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Abstract
As has been noted by several authors, in a relativistic context, there is an

interesting difference between classical and quantum state evolution. For a
classical system, a state history of a quantum system given along one folia-
tion uniquely determines, without any consideration of the system’s dynam-
ics, a state history along any other foliation. This is not true for quantum
state evolution; there are cases in which a state history along one foliation
is compatible with multiple distinct state histories along some other, a phe-
nomenon that David Albert has dubbed “non-narratability.” In this article,
we address the question of whether non-narratability is restricted to the sorts
of special states that so far have been used to illustrate it. The results of the
investigation suggest that there has been a misplaced emphasis on under-
determination of state histories; though this is generic for the special cases
that have up until now been considered, involving bipartite systems in pure
entangled states, it fails generically in cases in which more component sys-
tems are taken into account, and for bipartite systems that have some entan-
glement with their environment. For such cases, if we impose relativistic
causality constraints on the evolution, then, except for very special states,
a state history along one foliation uniquely determines a state history along
any other. But this in itself is a marked difference between classical and
quantum state evolution, because, in a classical setting, no considerations of
dynamics at all are needed to go from a state history along one foliation to a
state history along another. Keywords: relativistic quantum theory, narrata-
bility, nonseparability
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1 Introduction
As has been noted by several authors (Aharonov and Albert (1984), Myrvold
(2002), Albert and Galchen (2009), Albert (2015)), there is an interesting dif-
ference between state evolution of classical and quantum systems in relativistic
setting. For a classical system, one can provide a state history specifying a com-
plete state of a system on each of a set of spacelike hypersurfaces that foliate the
time interval of interest, and this yields, without further ado, and without con-
siderations of dynamics, a state history along any other foliation. This is because
classical states satisfy the condition of separability: to completely specify the state
of a system, it suffices to specify the states of things in arbitrarily small regions
of space, and so one can construct a state on any hypersurfaces out of states on
hypersurfaces that intersect it.

With quantum systems, things are different. The state of a composite system
composed of spatially separated entangled parts is not determined by the states of
its component parts. This means that the piecewise construction of a state on one
hypersurface out of bits of states on hypersurfaces that intersect it will not work.
As a consequence, consideration of the dynamics of the system is required when
passing from a state history along one foliation to another.

Though noted before, this difference between classical and quantum state evo-
lution has been characterized in a potentially misleading way. It has been illus-
trated by examples of a pair of systems in a pure entangled state, having the prop-
erty that a state evolution along one foliation is compatible with multiple dis-
tinct evolutions along other foliations, even when relativistic causality constraints
are taken into account, a phenomenon that Albert Albert (2015) has called “non-
narratability.” Though this phenomenon is (as we shall see, below) generic for bi-
partite systems in entangled states, once we consider systems composed of more
than two spatially separated components, it holds only for very special states. For
systems composed of three or more spatially separated parts (which could include
bipartite systems that are to some degree entangled with the environment), for
typical states, a state history along one foliation together with the condition that
the dynamics of the system obey relativistic causality constraints yields enough
information about the dynamical evolution of the system to uniquely determine a
state history along any other foliation.

Thus, it is a bit misleading to characterize the difference between relativistic
state evolution of classical and quantum systems the way it has been up to now, in
terms of whether or not a state evolution along one foliation uniquely determines
state histories along others. If we impose relativistic causality constraints on the
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evolution, then, except for very special states, a state history along one foliation
uniquely determines a state history along any other. But this in itself is a marked
difference between classical and quantum state evolution, because, in a classical
setting, no considerations of dynamics at all are needed to go from a state history
along one foliation to a state history along another.

2 The set-up
We consider a finite number of quantum systems located in regions of space dis-
tant from each other. Between time t0 and t1 (as given by the time coordinate of
some reference frame) each undergoes some evolution. One can imagine agents
at each location choosing between operations to perform on the systems.

Suppose, now, that you are not told what evolution each system individually
undergoes, but you are given the state of the composite system at each time during
the time interval from t0 to t1. Suppose that the systems are far enough apart, and
the time interval from t0 to t1 short enough, that the systems are spacelike sepa-
rated from each other throughout the interval. Then, one can choose a spacelike
hypersurface that coincides with t0 at the location of some of the systems and t1
at others, and, taking this as a hypersurface of simultaneity, ask for the quantum
state on it. We ask: does the state history you were originally given permit you to
infer the state of the system on such a hypersurface of simultaneity?

