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Abstract
This is a commentary on the use of squares in elementary statistics.

One sees an ubiquitous use of squares in statistics, and the analogy of
“distance in a statistical sense” is teased out. We conjecture that elemen-
tary statistical theory has its roots in classical Calculus, and preserves the
notion of two senses described in this paper. We claim that the senses
of the differentials dx/dy hold between classical and modern infinitesimal
Calculus and show how this sense becomes cashed out in both models.
We suggest that the commonalities of both accounts can be used to find
a informational realist account of Calculus. This account involves in-
finitesimal Calculus as acting as an epistemic mediator that expands our
conceptual space and enables us to create new measures.
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1 Introduction
Statistics is something in-between the historical and the contemporary, however
we do not possess the same intuition as when the formuli were obtained. Even
though we use these same tools and mechanisms within our own intuitional
framework; we do not assimilate all of the historical intuitions. There is no
difference between the form given to these concepts, however we do not have
the same intuitions about those concepts.

The use of squares is ubiquitous in statistics, here we focus on the use of
squares in elementary statistical theory. We look at the formuli in modern
statistics, and attempt to explain the intuition and representations of it. In
particular, we focus on the differentials dx/dy. We conjecture that the classical
foundations of these statistical intuitions are rooted in the Leibnizian sense of
the Calculus, which proceeded the modern theory. In this model, space has
a specific euclidean magnitude. There are two senses with which we think
about distance, and these differ in how they are represented. These two senses
have their form preserved in modern calculus. They do not have their referent
preserved though. In modern Calculus, they no longer correspond to euclidean
magnitudes of space. Instead, Robinson’s formalization captures the role of
well-formed meaning and conventionality in the process of representation. We
will build upon those features to make some suggestions of an informational
realist account of infinitesimal Calculus, in the context of statistics.

We will provide a description of classic infinitesimal Calculus and provide
a starting point for an informational realist account. Our overall account will
focus on the the sense of the infinitesimal as expressed in dx/dy. We will show
how the dx/dy express two different senses. The two senses are distinct and
are understood differently in the classical and modern Calculus. In the classical
or Leibnizean sense, the infinitesimal is understood as capturing a geometrical
space that is represented as both a discrete and as a continuous space. Others
such as the late classical model of A.L. Cauchy, also made use of the sense of
the geometrical.

There are also two senses for which we treat the infinitesimal, dx. What that
difference consists of also varies between the classical and modern accounts. The
ontological unity in the modern account is less dense, with a specific magnitude,
(dx), or ∆x, which is relative to the level of precision, ε. The Leibnizian account
seems to indicate that there is an infinitesimal, a-priori, that there exists a
number dx that is smaller than any positive number. The ontological unity
of the object (dx), in the modern case, is less dense because the unity does
not confer the infinitesimal as being an object itself, but instead as a way to
represent objects, in relation to eachother. ∆x fixes a finite quantity, and dx is
an infinitesimal quantity. The interchange between the two senses of dx and ∆x,
and how that is resolved, is the difference between premodern and contemporary
Calculus.

We propose to resolve this difference by claiming that Calculus is an epis-
temic mediator by conferring well-formed structure to measurements. We use
the concept of epistemic mediator like Lorenzo Magnani [2002]. He claims that
epistemic mediation is the creation of prostheses for human minds. They enable
us to create implicit knowledge through a mediated tool.

This gives it ontological unity, as information. In our informational real-
ist account, Calculus parses noise by creating the condition for semantically

2



meaningful representations of a continuum. Carving discrete elements within a
continuum. The mathematical sense of capturing the discrete and the contin-
uous holds across both modern and classical Calculus. The difference is what
the infinitesimal Calculus maps onto. The classical infinitesimal’s referents are
related to the representation of space as being both discrete and as part of a
continuum. Modern Calculus does not do this, Robinson’s formalization cap-
tures the fixing, not of a specific magnitude, but as a re-representation of form.
What this means is that Calculus enables the re-representing of a continuum
into a syntactically meaningful form, of discrete points.

