
DESCRIPTION AND THE PROBLEM OF PRIORS

Abstract. Belief-revision models of knowledge describe how to update one’s

degrees of belief associated with hypotheses as one considers new evidence, but

they typically do not say how probabilities become associated with meaningful

hypotheses in the first place. Here we consider a variety of Skyrms-Lewis sig-

naling game [Lewis (1969)] [Skyrms (2010)] where simple descriptive language

and predictive practice and associated basic expectations coevolve. Rather

than assigning prior probabilities to hypotheses in a fixed language then con-

ditioning on new evidence, the agents begin with no meaningful language or

expectations then evolve to have expectations conditional on their descriptions

as they evolve to have meaningful descriptions for the purpose of successful

prediction. The model, then, provides a simple but concrete example of how

the process of evolving a descriptive language suitable for inquiry might also

provide agents with conditional expectations that reflect the type and degree

of predictive success in fact afforded by their evolved predictive practice. This

illustrates one way in which the traditional problem priors may simply fail to

apply to one’s model of evolving inquiry.

Description, Prediction, and Expectation

Belief-revision models of knowledge describe how to update one’s degrees of

belief as one considers new evidence. On a Bayesian model, for example, one fixes

a descriptive language, sets coherent prior probabilities over a set of hypotheses

expressed in the language, then updates one’s degrees of belief as one conditions

on new evidence. While such an account of reflective inquiry has many virtues,

it has nothing to say concerning how to assign prior probabilities to meaningful

hypotheses. This is the problem of priors.

On reflection, one might, however, find the problem of priors itself puzzling.

While it is indeed unclear what procedure one should adopt in assigning prior

expectations to hypotheses expressed in a fixed descriptive language, it is similarly

unclear how one might ever come to use such a language without already having a

rich set of expectations. The symmetry of these reflections suggests a strategy.

We will consider how it might be possible for basic expectations to coevolve

with a simple descriptive language. More specifically, we will consider how simple
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descriptive and predictive practice might coevolve with basic expectations in the

context of a sender-predictor game, a variety of Skyrms-Lewis signaling game.1

Rather than assigning prior probabilities to hypotheses then conditioning on new

evidence, the modeled agents begin with no meaningful language or expectations,

then come to form basic expectations conditional on their simple descriptions as

they coevolve descriptions that may be used as the basis for successful prediction.

These basic conditional expectations reflect the degree of success in fact exhibited

in their descriptive and predictive practice and, as such, may evolve to inform other

decisions.

Reflective Bayesian inquiry is only possible for agents who have the capacity

to represent alternative possible states of the world and associate expectations

with these representations. The story here concerns how agents might evolve such

capacities in the first place. With regard to the problem of priors, it provides a

simple but concrete example of how the evolution of a descriptive language suitable

for coordinated prediction might also also provide a core set of well-tuned posterior

expectations that might then be available to constrain subjective degrees of belief

should the agent turn to reflective inquiry.

We will consider the story in three parts.

Part I: The Coevolution of Description and Prediction

A sender-predictor game is a variety of Skyrms-Lewis signaling game.2 In a

sender-predictor game, however, the agents coevolve both descriptive and predictive

dispositions. We will refer to these are the agents’ first-order dispositions. Their

second-order dispositions determine how they update their first-order dispositions

as they learn from experience.3

In a two-state/two-signal/two-act sender-predictor game, the sender observes a

prior state of nature, then sends a signal. The probability of particular signal being

sent is determined by the state of nature and the sender’s first-order dispositions.

1See [Lewis (1969)] for Lewis’ characterization of signaling games and [Skyrms (2006)],
[Skyrms (2010)], [Barrett (2009)], and [Barrett (2007)] for examples of such games in an evo-

lutionary context.
2David Lewis [Lewis (1969)] introduced signaling games in the context of classical game theory

as a way to study the possible nature of linguistic convention. Brian Skyrms [Skyrms (2006)]
[Skyrms (2010)] later considered Lewis’ signaling games in the context of evolutionary game theory.

