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ABSTRACT. It is shown that violation of the Born Rule leads to a breakdown

of the correspondence between the quantum electromagnetic field and its classical

counterpart. Specifically, the relationship of the quantum coherent state to the

classical electromagnetic field turns out to imply that if the Born Rule were vi-

olated, this could result in apparent deviations from the energy conservation law

applying to the field and its sources (Poynting’s Theorem). The result, which is

fully general and independent of interpretations of quantum theory, suggests that

the Born Rule is just as fundamental a law of Nature as are the field conservation

laws.

1 Introduction

The Born Rule, which states that the probability of outcome x for a quantum
described by a wavefunction Ψ(x) is the absolute square of the wavefunction,
was famously first proposed as an educated guess by Max Born. Born in-
cluded it as a note added in proof correcting his original supposition that
the wavefunction Ψ(x) itself yielded the probability for outcome x.[1]. Since
then, the Born Rule has been assumed as a basic axiom of quantum theory
(although there are attempts to derive the rule from operationalist and/or
decision-theoretic assumptions, e.g. [2]). While a physical derivation is avail-
able in the transactional interpretation[3],[4], it should be emphasized that
the arguments herein do not depend on any particular interpretation of quan-
tum theory. The demonstrated implications for violations of the Born Rule
hold regardless of one’s approach to deriving or explaining the rule. Indeed
they hold if the rule is taken as an unexplained axiom.

Since the implications explored herein affect classical field theories, it
should also be noted that such theories are widely understood to be only
limiting or approximate accounts of Nature. For example, it was the failure
of classical electromagnetism to account for the stability of atoms that led
to the advent of quantum theory in the first place. When we use a classical
description, we are using an approximation or idealization that is useful and
approximately true under the conditions obtaining. So, as noted for example
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by Sakurai,[5] (p. 38), the classical description of the electromagnetic field
obtains in the limit in which the number n of photons in the field is so large
that it approaches a continuous parameter. For n decreasing from that limit,
the classical field description becomes less and less accurate until it fails
completely. Thus, at bottom, the field is quantum mechanical. The classical
field theory turns out to be an idealization, even if an important and useful
one.

In what follows, we examine a particular kind of quantum state that
underlies the (apparently) classical electromagnetic field–the coherent state
or Glauber state–and explore what happens to the classical field equations if
the probabilities associated with that state deviate from the Born Rule.

2 Coherent states

Coherent states, often called Glauber states due to the pioneering work of Roy
Glauber[6], are the quantum states that support classical electromagnetic
fields. Whereas so-called Fock states |n〉 are eigenstates of the occupation
number operator N̂ with definite photon number n, coherent states are states
for which the quantum electromagnetic field has an indefinite number of
photons.

The coherent state |α〉 is defined in terms of Fock states as

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 (1)

The coherent state |α〉 is an eigenstate of the field annihilation operator
â with eigenvalue α (which can be complex, since â is not Hermitian). Thus
we have that

â|α〉 = α|α〉

and

〈α|â† = 〈α|α∗ (2a, b)

The probability of detecting a particular number n in the state |α〉 is
given by the Born Rule, i.e.,

P (n) = |〈n|α〉|2 = e−〈n〉
〈n〉n

n!
(3)

It is a Poisson distribution, reflecting the statistical independence of each
detection.

2



The mean photon number 〈n〉 is given by the expectation value of the
number operator N̂ = â†â for |α〉, namely:

〈n〉 = 〈â†â〉 = |α|2 (4)

3 Correspondence between the classical elec-

tromagnetic field and the quantum field

The electric field Ê (which is an operator in the quantum electromagnetic
field) is proportional to the “field quadrature” X,

X = â† + â (5)

Upon taking the expectation value of X for the coherent state |α〉 (as-
suming for simplicity only a single field mode), we find based on (2) that

〈X〉 = α∗ + α (6)

i.e. the coherent state corresponds to a classical electic field with amplitude
α.

It is well-known that the classical electromagnetic field obeys energy con-
servation; this is usually stated in terms of Poynting’s Theorem. The “Poynt-
ing Vector” expressing energy flow is denoted S. For a collection of fields and
sources in some arbitrary volume V bounded by surface σ,

dE

dt
=

d

dt
(Emech + Efield) = −

∮
σ

n · S da (7)

where Efield is the standard classical field energy,

Efield =
1

8π

∫
(E2 + B2)d3x (8)

It should be noted that (8) is a straightforward implication of Maxwell’s
Equations (see, e.g. [8], §16-3).

In (7), Emech is the rate of work done on all charges in V,

dEmech
dt

=

∫
J · E d3x (9)

and the Poynting vector S is explicitly given by

S =
c

4π
(E×H) (10).
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An ordinary classical field is instantiated by a coherent state with an
enormous average photon number. However, much smaller amplitude fields
can be studied in the laboratory. As the average photon number increases,
the more closely the measured field approaches the classical ideal[7]. It is
important to keep in mind that at a fundamental level all field measurements
are achieved through photon absorption; i.e., absorption of electromagnetic
energy, which is proportional to the square of the field amplitude. One
never detects the amplitude directly but always infers it based on the energy
transferred by the field. Thus, it is the average photon number 〈n〉 = |α|2
that constitutes the pointer to the field amplitude, for any value of α. In
addition, work is done by the field on the charges involved in the detection–
this is quantified by (9).

