditions such as (19).
For electromagnetism, it is the equations (16a) and (16b) which have no counter-

part in the unreduced theory TA; for in that theory, they reduce to the mathematical
trivialities that

∂µAν − ∂νAµ = −(∂νAµ − ∂µAν) (20a)

∂[µ∂νAρ] = 0 (20b)

The list goes on. Any attempt to reduce T̃A to holonomies must stipulate that the
holonomies obey various identities; attempting to reduce a non-Abelian gauge the-
ory to so-called “Wilson loops” (the relevant analogue of the holonomies for the non-
Abelian case) requires positing an evenmore restrictive set of conditions still.15 Or con-

15See [Arntzenius, 2012, chap. 6].

12



sider relationalist theories of space, which must posit constraints amongst the spatial
relations (e.g. the Triangle Inequality) that merely follow from the de�nitions of those
relations on substantivalist views.16 Why is it bad for the reduced theory to introduce
these extra conditions as primitive posits? Part of the issue is just that it adds to the
complexity of those theories. More signi�cantly, though, it seems to remove a certain
explanatory virtue from the original formulation of the theory. In the unreduced the-
ory, there is a good answer to the question of why the invariant quantities obey these
conditions: they obey these conditions because of how they are built up out of other
kinds of structure in the theory. In the unreduced theory, it seems, we get some kind
of insight into these conditions—an insight that risks being lost, or occluded, if we
insist that the reduced theory is the be-all and end-all.

4. Sophistication

Is there an alternative, then? Is there some other way of taking on board the above
interpretational principle, without seeking out a reduced theory? I suggest that there
is. In a slogan, the idea is that we need not insist on �nding a theorywhosemodels are
invariant under the application of the symmetry transformation, but can rest content
with a theory whose models are isomorphic under that transformation. That is, if M
andN are symmetry-relatedmodels of the unreduced theory, then they give rise to the
same model of the reduced theory discussed in the previous section; the proposal is
thatwe instead look for a theory such thatM andN give rise to distinct but isomorphic
models. Often, however, �nding such a distinct theory may mean leaving the syntax
of the theory alone, but instead modifying the semantics. To see what I mean by this,
let’s consider some examples.
First, consider the handedness theory. I introduce the concept of a de-handed picture:

a de-handed picturem comprises

• A set |m|

• A two-member multiset17 2m, each element of which is a subset of |m|

The point of doing so comes in the introduction of a new de�nition of “homomor-
phism” for such pictures: we take a homomorphism h : m → n to comprise a map

16See [Maudlin, 2007, chap. 3].
17Amultiset is like a set, except that elements of a multi-set may occur more than once [Blizard, 1988].

The idea of using multisets in models of this kind is taken from [Lutz, 2015].
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h1 : |m| → |n| and a bijection h2 : 2m → 2n, such that for each i ∈ 2m and any a ∈ |m|,

if a ∈ i, then h1(a) ∈ h2(i) (21)

In other words, we relax the requirement that isomorphisms must preserve the ex-
tensions of predicates: instead, they may map the extension of one predicate to the
extension of the other. To compose a pair of such homomorphisms, simply compose
the components.
We now remark on how de-handed pictures determine truth-values. It will no

longer be the case that a picture determines an unambiguous truth-value for every
sentence of the handedness language: for a sentence like ∃xLx, for example, there is
no privileged way to determine which of the two “extensions” in the picture ought to
count as the extension of L. But this is as it should be, if we are really interested in do-
ing away with the structure that is variant under the symmetry: sentences which are
not invariant under the symmetry are defective, if we do not take symmetry-variant
structure seriously. Instead, truth in a de-handed picture m is (generally) relativised
to a bijection V : {L,R} → 2m. In a certain sense, it is as though the predicate-letters
L and R are being treated as second-order variables (although they can only range
over 2m); we will therefore refer to the map V as a second-order variable-assignment.
Relative to such an assignment V , and to a �rst-order variable-assignment v, the truth-
values of atomic sentences in a modelm are determined as follows:

m |=V,v Lx i� v(x) ∈ V (L)

m |=V,v Rx i� v(x) ∈ V (R)
(22)

The clauses for non-atomic sentences are unchanged. (These semantics could fruit-
fully be compared to either second-order semantics or supervaluationist semantics.)
We then obtain the following result.

Proposition 2. Suppose that φ is logically equivalent to Eφ, letm be a de-handed pic-
ture, and let v be a �rst-order variable-assignment for m. Then for any second-order
variable-assignments V and V ′ form,

m |=V,v φ i�m |=V ′,v φ (23)

Proof. See Appendix A.

As a consequence, the truth-value of any parity-invariant formula is unambiguously
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determined by a de-handed picture (together with a �rst-order variable-assignment).
Note that all themembers of TH are (of course) logically equivalent to their “swapped”
versions. Hence, we can de�ne the de-handed models of TH as those de-handed pic-
tures which make TH true. We then obtain the following.

Proposition 3. Suppose that φ is equivalent modulo TH to Eφ, let m be a de-handed
model of TH , and let v be a �rst-order variable-assignment form. Then for any second-
order variable-assignments V and V ′ form,

m |=V,v φ i�m |=V ′,v φ (24)

Proof. See Appendix A.