Such evolutionary games have a number of virtues over Lewis’ conventional games as one need
not assume common knowledge nor any special rational faculties. Rather, the agents have only
simple conditional dispositions. The sender-predictor games described in the present paper were

coded and run as C++ simulations.
3The distinction between first- and second-order dispositions is less clear for agents who might

learn how to learn. The agents here are not so subtle. Also note that the evolutionary story

here involves the evolution of the dispositions of particular agents rather than the evolution of
types of agent in a population. It is often possible to translate results between such models. See

[Skyrms (2010)] for a discussion of this point.
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On observing the signal, the receiver performs a predictive action that is either

successful or unsuccessful depending on the posterior state of nature at a later

time. The probability of a particular predictive action being performed is deter-

mined by the signal and the predictor’s first-order dispositions. If the predictive

action is successful, which will depend on both the regularities exhibited by nature

and what counts as success for the agents as determined by their second-order dis-

positions, then the sender and predictor reinforce the first-order dispositions that

led to the action they just took conditional on the state of nature and the signal

type, respectively. If the predictive action is unsuccessful, they might weaken the

first-order dispositions that led to the actions they just took. Precisely how they

reinforce or weaken their first-order dispositions is determined by their second-order

dispositions.4

Consider a sender who checks the water temperature off Newport Pier each

morning. If the water is cooler than normal, she draws a ball from one urn; and

if it is warmer than normal, she draws a ball from another urn. Suppose that the

cool urn and the warm urn each initially contain one blue and one green ball. The

sender waves either a blue or green flag depending on the type of ball drawn. Her

predicting friend, standing on the beach on Catalina Island, sees the color of the

flag through his spyglass and draws a ball from an urn that corresponds to the flag

color. Suppose that each of the predictor’s urns begins with one ball each of two

predictive action types corresponding to going night fishing or to staying home to

repair fishing nets. He then performs the action corresponding to the type of ball he

drew. Night fishing is successful if there are clear skies that evening; staying home

to repair nets is successful if there is fog.5 If the predictive action is successful, then

each agent returns his ball to the urn from which it was drawn and adds a new

ball of the same type; otherwise, each agent simply returns his ball to the urn from

which it was drawn.6

4See [Barrett (2012)] for more details regarding the set-up and interpretation of such a games.
5 In terms of the endogenous norms of the model, all it means for a predictive action to be
successful is that, given the regularities between the prior and posterior states of nature and the
agent’s second-order dispositions to update their first-order dispositions, it produces an event

that in fact leads to a reinforcement of the agents’ first-order dispositions that led to the act.
Otherwise, the predictive action is unsuccessful.
6This sort of simple reinforcement learning was introduced by Herrnstein in his discussion

of the law of effect [Herrnstein (1970)]. More sophisticated learning dynamics also allow
for punishment and forgetting. They typically do much better than simple Herrnstein re-

inforcement in games like those discussed in this paper [Barrett and Zollman (2009)], and,
saliently, they often much better model the actual behavior of learners [Roth and Erev (1995)]

[Bereby-Meyer, Yoella and Erev (1998)]. The methodological thought is that Herrnstein reinforce-
ment learning requires only relatively weak dispositional resources and if it allows for successful
coordinated action in a particular context, then one can expect a broad class of more sophisticated

reinforcement dynamics to allow for similar success.
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Figure 1. The water-fog sender-predictor game

While the sender’s signals are initially meaningless and the receiver’s predictive

actions are correspondingly random, as the sender’s dispositions to signal condi-

tional on the state of nature and the receiver’s dispositions to act conditional on the

signal evolve, the sender’s signals become meaningful precisely insofar as they may

serve as the basis for successful coordinated predictive action. If there is in fact a

natural correlation between morning water temperature and evening weather, the

agents will be able to exploit this natural regularity for the purpose of success-

ful action if they are able to coevolve appropriately interrelated descriptive and

predictive dispositions.

