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Abstract. The diagonalization argument of Putnam (1963) denies the possi-

bility of a universal learning machine. Yet the proposal of Solomonoff (1964)

and Levin (1970) promises precisely such a thing. In this paper I discuss how
their proposed measure function manages to evade Putnam’s diagonalization

in one respect, only to fatally fall prey to it in another.

1.

Putnam (1963a) famously challenged the feasibility of Carnap’s program of in-
ductive logic on the grounds that a quantitative definition of “degree of confirma-
tion” can never be adequate as a rational reconstruction of inductive reasoning.
Consider a simple language with a monadic predicate G and an ordered infinity of
individuals xi, i ∈ N, and let a computable hypothesis h be a computable set of
sentences h(xi) for each individual xi, where h(xi) equals one of Gxi and ¬Gxi.
Then a natural condition of adequacy on any proposed measure function P is that

(I) For any true computable hypothesis h, the instance confirmation P (h(xn+1) |
h(x0), ..., h(xn)) should pass and remain above threshold 0.5 after sufficiently
many confirming individuals x0, ..., xn.

(Since our actual inductive methods are sure to discern a computable pattern even-
tually, so should a reconstruction of them.) But for any measure function P that
is itself at least effectively computable in a weak sense (so as to qualify, with the
Church-Turing thesis, as an explicit method):

(II) For any true computable hypothesis h, for every n, it must be possible to
compute an m such that if h(xn+1), ..., h(xn+m) hold, then P (h(xn+m+1) |
h(x0), ..., h(xn+m)) exceeds 0.5,

one can prove by diagonalization P ’s violation of (I).
Thus, if the ideal inductive policy fulfills (I) and (II), then it is provably impossi-

ble to reconstruct it as a measure function. But maybe such a policy is so idealized
as to thwart any formalization? To seal the fate of Carnap’s program, Putnam
proceeds to give an example of an inductive method that is not based on a measure
function and that does satisfy the two requirements. This method M is in effect
the hypothetico-deductive method : supposing some enumeration of hypotheses that
are proposed over time, at each point in time select and use for prediction (accept)
the hypothesis first in line among those that have been consistent with past data.
Then:
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(III) For any true computable hypothesis h, if h is ever proposed, then method M
will eventually come to (and forever remain to) accept it.

The distinctive feature of M is that it relies on the hypotheses that are actually
proposed. To Putnam, this is as it should be. Not only does it conform to scientific
practice: more fundamentally, it does justice to the “indispensability of theories as
instruments of prediction” (ibid., 778). This appears to be the overarching reason
why Putnam takes issue with Carnap’s program: “certainly it appears implausible
to say that there is a rule whereby one can go from the observational facts . . . to
the observational prediction without any ‘detour’ into the realm of theory. But this
is a consequence of the supposition that degree of confirmation can be ‘adequately
defined’” (ibid., 780). Incredulously: “we get the further consequence that it is
possible in principle to build an electronic computer such that, if it could somehow
be given all the observational facts, it would always make the best prediction—i.e.
the prediction that would be made by the best possible scientist if he had the best
possible theories. Science could in principle be done by a moron (or an electronic
computer)” (ibid., 781).

Here Putnam is still careful not to attribute to Carnap too strong a view: “Of
course, I am not accusing Carnap of believing or stating that such a rule exists;
the existence of such a rule is a disguised consequence of the assumption that
[degree of confirmation] can be ‘adequately defined’” (ibid., 780). Carnap indeed
seemed reluctant to commit himself to the idea of an “inductive machine” (see
Carnap, 1950, 192-99). Nevertheless, in his Radio Free Europe address (1963b),
Putnam declares that “we may think of a system of inductive logic as a design
for a ‘learning machine’: that is to say, a design for a computing machine that
can extrapolate certain kinds of empirical regularities from the data with which
it is supplied” (1963b, 297); and “if there is such a thing as a correct ‘degree of
confirmation’ which can be fixed once and for all, then a machine which predicted
in accordance with the degree of confirmation would be an optimal, that is to say, a
cleverest possible learning machine” (ibid., 298). Again, the diagonalization proof
would show that there can be no such thing: it is “an argument against the existence
– that is, against the possible existence – of a ‘cleverest possible’ learning machine”
(ibid., 299).

2.

Solomonoff (1964) aimed to describe precisely that: an “optimum” learning ma-
chine, a formal system of inductive inference that “is at least as good as any other
that may be proposed” (ibid., 5). His ideas can indeed be seen as a particular
offspring of Carnap’s inductive logic; one that takes Putnam’s picture of a learning
machine seriously.

Solomonoff’s mission statement is clear: “The problem dealt with will be the
extrapolation of a long sequence of symbols” (ibid., 2). We seek the probability
that a given (long) sequence T is followed by a (one-symbol) sequence a. “In the
language of Carnap (1950), we want c(a, T ), the degree of confirmation of the hy-
pothesis that a will follow, given the evidence that T has just occurred” (ibid.).
The underlying motivation is also very much in accord with things Carnap writes
in his 1950 book. Solomonoff’s suggestion that “all problems in inductive infer-
ence . . . can be expressed in the form of the extrapolation of a long sequence of
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symbols” (ibid.) parallels Carnap’s insistence on the primacy of the predictive in-
ference — “the most important and fundamental inductive inference” (1950, 207).
And Carnap’s discussion under the header “Are Laws Needed for Making Predic-
tions?” (ibid., 574-75) — conclusion: “the use of laws is not indispensable” — is
easily read as informing Solomonoff’s proclamation that his proposed methods are
“meant to bypass the explicit formulation of scientific laws, and use the data of the
past directly to make inductive inferences about specific future events” (1964, 16).