We can therefore take our new theory to be given by the same set of sentences TH ,
but where the semantics for those sentences is that just outlined (i.e. is done in terms
of de-handed pictures, rather than handed pictures).
Next, consider the electrostatic theory. Again, we retain the same set of equations,

but change what objects are used to semantically interpret those equations. Rather
than taking φ to range over R, we instead take it to range over Φ, where Φ is a one-
dimensional, oriented, metric a�ne space (such a space could be de�ned as a set
equipped with a free, transitive of R as an additive group). Φ has su�cient struc-
ture to enable ∇2φ to be straightforwardly de�ned. We can therefore continue to use
the equation (4), interpreted as equations governing models of this kind rather than
the original kind. The transformation (7) also still makes sense, but is now an auto-
morphism of Φ. As a result, if two Φ-valued �elds are related by the application of
such a transformation, they are isomorphic to one another.18 Moreover, note that it’s
not just that the symmetry transformations of the form (7) are automorphisms of Φ:
every automorphism of Φ is a transformation of the form (7).
Finally, consider the electromagnetic theory. This time, models of the theory are

to be connections on a principal U(1)-bundle over R4.19 Once more, we retain the
equations (5), but now interpreted in away thatmakes use only of themoreminimalist
structure available in the models: Aµ is now interpreted as the vector potential of the
target connection relative to some arbitrarily chosen �at connection on the principal
18Given two functions f : U → V and f ′ : U ′ → V ′, the appropriate de�nition of morphism is as

follows: a pair of morphisms α : U → U ′ and β : V → V ′ such that β ◦ f = f ′ ◦ α. An isomorphism
is then an invertible morphism.

19See [Baez, 1994], [Healey, 2007], or [Weatherall, 2014a] for an introduction to the �bre bundle for-
malism.
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bundle; it is straightforward to show that any two such �at connections will be related
by a gauge transformation (a vertical automorphism of the bundle), and hence that
it doesn’t matter which �at connection we choose as a reference-point. And, since
gauge transformations are vertical automorphisms of the bundle, the action of (8) on
the target connection will yield a model isomorphic to the original. Note that the
extension to the theory T̃A is straightforward: we simply takemodels to be connections
on principal U(1)-bundles over U ⊆ R4. And these models do indeed contain all the
same gauge-invariant quantities as the unsophisticatedmodels: in particular, the such
a connection �xes the values of all the holonomies.
Hopefully, these examples make clear enough what is intended; let us now seek

a general characterisation. Note that the proposal on the table—that we can do jus-
tice to a symmetry using isomorphism rather than invariance—is a generalisation of
the “sophisticated substantivalist” method for dealing with spacetime symmetries.20
With that in mind, let us refer to theories equipped with semantics of this sort as
sophisticated (rather than reduced) theories. In general, we will suppose that the hall-
mark of a sophisticated theory is that one leaves the syntactic structure well alone,
but alters the semantic structure which is used to interpret those syntactical construc-
tions (“interpret” here meaning merely assign truth-values to sentences, rather than
anything more philosophically substantive). That is, suppose that we have some the-
ory T , which (as before) is subject to some group G of symmetries. Let’s use the term
“picture” tomean an object which (like aΣ-picture or aΨ-�eld) can be used to system-
atically determine the truth-values of sentences in the language of T . Then a sophisti-
cation of T byG of T ’s semantics is the “forgetting” of theG-variant structure (but only
theG-variant structure) from each picture in T ’s original semantics, thereby obtaining
a semantics which is adequate to assign truth-values to the G-invariant sentences of
T ’s language—and which has the feature that if F is the forgetful map, then for any
original picturesM andM ′,M ′ = g∗M (for some g ∈ G) i� F (M) = F (M ′).
However, this remains somewhat vague. Is there a way to precisify what is meant?

Here is one way to do so. Rather than trying to de�ne the objects of the new seman-
tics “internally”, as mathematical structures of such-and-such a kind (paradigmati-
cally, as sets equipped with certain relations or operations), we instead de�ne them
“externally”: as mathematical structures of a given kind, but with certain operations
stipulated to be homomorphisms (even if they’re not “really” homomorphisms of the
given kind). For example, one way to de�ne vector spaces is to de�ne them as sets

20[Pooley, 2006, Pooley, 2013]
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equipped with operations of addition and scalar multiplication, obeying appropri-
ate axioms. This is the internal method. The alternative is to de�ne them as spaces
of the form Rk, with the further feature that linear transformations are declared to
be homomorphisms—and in particular, that invertible linear transformations are iso-
morphisms. This is the external method. It would also be apposite to refer to the inter-
nal method as a “synthetic” approach, and the external method as an “analytic” ap-
proach, following the terminology of synthetic and analytic geometry. Alternatively,
one could see the external method as following in the tradition of Klein’s Erlangen
program for geometry, and the internal method as falling more under the Rieman-
nian tradition.21
Hence, the proposal is that the pictures on the new semantics are simply what we

obtain by taking the old objects, and declaring, by �at, that the symmetry transforma-
tions are now going to “count” as isomorphisms.22 If we consider our examples above,
we can see that—in fact—the method for introducing the new semantics was often
very much in this vein. In the case of the handedness theory, the re-characterisation
of models in terms of multisets was essentially just a means of legitimating the new
de�nition of homomorphism. In the case of electrostatics, I remarked in passing that
the space Φ could be most elegantly de�ned as a set equipped with a free transitive
additive action of R; the external method of de�ning it would simply mean taking
that set to be R itself, and the additive action to be exactly that expressed by (7). The
advantage of de�ning the new semantics externally is that it o�ers a relatively easy
means of characterising the objects of the semantics, and of the means by which they
accord truth-values to sentences of the formal language: simply (as we saw for the
handedness case) use the old semantics, then construct a supervaluationist semantics
over the members of each equivalence class of isomorphic new objects. So de�ned, it
will certainly meet the conditions required to be a sophistication.
The main disadvantage of this method is that it might seem far too easy. In gen-

eral, the external method of de�ning some kind of mathematical structure might be
thought to o�er less insight into the nature of that structure: it is one thing to know
that a vector space consists of precisely those features of Rk which are invariant un-
der linear transformations, but another to see that those features are exactly the op-
21See [Wallace, 2015] for a detailed defence of using the external method for de�ning spacetime geom-

etry, and for an expansion on the connection to Klein and Riemann.
22In category-theoretic terms, this amounts to introducing arrows into the category of models corre-

sponding exactly to the symmetry transformations—which is precisely what [Weatherall, 2015a]
proposes to do for (gauge) symmetry transformations. I expand upon the relation to Weatherall’s
proposal in section 5.