Suppose that nature is such that the morning water temperature simply deter-

mines whether or not there will be fog in the evening. More specifically, suppose

that cool water guarantees clear weather and warm water guarantees fog. In this

case, if lower and higher than normal water temperatures are unbiased, indepen-

dent, and randomly distributed in nature, then, in this particular game, the agents

are guaranteed to coevolve successful descriptive and predictive dispositions in the

limit. When they do, one type of signal will almost always be sent when the water

is cool and will almost always lead to night fishing, and the other will almost always

be sent when the water is warm and will almost always lead to staying home to

repair nets.7

The game and the agents’ evolved behavior is more subtle when the relation-

ship between morning water temperature and evening fog is stochastic rather than

deterministic. This is also a natural context to describe how well-tuned posterior

expectations might coevolve with the agents’ successful descriptive and predictive

practice.

7The deterministic case is formally equivalent to a two-state/two-signal/two action signaling game.

See [Argiento, Pemantle, Skyrms, and Volkov (2009)] for a proof of convergence to a signaling

system in this case. If there are more than two states, signals, and actions or if nature is biased,
then the agents dispositions sometimes fail to converge to a signaling system. See [Barrett (2006)]

and [Huttegger (2007)] for discussions of such suboptimal pooling equilibria.
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Part II: Tracking Predictive Success

Consider the following implementation of the stochastic water-fog game where

the evening weather is only randomly determined by the morning water tempera-

ture. Here the sender has one urn for each possible prior water temperature state of

nature labeled 0 and 1. Each of her urns begins with one ball of each type of signal

she might send labeled blue and green. The receiver has one urn corresponding to

each possible signal type (color). Each of his urns begins with one ball of each type

of predictive action he might take labeled 0′ and 1′, each of which is optimal in the

corresponding posterior weather state.

Suppose that the prior states of nature are equally likely and randomly dis-

tributed. Suppose further that nature is such that when prior water temperature

state 0 obtains, the most likely posterior evening weather state is 0′, occurring

with probability T00′ ; and when prior water temperature state 1 obtains, the most

likely posterior evening weather state is 1′, occurring with probability T11′ . The

probability of a transition in nature from prior state 0 to posterior state 1′ then is

T01′ = 1− T00′ , and the probability of a transition in nature from prior state 1 to

posterior state 0′ is T10′ = 1−T11′ . When the predictor gets a signal of type S and

performs an action of type A′, the action counts as a success for signal type S if

and only if the posterior state of nature is of type A.

Figure 2. Crossover probabilities and optimal actions

In this version of the game, we will suppose as before that the agents learn by

simple reinforcement. We will suppose further, however, that the predictor has ex-

pectation weights associated with each possible signal type and that those weights

evolve by bounded reinforcement with forgetting. More specifically, in addition to

his action urns, the predictor has an expectation urn for blue signals and an expec-

tation urn for green signals. Each expectation urn begins the game with a random

assortment of a thousand white and black balls. If an act is successful, in addition

to reinforcing the act he took, the predictor adds a white ball to the expectation urn

corresponding to the signal type he just used; if the act was unsuccessful, he adds a

black ball to that expectation urn. Then the predictor draws a ball at random out
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of the expectation urn he just put a ball in, and discards it. This gradual random

forgetting maintains a constant number of balls in each expectation urn.8

For now, we will simply suppose that the weight of white balls in each expec-

tation urn represents the degree to which the predictor expects that his predictive

action will be successful conditional on his receiving the corresponding signal. By

stipulation, then, if the sender’s signals evolve successful operational meanings for

the purpose of prediction, then the expectation weights will evolve to indicate the

predictor’s conditional expectations on meaningful descriptions of prior states.

