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        Abstract  

Though the realm of biology has long been under the philosophical rule of the mechanistic 

magisterium, recent years have seen a surprisingly steady rise in the usurping prowess of process 

ontology. According to its proponents, theoretical advances in the contemporary science of evo-devo 

have afforded that ontology a particularly powerful claim to the throne: in that increasingly empirically 

confirmed discipline, emergently autonomous, higher-order entities are the reigning explanantia. If we 

are to accept the election of evo-devo as our best conceptualisation of the biological realm with 

metaphysical rigour, must we depose our mechanistic ontology for failing to properly “carve at the 

joints” of organisms? In this paper, I challenge the legitimacy of that claim: not only can the 

theoretical benefits offered by a process ontology be had without it, they cannot be sufficiently 

grounded without the metaphysical underpinning of the very mechanisms which processes purport to 

replace. The biological realm, I argue, remains one best understood as under the governance of 

mechanistic principles. 

 

There‟s no doubt that one of the most trending topics in the philosophy of science is the so-called „new 

mechanism‟ movement. In the philosophy of biology in particular, the movement is truly a metaphysics en 

vogue: it represents a conceptual schema which appears to more than adequately capture the framework 

within which a wide variety of empirical data is commonly interpreted, and within which the experimental 

practitioners of that field carry out their work. According to the new mechanists, the biological realm is a 

mechanical realm, and its denizens – organisms – are machines par excellence. And although it‟s undeniably 

the case that biology is a science of mechanisms in one sense or another, the pertinent question at hand is 

whether and to what extent the particulars of this now popular ontology properly carve at the same joints 

that our best contemporary biological models do. 

 If we‟re going to answer that question, a plausible place to do so is within the conceptual remit of 

evolutionary developmental biology (evo-devo), a research programme whose fruit has been the reliable 

delineation of the various ontogenically and evolutionarily salient modular sub-systems which compose 

the meta-systems we recognise as organisms. What we want to know then is whether the ontology of evo-

devo is an ontology of mechanisms – that is, whether our best model of the composition of organisms is 

one capable of being constructed mechanistically. One would think that, given the past successes of a 

broadly mechanistic characterisation of the biological realm, this is a question that is likely to cause very 

few any pause – but there has rather recently arisen a dissenting voice claiming that the ontology of 

organisms evo-devo presents us with is not – and indeed, cannot be - one of “entities and activities”, but 

is rather one consisting of activities alone. 

According to „process ontology‟, the familiar entities which our scientific theories describe and 

quantify over are nothing more than particularly stable processes whose temporal persistence (and our 

subsequent ability to track them) consists in their repeated patterned-based behaviour. Of course, no one 

– not even those who favour an ontology of mechanisms – will deny the importance of characterising 

certain classes of biological phenomena in terms of processes, but it is important to note that adopting a 
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process ontology amounts to a much more robust (and radical) claim about the nature of organisms: on 

this ontology, organisms just are a set of interrelated, ever-fluctuating processes, and the parts and pieces of 

the mechanisms we commonly individuate within them are nothing more than the interlocking instantiations 

of particular patterns of activity. For its proponents, this revisionary ontology is no metaphysical 

extravagance – its application to our conceptual understanding of the nature of organisms is in fact 

demanded by the framework and findings of evo-devo: a mechanistic ontology simply cannot adequately 

model the characteristic features of an ontology centred on the systems we now understand to primarily 

construct organisms. 

Choosing an ontology that best captures the concept of organism that contemporary evo-devo 

research presents us with is a timely and necessary task for the philosophy of biology. In this paper, I 

examine the intricacies of the conflict between a mechanistic and a processual ontology in the context of 

that decision. To do so, I first explicate the current ontological landscape of evo-devo, focusing on the 

principal players – developmental modules composed of highly integrated genetic regulatory networks, 

responsible for the generative specificity of phenotypic development via homologue determination. I draw 

special attention to a unique feature of these modular systems – namely, their generative robustness – and 

discuss how the concept it appears to entail – namely, higher-order multiple realisability – may not only sit 

uneasily within a mechanistic schema, but lend itself to a proper categorisation within a process ontology. 

By specifically detailing the causal-cum-explanatory structure of these central, “organism-building” genetic 

regulatory networks with respect to ontogenesis, I argue that even if one is willing to pay the revisionist 

price of building an organism from the materials afforded by a processual ontology, it is nonetheless an 

unnecessary indulgence.  