17



erations of addition and scalar multiplication, as codi�ed by the axioms for a vector
space. More ecumenically, one might think merely that both kinds of construction are
important for fully understanding the structure—in which case, one would desire an
internal construction as well. And it is often very opaque what kind of internal con-
struction will correspond to an external construction. Electromagnetism makes this
fairly clear: it is not at all obvious (I contend) that the features of maps R4 → R4 pre-
served under gauge transformations (8) are precisely the features of vector potentials
between connections on aU(1) principal bundle. Nevertheless, we could reason as fol-
lows. Assuming that one accepts the external method of de�nition as mathematically
legitimate,23 then its application gives us a way of de�ning a sophisticated semantics
for the theory, by brute force. It then means that we do have a precise target for a
sophisticated semantics which is internally de�ned: we are looking for some internal
construction which delivers an equivalent class of structures.24
So, now that we have a decent grip on what sophistication means, we should con-

sider its virtues (or vices). Let’s begin by considering the two criticisms we levelled at
reduced theories: that they are too hard to �nd, and that they carry an explanatory
cost relative to their unreduced versions. Regarding the former, we have just seen that
�nding a sophisticated semantics will always be easy if we use the external method.
And althoughwedon’t have any kind of general guarantee thatwewill thereby be able
to �nd some kind of internal characterisation of those structures, we do—as a matter
of fact—generally seem to have success in �nding them. This isn’t terribly mysterious
when one appreciates the role that symmetry considerations play in the construction
of theories. If we are demanding that the equations of the theory manifest certain
symmetries, then the easiest way to ensure that they do is to construct them as equa-
tions governing objects upon which the sought-for symmetries act as isomorphisms.
As a result, modern theories are typically born sophisticated. (The paradigm case is
the construction of Yang-Mills theories as theories governing connections on a princi-
pal G-bundle, which then ensures a sophisticated semantics with respect to G acting
as a local gauge group.)
As to the latter, we see that the invariants remain de�nable, even using the sophis-

ticated semantics: the fact that a sophisticated semantics determines unambiguous
truth-values for invariant sentences of the language guarantees that the de�nitions
will remain well-posed. As a result, the explanation of why the invariants manifest

23Which, to be clear, is in accord with standard mathematical practice.
24“Equivalent” here meaning that they are isomorphic (not just equivalent) as categories.
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such-and-such features are also preserved. In the handedness theory, for example,
it remains the case that congruence is a matter of possessing the same handedness
property—and, hence, that congruence is an equivalence relation. The electric �eld
is still de�nable as the gradient of the potential, even if the latter is taking values in
Φ rather than R; so its irrotationality is still explicable as a consequence of its being a
gradient. In the case of electromagnetism, one can still understand the de�nition (15)
of Fµν as the antisymmetric part of the four-gradient of the vector potential (of the
target connection relative to an arbitrarily chosen �at reference connection); however,
it is more insightful to appreciate that this is precisely the de�nition of the curvature
of the connection. Either way, however, the fact that Fµν is antisymmetric (16a) and
governed by the homogeneous Maxwell equation (16b) receives a satisfying explana-
tion.
However, sophistication also raises its own questions. The major issue is simply

whether it really does succeed in implementing the idea that we should get rid of
“surplus” (i.e., symmetry-variant) structure. After all (someone might say) surely the
ontology postulated by the sophisticated version is mostly the same as that of the
original theory: a pair of properties in the handedness case, an electrical potential
in the electrostatic case, and a vector potential (up to arbitrary choice of reference
connection) in the electromagnetic case? So how on earth could it be the case that the
sophisticated theory is more parsimonious than the original, in the manner required
by the symmetry-interpretation link?
There are two components to the answer: one mathematical, and one more meta-

physical. The mathematical observation is that the standard way to explicate the idea
of mathematical structure is via isomorphism: what it is for a pair of mathematical
objects to have the same structure is for them to be isomorphic to one another.25 Thus,
insofar as we want to defend sophistication’s credentials as genuinely “expurgating
structure”, we can invoke standardmathematical usage in support. This doesn’t mean
that there is no alternative construal of “structure” that would not be so kind to the
sophisticate; but the burden is on the opponent of sophistication to explain what that
would be, and to justify their departure from its accepted mathematical meaning.
The metaphysical answer is to get clear on what ontological commitment has been

relinquished in the passage from an unsophisticated to a sophisticated semantics.
Sophisticated substantivalism, the view which originally inspired us, reconciles the
existence of spacetime points with a denial of world-multiplicity by appeal to anti-

25cf. [Barrett, 2014]; [Swanson and Halvorson, 2012]; [Weatherall, 2015b].
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haecceitism.26 Anti-haecceitists about spacetime points deny that spacetime points are
“modally robust”: they deny that there are worlds which instantiate the same dis-
tribution of qualitative properties and relations over spacetime points, yet di�er only
over which spacetime points play which qualitative roles.27 This suggests a correlative
metaphysical manoeuvre here. We should be anti-quidditists,28 and deny that physical
properties are modally robust: we should not believe that there are worlds which in-
stantiate the same structure in their laws, and di�er only over which properties play
which nomological roles. As a result, when one has symmetries—i.e., when multiple
properties in the theory play the same nomological role—their permutation does not
yield a new possibility.
Note that this should not be understood as the claim that symmetric properties

ought to be identi�ed with one another. The view is not that properties are individ-
uated by nomological pro�le, so that there can be no two properties with the same
pro�le.29 Rather, the view is that when there are two properties with the same pro�le,
there is no fact of the matter about which property-instantiation in a given possible
world is an instantiation of which property. The handedness case illustrates this idea
nicely: in each world there are two classes of congruence counterparts, each of which
is the extension of a handedness property; but there is no preferred way of match-
ing up a congruence class in one world with one in another world, that is, of iden-
tifying such pairs of congruence classes as the extensions of “the same” handedness
property as one another.30 That said, relative to an (arbitrarily chosen) identi�cation
of the congruence-class in one world with a congruence-class in another, there is a
privileged way of identifying the remaining congruence-classes: they had better be
identi�ed with each other, since the distinction between the classes in each model has
to be preserved.
26See [Pooley, 2013]. Note that anti-haecceitism seems to be the doctrine relevant to applying these

kinds of thoughts to external symmetries, and anti-quidditism the doctrine required to make this
move for internal symmetries. I hope to expand upon this observation in future work.