The question amounts to the question of whether knowing the net effect of
component operations on the initial state of the combined system permits one to
infer the effect of each taken singly. If we consider a bipartite system in a pure
state, the answer is that no, it does not; it is easy to construct examples in which
a composite system AB is in a pure entangled state and the net effect of the pair
of operations on the composite system underdetermines the effect of the opera-
tions taken singly. Thus, within the idealizations of the set-up described, a state
history of the composite system given along one foliation might not, by itself—
that is, without specification of the laws governing the dynamical evolution of
the systems—determine the state history along another; this is what Albert calls
“non-narratability” Albert (2015). It has thus far been illustrated by simple exam-
ples that, for ease of exposition, are chosen to have very special features. These
examples involve pure states of bipartite systems, evolving in isolation from their
environments; moreover, they also involve maximally entangled states. One might
wonder whether the phenomenon is restricted to special states such as those used
in the examples—which would, perhaps, diminish the interest of such examples—
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or whether it holds more generally. In this article we present some results in
connection with this question. For simplicity, in this article we restrict ourselves
to considerations of systems confined to regions that are small compared to the
distances between them, so that relativistic considerations other than relativity of
simultaneity may be ignored. The question of the extension of these results to
fully relativistic quantum theories, which must be quantum field theories, will be
considered in a sequel.

These results may be summarized as follows:

1. For the sorts of examples used to illustrate non-narratability, in which a
bipartite system is taken to be in a pure state (not entangled with its envi-
ronment) and to undergo unitary evolution, non-narratability prevails. For
any entangled initial state-vector |ψ(α)〉 and any state-vector |ψ(β )〉 ob-
tained from |ψ(α)〉 by a factorizable unitary evolution UA⊗UB, there will
exist other unitaries VA, VB, such that

|ψ(β )〉=UA⊗UB|ψ(α)〉=VA⊗VB|ψ(α)〉,

but
UA⊗ I|ψ(α)〉 6=VA⊗ I|ψ(α)〉.

2. For a bipartite system initially in a pure state, non-narratability persists, for
a wide class of states and evolutions, if the condition of isolated evolution
is relaxed.

3. For systems of more than two parts, whose parts separately undergo unitary
evolution, we have the opposite result: generically, the state history of the
system along one foliation uniquely determines its state history along any
other, given the condition (required by relativistic causality) that the total
evolution operator is a product of commuting evolution operators for the
component systems.

4. It follows that the same holds for a bipartite system not required to be ini-
tially in a pure state, but which may be entangled with its environment,
whose parts undergo unitary evolution. Generically, the state history of the
system along one foliation uniquely determines its state history along any
other.

Now, even for for a bipartite system, isolated from its environment, one should
expect some entanglement with the environment. Then, for generic states, non-
narratability fails.
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3 Background
The ‘non-narratability” phenomenon was noted in work by Aharonov and Albert
in the mid-1980s. Aharonov and Albert Aharonov and Albert (1984) discuss a
set-up in which a singlet spin state of a pair of spin-1

2 particles is ‘verified’ by
experimental apparatus, in the following sense: if the system is in the singlet
state, it remains in the single state, and the experimental apparatus registers this
fact; if the system is not initially in the singlet state, then its state is disturbed
by its interaction with the apparatus (this can be done via local interactions with
each of the particles, if they are spatially separated, though it requires nonlocal
entanglement of the experimental apparatus). In the experimental scheme outlined
by Aharonov and Albert, the condition that the experiment leave the singlet state
undisturbed requires the local couplings of each of the particles with the apparatus
to be synchronized: the interactions between the particles and their experimental
apparatus must be switched on simultaneously. Simultaneity is, of course, not a
frame-independent notion, so the interaction is non-disturbing only with respect
to one particular reference frame; with respect to others, it first disturbs the state,
and then restores it. As was pointed out by Myrvold Myrvold (2002), this holds
also outside of measurement situations. The example adduced therein involved a
pair of spin-1

2 particles, initially in the singlet state. Identical magnetic fields are
switched on at both wings of the system, inducing spin precessions in opposite
directions that—provided that the switching is simultaneous—cancel each other
out, leaving the state unchanged.