 

Why Might Biology Require a Process Ontology? 
The main motivation, as far as I am able to discern, for thinking that contemporary biology requires a 

process ontology is borne from taking seriously certain lessons from evolutionary developmental biology 

(evo-devo). But what sorts of lessons are these, and what consequences have they for our ontology? As 

John Dupré, an outspoken advocate of a biological process ontology, and Eric Bapteste rather simply put 

it: “…as [evo-devo] has emphasised, an organism is a developmental process…[and] as evolution is 

uncontroversially a process, an evolutionary ontology will quite naturally be processual…[an] evolutionary 

ontology of the living world should distinguish the real evolutionary players, the units with causal powers resulting from 

or contributing to evolutionary processes”.1 I take it the claim is that if we properly understand the nature of these 

centrally important “units”, we will understand the utility, and perhaps the necessity, of conceptualising 

them according to a process ontology. What then are these “real players”, according to evo-devo? 

 Plausibly, the units which occupy the main-stage of contemporary evo-devo ontology are so-

called developmental modules, discrete sub-systems which are responsible for the specified development of a 

particular morphological structure in a developing organism. These modular sub-systems might be 

considered central (in the aforementioned sense) to an evo-devo ontology on account of their being 

ontogenically explanatory with respect to the most contemporarily important “units” of evolution – 

homologues, discrete morphological features whose broad phenotypic similarity among their various 

instances is underwritten by shared structural-cum-causal developmental mechanisms which exhibit a 

traceable phylogenetic lineage.2 For if the evolutionary process can be conceived as the successive 

propagation and progression of homologue variation and canalisation, then these highly integrated genetic 

regulatory networks (GRNs) embedded in the “bottleneck” of ontogenesis (Galis & Metz 2001; Kalinka et 

                                                      

1 Bapteste & Dupré (2013: 380-381); my emphasis. 
2 In order to retain sufficient generality, this definition encapsulates both the phylogenetic and developmental concepts of 
„homologue‟.  
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al. 2010), in virtue of their exerting downstream spatial and temporal regulatory control via the production 

of transcription factors whose patterns of expression causally specify the particularised developmental 

pathways of those morphological structures, are surely prime candidates for being the “real players” in an 

adequate evo-devo ontology (Brandon 1999; Brigandt 2007; McCune & Schimenti 2012; Wagner 2014). 

 Importantly, it has become increasingly common to treat these homologue-specifying 

developmental modules as “higher-order” entities, defined functionally via their morphological end-states 

(that is, the homologues whose development they causally control). For the explanatorily fruitful research 

programme of uncovering the specificities of the regulatory architecture underlying various particular 

homologues which has illuminated our understanding of molecular-based phylogeny (Carroll, Grenier, and 

Weatherbee 2001; Wilkins 2002) has at the same time presented us with a view of homologues which are 

importantly dissociated, or autonomous with respect to their underlying networks (Müller 2003; Wagner 2014). 

This is due to the phenomena of robustness, now widely acknowledged to be ubiquitous in the biological 

realm (Greenspan 2001; Mason 2010). Because these modules‟ production of their associated 

morphological structures represents a highly robust process, one underwritten by their regulatory 

architecture consisting of both redundant network motifs and degenerately functional elements, they are 

able to maintain their generative competence with respect to that structure in the face of intra-species 

mutational variations of their component elements and epigenetic variations on their regulatory structure 

(Davidson 2001; Carroll 2008; Wagner & Lynch 2010).3  

 The ability to maintain their generative integrity throughout the developmental process in the face 

of genetic and regulatory variation has resulted in the canalisation of these modules in such a way that, over 

time, and in successive generations, they have gained a kind of independence from their (original) 

underlying genetic constituents and their accompanying regulatory structure (Müller & Newman 1999; 

Müller 2003)4. The now classic paragon of this is Owen‟s (1848) own – that of the tetrapod limb which, 

although performing a variety of distinct functions in its multiple instances throughout evolutionary 

history, is readily identifiable in innumerable species despite its specific generative competency being 

developmentally anchored in a wide variety of diverse underlying GRNs throughout those instances 

(Zuniga 2015).5 Due to the co-variational disconnect between the mechanistic composition and the 

morphological product of these modules, it has been increasingly conceptually advantageous to functionally 

individuate them with respect to their generatively specific end-states - that is, according to their 

generative capacities in establishing structurally specific morphospaces, the varied permutations of which 

represent species-specific instances of their respective homologues (Rieppel 2005; Brigandt 2007; Love 