27This formulation is a little unhappy, since it doesn’t distinguish the anti-haecceitist from the essen-
tialist. If there is a di�erence between them, it comes out in what they say about what one gets by
“permuting” the spacetime points whilst leaving the pattern of qualitative roles the same: roughly,
the essentialist thinks that this delivers an impossibility, whilst the anti-haecceitist thinks that this
delivers back the possibility with which we began.

28See e.g. [Lewis, 2009], [Hawthorne, 2001].
29Compare the discussion in [Hawthorne, 2001, Part Three]. One could say that the two properties are

“weakly discernible” in (some appropriate generalisation of) the sense of [Saunders, 2003b].
30Note that the distinction doing the work here is whether it is possible to engage in transworld identi-

�cation of properties, not whether this transworld identi�cation is mediated by a quiddity or taken
as primitive. This suggests that the “quidditism without quiddities” of [Locke, 2012] is not impor-
tantly di�erent from quidditism with quiddities.
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For local �eld theories, we think of the available values of a particular �eld as the
determinates of a determinable property (so this is a property of spacetime points); it
is to these properties that we apply the anti-quidditist lesson. So, in the case of electro-
statics, we are anti-quidditist about the di�erent potential-values: we deny that there
is a privileged way of identifying the potentials-properties in one world with those in
another. As with handedness, this doesn’t mean collapsing all these properties into
one (i.e. taking all points of Φ to represent the same property). It also doesn’t mean
denying that there might be privileged relative identi�cations (relative, that is, to some
initial arbitrary identi�cation): for although there is a Φ-automorphism relating any
two chosen points of Φ, there is not always a symmetry relating any two chosen pairs
of points in Φ (the pairs 〈φ, φ′〉 and 〈ψ, ψ′〉 can only be mapped to one another by (7)
if φ′ − φ = ψ′ − ψ). In the electromagnetism case, we can reckon that the available
determinates for a spacetime point are represented by the points in the �bre over (the
R4 point representing) that spacetime point. Note that if we do so, we not only deny
that there are privilegedways to identify such properties acrossworlds—we also deny
that there is a privileged way to identify such properties across spacetime points!31

5. Equivalence

We’ve now seen three forms a theory can take (or more carefully, which a formally
interpreted theory can take): an unreduced and unsophisticated form (let’s call it the
vulgar form), in which there are symmetries relating non-isomorphic models; a re-
duced form, in which there are no symmetries; and a sophisticated form, in which
symmetries relate isomorphic models. I nowwant to lookmore closely at the relation-
ships between these three forms. In particular, let us look at the question of whether,
and to what extent, these theories can be regarded as equivalent.
The only formal criterion of equivalence that we have so far met with in this es-

say is that of translational equivalence. This criterion can only be applied to theories
formulated in the framework of �rst-order model theory.32 The only two examples

31cf. [Maudlin, 2007, chap. 3]. This will be a somewhat strange metaphysics: a possible world does not
consist in a distribution of properties over spacetime points (which would correspond to a section
of the bundle), but rather—very roughly—in a distribution of local counterpart relations between
in�nitesimally nearby points (corresponding to a connection on the bundle). However, this is an
artefact of the fact that a principal bundle represents a “pure” gauge �eld: a gauge �eld represented
independently of anymatter whose dynamics is conditioned by the �eld. So it should be unsurpris-
ing that a solution of this pure theory turns out to represent a pretty strange kind of world.

32Although [Glymour, 1970], in the course of defending translational equivalence as necessary for the-
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that we have of theories in this framework are the (vulgar) handedness theory TH and
its reduced counterpart, the congruence theory TC . For these theories, we can make
the following judgment: they are not translationally equivalent, at least not under the
dictionary map

F(C) = ((Lx ∧ Ly) ∨ (Rx ∧Ry)) (25)

For, as is easily seen, F∗ is not a bijection. This is as far as translational equivalence
(strictly understood) can take us: none of the electrostatic or electromagnetic theories
were formulated in the framework of �rst-order model theory, nor was the sophisti-
cated handedness theory (since its semantics are di�erent). We therefore seek a more
general framework, into which both the �rst-order and �eld-theoretic cases might be
enfolded.
Weatherall has recently observed that category theory o�ers just such a framework.33

In order to apply category-theoretic resources, we must specify how to characterise
the category of models for each theory; this amounts to specifying what counts as
a morphism between models. There is a reasonably obvious candidate for the mor-
phisms between models of our �rst-order theories: the relevant notion of homomor-
phism, whether vulgar or sophisticated. So �rst, consider the relationship between
Mod(TH) and Mod(TC), considered as categories in this way. We know that the dic-
tionary map F induces a map F∗ on models. Given any h : M → M ′ in Mod(TH), let
F∗h just be h itself (considered as a function on the base set; this prescription works
because |F∗M | = |M |). So de�ned, F∗ is easily shown to be a functor from Mod(TH)

to Mod(TC). However, it is not an equivalence of categories.34 More speci�cally, it
is not full: that is, there are objects M,M ′ of Mod(TH) such that the induced map
h ∈ Hom(M,M ′) 7→ F∗h ∈ Hom(F∗M,F∗M ′) is not surjective.

Proposition 4. F∗ : Mod(TH)→ Mod(TC) is not full.

Proof. See Appendix A.