This already very much resembles the picture that Putnam painted in order to
challenge it. What is more, the problem setting of sequence extrapolation is readily
translatable into the formal set-up that Putnam presupposes in his paper. Let us
suppose, as is customary in modern discussions of Solomonoff’s theory, that we
have an alphabet of only two symbols, ‘0’ and ‘1’. Now Putnam assumes with
Carnap a monadic predicate language L, but with an ordered domain x1, x2, x3, . . .
of individuals. Let L have a single monadic predicate G. Identifying the individuals
with positions in a sequence as Putnam does (1963a, 766), we can have a ‘1’ at the
i-th position express the fact that individual xi satisfies G, and a ‘0’ that it does
not. Thus we translate a symbol sequence of length n into the observation of the
first n individuals.

Solomonoff’s setting is then fully within the scope of Putnam’s argument. This
in contrast to that of Carnap, who could still resort to the defense that in his
works he does not assume an ordered domain, and so “the difficulties which Put-
nam discusses do not apply to the inductive methods which I have presented in
my publications” (1963a, 986). Nevertheless, Carnap does acknowledge at various
places the need for taking into consideration the order of individuals in explicating
degree of confirmation (e.g., 1950, 62-65; 1963b, 225-26); and he envisioned for
this future project the same kind of “coordinate language” that Putnam assumes
(also see Skyrms, 1991). For such a language, Carnap should have agreed with
Putnam’s charge that an inductive system that is “not ‘clever’ enough to learn that
position in the sequence is relevant” is too weak to be adequate. The difference in
opinion then ultimately comes down to what regularities in the observed individ-
uals should be extrapolated (i.e., what hypotheses or patterns should gain higher
instance confirmation from supporting observations).

Carnap states in (1963a, 987; 1963b, 226) that he would only consider “laws of
finite span.” In terms of symbol sequence extrapolation, these are the hypotheses
that make the probability of a certain symbol’s occurrence at a certain position only
depend on the immediately preceding subsequence of a fixed finite length (i.e., a
Markov chain of certain order). In particular, hypotheses must not refer to absolute
coordinates, which immediately rules out Putnam’s example of the hypothesis that
“the prime numbers are occupied by red” (1963a, 765). In Carnap’s view, “no
physicist would seriously consider a law like Putnam’s prime number law” (1963a,
987), hence “it is hardly worthwhile to take account of such laws in adequacy
conditions for c-functions” (1963b, 226). According to Putnam, however, “existing
inductive methods are capable of establishing the correctness of such a hypothesis
. . . and so must any adequate ‘reconstruction’ of these methods” (1963a, 765).
Indeed, the same goes for any effectively computable pattern; this is his adequacy
condition (I).

Others have charged Carnap’s confirmation functions with an inability to meet
various adequacy conditions on recognizing regularities (notably Achinstein, 1963;
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in fact the critique of Goodman, 1946, 1947 can be seen as an early instance of
this line of attack). What is distinctive about Putnam’s adequacy conditions is
the emphasis on effective computability. Interestingly, this notion of effective com-
putability is also the fundamental ingredient in Solomonoff’s proposal. It is this
aspect that genuinely sets Solomonoff’s approach apart from Carnap’s. The mea-
sure functions that Solomonoff proposed in (1964), and that evolved in the modern
definition of a measure function Qf that we will see below, were explicitly defined
in terms of the inputs to a universal Turing machine. Moreover, one can show that
the instance confirmation via Qf of any true computable hypothesis will converge
to 1, thus fulfilling (I).

3.

How does Solomonoff evade Putnam’s diagonalization?
If Qf is within the scope of Putnam’s argument, and it still fulfills (I), then it

must give way with respect to (II). To see how Qf fulfills (I) but not (II), we will
need to go into the details. This we do in the current section; in the next section we
return to the main thread and ask ourselves what this means for Qf as a purported
“optimum,” or universal learning machine.

Specifically, we will work in this section towards the precise specification of Qf ,
and prove that it satisfies (I). For a large part this amounts to retracing the formal
setting that was developed in the landmark paper of Zvonkin and Levin (1970),
based on Levin’s doctoral thesis (translated as Levin, 2010).

We start with the notion of a computable (probability) measure on the Cantor
space {0, 1}ω, the set of all infinite sequences of symbols in {0, 1}. A computable
measure on {0, 1}ω is generated in the standard way (according to “Method I”
in Rogers, 1970, 9ff; also see Reimann, 2009, 249-256; Nies, 2009, 68-70) from a
computable premeasure. A premeasure that generates a probability measure is a
function m : {0, 1}∗ → [0, 1] on the finite sequences that satisfies m(ε) = 1 for the
empty sequence ε and m(x0) + m(x1) = m(x) for all x ∈ {0, 1}∗; the resulting
measure µm will then satisfy µm(JxK) = m(x) for every cylinder JxK = {X ∈
{0, 1}ω : x 4 X}, i.e., class of infinite extensions of finite x. I will sometimes be
sloppy and simply write “µ(x)” for “µ(JxK).” A premeasure is computable if its
values are uniformly computable reals: there is a computable f : {0, 1}∗ × N → Q
such that |f(x, t) −m(x)| < 2−t for all x ∈ {0, 1}∗, t ∈ N. A computable measure
is also called a ∆0

1 measure.
We will see below that the Solomonoff-Levin measure function Qf has the fol-

lowing property.

(I’) For any true ∆0
1 measure µ, with probability 1, the values Qf (xt+1 | xt) for

xt+1 ∈ {0, 1} converge to the values µ(xt+1 | xt) as t goes to infinity.

This is a generalization of Putnam’s condition (I) from “deterministic” com-
putable hypotheses or single infinite computable sequences to computable proba-
bility measures on infinite sequences.

We proceed with our discussion of computable measures. The most basic (∆0
1)

measure on Cantor space is the uniform measure λ. It is generated from the
premeasure with m(x) = 2−|x| for all x, where |x| denotes x’s length. We can obtain
other measures as transformations of λ by Borel functions F : {0, 1}ω → {0, 1}ω.
A transformation of λ by Borel function F , written λF , is defined by λF (A) =
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λ(F−1(A)). Every other Borel measure µ on Cantor space can be obtained as a
transformation λF = µ by some Borel function F .