2009; Wagner 2014). Individuating the modules which are causally responsible for homologues functionally 

allows them to feature in higher-order explanations of developmental phenomena, ones which operate at a 

higher “causality horizon” (Salazar-Ciudad & Jernvall 2013), or at explanatory levels “above” the workings 

                                                      

3 It may even be the case, as has recently been argued, that the generative robustness inherent in developmental 
systems is in fact a necessary requirement for their ability to evolve. See Edelman & Gally (2001), and Whitacre & 
Bender (2010). 
4 As Rosenberg (2001) argues, if the process of natural selection is in a certain sense “blind” to structure, operating 
instead primarily on function, it‟s not at all surprising that one and the same functional homologue might, over time, 
and in successive generations, be underpinned by distinct sets of GRNs (that is, given mutational robustness, and 
the accumulation of cryptic variation, etc.)  
5 Recently, there‟s been a surge of compelling evidence that homologues in a wide range of taxa might be principally 
underwritten by shared, “core” GRN elements – see Davidson & Erwin‟s (2006) „kernel‟ concept, and Wagner‟s 
(2014) concept of „character identity networks‟. It‟s important to note that even if a particular homologue does share 
some central GRN elements in all of its instances, the generative capacity of each instance to produce its specific 
variation on that homologous structure must also be grounded in that GRN being highly integrated with both 
upstream and downstream regulatory cassettes, and these elements will be substantially variable across these 
instances. 
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of their molecular constituents – indeed, their ability to function at this level is the sine quo non of the now 

prominent explanatory project of dynamical systems theory (which I discuss in more detail later). 

 So, at first blush, the “real players” of an ontology which has any hope of being empirically 

adequate with respect to evo-devo are, as it turns out, of rather an odd breed. Due to the phenomenon of 

robustness, and thus their existential persistence throughout various alterations in their constitutive 

regulatory structures, these modules are commonly understood as emergent – that is, as novel, “higher-

order” entities whose unique features ensure that they are incapable of being either ontologically or 

explanatorily reducible to any particular set of constitutive, “lower-level” entities (Wimsatt 2000; Callebaut 

et al. 2007; Mitchell 2012; Walsh 2013; Brigandt 2015). Typically, emergent entities are understood as 

resisting these forms of reduction due to their possession of novel (often downwardly directed) causal-

cum-explanatory power which is neither had by, nor combinatorially attainable by the linear composition 

of their lower-level constituents (Andersen et al. 2000; Ellis et al. 2012).  

And because the persistence conditions and particular explanatory prowess of these modules are 

unfettered, as it were, from any particular molecular mooring, they are also understood as being multiply 

realisable: capable of being “realised” by a number of distinct underlying structures, but incapable of being 

strictly identified with any particular such structure. Given that the set of distinct regulatory architectures 

which are capable of performing the higher-order, functional role (of producing a particular 

developmental end-state) which metaphysically individuates a module is a heterogeneous collection (over 

developmental, and eventually evolutionary time-scales), although each member of that set may realise the 

same module, the latter cannot be ontologically identified with the former. In this way, these modules are 

seemingly best understood – ontologically – as being “…supported by [various] biological components, but 

not composed of them” (Cahoone 2013: 141; my emphasis), where „composition‟ is understood as 

constitutive of metaphysical identity.6  

These strikingly peculiar features of developmental modules are, as I understand it, the ones 

which the process theorist takes to be uncapturable by, and incompatible with an ontology of 

mechanisms. The short of the argument is: if these are the sorts of entities which are going to occupy the 

centre stage of our ontology, we must abandon mechanisms and embrace processes. Let us see why.  

 

Why Mechanisms Won’t Do 
Evo-devo is routinely heralded as a properly „mechanistic science‟, and for an important reason: while 

population genetics has focused primarily on mapping the dynamics of allele frequencies over 

evolutionary time-scales, the research programme of evo-devo consists in the attempt to lay bare the local, 

organism-level developmental systems which causally underwrite that topology (Wagner et al. 2000; Hall 

2003; Canestro et al. 2007; Laubichler 2010). That being said, whether the scientific community regards the 

latter discipline as properly mechanistic is of course irrelevant to the question of whether its requisite 

ontology consists, as a matter of fact, of mechanisms proper. In order to answer that second question, we 

require a firm grip on the concept of „mechanism‟, and so we ought to look to how that concept is 

understood in the contemporary philosophical literature. 