Second, consider the relationship between Mod(TC) and mod(TH)—that is, between
the category of models of TC and the category of sophisticated models of TH . Again,
we can regard the dictionary map F as inducing a functor from mod(TH)→ Mod(TC);

oretical equivalence, does make some remarks on how it might be extended to local �eld theories.
(To be pedantic, Glymour’s concern is with de�nitional equivalence rather than translational equiv-
alence; but as can be seen in [Barrett and Halvorson, 2015], the two notions coincide for theories
with disjoint vocabulary.)

33[Weatherall, 2015a]
34Just to be clear, this is a distinct result from the fact that TH and TC are not de�nitionally equivalent.

22



just tomaintain notational hygiene, call this functorF†. Explicitly, for anym ∈ mod(TH),
let F†m be the ΣC-picture such that

• |F†m| = |m|

• For any a, b ∈ |F†m|, 〈a, b〉 ∈ CFm i� a and b are members of the same element of
2m

For any h : m → n, let F†h be the map H : |F†m| → |F†n| such that H = h1. It is
straightforward to verify that F†m ∈ Mod(TC), and that F†h is a ΣC-homomorphism;
that is, that F† really is a functor. This time, however, we have

Proposition 5. F† is an equivalence of categories: it is full, faithful, and essentially
surjective.

Proof. See Appendix A.

Finally, what about the relationship betweenMod(TH) andmod(TH)? For any vulgar
modelM , let I∗M be the sophisticated model such that

|I∗M | = |M |

2I∗M = [LM , RM ]
(26)

and for any H : M → N , let I∗H be such that (I∗H)1 = H (considered as maps on
sets), (I∗H)2(LM) = LN and (I∗H)2(RM) = RN . We then �nd

Proposition 6. I∗ : Mod(TH) is not full.

Proof. See Appendix A.

So, we have the following results. First, mod(TH) and Mod(TC) are equivalent as cat-
egories; second, althoughwe don’t have a demonstration thatMod(TH) is inequivalent
to either mod(TH) or Mod(TC) (since we have not ruled out there is some appropriate
functor between them),35 we have at least shown that the obvious functors will not
do the job. Let us now consider local �eld theories. As mentioned earlier, the rele-
vant notion of morphism between functions f : U → V and f ′ : U ′ → V ′ (where

35Here is a means by which one could seek to demonstrate it: by showing that neither Mod(TC) nor
mod(TH) have a terminal object. Since Mod(TH) does have a terminal object (a/the model contain-
ing exactly one element that is L and exactly one that is R), doing so would su�ce to show that
the categories are inequivalent. This strikes me as a good proof-method, but one which I lack the
categorical expertise to execute.
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U and U ′, and V and V ′, are spaces in the same category) is that of a pair of mor-
phisms α : U → U ′ and β : V → V ′; morphisms, that is, in the ambient categories of
the relevant spaces. Thus, for the case of a local �eld theory equipped with a vulgar
semantics (i.e., interpreted with respect to functions of type Rn → Rq), we �nd the
following: the only morphisms are pairs of the kind α = IdRn and β = IdRq ! That is,
we �nd that the category of models of such a theory is always a discrete category.36 For
a local �eld theory equipped with some more sophisticated semantics (that is, done
in a manner that doesn’t take coordinates so seriously), one �nds that the morphisms
are somewhat more liberalised, and hence that the category of models is somewhat
more interesting.37
Let’s see how this plays out in the case of our electrostatic theories. First, consider

the relationship between the (discrete) categoriesMod(TP ) andMod(TE). LetG∗ be the
functor Mod(TP )→ Mod(TE) whose action on models is given by (taking the dual of)
the de�nition (12); its action onmorphisms is simplyG∗(IdM) = IdG∗M , as required by
functoriality (which su�ces to determineG∗, given that we are working with discrete
categories). Second, consider the relationship between mod(TP ) and Mod(TE). Let
G† be the functor mod(TP ) → Mod(TE) which acts on models via the (dual of) (12),
and whose action on non-identity morphisms is as follows: given such a morphism
k : M → M ′, it must be the case that k is a global potential shift (7), so that G†M =

G†M ′; we take G†k := IdG†M . Finally, let K : R → Φ be any bijection such that K−1

is a bijective embedding of Φ into R. We can then de�ne K∗ : Mod(TP ) → mod(TP )

as the functor such that φK∗M = K ◦ φM (and whose action on the only morphisms
in Mod(TP )—the identity morphisms—is to take them to the corresponding identity
morphisms in mod(TP )).
We then obtain the following results, in analogy with Propositions 4, 5, and 6.

Proposition 7. G∗ : Mod(TP )→ Mod(TE) is not full.38

Proposition 8. G† : mod(TP ) → Mod(TE) is full, faithful and surjective; i.e., it is an
equivalence of categories.39
36A category is discrete (at least, as I am using the term here) i� its only morphisms are identity mor-

phisms.
37The fact that there are so few morphisms between unsophisticated models is, of course, a product of

our decision to work with coordinatised spaces: since such spaces are very highly structured, there
are very few structure-preservingmaps. However, I don’t believe that the results belowhinge on this
decision. (Indeed, the remarkable thing is that even in a relatively austere categorical environment,
we are still able to establish useful results.)

38cf. [Weatherall, 2015b, Proposition 1].
39cf. [Weatherall, 2015b, Proposition 2].
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Proposition 9. K∗ : Mod(TP )→ mod(TP ) is not full.

All proofs are given in Appendix A.
We can do more or less the same thing for electromagnetism, establishing the same

trinity of results.40 Again, these do not indicate that there are no categorical equiva-
lences between Mod(TP ) and either Mod(TE) or mod(TP ). Indeed, it seems plausible
that there will be some functors between these categories which enact such an equiv-
alence: for instance, any functor between Mod(TP ) and Mod(TE) which is bijective
on objects will be an equivalence. However, I suspect that any functor which is de-
scribable in appropriately systematic terms (i.e. which meshes appropriately with
respect to the non-categorical characterisation of the models) will not be an equiva-
lence. (Proving this formally would have to await a precisi�cation of “appropriately
systematic” or “meshes appropriately”.) And we do unambiguously have the result
that the categories of sophisticated models come out equivalent to the relevant cate-
gory of reduced models.
All of this suggests some general (if vague) conjectures. Suppose that a theory T

admits some group G of symmetries (and that T is unsophisticated with respect to
G). Let T ′ be a reduction of T to some complete set of G-invariants. Let Mod(T ) and
Mod(T ′) be the categories of models for T and T ′ respectively, and let mod(T ) be a
category of sophisticated models for T . Finally, let’s say that a “reasonable” functor is
onewhichmeshes appropriatelywith the architecture of themodels (whatever exactly
that gets made out to mean).41 Then the following conjectures seem plausible:

• There is a reasonable functor F : mod(T )→ Mod(T ′) which is full, faithful, and
essentially surjective.