We are interested in transformations by functions that are effectively computable.
To that end we introduce mappings f : {0, 1}∗ → {0, 1}∗ on finite sequences,
mappings that have to satisfy a condition of monotonicity : if x 4 y then also
f(x) 4 f(y). Consider the function Φf : X 7→ sup4{f(x) : x 4 X} induced by f .
If sup4{f(x) : x 4 X} is an infinite sequence for all infinite X, then Φf gives a
total function F : {0, 1}ω → {0, 1}ω. If not, then we have to restrict the domain
and Φf is a partial function on {0, 1}ω. Alternatively, we can treat Φf as a total
function {0, 1}ω ∪ {0, 1}∗ → {0, 1}ω ∪ {0, 1}∗ on the collection of infinite and finite
sequences.

To specify a computable monotone mapping, we note that f can be represented
by the set Mf ⊆ {0, 1}∗ × {0, 1}∗ of pairs of sequences (x, y) such that f(x) < y.
Then a computable monotone mapping is a monotone mapping f with c.e. Mf .
One can visualize a computable monotone mapping as a particular type of Turing
machine, one that operates on a steady stream of input symbols, producing an
(in)finite output sequence in the process. Originally dubbed an algorithmic process
(Zvonkin and Levin, 1970, 99), this type of machine is now better known as a
monotone machine. (Also see Shen, Uspenky, and Vereshchagin 2014, 141-44.)

The transformation λf by monotone mapping f is given by the premeasure
m : y 7→ λ(J{x : f(x) < y}K), mapping to each sequence y the uniform measure of
the input sequences x that lead f to produce it (Zvonkin and Levin, 1970, 100).
If computable monotone mapping f produces an infinite sequence with uniform
probability 1 (i.e., the class of X with infinite Φf (X) has uniform measure 1), then
the transformation λf is a premeasure that again generates a ∆0

1 measure on {0, 1}ω
(ibid.). Every other ∆0

1 measure can be obtained as a λ-transformation λf = µ of
some such “almost total” computable monotone mapping f .

However, if there is some finite y such that with positive uniform probability
machine f stops producing more symbols after y (that is, the class of X with
finite Φf (X) has positive uniform probability), then λf (y) is strictly greater than
λf (y0)+λf (y1). A function λf can thus be interpreted as a premeasure generating a
measure on the collection of infinite and finite sequences (ibid., 102). (Alternatively,
one can interpret such a function as a “semimeasure” on {0, 1}ω (Levin and V’yugin,
1977, 360), a “defective” probability measure. See Li and Vitányi (2008, 264; 331-
32).)

Levin calls the class of (measures generated from the) transformations λf by all
monotone machines f the class of semi-computable measures on {0, 1}ω ∪ {0, 1}∗.
This is because these transformations are precisely the functions m : {0, 1}∗ →
[0, 1] with m(x) ≥ m(x0) + m(x1) for all x that satisfy a weaker requirement
of computability, that we may paraphrase as computable approximability from be-
low (Zvonkin and Levin, 1970, 102-03). In exact terms (also see Downey and
Hirschfeldt, 2010, 202-03), we call m (lower) semi-computable if there is a com-
putable f : {0, 1}∗ × N → Q such that for all x ∈ {0, 1}∗ we have f(x, t) ≤
f(x, t + 1) for all t ∈ N and limt→∞ f(x, t) = m(x). Equivalently, the left-cut
{(q, x) ∈ Q× {0, 1}∗ : q < m(x)} is c.e. A semi-computable measure is also called
a Σ0

1 measure.
It is instructive to note the analogy between, on the one hand, the expansion

from the ∆0
1 to the Σ0

1 measures, and, on the other, the expansion from the total
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computable (t.c.) to the partial computable (p.c.) functions. It is well-known that
the class of t.c. functions is diagonalizable, and that this is overcome by enlarging
the class to the p.c. functions. In other words, the class of all t.c. functions is
not effectively enumerable; the class of p.c. functions is. Likewise, the class of ∆0

1

measures is not effectively enumerable; the class of Σ0
1 measures is. This analogy

between Σ0
1 measures and p.c. functions is indeed an equivalence in the sense that

an effective enumeration of all Σ0
1 measures is naturally obtained from an effective

enumeration of all p.c. functions (cf. Li and Vitányi 2008, 261; 267).
The effective enumerability of the Σ0

1 measures is crucial, because it allows for
the construction of universal Σ0

1 measures (Zvonkin and Levin, 1970, 103-04). In-
formally, such a measure “is ‘larger’ than any other measure, and is concentrated
on the widest subset of [{0, 1}ω ∪ {0, 1}∗]” (ibid., 104). Formally, a universal Σ0

1

measure µµµ is such that it dominates every other Σ0
1 measure: for every µi ∈ Σ0

1 there
is a constant ci ∈ N such that for all x ∈ {0, 1}∗ it holds that µ(x) ≥ µi(x)/ci.
“This fact is one of the reasons for introducing the concept of semi-computable
measure” (ibid.) — we may take it as the main reason. In fact, the expansion to
Σ0

1 objects in order to obtain universal elements is a move that returns in many
related contexts. Martin-Löf (1966), in defining his influential notion of algorithmic
randomness, employed the class of all Σ0

1 randomness tests: a sequence X is random
if it passes a universal such test. Vovk (2001b), in defining his notion of predictive
complexity, employed the class of Σ0

1 loss processes: the predictive complexity of X
is the loss incurred by a universal such process. Vovk and Watkins (1998, 17): “It
would be ideal if the class of computable loss processes contains a smallest (say, to
within an additive constant) element. Unfortunately . . . such a smallest element
does not exist.” Levin’s suggestion to widen the class to the Σ0

1 elements is then
“a very natural solution to the problem of non-existence of a smallest computable
loss process” (ibid.).