David Albert Albert (2015) discusses an example involving four spin-1
2 parti-

cles, all having inertial trajectories, such that the trajectory of particle 3 intersects
that of particle 1, the trajectory of particle 4 intersects that of particle 2, and these
two intersections happen at spacelike separation. Initially, particles 1 and 2 are
in a singlet state, as are particles 3 and 4. At the moments of intersection, the
particles involve undergo an interaction that swaps their spins. With respect to
a foliation on which the two swaps are simultaneous, the spin states remain for-
ever unchanged. With respect to a foliation that has the 1–3 swap before the
2–4 swap, the system is for some time in a state in which particle 1 is entangled
with particle 4, and particle 2 with particle 3, before the second swap restores the
initial state. Once again, a complete state history along one foliation underdeter-
mines the state history along other foliations. The state history with simultaneous
swaps, on which the spin state of the combined system remains forever constant,
is of course the same state history that would obtain in the absence of the swap
interaction. But these two scenarios yield different state histories along foliations
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on which the two intersections are not simultaneous.
Non-narratability has been described as a “quantum threat to special relativity”

Albert and Galchen (2009). In connection with this, the authors write,

combining quantum mechanics and special relativity requires that we
give up another of our primordial convictions. We believe that ev-
erything there is to say about the world can in principle be put into
the form of a narrative, or story. Or, in more precise and technical
terms: everything there is to say can be packed into an infinite set
of propositions of the form “at t1 this is the exact physical condition
of the world” and “at t2 that is the exact physical condition of the
world,” and so on. But the phenomenon of quantum-mechanical en-
tanglement and the spacetime geometry of special relativity—taken
together—imply that the physical history of the world is infinitely too
rich for that (Albert and Galchen, 2009, p. 39).

It is a bit misleading to say that the lesson to be learned is that we have to give
the idea that everything there is to say about the world can in principle be put into
the form of a narrative. What the examples show is that a narrative of a certain
kind, namely, a narrative that consists merely of a compendium of descriptions of
instantaneous states according to one reference frame’s hyperplanes of simultane-
ity, and says nothing about the dynamics that lead from one state to another, is not
a complete story. To say everything that there is to say about, say, a pair of spin-1

2
particles during a certain time interval, it is not enough to say that their state with
respect to a certain foliation is a singlet state at all times in that interval; one must
also specify that this is (or isn’t) due to spin precessions in opposite directions that
cancel each other out.

As we shall see, it is only for certain special states that we have to specify even
that much. For generic states, all that need be done is to specify that the evolution
is via some evolutions that respect relativistic causality, and this will uniquely
specify the state history. But, even when this fact is taken into account, there
remains an essential difference between classical and quantum state histories: for
classical states, the transition from a state history along one foliation to a state
history along another requires no considerations of dynamics at all.
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4 QM in a quasi-relativistic setting
We consider a finite number of quantum systems localized in bounded regions of
space. Let {si} be the world-tubes of these regions, let α be a spacelike hypersur-
face, and let β be a spacelike hypersurface to the future of α , such that, for each
si, si(α) = si∩α is spacelike separated from s j(β ) for all j 6= i.

Because we are considering state evolution, it is convenient to operate with
a Schrödinger picture, adapted to a relativistic setting. Thus, we associate, time-
lessly, with each system an algebra Ai, whose self-adjoint elements represent ob-
servables on the system. These algebras commute for distinct i, j. Let A be the
smallest algebra containing each Ai.

A =
∨

i

Ai. (1)

The state of a system on a given hypersurface σ will be given by a density operator
ρ(σ); this yields probabilities for outcomes of experiments performed on σ . If
the system is in a pure state, that is, not entangled with anything outside of it, we
will also be able to represent its state by a state vector.

If the systems are isolated from their environments during the interval between
α and β , or if they are subject only to external fields that can be treated classically
(and if there is no collapse), there will be unitary operators Ui(β ;α) such that the
evolution of the combined system from α to β is given by

U(β ;α) = ∏
i

Ui(β ;α). (2)

Consider a spacelike hypersurface γ that includes si∩α for some i, and si∩β

for others (we can smoothly interpolate in between, but these regions will be of
no concern). Then Ui(γ;α) will be equal to Ui(β ;α) when the intersection of si
with γ is in β , and to the identity when this intersection is in α .

If the systems are not isolated from their respective environments, then the
states of the systems on the later hypersurface β will not be determined by their
states on the earlier hypersurface, α . In such a case we consider the casual pasts
on α of the regions si(β ); call these s̃i(α). We will assume that these are disjoint
for distinct i, j. Associated with such regions will be algebras ˜Ai, with Ai ⊆ ˜Ai.
Let ˜A = ∨i ˜A .