• There are no reasonable functors fromMod(T ) to eitherMod(T ′) ormod(T )which
are full, faithful and essentially surjective (or perhaps the stronger claim: there
are no such functors which are full).

Making these conjectures precisewould require (a) amore thorough treatment of how
to characterise reduction and sophistication in category-theoretic terms, and (b) a clar-
i�cation of the notion of “reasonableness”. I defer doing so to future work; instead,
let us consider the philosophical implications of these technical observations.
40For an explicit discussion of the case of electromagnetism, see [Weatherall, 2015b] and

[Weatherall, 2015a].
41At least in our examples, reasonableness seems to be a matter of being de�nable in terms of the

syntactic content (e.g. being generated by a translation between two theories). Hence, my emphasis
on reasonableness accords with recent work on the sometimes-neglected virtues of the syntactic
view of theories ([Halvorson, 2012], [Halvorson, 2013], [Lutz, 2014a], [Lutz, 2014b]).
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Begin with the inequivalence between the reduced and unreduced theories (under
vulgar semantics). Prima facie, this may seem in tension with Weatherall’s claim that
categorical equivalence (of categories of models) is “a criterion of equivalence that
does capture the sense in which [electromagnetism in terms of �elds] and [electro-
magnetism in terms of potentials] are synonymous.”42 However, there is no serious
disagreement here. The equivalence thatWeatherall describes is between electromag-
netism formulated in terms of �elds—what we have been calling TF—and electro-
magnetism formulated in terms of potentials, when gauge transformations are counted
as morphisms in its category of models. In other words, the equivalence described by
Weatherall is precisely the equivalence between the reduced theory on the one hand,
and the unreduced theory under the sophisticated semantics on the other.
However, this does highlight a reason why one has to be careful in the use of cat-

egorical equivalence as a criterion for theory equivalence. Categorical equivalence
does not straightforwardly pronounce on the equivalence of theories (conceived of
syntactically, as sets of sentences), but rather on the equivalence of theories relative to
a certain way of characterising the models of a theory as a category. In other words,
categorical equivalence is a criterion that applies to theories together with a choice of
semantics: change the semantics (from a vulgar to a sophisticated semantics, for ex-
ample) and onewill, in general, change the category ofmodels. To be clear, all of this is
present in Weatherall’s discussion, albeit in a slightly di�erent form. Whereas I have
emphasised the need to specify (not just a theory, but also) the semantic structures
one intends to use in formally interpreting the theory, Weatherall speaks of construct-
ing the category of models of a theory in such a way that we appropriately privilege
“maps that preserve the “physical structure” of a model, in the sense that two models
related by such a map are physically equivalent.”43 I take these to be two ways of get-
ting at the same idea. If one intends to renounce commitment to a certain amount of
structure in one’s models as “unphysical”, then one had better also think that the role
such structure plays in determining the semantic content of the theory is inessential
and/or the product of arbitrary convention.
With these clari�cations to hand, it does seem right to say that the reduced and

unreduced theories are not equivalent. Electromagnetismwith �elds and electromag-
netism with potentials can only feasibly be regarded as equivalent if gauge symme-
tries are regarded as relating physically equivalent models; but to judge that they do

42[Weatherall, 2015a, p. 15]
43[Weatherall, 2015a, p. 17]
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so is precisely to a�rm a commitment to sophisticated rather than vulgar semantics
as embodying the true commitments of the theory.
However, what of the relationship between the reduced and sophisticated cate-

gories of models? In what sense are sophistication and reduction equivalent? In par-
ticular, one might be worried by the fact that I (apparently) introduced sophistication
about theories as an alternative to reduction—and, I suggested, a superior one! So if
there is indeed something to choose between them, surely they can’t be equivalent
after all?
Here is what seems to me like the right thing to say: the two theories are equiva-

lent in terms of their intensional ontology, in terms of the kinds of structures that they
postulate as present in any world aptly described by them; but they di�er in their
explanatory structure. Electrostatics in terms of sophisticated potentials, and electro-
statics in terms of �elds, both agree that there is a physically signi�cant irrotational
vector �eld; and both agree that this �eld (as with any such �eld) is representable as
the gradient of a scalar �eld—provided that that scalar �eld is de�ned only up to po-
tential shifts, or (equivalently) that it take values in Φ rather than R. However, they
disagree over what kind of explanation can be given of why this vector �eld is irro-
tational. For the theory in terms of �elds, its irrotationality is simply a brute fact—a
fact which usefully permits the �eld’s representation as a certain kind of gradient, but
not arising from anything else. For the theory in terms of sophisticated potentials,
the �eld is the derivative object, and so admits of an explanation in terms of what is
fundamental (i.e., the potential): it is irrotational because it is a gradient, and gradients
always have vanishing curl.
As a result, whether the two theories are “really” equivalent will turn on what one

wants to say about the role of explanation in theory equivalence. On some accounts,44
two theories cannot be equivalent if they o�er di�erent explanations of the phenom-
ena. This will be particularly true if one is inclined to view explanations of this sort as
arising from some kind of ontological structure out there in the world, such as if one is
committed to some notion of grounding—conceived of as a genuine part of the world’s
architecture, and responsible for answering in-virtue-of questions (e.g. “in virtue of
what is the electric �eld irrotational?”).45 If, however, one is sceptical of grounding
(and cognate notions), then there is space for some more quietist or de�ationary atti-
tude towards the relevant explanations. On this kind of view, there need not always