An example of a universal Σ0
1 measure is easily given. Since the computable

monotone mappings are also effectively enumerable, we can likewise specify univer-
sal such mappings. Let {zi}i∈N some computable prefix-free (i.e., zi 4 zj ⇒ i = j)
encoding of all computable monotone mappings fi. The corresponding universal
monotone mapping f is defined by (zix, y) ∈Mf :⇔ (x, y) ∈Mfi . It is straightfor-
ward to show that the transformation λf of λ by universal f gives a universal Σ0

1

measure.
We have finally arrived at the definition of the Solomonoff-Levin measure func-

tion. The measure Qf is precisely the transformation of λ by universal monotone
mapping f .

Definition 1. Qf := λf .

So there are in fact infinitely many such measures Qf , one for each choice of
universal monotone mapping f . Each is a universal Σ0

1 measure. It is this property
that is exploited in the adequacy result.

Proposition 2. Qf fulfills (I’).

Proof. Let µ ∈ ∆0
1. The fact that Qf dominates µ entails that µ is absolutely

continuous with respect to Qf (i.e., µ(A) > 0 implies Qf (A) for all A in the σ-
algebra F), which by the classical result of Blackwell and Dubins (1962) entails
that µ-a.s. the variational distance supA∈F |µ(A | xt) −Qf (A | xt)| → 0 as t → ∞
(see Huttegger, 2015, 617-18), so in particular (I’). �
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4.

So how does the Solomonoff-Levin function evade Putnam’s diagonalization?
As we saw above, the very motivation for the expansion to the class of Σ0

1

measures is to evade diagonalization — to obtain universal elements. The measure
Qf is a universal element; as such, it tracks every ∆0

1 measure in the sense of (I’).
The downside is that, as a universal Σ0

1 element, Qf is itself no longer ∆0
1 (or

the class of ∆0
1 would already have universal elements). Worse, as we will see in

more detail in the penultimate section below, Qf fails to satisfy the even weaker
effectiveness condition (II).

The force of Putnam’s diagonalization proof is that no measure function can
satisfy both (I) and (II), and Qf is no exception. The Solomonoff-Levin measure
function is powerful enough to avoid diagonalization and fulfill (I), but the price
to pay is that Qf might be said to be too powerful: it is no longer computable in
the sense of (II). Does this invalidate Qf as an inductive method — let alone a
universal one?

One reply is that we cannot hold this against Qf just like that, since, after all,
Putnam has shown that this incomputability is really a necessary condition for a
policy to be optimal in the sense of (I’): “an optimal strategy, if such a strategy
should exist, cannot be computable . . . any optimal inductive strategy must exhibit
recursive undecidability” (Hintikka, 1965, 283, fn. 22). However, this reply seems
to miss the second component of Putnam’s charge. This is the claim that, while
no measure function can fulfill both adequacy conditions, other methods could —
in particular, the HD-method.

In the current section we turn our attention to this claim. As discussed already
in some detail by Kelly et al. (1994, 99-112), it actually turns out to be the weak
spot in Putnam’s argument. When we have this claim out of the way, we can, in
the next section, consider the question of Qf ’s adequacy afresh.

In order to assess Putnam’s statement of the HD-method’s adequacy, we have to
consider the following two conditions, the generalizations of (I) and (II) to methods
that are not necessarily measure functions (the original conditions are retrieved
by inserting “instance confirmation greater than 0.5” for “accepted”, cf. Putnam,
1963a, 771):

(I*) Any true computable hypothesis h is (and forever remains) accepted after
sufficiently many confirming individuals x0, ..., xn.

(II*) For any true computable hypothesis h, for every n, it must be possible to
compute an m such that if h(xn+1), ..., h(xn+m) hold, then h is accepted
after time n+m.

Again, it is important for Putnam’s case against Carnap that the conditions (I*)
and (II*) are not supposed to be mutually exclusive a priori ; or it would be a rather
moot charge that indeed no measure function can satisfy them in tandem. No mea-
sure function can satisfy both — conditions (I) and (II) are mutually exclusive —
but other methods can: and the hypothetico-deductive (HD) method that Putnam
describes is to be the case in point. On a closer look, however, this assertion will
appear a bit murky.

Recall that Putnam’s HD method depends on the hypotheses that are actually
proposed in the course of time. The HD method fulfills (III), which is so phrased
as to accommodate this dependency: the method will come to accept (and forever
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stick to) any true computable hypothesis, if this hypothesis is ever proposed. Thus
the HD method relies on some “hypothesis stream” (Kelly et al., 1994, 107) that
is external to the method itself; and the method will come to embrace a true
hypothesis whenever this hypothesis is part of the hypothesis stream.

In computability-theoretic terminology, the method uses the hypothesis stream
as an oracle. The HD method is a simple set of rules, so obviously computable
— given the oracle. But the oracle itself might be incomputable. Indeed, since
the computable hypotheses (in the current context, computable infinite sequences)
are not effectively enumerable, any hypothesis stream that contains all computable
hypotheses is incomputable. This is why Putnam must view the oracle as external
to the HD method. The alternative is to view the generation of a particular hy-
potheses stream η as part of the method itself ; but if any such HD-with-particular-
hypothesis-stream-η method — let us simply say “HDη method” — is powerful
enough to satisfy (II*), then the hypothesis stream and hence the method HDη

as a whole must be incomputable. Putnam is well aware of this: “it is easily seen
that any method that shares with Carnap the feature: what one will predict ‘next’
depends only on what has so far been observed, will also share the defect: either
what one should predict will not in practice be computable, or some law will elude
the method altogether” (Putnam, 1963a, 773; also see the simple derivation of this
fact in Kelly et al., 1994, 102-03). In short, the HDη methods are in exactly the
same predicament as Carnap’s measure functions. Conditions (I*) and (II*) are
mutually exclusive — unless we allow the method to be such that “the acceptance
of a hypothesis also depends on which hypotheses are actually proposed” (Putnam,
1963a, 773), i.e., allow the method access to an external hypothesis stream.