Figure 3. Water-fog game with expectations

On simulation, the sender and receiver begin by randomly signaling and pre-

dicting, and any initial success is the result of blind luck. Over time, however, the

agents very often learn to exploit the statistical regularities exhibited by nature.

And when they do, the predictor’s conditional expectations on the signal types typ-

ically coevolves to agree with the degree of predictive success the agents’ evolved

descriptive and predictive practice in fact affords.

In the symmetric case, where each prior state of nature is equally likely and the

failure of the most likely posterior state occurring is independent of the prior state

(i.e. T01′ = T10′ = T ), the agents nearly always evolve on simulation to signal and

to predict as well as theoretically possible.9 More specifically, the sender evolves

to associate a different signal type with each of the prior states and nearly always

sends that type of signal when the corresponding prior state obtains; and, when

the predictor receives the signal, he nearly always performs the predictive action

8Note that the learning rule for signaling behavior (unbounded without forgetting) is different

from the learning rule for expectations (bounded with forgetting). The thought here is to use
the simplest learning rule that allows the agents at least a modest level of success. Since the

evolution of successful signaling behavior is possible without bounds or forgetting, the simpler

learning rule is used. The agents do much better yet in evolving successful signaling behavior
on bounded learning with forgetting [Barrett and Zollman (2009)]. Unbounded learning without
forgetting does not typically do well at closely tracking signaling success rates as they evolve.
9Suppose T01′ = T10′ = 0.25. The theoretically best possible success rate is 0.75. On simulation,

the agents evolve to do better than a success rate of 0.70 in 0.881 of the runs with 1×106 plays/run,
0.924 of the runs on 1× 107 plays/run, and 0.959 of the runs on 1× 108 plays/run with 1000 runs
in each case. And the predictor’s expectation conditional on each signal type evolves to agree well

with their actual relative frequency of successes on each signal type.
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that has been most likely to occur when the prior state corresponding to the signal

has obtained.10

If clear weather has typically followed cool water and fog has typically followed

warm water, then the sender evolves to nearly always send one type of signal when-

ever she observes cool water and the other whenever she observes warm water;

and the predictor evolves to perform the predictive action that is most likely to

be successful on a clear evening when he receives the signal associated with cool

water and to perform the predictive action that is most likely to be successful on a

foggy evening when he receives the signal associated with warm water. The agents

then evolve a perfectly sharp descriptive language for prior states, their success rate

in predicting posterior states approaches the theoretically optimal rate of 1 − T ,

and the predictor comes to expect that the probability of an action being success-

ful, conditional on each signal, is 1 − T , which reflects the agents’ actual success

rate.11 In this case, then, the agents evolve to make the best possible predictions

and their posterior conditional expectations in fact tell them just how reliable their

predictions are. Finally, significant to the problem of priors, the evolved condi-

tional expectations here are independent of the initial contents of the predictor’s

expectation urns. By the time the agents have evolved sharp meanings and clear

predictive dispositions, the initial configuration of the expectation urns has been

washed out under bounded reinforcement learning with random forgetting.12

In the asymmetric case, where the failure of the most likely posterior state occur-

ring depends on the prior state (i.e. T01′ 6= T10′), the simple-minded reinforcement

learning implemented by the simulated agents here may lead them to a suboptimal

equilibrium where they do not evolve to signal and predict as well as theoretically

possible. But if the statistical asymmetry is modest, even agents who learn in this

primitive way typically do evolve to signal and to predict as well as theoretically

possible. And when they do, they also coevolve conditional expectations that match

the asymmetric success rates for each of their evolved terms.13 In particular, the