Contrastingly, we claim that a general feature that holds between the clas-
sical and modern accounts of Calculus is that it is a measurement of difference,
within a continuum. We suggest that this may be a direction to develop a
concept of Caluclus that is rooted in informational realism. This difference is
the amount of discrete objects contained within a continuum. You measure the
space, and in the process of doing so, you discretize it.

2 Standard Deviation
Let X = {xi}ni=1 be a simple collection of data-points. Let x = 1

n

∑
xi denote

the simple average (mean) of these n points. Neglecting Bessel’s Correction,
the Standard Deviation in statistics of these data is s, and it is measured as the
square-root of the variance:

s2 =
∑

(xi − x)2

n

If the standard-deviation can be regarded as an analogy for “average distance
from the mean,” i.e. “average deviation from the mean” in a “statistical sense.”
The question immediately arises as to why the direct distance measure is not
used, i.e. smod := 1

n

∑
|xi−x|, simply, “the average distance of the points from

the mean.” The reason is tied to the existence of two different senses underlying
the relation of the points to the center.

One rightfully imagines the data plotted along a line, as in:2

a) Data with “some spread.” and b) Data with “more spread” than a).
Why does a statistician not simply measure the distance from a data point

to the center of that data: |x− x|? Then, it is intuitive that one would simply
average this distance, and this would be the standard measure of the spread of
the data.

The measure captures an Euclidean sense. This can be seen in the classical
infinitesimal calculus. For two points (x1, x2, . . . , xn) and (y1, y2, . . . , yn) in
Euclidean Space Rn, the distance measure is denoted d, and is measured as the
square-root of the sum of squared component-differences:

d2 =
∑

(xi − yi)2
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Indeed, this is an extension of the Pythagorean Theorem into an arbitrary num-
ber of Euclidean dimensions. In particular, (Rn, d) takes place within Euclidean Space.

The component of comparison is “the center,” for each point in the data,
as though the square-distance from the point (x1, x2, . . . , xn) to (x, x, . . . , x)
is computed, and averaged. Then, you square root the variance to get the
“standard deviation.” This is contrasted from our sense of distance, as the
points being along the same axis. Here, we have the sample space S and the
measure of spread of a simple-sample, s. The process of measurement takes
place within the sample-space, (S, s).

When given form, A Standard Deviation is like a spider, with each point on
its own axis:

This is the statistical sense: The variance is the average of these distances,
of which are similar to that of the Pythagorean theorem. In the extended
Pythagorean theorem, one insists on measuring along the legs of the “triangle”,
rather than simply measuring across the “hypotenuse.”

If it is indeed the same object, you should be able to perform that other mea-
surement, smod. Since we do not practice it, there seems to be a different sense
behind the object s, and it is thus a different object than smod. A catagoricity
test may indicate the difference or similarity of objects underlying the senses.

The standard deviation is also a measure of uncertainty (c.f. section on
Gaussian).

2.1 Relation of S.D. to Leibniz’s Infinitesimals.
We claim that the standard deviation has a different ontological status than
Euclidean distance. The average distance of the points from the mean has a
different intension than the statistical sense of an infinite continuum of points.
In the classical model, the statistical sense captures an infinite density of points
within space. There is an infinite amount of space between the points, and hence,
a continuous set, of potential measurements, of the points, contained within the
space, which is modelled as the sample space. Therefore, the average distance of
the points from the mean, as measured through a standard deviation, is a sample
space. The statistical sense is restricted by a graphing relationship except when
it is transformed via a standard deviation, as a process of measurement. The
Euclidean space is broken into a continuum of arbitrary points. These arbitrary
points can be grasped with the statistical sense only once the standard deviation
is found. These points can be understood as occuring within the interces of
a linear continuum. The squaring of these relations is meant to depict the
existence and cocurrence with the other non-linear relation of the points from
the mean and the points from the center.

Leibniz’s intuitions are still built into the modern Calculus [Katz and Sherry:
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Leibniz’s Infinitesimals]. In the classical sense, this infinitesimal Calculus is the
epistemic mediator for time and motion within Euclidean space, between points.
It epistemically mediates because it enables us to grasp a relation and have
epistemic access, through that relation. You are capturing linear time in the
classical Calculus through the process. The points do not exist independently
seperate from the continuous space. You are analyzing within something, and
extrapolating. In the modern Calculus, there is the sense of the neccessity of an
epistemic mediator between two senses. In the classical, these two senses have
specific magnitudes, which is not the case in modern Calculus.