But Putnam’s assumption of an (incomputable) external oracle does, of course,
raise questions of its own. The idea would be that we identify the oracle with
the elusive process of the invention of hypotheses, the unanalyzable “context of
discovery”; ultimately rooted, maybe, in “creative intuition” (Kelly et al., 1994,
108) or something of the sort. Is this process somehow incomputable? How would
we know? Moreover, “if Putnam’s favourite method is provided access to a powerful
oracle, then why are Carnap’s methods denied the same privilege?” (ibid., 107).

Kelly et al. offer Putnam the interpretation that the HD method provides an
“architecture,” a recipe for building particular methods (in our above terminology,
HDη methods), that is “universal” in the sense that for every computable hypoth-
esis, there is a particular computable instantiation of the architecture (a particular
computable HDη method) that will come to accept (and forever stick to) the hy-
pothesis if its true. “A scientist wedded to a universal architecture is shielded from
Putnam’s charges of inadequacy, since . . . there is nothing one could have done by
violating the strictures of the architecture that one could not have done by honoring
them” (ibid., 110). Kelly et al. are not convinced, though, that their suggestion
saves Putnam’s argument, for the reason that it makes little sense for Putnam to en-
dorse a universal architecture while calling every particular instance inadequate and
therefore “ridiculous” (ibid., 110-11; here they quote Putnam, 1974, 238). There
is, however, a more fundamental objection. Again, Putnam’s argument against
Carnap would only be completed if the above way out for the HD method were
not open to measure functions. That is, it would only succeed if measure functions
could not be likewise seen as instantiations of some universal architecture. But
as a matter of fact, they can. They can be seen as instantiations of the classical
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Bayesian architecture. (Cf. Romeijn (2004). I follow Diaconis and Freedman (1986,
11) in adopting the designation “classical Bayesian.” Also see Skyrms (1996).)

The classical Bayesian architecture employs a countable hypothesis class (where
hypotheses are again measures over Cantor space), as well as a prior distribution
that gives positive probability to every element of this hypothesis class. Given a hy-
pothesis class H and prior w, the corresponding Bayes-with-particular-hypothesis-
class-H method ξHw — let us say “BayesH method” ξHw — is the measure func-
tion that is simply the w-weighted mean over the hypotheses in H, i.e., ξHw (x) :=∑
h∈H w(h)h(x).
The classical Bayesian architecture is a universal architecture because for every

(computable) deterministic hypothesis, there is a particular (computable) instanti-
ation of the architecture (a BayesH method where H contains the hypothesis) that
will come to accept (and forever stick to) the hypothesis if it is true (in the sense
of (I)). Just like the HD architecture is guaranteed to accept and stick to every
true deterministic hypothesis, whenever it is included in the hypothesis stream, so
the classical Bayesian architecture is guaranteed to accept every true deterministic
hypothesis, whenever it is included in the hypothesis class. More generally, to also
cover the case where the true hypothesis is in fact probabilistic, a BayesH method
will come to accept and forever stick to any true hypothesis, whenever it is in H,
with (true) probability 1. Or, to put it more succinctly, a BayesH method will al-
most surely converge on the true hypothesis whenever it is in H. This property is
also known as Bayesian consistency. It follows from the exact same argument as
the proof of Theorem 2, given the fact that ξHw dominates every element in H: for
every h ∈ H we clearly have for all x ∈ B∗ that ξHw (x) ≥ w(h)h(x).

Every measure function over Cantor space corresponds to a BayesH method
for some H and w. We can thus interpret any measure function as relying on
a class of hypotheses — meeting Putnam’s insistence on the indispensability of
theory. Moreover, this point of view naturally accommodates a simplicity ordering
of hypotheses that Putnam (inspired by Kemeny, 1953) envisages a refined HD
method to employ (1963a, 775-77), and that in (1963b, 301-02) he proposes as
a line of further investigation for inductive logic: “given a simplicity ordering of
some hypotheses, to construct a c-function which will be in agreement with that
simplicity ordering, that is, which will permit one to extrapolate any one of those
hypotheses, and which will give the preference always to the earliest hypothesis
in the ordering which is compatible with the data” (ibid., 302). The solution to
this problem is the measure function BayesH with a prior w that expresses the
desired simplicity ordering on the hypotheses in H, assigning lower probability to
hypotheses further away in the ordering.

In conclusion of this discussion, there is a perfect analogy between the situ-
ation for the HD method and for the classical Bayesian method. No particular
measure function — BayesH method — can satisfy both (I*) and (II*). But, sim-
ilarly, no particular HDη method can satisfy both (I*) and (II*). Nevertheless,
the HD architecture is universal. But, similarly, the classical Bayesian architecture
is universal. From this perspective, Putnam’s argument, purporting to show that
measure functions have fundamental shortcomings that other methods do not, fails.
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5.

We have observed that (I*) and (II*) are mutually exclusive: no particular
method can satisfy both. Let us then follow up on the earlier suggestion to not
dismiss the Solomonoff-Levin function Qf out of hand simply because it does not
satisfy the special cases (I) and (II) — that it cannot do the impossible. Instead, let
us conclude our survey with a fresh look at the question: could Qf be an adequate
characterization of a “cleverest possible,” a universal learning machine?

We can still, with Putnam, divide this question into two parts. First, in the spirit
of (I), will Qf be able to accept every reasonable (reasonably effective) hypothesis,
if it is true? Second, in the spirit of (II), is Qf itself still a reasonable (reasonably
effective) method?

To start with the first. The best vantage point to address this question is to
view Qf as an instantiation of the classical Bayesian architecture that we saw in
the previous section. It turns out that the measure functions Qf are the classical
Bayesian methods that employ the class of all Σ0

1 hypotheses (also see Sterkenburg,

2016). To be exact, the measure functions Qf are precisely the Bayes
H

Σ0
1 methods

ξ
Σ0

1
w with semicomputable prior w over the hypothesis class HΣ0

1
of all Σ0

1 measures.