10The conjecture here is that this is true for the symmetric case as an extension of the results of
[Argiento, Pemantle, Skyrms, and Volkov (2009)].
11More precisely, the conditional expectations quickly evolve to approximate the agents’ actual
success rate, then fluctuate under the random mechanism for forgetting but spend most of the

time close to the actual evolving success rate. More precisely, once they begin to track the actual
success rate closely, their conditional expectations on the simulations described here nearly always
within about 5% of their actual success rate. One would expect yet closer tracking with more
balls in the expectation urns.
12This is because bounded reinforcement learning with forgetting is much faster here at tracking

the evolving success rate than simple reinforcement learning is at evolving successful descriptive
and predictive dispositions. See [Barrett and Zollman (2009)] for a description of the relative
virtues of learning dynamics that incorporate a relatively strong variety of forgetting.
13Even when the agents do not evolve the make predictions in a theoretically optimal way, they
still do quite well since they typically evolve a language that successfully communicates the most
common state(s) of nature reliably [Huttegger (2007)]. Significantly for the issue of well-tuned
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receiver evolves to nearly always do predictive action 0′ on the signal that is sent

on prior state 0 and predictive action 1′ on the signal that is sent on prior state

1; and he also evolves to expect that his action will be successful with probability

T00′ = 1− T01′ in the first case and T11′ = 1− T10′ in the second.14

In both the symmetric and asymmetric cases, when successful, the agents co-

evolve intertwined linguistic and predictive dispositions. The signals are initially

meaningless and the predictions made on the basis of these signals are consequently

wildly unreliable. Successful prediction coevolves with the meanings of the signals,

and the predictor’s conditional expectation weights for the success of each type

of predictive action conditional on each signal type reflect the type and degree

of predictive success. Neither the evolved meaning of the agents’ descriptive lan-

guage nor their predictive dispositions nor the associated expectation weights are

somehow prior; rather, the agents’ descriptive and predictive practice and their ex-

pectations are interdependent and forged by precisely the same empirical evidence

in the context of the same evolutionary process.

Since the predictor’s expectation weights typically do in fact track the type and

degree of predictive success afforded by the agents evolved language and predictive

practice, whatever that success may be, if their past relative frequencies of suc-

cessful coordinated prediction are representative of their future success, then their

expectation weights can be expected to reliably indicate what their expectations

should be.

Part III: How Expectation Weights May Evolve to Represent

Expectations

While we have simply supposed that the predictor’s expectation weights repre-

sent the degree to which he expects that his predictive action will be successful

conditional on his receiving the corresponding signal, one might want to say how

expectation weights might come to play the role of expectations even as they evolve

expectations, their coevolved conditional expectations track their actual degree of predictive suc-
cess on each signal type for both optimal and suboptimal evolutions. So while the simulated

agents may not know that their evolved descriptive and predictive practices are suboptimal, their
expectations will reflect the reliability of the predictions based on those practices whatever this

may be.
14Suppose T01′ = 0.25 and T10′ = 0. The theoretically best possible success rate is 0.875. On
simulation, the agents evolve to do better than a success rate of 0.825 in 0.751 of the runs with

1 × 106 plays/run, 0.777 of the runs on 1 × 107 plays/run, and 0.773 of the runs on 1 × 108

plays/run with 1000 runs in each case. A little less than a quarter of the time, then, the agents
fail to evolve those distinctions that would allow them to make optimal predictions. But when

they do evolve to capture the relevant distinctions, they also learn that the term associated with
prior state 0 leads to a successful predictive action about 0.75 of the time and the term associated

with prior state 1 nearly always leads to a successful predictive action. the modest success of the

agents in asymmetric cases is the result of their simple-minded learning dynamics. If they use
bounded reinforcement learning with forgetting to evolve their signaling behavior, they typically

involve nearly optimal dispositions on simulation.
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to better track the coevolving success of the agents’ evolving descriptive and pre-

dictive practice.

A natural thought is to appeal to the fact that the predictor will do well when

he uses his expectation weights as expectations since they will in fact evolve to

represent his actual degree of predictive success. But to say more precisely why

predictor might evolve to use expectation weights as expectations as opposed to

doing something else, one must provide a specific potential use for his evolving

expectation weights and at least one alternative to his not using the expectations

weights in the standard way. A simple concrete example is perhaps instructive.