All versions of infinitesimal Calculus have differentials which capture one
quantitive relationship. The difference is what they think the magnitude of the
differential is. By changing a differential to zero you change the relationship that
the derivative is participating in. By definition, the categoricitiy is different.
They measure two different objects, the modern [Robinson’s model] is more
tractible, and more surveyable than the classical.

When the space is continuous, it is categorically a different object than when
it is discrete. In theory, one should be able to form an isomorphism between
these categories, in the form of the limit, but there are lingering issues in the
language of limits [Kats and Sherry: Laws of Continuity]. The space within
which the objects (the points) reside is continuous.

Chopping the space into discrete points via the measurement of the stan-
dard deviation makes it the problem of discrete versus continuous variables that
come up in modern Calculus. The differential is our way of coping with this
disconnect. dx is finite when it imparts conditions for intelligibility (∆x). dx
is infinitesimal when it imparts semantic intelligibility (when it yields meaning-
ful information), when it is well-formed, and thus it yields intelligible results.
This interchange is the claim that is often assumed. It becomes circular, and
“a-priori”-oriented. In integration, Cauchy did not treat ε as a limit-process,
but was an evanescent quantity [Beckers 1999 p.10].

The modern infinitesimal is (∀ε : ∃dx : ε 	 dx 	 0). The pre-modern Leib-
nizian intuition is that (∃dx : ∀ε : ε 	 dx 	 0). Pre-modern, there is an a-priori
infinitesimal that neccesarily exists. It is smaller than any positive number.
The modern infinitesimal is that dx is relative to which level of precision you
are dealing with.

The derivatives are a ratio of two differentials. Two differentials are incom-
parable (0/0), but are related via finite changes: ∆yR∆x. One wonders if the
derivative is really a ratio of two differentials, or if it is rather a semi-formal
process of limitation.

What people may claim, is that we do not do this type of Calculus any more,
we do Robinson’s style of Calculus. There was some discussion of the claims
made by Leibniz. Berkley [Philosophical Commentaries, p.354][The Analyst,
p.116] and Russel [Principles of Mathematics,p.330], disputed them. Schopen-
hauer [The World as Will and Representation, p.78] disputed non-constructed
mathematics itself. This is one place where our contemporary intuition and the
pre-Hilbert or earlier intuitions differ, regarding the acceptability of this claim
of infinitesimals.

Robinson himself claimed that he formalized the Leibnizian intuitions, and
that the intuitions are the virtually the same (constructed infinitesimal) [Katz
and Sherry: Leibniz’s Infinitesimals][Robinson 1967]. Infinitesimals may on the
other hand be “pure fictions” rather than “logical fictions” [Ishiguro 1990]. For
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example, Euclidean space is not real in the sense of absolutely real, but is a
heuristically useful tool for measuring distances. Experts are not in full agree-
ment as to what precisely the Leibnizian intuition is. Ishiguro would claim that
they are pure fictions, like imaginary numbers, and are not capable of being elim-
inated through syncategormatic paraphrase of a structure [Ishiguro,1990,p100].
Katz and Sherry disagree and claim that it is not syncategormatic, but instead
is a way to refer to relations among sets of real values, and not a pure fiction
[Leibniz’s Infinitesimals, p.13].

Leibniz calls the infinitesimal dx the “terminus” or the “status-transitus.”
Leibniz literally gives it two different names, for that reason, to indicate that
there are two different senses with which we treat dx. Terminus is the “un-
assignable;” status-transitus is the “assignable,” that is why you can assign it
status for which to move. Movement implies some assignable status, whereas
the terminus is the inassignable position within a continuum. The infinitesimal
translates the assignable into the continuous. Leibniz claims that you do not
need metaphysical claims to perfom his Calculus [Leibniz, In Cum Prodiisset
p.149]. There is a commitment to having two different types of relationships,
they should be isomorphic. They have two distinct senses, which given their
position in the Calculus, they should be the same, but that they have different
mathematical senses.