(In particular, the choice of universal transformation f corresponds to the choice
of semicomputable prior w over HΣ0

1
.) By Bayesian consistency, it follows that Qf

will almost surely converge on any true Σ0
1 hypothesis. (This is again, in essence,

Proposition 2 above, though I only stated it for ∆0
1 measures. See the Appendix

for details.)
The hypothesis class embodies the regularities that can be extrapolated, the

patterns that should gain higher instance confirmation from supporting instances.
Thus we may rephrase our first question: is the hypothesis class HΣ0

1
sufficiently

wide, sufficiently general?
Before we turn to an answer, we connect this question to an important alterna-

tive perspective on Qf . This is the interpretation of Qf as an “a priori” distribution
over the symbol sequences. Measure Qf “corresponds to what we intuitively un-
derstand by the words ‘a priori probability,’” Zvonkin and Levin (1970, 104) write,
because “if nothing is known in advance about the properties of [a] sequence, then
the only (weakest) assertion we can make regarding it is that it can be obtained
randomly with respect to [Qf ]”. This is an illustration of how the question of the
generality of HΣ0

1
— the class of candidate measures that may be assumed to gen-

erate the data — is related to the question of the adequacy of Qf as an a priori
probability assignment on the data sequences. Ultimately, the latter perspective
is associated with the idea that inductive reasoning attains justification from some
objective or rational starting point. It is in this spirit that Carnap (1962) writes
that against our credences that are derived from a rational initial credence function
(i.e., measure function), “Hume’s objection does not hold, because [we] can give
rational reasons for it” (ibid., 317): the rationality requirements that are codified
as axioms constraining the measure function. It also seems in this spirit that Li and
Vitányi (2008), presenting Qf as a “universal prior distribution,” make reference
to Hume and claim that the “perfect theory of induction” invented by Solomonoff
“may give a rigorous and satisfactory solution to this old problem in philosophy”
(ibid., 347).
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The problem with this idea is, to begin, that there is still subjectivity involved
in pinning down the exact starting point. The choice of initial credence function
(measure function) is “guided (though not uniquely determined) by the axioms of
inductive logic” (Carnap, 1971, 30, emphasis mine). Likewise, the definition of
Qf still leaves open the choice of f — from the classical Bayesian perspective, the
choice of semicomputable prior w over HΣ0

1
. (See Sterkenburg (2016) for more on

this.) Bracketing this issue here, we still face a more fundamental problem: the
problem of justifying the stipulated constraints on the measure functions. From
the classical Bayesian perspective, this is the problem of justifying the choice of
hypothesis class. And that brings us back to the question of the generality of the
hypothesis class.

As Howson (2000) argues at length, the choice of prior distribution constitutes
our inevitable “Humean inductive assumptions”: “According to Hume’s circularity
thesis, every inductive argument has a concealed or explicit circularity. In the case
of probabilistic arguments . . . this would manifest itself on analysis in some sort
of prior loading in favour of the sorts of ‘resemblance’ between past and future we
thought desirable. Well, of course, we have seen exactly that: the prior loading
is supplied by the prior probabilities” (ibid., 88). (Also see Romeijn, 2004, 357ff.)
It is important for the observation that Bayesian methods cannot escape Hume’s
argument that inductive assumptions must be restrictive: that it is impossible
to have a prior over everything that could be true. That is, from the classical
Bayesian perspective, it must be the case that no hypothesis class H can contain
every possible hypothesis, that no H is fully general.

Could HΣ0
1
, then, escape Hume’s argument — is HΣ0

1
fully general? Naturally, it

is not. As a restriction on what hypotheses could be true, a metaphysical assump-
tion on the world, not only would the restriction to any specific level of effective
computability (∆0

1, Σ0
1, . . . ) look arbitrary: the assumption of effective computabil-

ity itself is a stipulation that wants motivation.

6.

There is, however, an alternative interpretation still. This interpretation is to
take the elements of the class HΣ0

1
, not as hypotheses about the origin of the data,

but as competing inductive methods (cf. Sterkenburg, 2016).
This interpretation is actually more in line with Putnam’s demand that the ideal

inductive policy or the universal learning machine should be able to eventually pick
up any pattern that our actual inductive methods would. It is also more in line with
Solomonoff’s original aim that given “a very large body of data, the model is at least
as good as any other that may be proposed” (1964, 5, emphasis mine). (Noteworthy,
moreover, is that Solomonoff’s basic idea of sequential prediction by a mixture over
the elements of a general class H is being developed in great depth as a vibrant
branch of machine learning; here the stated goal is indeed to predict at least as
well as any member of a pool H of competing “experts” without assumptions on
the origin of the data (see Vovk, 2001a; Cesa-Bianchi and Lugosi, 2006).)

Let us see what we get when we thus reinterpret the Σ0
1 measures as all possi-

ble inductive methods. As a start, Proposition 2 could be reinterpreted as a fully
general merging-of-opinions result (see Huttegger, 2015): every inductive method
anticipates with certainty that Qf ’s confirmation values converge to its own. More-
over, it is easy to derive the following more “absolute” fact. For any inductive
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method ν, there is a constant bound on the surplus logarithmic loss (expressing the
divergence between the given confirmation values and the symbols that actually
obtain) incurred by Qf relative to this method ν, on any symbol sequence (see the
Appendix for details). Thus, if we take the Σ0

1 measures as all possible inductive
methods, then Qf is a universal inductive method in the following powerful sense:
it is an inductive method that compared to any other inductive method will always
come to perform at least as well.

We may brand this the optimality interpretation: rather than reliable (guaran-
teed with certainty to converge on the true hypothesis), Qf is optimal in the sense
that it is guaranteed to converge on the true hypothesis if any method does. The
inductive method Qf is vindicated in the sense of Reichenbach (see Salmon, 1991).