Let the state of ∪is̃i(α) be given by a density operator ρ̃(α), and the state of
∪isi(β ), by ρ(β ). There there will be a factorizable unitary operator U(β ;α) such
that

Tr[ρ(β )A] = Tr[U†(β ;α) ρ̃(α)U(β ;α)A] (3)
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for any A ∈ A . This defines a mapping ρ̃(α)→ ρ(β ). Note that, since A is a
proper subset of ˜A , this mapping can take a pure state ρ̃(α) into a mixed state
ρ(β ).

5 Results concerning narratability and non-narratability

5.1 Bipartite systems with pure initial states: non-narratability
is generic

We consider first the case of two systems, with world-tubes sA and sB, with which
we associate operator algebras A and B. Suppose we know the state of the
combined system on α and β . Let γ be a spacelike hypersurface containing sA(β )
and sB(α), and let δ contain sA(α) and sB(β ) (see Figure 1). The question to
be asked is: what do the initial and final states ρAB(α), ρAB(β ) tell us about the
evolution in between, and hence about ρAB(γ) and ρAB(δ )?

We will make use of the fact that any vector |ψ〉 in HA⊗HB can be written
in the form,

|ψ〉= ∑
k

ck |ak〉⊗ |bk〉,

where 〈an|am〉= 〈bn|bm〉= δmn. Such a representation is called a Schmidt repre-
sentation. In the non-degenerate case—that is, |ci| 6= |c j| for i 6= j—the elements
of the sets {|ak〉} and {|bk〉} are determined up to phase factors. In the degenerate
case, there is more leeway. It will turn out that, in the case in which the state of AB
is pure on both α and β , the scope of underdetermination of |ψ(γ)〉 and |ψ(δ 〉) by
|ψ(α)〉 and |ψ(β )〉 is related in a simple way to the scope of underdetermination
of the Schmidt representations of |ψ(α)〉 and |ψ(β )〉.

5.1.1 Unitary evolution

Consider first the case in which the systems are isolated or subject only to external
fields that can be treated classically. Then there are unitary operators UA, UB, such
that

|ψ(β )〉 = UA⊗UB |ψ(α)〉
|ψ(γ)〉 = UA⊗ I |ψ(α)〉
|ψ(δ )〉 = I⊗UB |ψ(α)〉.
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Figure 1: The hyperplanes considered in the proof.

Zurek Zurek (2005) has shown that, for any bipartite system AB in a pure en-
tangled state, there are unitary operations that can be performed on A that change
the state that can be undone by a unitary operation performed on B. In Zurek’s
terminology, a state of a bipartite system AB is envariant with respect to a trans-
formation acting on A if it can be undone by a transformation acting on B. Zurek
proved that the transformations under which a state is envariant are precisely those
whose eigenstates are a Schmidt basis.

Now, if a state |ψ(β )〉 can be obtained in one of two ways from |ψ(α)〉; that
is, if

|ψ(β )〉=UA⊗UB|ψ(α)〉=VA⊗VB|ψ(α)〉,
then |ψ(α)〉 is invariant under the transformation

W =WA⊗WB =U†
AVA⊗U†

BVB.

The state is, therefore, envariant with respect to the transformation WA on A.
Moreover, if |ψ(α)〉 is invariant under a transformation WA⊗WB, such that |ψ(α)〉
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is not invariant under WA or WB alone, then, given for any evolution UA⊗UB that
takes |ψ(α)〉 into |ψ(β )〉, UAWA⊗UBWB is another evolution that has the same
effect on |ψ(α)〉. Therefore, Zurek’s theorem on envariance gives us a complete
characterization of the possible intermediate states |ψ(γ)〉 and |ψ(δ )〉.

Given |ψ(α)〉 and |ψ(β )〉, related by some factorizable unitary transforma-
tion, here’s the recipe for generating possible states |ψ(γ)〉 and |ψ(δ )〉 on the
intermediate hypersurfaces. Take any Schmidt representations for |ψ(α)〉 and
|ψ(β )〉, having the same coefficients {ck} (this will always be possible in the case
considered, of factorizable unitary evolution),

|ψ(α)〉 = ∑
k

ck |ak〉⊗ |bk〉

|ψ(β )〉 = ∑
k

ck |a′k〉⊗ |b′k〉.

Then the following are candidates for states on γ and δ :

|ψ(γ)〉 = ∑
k

ck |a′k〉⊗ |bk〉

|ψ(δ )〉 = ∑
k

ck |ak〉⊗ |b′k〉

Moreover, any possible pair of states on γ and δ can be generated in this way from
Schmidt representations of |ψ(α)〉 and |ψ(β )〉.