The differentials are changed to zero because we are not persuing their re-
lationships within the non-linear space. A simple sample is a discrete process
whereby the continuum is restricted to a discontinuous set, whose average spread
is measured by a standard deviation equation. There is a direct correspondence
between the senses of dx as terminus and status-transitus, and the statistical
senses of a discrete sample and a continuum of the sample space, respectively.

The deviation is a way to render the statistical sense into a spatial-linear
sense. This common ground is a reference to both intentions. This is the role of
the discreteness itself. One characteristic of the difference between the statistical
sense and the geometric sense is that the former refers to a relational property
and the latter refers to a non-relational property. The geometric sense is in
the form of linearity and the statistical sense is in the form of non-linearity.
The standard deviation refers to the system of points within which the sample
resides, whereas the geometric distance refers only to the points themselves,
without reference to the system.

Kats and Sherry claim that the “terminus encompasses the status transitus,
involving a passage into an assignable entity” [Laws of Continuity, p.6]. Sim-
ilarly, the standard deviation is a transitory measure, it may be unreal. It is
not even really transitory, it is a seperate object, seperate from the objects it is
measuring. You can only measure the objects through the standard deviation.
You are epistemically boot-strapping access to the object and objects. There
may be a disjunct between the points and its measure. The standard deviation
has its own ontological identity, seperate from the points. We are thinking that
the measure is representing the points, but you would not have an interpretation
of the points, in the statistical sense, without the measure.

6



3 Linear Regression.
Let X×Y = {(xi, yi)}ni=1 be a collection of data, for which two variables X and
Y may be correlated linearly (for example height and hand-size of individuals)
[Note that there need not be any linear correlation, but the data may be related,
as in the points on a circle]. Then, we want to find the “line of best-fit” through
this cloud of points:
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Let ŷ = mx + b be this “best line,” representing the trend. Even though
we have not solved for the “best slope” m and the “best y-intercept” b, we can
suppose that they exist. Then, we can find the vertical deviations from each
point in the data yi with that predicted by the trendline ŷ at xi. Once again,
it would be intuitive to treat this error measurement in terms of distance;

u

www
v

|y1 − ŷ1|
|y2 − ŷ2|

...
|yn − ŷn|

}

���
~

Then, one would think of the accumulated error Emod :=
∑
|yi − ŷi|, and
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this is the quantity to be minimized. On the contrary, the Error is once again
squared:

u

www
v

(y1 − ŷ1)2

(y2 − ŷ2)2

...
(yn − ŷn)2

}

���
~

And the quantity to be minimized is actually the squared error:

SSE =
∑

(yi − ŷ)2 (1)

Indeed, solving for critical points by expanding the square:

SSE =
∑

(yi − ŷi)2

=
∑

(yi − (mxi + b))2

=
∑

y2
i − 2yi(mxi + b) + (mxi + b)2

=
∑

y2
i − 2yimxi − 2yib+m2x2

i + 2mxib+ b2

=
∑

y2
i − 2m

∑
xiyi − 2b

∑
yi +m2

∑
x2
i + 2mb

∑
xi +

∑
b2

= ny2 − 2mnxy − 2bny +m2nx2 + 2mbnx+ nb2

Then we differentiate with respect to y-intercepts and slopes respectively
and set the derivatives to zero:[

∂SSE

∂b
:= 0

]
∧
[
∂SSE

∂m
:= 0

]
:

0 =: ∂SSE
∂m

= −2nxy + 2mnx2 + 2nbx

→ mx2 = xy − bx

→ m = xy − bx
x2

0 =: ∂SSE
∂b

= −2ny + 2nmx+ 2nb

→ m = y −mx

These yield optimal solutions b = y −mx and m = x · y − b · x
x2

.