Suppose that the predictor is not only concerned with whether he should go

fishing or mend nets but also in making side wagers concerning the success of his

predictive actions.15 Suppose further that his second-order dispositions are such

that he begins by typically flipping a fair coin to determine whether to accept a

particular wager but that he also starts with a small positive probability of using

his evolving expectation weights as if they were expectations to determine whether

to accept the wager. Suppose that the probability that he will flip a coin or use

expectation weights to determine whether to accept a wager in future plays increases

or decreases slightly, proportional to his winnings, when each method is used to

regiment his behavior. And, finally, suppose that the probability of regimenting his

wagers in each way always remains positive.

Such dispositions might be represented in a learning game as follows. The predic-

tor has a decision urn that determines whether he flips a coin or uses expectation

weights to regiment his betting behavior on a particular play. The decision urn

starts with 999,999 balls that indicate that the predictor flip a coin and one ball

that indicates that he use expectation weights as expectations. When presented

with a wager, the predictor draws a ball from the decision urn. If the ball indicates

that he flip a coin, he does so and accepts the wager on heads and rejects in on tails,

whatever it is. If the ball indicates that he use expectation weights as expectations,

he accepts a wager of a of his dollars against b of his friend’s if and only if the

ratio of the number of white balls to the total number of balls in the expectation

urn corresponding to the signal he just received is greater than a/(a+ b). Suppose

that the stakes of the wager are always $10 and that each bet is whole valued and

randomly determined with equal likelihood.

15One of the anonymous reviewers suggested a slightly more complicated, but much better, story.
On this telling, the side wagers might be represented in the predictor’s wish to anticipate future
catches in order to reserve adequate, but not unnecessary, transportation of his catch to market.

What matters to the model is just that one allow for the possibility that the predictor’s evolved
expectations in fact be relevant to his actions and that the way in which they are relevant might
itself evolve subject to the success and failure of those actions.
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In order to capture the predictor’s second-order dispositions as characterized

above, we will suppose that the contents of the decision urn evolve by proportional

reinforcement with forgetting. In particular, if the predictor flips a coin and wins

the wager, he adds b balls of the type that indicate that he flip a coin to the

decision urn, then he discards b balls from the urn at random. And if he flips a

coin and loses, he adds a balls of the type that indicate that he use expectation

weights as expectations to the decision urn, then discards a balls from the urn at

random. Similarly, if the predictor uses expectation weights as expectations and

wins, he adds b balls of the type that indicate that he use expectation weights as

expectations to the decision urn, then he discards b balls from the urn at random.

And if he uses expectation weights as expectations and loses, he adds a balls of

the type that indicate that he flip a coin to the decision urn, then discards a balls

from the urn at random. Finally, suppose that the agent never discards from the

decision urn the last ball of any type.

If there are in fact regular statistical correlations between prior and posterior

states, then the predictor typically evolves to make the most accurate statistical

predictions possible and the expectation weights coevolve to track how accurate his

predictions are. Since expectation weights evolve to indicate the agents’ actual type

and degree of success, one should expect the predictor to do better than even in the

long run when he uses expectation weights as expectations to determine whether

to accept a wager. Since the wagers offered the predictor are unbiased and since

flipping a fair coin leads to an unbiased acceptance of wagers, one should expect

the predictor to be even in the long run when he flips a coin to determine whether

to accept a wager. Hence the proportion of balls in the decision urn that indicate

that the predictor use expectation weights as expectations tends to increase over

time. The result is that the predictor typically ends up using expectation weights

as expectations.16

The upshot is that on this simple model the agents end up with relatively sta-

ble, well-tuned expectation weights that typically get used as expectations without

there ever being anything like an assignment of prior expectations over possible

descriptions. Note, in particular, that the expectation weights are not initially