44e.g. [Putnam, 1983]
45See e.g. the essays in [Correia and Schnieder, 2012].
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be some fact of the matter about what kind of explanatory architecture is correct. It is
certainly illuminating to see that some feature in a theory can be explained by another,
if the theory is set up a particular way; but (in general) there is no compulsion towards
setting the theory up one way rather than another, or towards accepting one pattern
of explanation amongst its parts as uniquely privileged.46
On either account, though, the case can be made for valuing sophistication over re-

duction. On some more realist account of explanation (e.g. the grounding account),
the explanatory virtues of sophistication make it more likely to be the correct account
of the (objective) grounding structure of the world. On a more de�ationary picture,
those virtues make it a more helpful or convenient way of characterising the structure
of the world; even if a reduced theory is picking out the same structure, it will gener-
ally do so in a less tractable way. And of course, both accounts will appreciate the fact
that sophistication is typically easier to come by than reduction.

6. Conclusion

To wrap up, I will make two remarks about what I have sought to do in this paper.
The main aim has simply been to convince you that �xating on reduction as the only
acceptablemeans of dealingwith symmetries is amistake.47 If, as I’ve argued, sophisti-
cation rather than reduction is a legitimateway to seek to expurgate symmetry-variant
structure, then a number of interesting consequences follow. One is that carrying out
that expurgation becomes (in general) somewhat more straightforward: if all we are
required to do is provide a sophisticated understanding of the theory (especially if we
do so using the external method), then our lives are made substantially easier than
if we need to �nd a reduced theory. Moreover, with more expurgatory options on
the table, we can open up new approaches to classic problems concerning symme-
try. The debate on the Aharonov-Bohm e�ect, for example, is often characterised as
requiring us to choose between a trilemma of unpalatable ontologies: a locally act-
ing48 and separable (but not gauge-invariant) ontology of potentials; a locally acting
and gauge-invariant (but non-separable) ontology of holonomies; or a separable and
gauge invariant (but non-locally acting) ontology of �elds. But the argument here

46I readWeatherall’s “puzzleball” account of the foundations of physical theories [Weatherall, 2012] as
expressing this kind of picture; it is also closely related to Cartwright’s “dappled-world” conception
of inter-theoretic relationships [Cartwright, 1999].

47In this regard, cf. [Pooley, 2013], [Weatherall, 2014b], and [Weatherall, 2015b].
48In the sense of having no “action at a distance”.
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suggests another option: adopting the “sophisticated” ontology of connections of a
principal bundle (or, more carefully, of whatever the metaphysical correlate of such a
connection is).49 I don’t claim that doing so will magically resolve these problems;50
but it at least enlivens the conceptual geography.
Second, on a more methodological note, I claim that the above illustrates the value

of an eclectic approach to formalisms. Rather than alighting on some framework—
�rst-order logic, di�erential geometry, category theory, orwhatever—as the be-all and
end-all, we should be pluralistic about what tools are best applied to the formal study
of scienti�c theories. For example, if we want a tight grip on how the derivable con-
sequences of some axioms relate to the models of those axioms, then we should make
use of model theory; but, we should bear in mind that virtually no realistic theory
will be expressible in those terms. If we want to abstract away and apply a uniform
condition for equivalence, then we should characterise our theories as categories; but,
we should bear inmind that not all of the essential information about a theory is likely
to reside in that category we have rendered it as. By shifting between methods and
means as circumstances demand, we can discern similarities and analogues between
di�erent formalisms, and use these to cross-fertilise our investigations into one area
with insights from another.
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A. Proofs of propositions

Proposition 1. Suppose that we have translationsD : T1 → T2 andD′ : T2 → T1. Then
D andD′ implement a translational equivalence between T1 and T2 i�D∗ is a bijection
Mod(T2)→ Mod(T1), with (D′)∗ as its inverse.
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Proof. First, it is easy to establish by induction that for any Σ2-picture M , any Σ1-
formula φ, and any variable-assignment v over |M |,

M |=v Dφ[a] ⇐⇒ D∗M |=v φ[a] (27)

Now, assume �rst thatD andD′ implement a translational equivalence between T1

and T2. I show that for any M ∈ Mod(T2), (D′)∗D∗M = M , i.e., that (D′)∗D∗ acts on
Mod(T2) as the identity. The proof that D∗(D′)∗ acts on Mod(T1) as the identity goes
similarly.
So consider any suchM . We have immediately that |(D′)∗D∗M | = |D∗M | = |M |. So

now consider any relation-symbol π ∈ Σ2. By the above lemma,

(D′)∗D∗M |= π[a] i� D∗M |= D′π[a]

i�M |= DD′π[a]

But sinceM |= T2 and D,D′ implement a translational equivalence,

M |= ∀x(πx↔ DD′πx)

and so M |= DD′π[a] i� M |= π[a]. Thus, π(D′)∗D∗M = πM . A similar proof goes to
show that for any function-symbol µ ∈ Σ2, µ(D′)∗D∗M = µM . Thus, (D′)∗D∗M = M .
Now, assume thatD∗ and (D′)∗ aremutually inverse. I show that for anyΣ2-formulae

ψ,
T2 � ∀x(ψ(x)↔ DD′ψ(x)) (28)

So suppose that (28) did not hold. Then there would be somemodelM of T2 such that
M 6|= ∀x(ψ(x) ↔ DD′ψ(x)); i.e., such that for some a from M , either M |= ψ[a] and
M 6|= DD′ψ[a], or vice versa. But by the above lemma,M |= ψ[a] i�M |= DD′ψ[a]. So
by reductio, (28) holds. By similar reasoning, we can show that the parallel claim for
T1 holds; hence, D and D′ are a translational equivalence.