These solutions are implicit in nature, and contain each-other in their solu-
tions. By holding them both to be optimal, one substitutes b into m, and solves
the equation for m:
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m = (mx− y)x+ xy

x2

m = mx2 − x · y + xy

x2

m = m
x2

x2
+ xy − x · y

x2

→ xy − x · y
x2

= m

(
1− x2

x2

)
= m

(
x2 − x2

x2

)

→ m = xy − x · y
x2 − x2

Indeed, these are minima, since their second derivatives both have positive
parity when evaluated at those critical points:[

∂2SSE

∂b2 ≡ +
]
∧
[
∂2SSE

∂m2 ≡ +
]

The solution for b is intuitive, since the point (x, y) can be thought of as “the
center of the data,” then the result tells us that the “best line” passes through
this center, i.e. (x, y) is a solution to the Linear Regression: ŷ = mx + b, so
that y = mx+ b→ b = y −mx.

The solution for m is not so intuitive.

3.1 SSE Feasibility
One explanation is that the use of squares in statistics is simply utilitarian.
For example, distance in its algebraic (absolute-value) form, as d = |yi − ŷi| =√

(yi − ŷi)2, or more vaguely,
√
f(xi), where f(xi) is positive, and let x be some

variable of optimization. Then the derivative:

∂d

∂x
= 1

2
√
f(xi)

· ∂f
∂x

.
Summing over the components, and solving for these zeroes is more difficult

than optimizing for d2:
∂d2

∂x
= ∂f

∂x

Thus, solving for the optimal values of the distance in the squared-geometric
sense is inherently easier. Even more vaguely, since square-root is an increasing
function, when optimizing d =

√
Something, it makes sense to optimize the

“Something” under the square root, d2. If you are trying to maximze d, you
want to travel as far-right along the curve as you can. On the other hand, if
you are trying to minimize d, you want to travel as far left along the curve as
you can. If you are trying to minimize |Error|, you can minimize Squared-Error
instead.
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When you perform a regression, you are transforming a series of points into a
linear-form. You are rendering it intelligible with the regression, which in theory
is neccesarily a part of the continuum, but not neccessarily represented as part
of the continuum. Through the process of measuring, you actually transform
the cloud of points into a linear form. The regression epistemically mediates the
discrete points into a line. You are technically performing a linear regression,
however, is the object represented within the continuum of sample-space prior to
performing the process? We claim that the calculus acts as a epistemic mediator
that creates relations but not objects, because it produces information. Later,
we propose reworking Calculus around this question.

You are cutting up the continuum to capture the relevant represented points.
The trend : Is the trend represented before performing a regression. The trend
already existed, but by cutting it up this way, we enable the representation of
the relevant sample. Squaring something expands a fixed point within the con-
tinuum, square-rooting something expands something outside the continuum.
When you square, you are including something within a single enclosed sys-
tem (a simple sample), when you square-root you are expanding that object
within the larger conceptual framework [Katz and Sherry, Leibniz’s Infinitesi-
mals, p.15]. In theory, these are contradictory statements, which is part of the
unspoken conceptual problem. Part of our impetus towards developing a new
theory is to avoid this conceptual problem.

Leibniz’s Monads are looming in the back-ground. This is the old conceptual
view that we are not really interacting with anything in space. Things have an
ontology that prevents them from interacting with other things. Objects are
ontologically self-enclosed, and can only exhibit their own attributes and prop-
erties [Leibniz trans Rescher, Monadology, p.17]. It is very deterministic. It is a
base conceptual claim. At the spatial-temporal level we are a single thing or we
are not. This is related to classical physics, which is somewhat innaccurate, with
the concept of individual particles as indivisible spheres: Individual unities and
ontological grounds and their vagueness. In their world, the idea of individual
atoms with valences and things moving around does not exist yet.

4 Gaussian Distribution
The Gaussian does not neccessarily correct for the observer effect, however
it takes it into account by making the distribution into an inherently non-
deterministic system. This differs from classical, strictly deterministic, thinking.
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This may be a direct response, or this may be unintentional. In this instance,
∆x is a measure of uncertainty, it is a standard deviation of x.