As an example, suppose that the evolution from α to β leaves the state un-
changed,

|ψ(α)〉= |ψ(β )〉= ∑
k

ck |ak〉⊗ |bk〉,

and suppose that that this is a case of non-degeneracy, |ci| 6= |c j| for i 6= j. Then,
since the Schmidt representation is unique up to phase factors, there must exist a
set {θk} of real numbers such that

|ψ(γ)〉 = ∑
k

ck eiθk |ak〉⊗ |bk〉

|ψ(δ )〉 = ∑
k

ck e−iθk |ak〉⊗ |bk〉

So, in the nondegenerate case, what is underdetermined is the relative phases of
the terms of the Schmidt representations of |ψ(γ)〉 and |ψ(δ )〉.
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In the degenerate case, the states on γ and δ will be generated from some
Schmidt decomposition of the state on α and β . (This is the case under which
Albert’s example falls; see below.)

We now establish the claim that the recipe works, and generates all possibili-
ties for states on the intermediate hypersurfaces γ and δ (this is an application of
Zurek’s theorem to the question at hand).

Proposition 1 a). Suppose that |ψ(α)〉, |ψ(β )〉 ∈HA⊗HB are related by some
factorizable unitary transformation,

|ψ(β )〉=UA⊗UB |ψ(α)〉,

Take any Schmidt representations of |ψ(α)〉 and |ψ(β )〉 sharing the same
coefficients,

|ψ(α)〉 = ∑
k

ck |ak〉⊗ |bk〉

|ψ(β )〉 = ∑
k

ck |a′k〉⊗ |b′k〉,

and define

|ψ(γ)〉 = ∑
k

ck |a′k〉⊗ |bk〉

|ψ(δ )〉 = ∑
k

ck |ak〉⊗ |b′k〉.

Then there exist unitary VA, VB such that

|ψ(β )〉 = VA⊗VB |ψ(α)〉
|ψ(γ)〉 = VA⊗ I |ψ(α)〉
|ψ(δ )〉 = I⊗VB |ψ(α)〉.

b). Suppose that |ψ(α)〉, |ψ(β )〉 |ψ(γ)〉, and |ψ(δ )〉 are vectors in HA⊗HB
that are related by

|ψ(β )〉 = UA⊗UB |ψ(α)〉
|ψ(γ)〉 = UA⊗ I |ψ(α)〉
|ψ(δ )〉 = I⊗UB |ψ(α)〉,
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for some unitary UA, UB. Then there exist Schmidt representations of |ψ(α)〉
and |ψ(β )〉,

|ψ(α)〉 = ∑
k

ck |ak〉⊗ |bk〉

|ψ(β )〉 = ∑
k

ck |a′k〉⊗ |b′k〉

such that

|ψ(γ)〉 = ∑
k

ck |a′k〉⊗ |bk〉

|ψ(δ )〉 = ∑
k

ck |ak〉⊗ |b′k〉.

Proof 1 a) Let |ψ(α)〉, |ψ(β )〉 be related by some factorizable unitary transfor-
mation. Then there exists at least one pair of Schmidt representations for these
two vectors having the same coefficients. Take any such pair,

|ψ(α)〉 = ∑
k

ck |ak〉⊗ |bk〉

|ψ(β )〉 = ∑
k

ck |a′k〉⊗ |b′k〉,

and define

|ψ(γ)〉 = ∑
k

ck |a′k〉⊗ |bk〉

|ψ(δ )〉 = ∑
k

ck |ak〉⊗ |b′k〉.

If the sets {|ak〉}, {|bk〉}, {|a′k〉} , {|b′k〉} fail to span their respective spaces, they
can be extended to orthonormal sets that do. Define

VA = ∑
k
|a′k〉〈ak|

VB = ∑
k
|b′k〉〈bk|,

where the sums are taken over the orthonormal bases that include the Schmidt
vectors we started with. These are unitary operators having the desired properties.
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b) Suppose that |ψ(α)〉, |ψ(β )〉 |ψ(γ)〉, and |ψ(δ )〉 are vectors in HA⊗HB
that are related by

|ψ(β )〉 = UA⊗UB |ψ(α)〉
|ψ(γ)〉 = UA⊗ I |ψ(α)〉
|ψ(δ )〉 = I⊗UB |ψ(α)〉,

for some unitary UA, UB. Take any Schmidt representation of |ψ(α)〉,

|ψ(α)〉= ∑ck |ak〉⊗ |bk〉,

and define

|a′k〉 = UA |ak〉
|b′k〉 = UB |bk〉.