In this interpretation, Qf is a universal learning machine — defying the lesson
that has generally been taken from Putnam’s proof that there can be no such
thing (cf. Dawid, 1985, 341). As we have seen, the crucial move to unlock this
possibility after all, hence the crucial precondition to our optimality interpretation,
is the expansion to the nondiagonalizable class of Σ0

1 elements. The moment has
come to answer the question whether this move is reasonable at all. Specifically,
we need to answer the question that is the analogue in this interpretation to the
first question we started the previous section with: is it reasonable to identify all
possible inductive methods with the Σ0

1 measures?
Most importantly, is the class of Σ0

1 measures not too wide — does a Σ0
1 measure

that fails to be ∆0
1 still constitute a proper method? As a special case, we have

returned to the second question we started the previous section with: does Qf itself
constitute a reasonable (reasonably effective) method?

Now an incomputable measure function is certainly “impractical” (Cover et al.,
1989, 863), or indeed “of no use to anybody” (Putnam, 1963a, 768) in any practical
way — but that already goes for any measure function that is computable but not
in some sense efficiently so. The minimal requirement that Putnam was after
is computability in principle, i.e., given an unlimited amount of space and time.
Indeed, under the Church-Turing thesis, computability is just what it means to be
(in principle) implementable as an explicit method — computability is the minimal
requirement to be a method at all. On this view, a ∆0

1 measure is a measure that
corresponds to a method that (given unlimited resources) for any finite sequence
returns the probability that the measure assigns to it. But, likewise, a Σ0

1 measure
still corresponds to a method that (given unlimited resources) for any finite sequence
returns increasingly accurate approximations of its probability. So, albeit in a
weaker sense, a Σ0

1 measure is still connected to some explicit method. (Cf. Martin-
Löf on his choice of Σ0

1 randomness tests: “on the basis of Church’s thesis it seems
safe to say that this is the most general definition we can imagine as long as we
confine ourselves to tests which can actually be carried out and are not pure set
theoretic abstractions” (1969, 268).)

This seems good — but we passed over a crucial detail. This is the fact that
for the purpose of inductive reasoning, we are actually interested in the conditional
probabilities issued by the measure functions: those are the confirmation values.
For that reason inductive methods should actually be identified with two-place con-
firmation functions rather than the underlying one-place measure functions. But
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this has repercussions for the level of effectiveness. Namely, in particular, the con-
ditional Solomonoff-Levin function Qf (· | ·), given by Qf (τ | σ) = Qf (στ)/Qf (σ),
is no longer Σ0

1.
This is essentially implied by the original diagonalization argument: one can

verify that Qf (· | ·) ∈ Σ0
1 would mean that Qf satisfies (II). For completeness, the

following proof recounts the details of the diagonalization. (A different proof has
been given by Leike and Hutter, 2015, 370-71.)

Proposition 3. Qf (· | ·) /∈ Σ0
1.

Proof. Suppose towards a contradiction that Qf (· | ·) is Σ0
1, so that (II) holds for

Qf . We can now construct a computable infinite sequence xω as follows. Start
calculating Qf (0 | 0n) from below in dovetailing fashion for increasing n ∈ N, until
an n0 such that Qf (0 | 0n0) > 0.5 is found (since Qf satisfies (I) such n0 must exist).
Next, calculate Q(0 | 0n010n) for increasing n until an n1 with Q(0 | 0n010n1) > 0.5
is found. Continuing like this, we obtain a list n0, n1, n2, ... of positions; let xω :=
0n010n110n21 . . . . Sequence xω is computable, but by construction the instance
confirmation of xω will never remain above 0.5, contradicting (I). �

Now we could argue that Qf (· | ·) is still ∆0
2 or limit computable, meaning

that it still corresponds to a method that converges to any given finite sequence’s
probability in the limit (cf. ibid., 365). But the problem runs deeper. The problem
is that we cannot recover the optimality interpretation for conditional measures.

Namely, if we accept that a ∆0
2 confirmation function (i.e., a ∆0

2 conditional mea-
sure) still counts as a possible method, then we should identify the possible inductive
methods with the class of ∆0

2 confirmation functions (rather than the original class
of confirmation functions with underlying Σ0

1 measure functions). That means that
the sought-for optimality would have to be relative to this class. But Qf (· | ·) is
not optimal among the ∆0

2 confirmation functions — no ∆0
2 confirmation function

is. This is because the class of ∆0
2 measure functions, that in this case precisely

induces the class of ∆0
2 confirmation functions, is diagonalizable — just like the

class of ∆0
1 measure functions is. Nor can we take a step back and settle for the

class of Σ0
1 confirmation functions: once again one can show by the argument of

Proposition 3 that there cannot exist universal elements in the class of measure
functions that induce the Σ0

1 confirmation functions. This easily relativizes: our
strategy for optimality cannot work on any level in the arithmetical hierarchy.

7.

Thus we conclude our story on an unhappy note. We have discussed how Put-
nam’s diagonalization argument shows that no method whatsoever — not just
measure functions — can satisfy at the same time two conditions to qualify as a
universal learning machine: the one on the ability to detect every true effectively
computable pattern, the other on the effective computability of the method itself.
On the principle that one should not aim for the impossible, we allowed ourselves
to consider as candidate universal learning machines measure functions that satisfy
the first condition but that fall short of the second; specifically, we considered the
Solomonoff-Levin measure function. The overarching strategy we identified to evade
Putnam’s argument is to locate a sufficiently large class of measure functions that
is immune to diagonalization, hence contains universal elements. If one could rea-
sonably identify this class of measure functions with all possible inductive methods,
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then the universal elements would be vindicated as optimal inductive methods, as
universal learning machines: they constitute methods that are in a strong sense at
least as good as any other method. In particular, we saw that the Solomonoff-Levin
measure functions were constructed as universal elements among the Σ0

1 measures
— and so, our hope ran, they could qualify as such optimal methods. Unfortunately,
we found a fatal flaw in this strategy: inductive methods should be identified with
two-place confirmation (conditional measure) functions rather than the underlying
one-place measure functions. This affects their effectiveness properties, which ulti-
mately means that no level in the arithmetical hierarchy yields an undiagonalizable
class of inductive methods. Putnam’s diagonalization argument is not so easily
disposed of.