4.1 Normalization
The normalization equation is:

z(x) = x− x
∆x

This takes into consideration the point itself, as well as its relation with the
rest of the data, X. x − x measures how far-away from the center the point
x is. This can be either positive or negative, depending on if x is more or
less than average, respectively. Dividing by the Standard Deviation, ∆x, deter-
mines how many standard deviations away from the center is x. The measure
of a normalized variable within a data-set is thought of as unitless, but is in
fact using standard units, or a quantitative measure of number of standard
deviations.

4.2 Standard Normal Curve
The standard normal curve is:

1√
2π
e

−z2
2

Here, the coefficient 1/
√

2π (which is unfortunately called a normalization
coefficient) is because the area under the Gaussian (prior to normalization) is√

2π: ∫ ∞
−∞

e
−z2

2 dz =
√

2π

Scaling by the total area fixes the total area to be unity, which makes the
Gaussian into a probability density distribution.

For many things which are normally distributed, or approximately normally
distributed [See Central Limit Theorem], one maps the distribution onto the
standard normal curve via x 7→ z(x), and its probability density distribution is:

1√
2π ·∆x

exp
(
−
(
x− x
∆x

)2
/2
)

4.3 Uncertainty
There is information the moment the measurement is taken. There are mea-
surements recieved, but this is different than the objects with which the means
of obtaining the information were thought to measure (position and momenta,
with certainty). The moment you do something to obtain information, you
create noise. The information does not track truth nor falsity, it tracks the
measurement itself. You are checking for consistency. There is change in the
world when something is observed, but change implies that there was a position
from which the change occured. It is an open non-question as to whether some-
thing has a definite position, a-priori. There are no elements within a system
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that have meaning other than in their relationship with the system. Anything
you measure has to be in relation to something else. If an element is indepen-
dent from everything else, then by definition, it cannot be measured (variant of
Info-Computational Naturalism).

This is the difference between the pre-modern and the modern. You must
fix the differential dx within a certain tolerance, which is also uncertain, and
statistical in nature. You are confirming dx or ∆x or ∆x, within an existing
continuum. dx must be a relation between objects. You cannot have it just be
an “infinitesimal.” You cannot bootstrap objects out of nothing. You cannot fix
the length dx, because it is not represented, with certainty.

Not observing something, it is still expending energy in a thermodynamic
sense. It is precisely this reason that the objects are participating in this “re-
lational object”, that we can track the actual object, not the representation of
it. The entire system is enclosed, but there may not be a way to prove this.
This presupposes a realist ontology, that objects exist without being observed.
This is an ontological claim. The points are not carved out from the continuum
other than points in relation to other points via the standard deviation.

dx must be a finite, ∆x. ∆x must be strictly greater than some non-zero
quantity. There is uncertainty as to what that length (∆x) is. It is statisti-
cal. The standard deviation of position is strictly greater than Plank’s constant
~ divided by the uncertainty in momentum, ∆p, as a standard deviation. dx
must be larger than uncertainty, for Calculus to work properly (or even approx-
imately) at the micro-scales. In the macro-scale, dx can be regarded as nearly
zero. In the micro-scale, dx must be regarded as some finite quantity, statisti-
cally modelled. At the macro-scale, a reformulation is almost unncesseary, on
the contrary, in the quantum regime, a reformulation is neccessary.

dx
α
> ∆x

α
>

~
∆P

∆x is the distance with which the concavity of the Gaussian changes, half
the length of the interval for which the distribution is concave-down. Outside
of 2∆x, whose center is x, the concavity of the distribution is up.

5 Correlation
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Once one realizes that the data for the set X,Y can be plotted on the x− y
axes, then covariance has a wonderful geometric interpretation. One visualizes
(x, y) as the center of the cloud of points.

If the point (x, y) is to the right of (x, y), then x − x will be a positive
distance. If (x, y) is to the left of (x, y), then x− x will be a negative distance.

On the other hand, if (x, y) is above (x, y), then y − y will be a positive
distance. If (x, y) is below (x, y), then y − y will be a negative distance.

Drawing a line segment from (x, y) to (x, y), and drawing a rectangle will
allow us to visualize the covariance. Suppose that the data is positively accoci-
ated. The area of the rectangle is the base times the height, (x− x) · (y − y).