Then, clearly {|a′k〉} and {|b′k〉} are orthonormal sets, and

|ψ(β )〉= ∑ck |a′k〉⊗ |b′k〉.

The sets {|a′k〉} and {|b′k〉}, therefore, are a Schmidt representation of |ψ(β )〉.
Moreover,

|ψ(γ)〉 = ∑
k

ck |a′k〉⊗ |bk〉

|ψ(δ )〉 = ∑
k

ck |ak〉⊗ |b′k〉,

as required.

We thus have non-narratability, not only for special initial states, but for any en-
tangled state. The only initial states for which the recipe will fail to generate a
multiplicity of candidates for the states |ψ(γ)〉 and |ψ(δ )〉 will be factorizable
initial states.

If we take the Haar measure on the space of pure states of the bipartite system,
the set of factorizable states is a set of measure zero. Moreover, on the norm
topology, the set of entangled states is an open set that is dense in HA⊗HB:
every neighborhood of a factorizable state contains entangled states, though every
entangled state has a neighborhood consisting entirely of entangled states. In this
sense, entanglement is a generic feature of states, and so, non-narratibility (at least
when the initial state of the bipartite system is pure) is a generic feature.
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We illustrate the theorem with some simple examples.

Example 1. Spin precession. Consider a pair of spin-1
2 particles, initially in the

singlet state:

|Ψ−〉= 1√
2

(
|z+〉|z−〉− |z−〉|z+〉

)
, (4)

where |z+〉 and |z−〉 are spin-up and spin-down in the ẑ-direction. Equation (4)
gives one Schmidt representation of the state. If, however, we consider any other
direction, say, m̂, we have another Schmidt representation,

|Ψ−〉= 1√
2

(
|m+〉|m−〉− |m−〉|m+〉

)
.

Take U1 and U2 to be the same rotations on each side,

Ui|m+〉= |n+〉 Ui|m−〉= |n−〉. (5)

Then U1⊗U2 leaves the state unchanged.

|ψ(β )〉 = U1⊗U2|Ψ−〉=
1√
2

(
U1|m+〉⊗U2|m−〉−U1|m−〉⊗U2|m+〉

)
=

1√
2

(
|n+〉|n−〉− |n−〉|n+〉

)
= |Ψ−〉. (6)

The states on the intermediate hypersurfaces will be given by,

|ψ(γ)〉= 1√
2
(|n+〉|m−〉− |n−〉|m+〉)

|ψ(δ )〉= 1√
2
(|m+〉|n−〉− |m−〉|n+〉)

(7)

Moreover, it is clear that, given that the states on α and β are singlet states, for
any factorizable unitary evolution the intermediate states will be of the form (7)
for some m̂, n̂.

Example 2. Albert’s example. Albert’s example involves four spin-1
2 particles,

initially in the state
|ψ(α)〉= |Ψ−〉12|Ψ−〉34. (8)

At some time particles 1 and 3 pass by each other and exchange spin, and, at
spacelike separation, particles 2 and 4 do the same. The two spin-swaps restore
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the original state, so a state history on which the two swaps occur simultaneously,
the state remains unchanged for all time.

Though the system consists of four particles, the four particles do not remain
at spacelike separation, and, so, to apply our result, which concerns systems that
are spatially separated, we have to consider it as consisting of two subsystems,
one consisting of particles 1 and 3, and the other consisting of particles 2 and 4.
Take A to be the system consisting of particles 1 and 3, and B to be the system
consisting of particles 2 and 4. We can rewrite (8) as,

|ψ(α)〉= 1
2
( |+〉1|−〉2−|−〉1|+〉2 )( |+〉3|−〉4−|−〉3|+〉4 )

=
1
2
( |+〉1|+〉3⊗|−〉2|−〉4 − |+〉1|−〉3⊗|−〉2|+〉4

− |−〉1|+〉3⊗|+〉2|−〉4 + |−〉1|−〉3⊗|+〉2|+〉4 ) .

(9)

Let
|a1〉= |+〉1|+〉3, |b1〉= |−〉2|−〉4,

|a2〉= |+〉1|−〉3, |b2〉=−|−〉2|+〉4,

|a3〉= |−〉1|+〉3, |b3〉=−|+〉2|−〉4,

|a4〉= |−〉1|−〉3, |b4〉= |+〉2|+〉4.