This brings us to the crucial point: the average number of photons ab-
sorbed by a suitable field detection system must correspond to |α|2 in order to
make possible the correspondence between the quantum level of the field and
its classical counterpart. In particular, the energy E2 in the classical electric
field component is proportional to |α|2 because of the Born Rule (as well as
because of Maxwell’s equations!). Therefore, if the Born Rule were violated
in such a way as to result in any detectable deviation, the macroscopic field
would deviate as well, meaning that the energy in the field would no longer
be proportional to E2. This is turn would mean that Maxwell’s equations
would not hold, nor would Poynting’s theorem. Without adherence to the
Born Rule, the classical statement of electromagnetic energy conservation,
i.e., Poynting’s theorem, would not apply to the processes taking place. Of
course, energy would be conserved at the microscopic level, but if one consid-
ered a macroscopic volume V, one could find that the work done on charges
in V, as given by (9), failed to satisfy Poynting’s theorem (7) given (8), the
latter being a straightforward consequence of Maxwell’s equations.

The more systematic and pronounced the Born Rule violation, the more
detectable would be the apparent energy conservation violation. Although
the result found herein is in terms of the electromagnetic field, the argument
is not limited to massless fields; it applies to any field subject to energy
conservation and coherent states.2

One might ask: isn’t this just a matter of definition? I.e., isn’t the am-
plitude of the coherent state simply defined to be proportional to the electric
field amplitude? Similarly, isn’t the electric field amplitude defined as being
proportional to the field quadrature X–and is that why these observations

2Moreover, you could also lose phase information if the detected (absorbed) number of
photons deviated significantly from 〈n〉. That is yet another obstacle to the possibility of
Born Rule violation, which we will not go into here.
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tautologically follow? I would argue that these definitions are not arbitrary,
but are forced on us by the empirical phenomena. The empirical success of
quantum electrodynamics depends on the identification of the field quadra-
tures with the electric and magnetic fields. Thus, rather than being an
arbitrary definition, this relationship is a natural correspondence between
the theory and observed phenomena. Regarding coherent states, if one pre-
pared a different kind of quantum state, in which this relationship did not
hold, that state would detectably not function as a support for the classical
field. Since we know that the world is not really classical, at all levels, but is
described at the microscopic level by quantum theory, it follows that some
quantum state of light must be the support of the phenomenal classical fields
around us (e.g. in our radios, microwave ovens, televisions, etc.). The only
state that can do the job is the coherent state, and in order to do it, it must
have an amplitude α ∼ E. So apparently, nature creates her macroscopic
electromagnetic fields out of coherent quantum states, and their amplitudes
α possess this physical relationship to the classical field amplitude. No other
definition works.

We might add in this connection that R. Serway [11] makes use of this
relationship between the classical field and the quantum level to motivate the
Born Rule, by using the relationship between energy (as intensity) and the
probability of photon detection. Thus this author is not the first to observe
that the correspondence between quantum states and macroscopic fields is
enforced by the Born Rule.3 Serway uses a heuristic argument that does not
make explicit use of coherent states; he merely shows that the amplitude
of whatever quantum state supports the field must be proportional to E.
However, a Fock state with definite photon number, e.g., |n〉, cannot support
the classical field, since its expectation value for the electric field operator is
zero. Only coherent states will do.

4 Conclusions

The correspondence of the classical field amplitude E with the amplitude α
of the quantum coherent state translates into a requirement that the Born
Rule must be obeyed in order for Maxwell’s Equations to hold and for the
classical statement of energy conservation to be preserved. This result has
implications for some interpretations of quantum theory which allow for vi-
olations of the Born Rule and/or the idea that the Born Rule is not a fun-
damental law of Nature. One such interpretation is the so-called Bohmian
theory[9]. According to the Bohmian theory, the Born Rule reflects the

3I am indebted to an anonymous referee for pointing this out.
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“equilibrium distribution” of particle positions, where the material particle
is assumed to have a well-defined position at all times (whether measured or
not) and to be guided by its associated wave function. As Valentini has em-
phasized, the Bohmian theory allows for deviation of the particles from their
“equilibrium” condition. He states that according to the Bohmian theory,
“...[quantum] noise is not fundamental but merely a property of an equilib-
rium state in which the universe happens to be at the present time. It is
suggested that ’non-quantum’ or nonequilibrium matter might exist today in
the form of relic particles from the early universe.”([10], Abstract). However,
the result obtained herein indicates that in the event of such a deviation of
particles from their “equilibrium condition”, classical continuity equations
such as Poynting’s Theorem in general would not hold (nor would the basic
field equations). Thus, postulating that the Born Rule corresponds only to a
contingent distribution of matter has significant consequences in terms of the
applicability of conservation laws and field equations generally assumed to
be fundamental; i.e., not contingent on any particular distribution of matter.
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