If the point (x, y) is either above and to the right, or below and to the left
of (x, y), then this is positive area (i.e., a positive base times a positive height
or a negative base times a negative height), and the point adds to the positive
accociation of the points, the closer to a square this area is, the more so will the
area be maximized.

On the other hand, if the point (x, y) is either above and to the left (nega-
tive base times positive height), or below and to the right (positive base times
negative height) of (x, y), then this rectangle has negative area, and takes away
from the positive accociation of the data.

The covariance then, is sort of the average “linear-ness” of the data:

Cov(X,Y) =
∑

(xi − x) · (yi − y)
n

The covariance captures the proximity of the points to the form of the line,
and thus the property of linearity. The variance can also be thought of as the
covariance of X with itself, which only forms squares, recall:

Var(X) = s2 =
∑

(xi − x)2

n

Next, the covariance depends on the one hand on how linear the data is, and
it also depends on your units of distance. Recall that the data from set X can
be “normalized” into a consistant system of measure, across all possible units,
by determining precisely how many standard deviations away from the mean
a particular point is. For example, using the normalization function from the
Gaussian distribution:

z = x− x
s
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This allowed us to look-up the values for any variable X by using a single
chart, which is for the normalized variable Z. We can use the exact same idea
for covariance by normalizing both dimensions X and Y , which will yield:(

x− x
s(x)

)
·
(
y − y
s(y)

)
This will require us to find the standard deviations for both the directions

X as well as Y :

s(x) =
√∑

(xi − x)2

n

Since we normalized the variables, this now provides a consistent way of
measuring linearity, which is homogeneous and unit-less, which we shall call the
correlation measure:

r = 1
n

∑(
xi − x
s(x)

)
·
(
yi − y
s(y)

)
= 1
s(x) · s(y)

∑
(xi − x) · (yi − y)

n
= Cov(X,Y )

s(x) · s(y)

We are enabling the line to form there. r is between −1 and 1, as a measure
of strength of the linear relationship. The slope of the regression is positive or
negative. In order to render the geometric to the statistical sense, we have to
create discrete points within a coordinate space from which we can create a line.
Each discrete point is actually part of a continuum, but for utilitarian reasons,
we limit it to translating it into a statistical sense.

5.1 Regression Again
We have already shown that (x, y) is a solution to the regression. We have also
solved for a form of the optimal slope of the regression,m. Distance and squaring
can be done irrespective of direction. Thus we can switch: (yi− ŷi)2 = (ŷi−yi)2

within the SSE. Then, with these facts, we use the point-slope form of a line:
ŷ − y = m(x − x). With an eye towards correlation, we find another form for
the slope m, by differentiating before expanding the square (via the chain-rule).
This yields:

m = r · s(y)
s(x)

14



SSE =
∑

[m(xi − x) + y − yi]2

0 =: ∂SSE
∂m

= 2
∑

[m(xi − x) + y − yi](xi − x)

→
∑

yi(xi − x) =
∑

[m(xi − x) + y](xi − x)

= m
∑

(xi − x)2 +
∑

y(xi − x)

→ m =
∑
yi(xi − x)−

∑
y(xi − x)∑

(xi − x)2

=
∑

(yi − y)(xi − x)∑
(xi − x)2

=
∑

(yi − y)(xi − x)
ns2(x)

= 1
n

[∑ (xi − x)
s(x) · (yi − y)

s(y)

]
· s(y)
s(x)

m = r · s(y)
s(x)

[Zaiontz]

In theory, these values for the slope should be equal, their distinct forms
arise as to which form from the SSE (which you differentiate), and also which
form from the line-equation that you begin your derivation.

6 A Proposed Information-Calculus
Infinitesimal Calculus involves the fixing of discrete points within a relevant
continuum. The two senses of the infinitesimal dx indicate an informational re-
lation. In contrast the continuum, originally understood in a geometrical sense,
is raw data without any context and lacks a well formed structure. It is through
the infinitesimal that a semantically well-formed structure is conferred to the
data. The Gaussian suggests a reformulation of the sense of the infinitesimal,
not as a finite magnitude; which is intuitively, neither big nor small, neither spa-
tial nor physical but rather the condition of having a semantically-well formed
structure. The mathematical relationship appears as the fixing of dx. At the
macro scale, dx is near zero, and the at the micro, dx is a finite quantity, that is
statistically modeled. It is through both conditions that form is conferred upon
data. Both relations fix and confer upon an infinite continuum, the status of
being capable, of being discrete.