(10)

Let |a′i〉 be the result of applying the the 1-3 spin swap to |ai〉, and |b′i〉, the result
of applying the 2-4 swap to |bi〉.

|a′1〉= |a1〉, |b′1〉= |b1〉,

|a′2〉= |a3〉, |b′2〉= |b3〉,

|a′3〉= |a2〉, |b′3〉= |b2〉,

|a′4〉= |a4〉, |b′4〉= |b4〉,

(11)

and let c1 =−c2 =−c3 = c4 =
1
2 . Then we have two Schmidt decompositions of

the initial (and final) state):

|ψ(α)〉= |ψ(β )〉=
4

∑
i=1

ci |ai〉|bi〉=
4

∑
i=1

ci |a′i〉|b′i〉. (12)
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The intermediate states are

|ψ(γ)〉= ∑i ci |a′i〉|bi〉,

|ψ(δ )〉= ∑i ci |ai〉|b′i〉.
(13)

Thus, Albert’s example is an instance of our theorem.

5.2 Non-isolated evolution
We consider the case in which the systems are not isolated during the evolution
from α to β , but interact with their environment. As mentioned above, we con-
sider the causal past of sA(β ) on α , s̃A(α), and the causal past of sB(β ) on α ,
s̃B(α). There will be unitary operators UA, UB, such that

Tr[ρ(β )A⊗B] = Tr[ρ̃(α)U†
A AUA⊗U†

B BUB] (14)

for all A ∈A ,B ∈B.
We consider first the case in which the state of s̃A(α)∪ s̃B(α) is pure. Suppose

that this state is represented by a state vector |ψ̃(α)〉, with Schmidt representation

|ψ̃(α)〉= ∑
i

ck |ãk〉⊗ |b̃k〉. (15)

Let
|a′k〉=UA|ãk〉, |b′k〉=UA|b̃k〉. (16)

Let VA, VB be unitary operators defined by

VA|ãk〉= eiθk UA |ãk〉= eiθk |a′k〉;

VB|b̃k〉= e−iθk UB |b̃k〉= e−iθk |b′k〉.
(17)

Then, obviously, VA⊗VB has the same effect on |ψ̃(α)〉 as UA⊗UB. Let ρ(γ),
ρ ′(γ) be the states on γ produced by evolving with UA and VA, respectively. We
will have,

Tr[ρ(γ)A⊗B] = ∑
i, j

cic∗j 〈a′j|A |a′i〉 〈b̃ j|B|b̃i〉; (18)

Tr[ρ ′(γ)A⊗B] = ∑
i, j

cic∗j ei(θi−θ j) 〈a′j|A |a′i〉 〈b̃ j|B|b̃i〉. (19)
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for all A ∈A ,B ∈ B̃.
If, for all A, 〈a′j|A|a′i〉= 0 for all distinct i, j, then

Tr[ρ(β )A⊗B] = ∑
i
|ci|2 〈a′i|A|a′i〉 〈b′i|B|b′i〉, (20)

for all A ∈ ˜A ,B ∈ B̃, and the evolution has disentangled the two systems. Sup-
pose, now, that this is not the case, that there are distinct i, j, with ci, c j nonzero,
such that 〈a′i|A|a′j〉 is nonzero for some A. Choose

B = |b j〉〈bi|+ |bi〉〈b j|. (21)

Then all we have to do is choose distinct θi, θ j, to obtain

Tr[ρ(γ)A⊗B] 6= Tr[ρ ′(γ)A⊗B] (22)

for some A ∈A .
Therefore, in the case of non-isolated evolution, we have non-narratability so

long as the initial state of s̃A(α)∪ s̃B(α) is entangled, and the evolution leaves A
and B entangled.

5.3 Systems of more than two components, pure initial states
Now consider the case in which we have three or more systems, located in disjoint
regions of space. We first consider the case in which the initial state of these
systems is pure.

5.3.1 Isolated evolution

Take first the case of three systems, A, B, and C, spacelike separated from each
other between α and β , and isolated from their environments. Then there will be
unitary operators UA, UB, UC, such that

|ψ(β )〉=UA⊗UB⊗UC |ψ(α)〉.

We ask whether there will exist unitaries VA, VB, VC such that

|ψ(β )〉=VA⊗VB⊗VC |ψ(α)〉,

but
I⊗ I⊗UC|ψ(α)〉 6= I⊗ I⊗VC|ψ(α)〉.
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As we have seen in §5.1.1, this is equivalent to asking whether there are unitaries
WA, WB, WC such that |ψ(α)〉 is invariant under WA⊗WB⊗WC but not under
I⊗ I⊗WC.

Generically, |ψ(α)〉 will be an entangled state. Consider the reduced state of
ρAB(α) of AB. This will be an improper mixture, and we can write it as a mixture
of mutually orthogonal pure states,

ρAB(α) = ∑
i

wi δi.