16Note, however, that since the predictor might use expectation weights as expectations to accept

a wager or flip a coin to accept a wager and win, and since neither type of ball is ever allowed to
go to extinction on the model, the predictor’s behavior is never fully stable. Also, note that the
argument here depends upon the agents evolving predictive and descriptive practices that are at
least to some degree successful. The more successful they are, the faster the predictor will evolve
to use expectation weights as expectations. If the predictor never does better than even in his

predictions, he will never evolve to use his expectation weights systematically as expectations in
the side wagers. It is in this sense that the evolution of expectations here is contingent on the
co-evolution of successful descriptive and predictive practice.
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associated with meaningful descriptions insofar as there are no meaningful descrip-

tions to begin. Indeed, the expectation weights do not initially represent expecta-

tions at all, but rather, only gradually come to play such a role. And finally, since

the expectation weights closely track the actual type and degree of success of the

agents’ evolving descriptive and predictive practice, any initial bias in the expecta-

tion weights washes out by the time the agents evolve a successful descriptive and

predictive practice.

Discussion

The proper morals to draw from the present model are modest. It shows that

a simple dispositional model sufficiently sophisticated to coevolve successful de-

scriptive and predictive practice might also coevolve conditional expectations that

reflect the type and degree of the evolved success. Such expectations might then

serve as the basis for more sophisticated predictive action.

The simple model described here does not seek to represent how actual inquir-

ers in fact evolved the preconditions for reflective inquiry as practiced. Rather,

it illustrates how basic descriptive language, predictive practice, and conditional

expectations might coevolve in such a way that the problem of priors, as a prob-

lem regarding how one ought to assign initial expectations to a set of meaningful

descriptive hypotheses, simply fails to apply. Here one only has meaningful de-

scriptive hypotheses if one also has expectations over such hypotheses that track

the type and degree of predictive success they have afforded.

The present model then does not address the problem of priors by providing a rule

for setting rational priors nor does it provide any special justification for one setting

of priors rather than another. The evolved inquirers here are just never faced with

the task of assigning new expectations to a set of meaningful descriptive hypotheses.

Rather, the very existence of a set of meaningful hypotheses presupposes a rich

evolutionary history of success and failure in predictive action.

The expectations the agents use to inform their actions are the expectations they

have in fact evolved. This is just part of what it means here for an expectation

weight to represent an expectation. Since the evolved expectations are forged in the

context of the agents actual descriptive and predictive practice, one might expect

such use to be as successful as the practice. But there is no special justification

for the reliability of their evolved expectations. The modeled expectations have

tracked and will continue to track the type and degree of success in fact exhibited

in the agents coevolving descriptive and predictive practice, whatever this may be.

But their is no special assurance that present conditional expectations will track

the future success of one’s evolving practice.
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The present model shows how it is possible that the process of evolving a de-

scriptive language suitable for predictive inquiry might also provide agents with

conditional expectations that are well-tuned to the type and degree of predictive

success their practice has so far afforded. Such conditional expectations might be

taken to represent the evolved commitments of the inquirers. As with the evolved

application to side wagers, such commitments might be extended to inform increas-

ing rich types of future action including reflective inquiry itself.

Conclusion

On the present model neither the inquirers’ descriptive language and predictive

practice nor their associated expectations are somehow prior. Since having mean-

ingful descriptions for the purpose of prediction means also having conditional ex-

pectations, the model provides an account of how inquiry might evolve such that

the problem of priors simply fails to apply.

The conditional expectations that evolve on the model are associated with those

descriptions that were in fact used in making successful predictions. Consequently,

they can be expected to reflect whatever type and degree of predictive success the

agents’ evolved descriptive and predictive practice has so far afforded.17

17I would like to thank Brian Skyrms, Jim Weatherall, and Seamus Bradley in particular for
helpful discussions on this topic. I would also like to thank the two anonymous reviewers for their

very helpful comments and suggestions.
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