The discrete relationship is a requirement for meaningful-representations of
the continuum. Rather than inflating the infinitesimal into an ontological ob-
ject, we create the conditions for measurement by fixing a convention. This
convention allows for representation of the continuum in a way that is mean-
ingful given surveyability conditions.

Robinson’s formalization captures the conventionalization that enables Cal-
culus to acquire a meaningful and semantically informed relationship. The se-

15



mantically well-formed structure is configured in a statistical sense through the
standard deviation. This enables us to piece together points in a continuum.
This carving out of a relation is important because from it emerges the infor-
mational relationship that can then be mapped onto different magnitudes. In
this way, Calculus acts as an epistemic mediator, enabling new measurements.

This is the break from Leibniz’s dx because there is no ontological magni-
tude associated with the infintismal. This means it does not directly map onto
geometrical relations. Instead the dx is a conventionalized way to create fixed
magnitudes in a setting which is informed by context. By fixed we mean that
meaning is parsed from the data, in a Statistical Sense.

In the informational view, there is no infinitesimal at the quantum scale,
because it is not semantically meaningful to represent the infinitesimal. This is
the case, in either sense of both the classical and modern infinitesimal within
Calculus. The reason why this is, is that the infinitesimal prevents the Calculus
from becoming an endless recursive/bottomless floor of objects. This is for
epistemic reasons, you cannot simply create these objects, foundationally, or
foundationlessly. The other reason is that the proposed informational dx is
relative to the energy level, which is discritized when it is measured.

The Informational Calculus is what can be derived safely from both versions,
without inflating or reducing the infinitesimal.

7 Conclusion
Infinitesimal Calculus intersects with the issue of realism and anti-realism in
mathematics. Statistics and Calculus develop from the same intuitions, however
they represent them differently. In theory we are utilizing an actual transforma-
tion as an object. There may be a disconnect in how we intuit this object. In
classical infinitesimal Calculus, we understand this object as having ontological
weight. In modern infinitesimal Calculus we understand this as being a conven-
tion. To develop calculus further, we will have to think of this object in terms of
a convention, and the meaning it gives to what is measured. We need to think
of dx as a relation of epistemic mediation. This relation becomes an object
when it imparts a semantically meaningful structure on what is measured. This
avoids inflating or reducing dx.

This relation is a process that is not meant to be countable but instead as
sampling of phenomena.Statistics is a part of the sceintific method in virtue of
its ability to act as an empricial measure, through its imparting of structure.
There is no general relation that determines what to induct here. There is no
current principle or axiom forcing Euclidean transformations in this way. This
theory which is supposed to be grounded in the geometric sense is not really
grounded in the geometric sense.

Sampling is its own mathematical category. What remains to be tested,
is if that category maintains isomorphism with the objects it represents. We
recommend a test of categoricity.

We suggest that an informational realist account of Calculus should be used
as a straddling point between the classical and modern accounts of infinitesimal
Calculus. The reason why is because it avoids any of the vices of deflation or
inflation. This informationally informed account of Calculus works with Robin-
son’s formalization, but with conceptual relations informed by informational
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realism. It sees the advantage of calculus in its imparting of sense to what is
measured.The two senses of dx/dy in both the classical and modern account are
preserved. It takes the conventionalization and formalism of Robinson’s account
to be important. In it, the two senses expressed in dx/dy are expressions of the
coherency of something to be understood as discrete or as a continuum.

Infinitesimal Calculus understood in the modern and informational realist
sense is tool and not beholden solely to geometrical magnitudes. It is tool that
acts as a epistemic mediator as a representative tool. It enables representation of
various magnitudes and enables them to be semantically meaningful. [Magnani
and Dossena 2005]
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