If there are unitaries WA, WB, WC such that |ψ(α)〉 is invariant under W = WA⊗
WB⊗WC, then the action of WA⊗WB must leave the reduced state of A+B invari-
ant. Suppose, now, that there exist wn, wm that differ from each other and all wi,
for i 6= n,m. Then we must have

W δn W † = δn

W δm W † = δm

Suppose that the pure state δn is represented by a vector |ψn〉 whose Schmidt
representation is non-degenerate. Then WA ⊗WB can only change the relative
phases of the terms of the Schmidt representations; the Schmidt bases for A and
B must be eigenvectors of UA and UB, respectively. But the same must be true for
δm, which means that the elements of the Schmidt bases for |ψm〉 must be parallel
or orthogonal to the elements of the Schmidt bases |ψn〉.

This will be true only for very special states. It is easy to see that, if we have
a state in which it holds can make them fail by perturbing δn slightly, whereas, if
they fail, this will remain true under sufficiently small perturbations. Therefore,
for generic improper mixtures ρAB, there will be no nontrivial factorizable unitary
that leaves ρAB invariant.

What this means is that, though, from the results of the previous section, there
will always be distinct unitaries UAB⊗UC and VAB⊗VC such that

UAB⊗UC|ψ(α)〉=VAB⊗VC|ψ(α)〉,

we will not, in general, be able to satisfy the further requirement that UAB and VAB
be factorizable, without sacrificing the desideratum that they yield different states
when acting alone on |ψ(α)〉.

For example, take the state |ψ〉 to be

|ψ〉= c1|Φ1〉AB|+〉C + c2|Φ2〉AB|−〉C,
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where |+〉, |−〉 are orthogonal vectors in HC, and |Φ1〉AB, |Φ2〉AB are orthogonal
vectors in HA⊗HB, and c1 6= c2. Then, as we know from Proposition 1, a uni-
tary operator of the form WC under which |ψ〉 is envariant can at best change the
relative phases of the Schmidt decomposition of |ψ〉. That is, we will have

UC|+〉= eiθ1|+〉 UC|−〉= eiθ2 |−〉 (23)

for some θ1,θ2. There can be no factorizable unitary WA⊗WB that undoes such a
transformation unless |Φ1〉AB and |Φ2〉AB are distinguishable by local measurements—
that is, unless there exist observables OA and OB such that these states are distinct
eigenstates of OA⊗OB. This condition will be generically violated. Thus we have
the following proposition.

Proposition 2 Let |ψα〉, |ψβ 〉 |ψγ〉 be vectors in a Hilbert space HA⊗HB⊗HC,
related by,

|ψβ 〉=UA⊗UB⊗UC|ψα〉,

|ψγ〉=UA⊗UB⊗ IC|ψα〉,

|ψδ 〉= IA⊗ IB⊗UC|ψα〉.
If

|ψα〉= ∑
k

ck|ak〉AB|bk〉C

is a Schmidt decomposition of |ψα〉 whose elements are not locally distinguish-
able, such that |cn| 6= |ci| for i 6= n, then, if, for some VA VB, VC, we have

|ψβ 〉=VA⊗VB⊗VC|ψα〉,
then

VA⊗VB⊗ IC|ψα〉 ∝ |ψγ〉
and

IA⊗ IB⊗VC|ψα〉 ∝ |ψδ 〉.

5.4 Mixed initial states
Consider, now a bipartite system that is not initially in a pure state, but is some-
what entangled with its environment, and undergoes factorizable unitary evolution
between hypersurfaces α and β . This is, essentially, the same as the situation con-
sidered in the previous section. As we saw, for generic improper mixtures ρAB,
there will be no nontrivial factorizable unitary that leaves ρAB invariant.
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6 Conclusion
The results obtained above show that, for systems consisting of spatially sepa-
rated parts undergoing separate unitary evolution, non-narratability depends on
very special initial states. For generic initial states, the state of the system on
one hypersurface, together with the condition that evolutions of spacelike sepa-
rated systems factorize, uniquely determines the state of the system on another
hypersurface.

However, there is still an important difference between quantum state evolu-
tion in a relativistic spacetime and the evolution of classical states. For the latter,
a state history along one foliation uniquely determines the state history along any
other without any consideration of dynamics. In the quantum case, though the
requirement that dynamics respect relativistic causality places strong constraints
on possible state histories, dynamical considerations are indispensable for making
the shift between state histories along different foliations.
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