Appendix

Proposition 2 is in the literature (Li and Vitányi, 2008, 352-56; Hutter, 2003, 2062;
Poland and Hutter, 2005, 3781) usually presented as a consequence of (variations of) the
following stronger result, first shown by Solomonoff (1978, 426-27). Let us introduce as
a measure of the divergence between two distributions P1 and P2 over {0, 1} the squared
Hellinger distance

(1) H(P1, P2) :=
∑

b∈{0,1}

(√
P1(b)−

√
P2(b)

)2

.

Then, for every µ ∈ ∆0
1, the expected infinite sum of divergences between Qf and µ

(2) EXω∼µ

[
∞∑
t=0

H
(
µ(· | Xt), Qf (· | Xt)

)]
is bounded by a constant.

To see how (I’) follows from this constant bound, suppose that Qf does not satisfy
(I’): there is a µ ∈ ∆0

1 such that with probability ε > 0 there is a δ > 0 such that∣∣µ(xt+1 | xt)−Qf (xt+1 | xt)
∣∣ > δ infinitely often. But that means that with positive

probability the infinite sum of squared Hellinger distances is infinite, and the expectation
(1) cannot be bounded by a constant.

The proof of the constant bound on (1) starts with the observation that the distance
H(P1, P2) is bounded by the Kullback-Leibler divergence

(3) D(P1 ‖ P2) := EX∼P1

[
ln
P1(X)

P2(X)

]
.

The term − lnP (xt) expresses the logarithmic loss of P on sequence xt, a standard

measure of prediction error; the difference − lnP2(xt)− (− lnP1(xt)) = ln P1(xt)
P2(xt)

expresses

the surplus prediction error or regret of P2 relative to P1 on sequence xt. Thus the
Kullback-Leibler divergence (3) expresses the expected regret of P2 relative to P1.

Using H(P1, P2) ≤ D(P1 ‖ P2) one can work out that (1) is bounded by

(4) EXω∼µ

[
∞∑
t=0

ln
µ(Xt+1 | Xt)

Qf (Xt+1 | Xt)

]
.

Now by the universality of Qf in the class of Σ0
1 measures we know that Qf dominates

µ: for every finite x there is a constant c such that Qf (x) ≥ µ(x)/c. Indeed we can identify
c with 1/w(µ), where w is the prior over hypothesis class HΣ0

1
in the classical Bayesian

representation ξ
Σ0

1
w of Qf . This fact allows us to derive that for every sequence xs of any



THE IMPOSSIBILITY OF A UNIVERSAL LEARNING MACHINE (PREPRINT) 15

length s

s−1∑
t=0

ln
µ(xt+1 | xt)
Qf (xt+1 | xt)

= ln

s−1∏
t=0

µ(xt+1 | xt)
Qf (xt+1 | xt)

= ln
µ(xs)

Qf (xs)

≤ − lnw(µ).(5)

This concludes the proof that (1) is bounded by a constant: since the bound (5) holds for
any individual sequence of any length, it also holds for (4) and thus for (1).

Proposition 2 was in the main text only stated for measures µ in ∆0
1: measures over

{0, 1}ω. To retrieve the merging-of-opinions variant of this result mentioned in the main
text, we need to make it go through for Σ0

1 measures, measures over {0, 1}ω ∪ {0, 1}∗
— indeed we need to make precise what “almost surely” should mean for such “semi-
measures.” We can do this as follows. Let a ν ∈ Σ0

1 be represented by a measure ν′ over
{0, 1,∅}ω, with ∅ a “stopping symbol”: we have ν′(σ0) + ν′(σ1) + ν′(σ∅) = ν′(σ) and
we stipulate ν′(σ) = ν(σ) and ν′(σ∅∅) = ν′(σ∅) for all σ ∈ {0, 1}∗. Then for all ν ∈ Σ0

1

we have that Q′f dominates ν′, hence ν′ � Q′f and the Blackwell-Dubins theorem applies
as before.

The absolute optimality property mentioned in the main text is just the individual
sequence bound (5) above. To reformulate, for any ν ∈ Σ0

1, the sum of surplus prediction
errors (regrets) of Qf relative to ν will always (for any sequence xs of any length s) be
bounded by a constant:

s−1∑
t=0

(
− lnQf (xt+1 | xt)−

(
− ln ν(xt+1 | xt)

))
≤ − lnw(ν).

References

P. Achinstein. Confirmation theory, order, and periodicity. Philosophy of Science, 30:
17–35, 1963.

D. Blackwell and L. Dubins. Merging of opinion with increasing information. The Annals
of Mathematical Statistics, 33:882–886, 1962.

R. Carnap. Logical Foundations of Probability. The University of Chicago Press, Chicago,
Illinois, 1950.

R. Carnap. The aim of inductive logic. In E. Nagel, P. Suppes, and A. Tarski, editors,
Logic, Methodology and Philosophy of Science. Proceedings of the 1960 International
Congress, pages 303–318. Stanford University Press, Stanford, California, 1962.

R. Carnap. Replies and basic expositions: Hilary Putnam on degree of confirmation and
inductive logic. In P. A. Schilpp, editor, The Philosophy of Rudolf Carnap, volume XI
of The Library of Living Philosophers, pages 983–989. Open Court, La Salle, Illinois,
1963a.

R. Carnap. Variety, analogy, and periodicity in inductive logic. Philosophy of Science, 30
(3):222–227, 1963b.

R. Carnap. Inductive logic and rational decisions. In R. Carnap and R. C. Jeffrey, editors,
Studies in Inductive Logic and Probability, volume 1, pages 5–31. University of California
Press, 1971.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning and Games. Cambridge University
Press, Cambridge, 2006.
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