Proposition 2. Suppose that φ is logically equivalent to Eφ, letm be a de-handed pic-
ture, and let v be a �rst-order variable-assignment for m. Then for any second-order
variable-assignments V and V ′ form,

m |=V,v φ i�m |=V ′,v φ (23)

Proof. Clearly, there only are two second-order variable-assignments for m (since 2m
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has only two members); so if V 6= V ′, then we have that V (L) = V ′(R) and V (R) =

V ′(L). LetM andM ′ be ΣH-pictures de�ned as follows:

|M | = |M ′| = |m| (29a)

LM = V (L) (29b)

RM = V (R) (29c)

LM
′
= V ′(L) = V (R) = RM (29d)

RM ′ = V ′(R) = V (L) = LM (29e)

In other words, M ′ = E∗M . But clearly, m |= V, vφ i� M |=v φ, and m |=V ′,v φ i�
M ′ |=v φ. Hence (suppressing reference to v), m |=V φ i� M |= φ i� M |= Eφ i�
E∗M |= φ i�M ′ |= φ i�m |=V ′ φ.

Proposition 3. Suppose that φ is equivalent modulo TH to Eφ, let m be a de-handed
model of TH , and let v be a �rst-order variable-assignment form. Then for any second-
order variable-assignments V and V ′ form,

m |=V,v φ i�m |=V ′,v φ (24)

Proof. As above, but restricting to models of TH .

Proposition 4. F∗ : Mod(TH)→ Mod(TC) is not full.

Proof. LetM be as follows:

|M | = {0, 1, 2}

LM = {0}

RM = {1, 2}

Since F∗M = F∗(E∗M), we know that IdF∗M ∈ Hom(F∗M,F∗(E∗M)). If there was some
h : M → E∗M such that F∗h = IdF∗M , then h would need to act as the identity on the
underlying set |M |. But there is no homomorphism fromM to E∗M which does this.
So there is no such h; thus, the induced map is not surjective.

Proposition 5. F† is an equivalence of categories: it is full, faithful, and essentially
surjective.
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Proof. First, I introduce a helpful abbreviation. For anym ∈ mod(TH), and any a ∈ |m|,
a is in one element of 2m or the other (but not both). So let am denote the element of
2m of which a is a member.
Now, consider anym,n ∈ mod(TH), and let H be any homomorphism from F†m to

F†n. Now de�ne h1 : |m| → |n| by the condition that h1 = H (as a map on sets). Then,
letting a be some arbitrary element of |m|, de�ne h2 : 2m → 2n as the (unique) bijection
such that h2(am) = (h1(a))n; it is easily seen that this does indeed uniquely determine
h2, and that it does so independently of the choice of a. So, for each i ∈ 2m and any
b ∈ |m|, if b ∈ i, then bm = i, so h2(i) = (h1(b))n, so h1(b) ∈ h2(i). Thus, h := (h1, h2) is a
homomorphismm→ n, and H = F†h. So F† induces a surjective map on morphisms
between anym and n, i.e. F† is full.
Now consider any m,n ∈ mod(TH), and let h, h′ : m → n such that F†h = F†h′.

Clearly, h1 = h′1. Furthermore, since h and h′ are homomorphisms, it follows that for
any a ∈ |m|, h2(am) = (h1(a))n = (h′1(a))n = h′2(am); hence, h′2 = h2. So h = h′. So F†

induces an injective map on morphisms between anym and n, i.e., F† is faithful.
Finally, let M by any model of TH . De�ne a de-handed picture m by setting |m| =

|M |, and letting the members of 2m be the two congruence classes of CM . Clearly,
F†m = M . So F† is surjective, and therefore essentially surjective.

Proposition 6. I∗ : Mod(TH) is not full.

Proof. It is clear by inspection that I∗ = (F†)−1 ◦ F∗; hence, since F∗ is not full and
(F†)−1 is an equivalence, I∗ is not full either.

Proposition 7. G∗ : Mod(TP )→ Mod(TE) is not full.51

Proof. Let C∗ be the functor on Mod(TP ) induced by the symmetry transformation (7).
Let M be any model of TP . Given the setup, we know that C∗M 6= M , and hence
that Hom(M,C∗M) = ∅. Yet we also know that G∗(C∗M) = G∗M , and hence that
Hom(G∗(C∗M),G∗M) 6= ∅ (since it contains IdG∗M ). So, the map on arrows induced
by G∗ is not surjective for the pair of objectsM,C∗M ; that is, G∗ is not full.

Proposition 8. G† : mod(TP ) → Mod(TE) is full, faithful and surjective; i.e., it is an
equivalence of categories.52

51cf. [Weatherall, 2015b, Proposition 1].
52cf. [Weatherall, 2015b, Proposition 2].
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Proof. Consider any m,n ∈ mod(TP ), and let H by any morphism from G†m to G†n.
It must be the case that H = IdG†m (since Mod(TE) is discrete). So there are two pos-
sibilities: either m = n, or m and n are related by some global potential shift k. If the
former, then G†Idm = IdG†m; if the latter, then G†k = IdG†m. Either way, therefore, G†

induces a surjective map on arrows betweenm and n; so G† is full.
Now consider any m,n ∈ mod(TP ), and any morphisms h, h′ : m → n. If m = n,

then Hom(m,n) = {Idm}; if m 6= n, then Hom(m,n) = {k} where k is the (unique)
global potential shift relating them; either way, h = h′. So (trivially) if G†h = G † h′,
then h = h′. So G† induces an injective map on arrows between m and n; so G† is
faithful.
Finally, letM ∈ Mod(TE). As already discussed, for any such model there is some

m ∈ mod(TP ) such thatG†m = M . SoG† is surjective, and hence essentially surjective.

Proposition 9. K∗ : Mod(TP )→ mod(TP ) is not full.

Proof. It is clear by inspection that K∗ = (G†)−1 ◦G∗. Since G∗ is not full, and (G†)−1 is
an equivalence, K∗ is not full.
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