 There are quite a few fairly nuanced definitions of „mechanism‟ in the ever-growing literature on 

the topic, but there is a discernible common core. On a basic level, a mechanism can be defined as “a set 

of entities and activities organised such that they exhibit the phenomenon to be explained” (Craver 2007: 

                                                      

6 The description just offered will no doubt strike a fair few as a fundamentally unfair reading of the ontological 
picture painted by the data of evo-devo – and, to my mind, it certainly is. However, in taking a naïve view of that 
picture, the aim of this part of the paper is to understand the prima facie, conceptual motivations one might have for 
finding the process theory attractive (or the mechanistic picture unattractive). The critique of this naïve view, in 
defence of the mechanistic ontology, is the focus of the rest of the paper. 
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5), where „exhibit‟ is understood as those entities and activities being “productive of regular changes from 

start or set-up conditions to finish or termination conditions” (Machamer, Darden, and Craver 2000: 3). A 

more sophisticated rendering may define a mechanism as “a structure performing a function in virtue of 

its component parts, component operations, and their organisation….responsible for one or more 

phenomenon” (Bechtel & Abrahamsen 2005: 423), where „organisation‟ is understood as the component 

parts being “appropriately located, structured, and oriented, and the activities in which they engage 

[having] a temporal order, rate, and duration” (Machamer, Darden, and Craver 2000: 3). This is enough to 

give us the fundamental picture: a mechanistic ontology consists, simply enough, of entities and activities – 

and a particular „mechanism‟ consists of a specific set of spatio-temporally arranged entities (read: parts) 

which are connected by a specific set of activities (read: causal operations). Importantly then, mechanisms 

are ontologically defined/individuated by their unique four-fold structure – that is, their (1) type and number 

of entities and (2) their spatial organisation, and their (3) type and number of connective activities and (4) 

their spatial and temporal organisation. Thus, what it is to be a particular mechanism is to be an instance of 

a specific four-fold structure: distinct permutations of the values of (1) – (4) constitute distinct 

mechanisms, and so in any particular case the alteration of any of those values amounts to the effective 

dissolution of that mechanism. 

Describing the GRNs which underwrite developmental modules via a mechanistic ontology no 

doubt seems rather natural. After all, we know quite a lot about the types of entities which compose 

regulatory networks and their typical organisational structures, as well as their typical causal connectives 

(motifs) and the “logic” of those connectives, etc., and rather complex schematic mappings of these 

entities and their activities, representing the end product of a great deal of intricate research, are ten a 

penny in the relevant scientific literature.7 Why then ought we think that our mechanistic ontology might 

not be up to the task of adequately modelling such developmental systems? One prima facie, quite general 

worry that‟s been raised is whether, given the overwhelming integrative complexity of the GRNs 

underwriting the relevant developmental systems, we can properly individuate the parts of, and 

subsequently demarcate the boundaries of those networks. Even when aided by the conceptually powerful 

„manipulation theory‟ (Woodward 2002; Craver 2007), detailed precisifications of the concept of „part-

hood‟ and „modularity‟ have arguably been fairly unsuccessful in this context: there are taut causal knots 

here, not easily untied by counterfactual discrimination (McManus 2012). 

 Important as these foundational issues are, I‟m going to set them aside for now – let‟s assume 

they can be adequately answered.8 Even still, there is a perhaps more specifically important issue at hand 

with respect to the focus of this paper, already hinted at in the discussion of the previous section, and at 

the heart of contemporary objections to a mechanistic ontology: the ontological consequences of emergence 

and multiple realisability.9 Recall that these phenomena arise from the robustness of developmental systems – 

that is, their ability to maintain their generative integrity with respect to their associated end-state amidst 

mutational and regulatory perturbations. Typically, the regulatory networks which compose these systems 

exhibit this homeostatic behaviour either in virtue of their possessing a number of „redundant‟ elements 

                                                      

7 See Alon (2006) for an excellent overview of the “regulatory logic” used to construct models of these networks. 
8 As far as I‟m concerned, these difficulties are being adequately addressed outside of a strictly conceptual, 
philosophical account, within empirical studies on „modularity‟ in developmental systems. There, a sub-system is 
considered „modular‟ just in case it satisfies certain criteria on regulatory connectivity. This type of modularity is no 
doubt central to the evolutionary process (Callebaut & Rasskin-Gutman 2005), and recent evidence with respect to 
the processes involved in shaping the developmental hourglass lends credence to this conception (Raff 1996, Galis & 
Metz 2001, Kalinka et al. 2010).  
9 For specific critiques of a mechanistic ontology which stem the homeostatic properties of developmental systems, 
see Woese (2004), McManus (2012), and Dupré (2013). It‟s interesting to note that even Woodward (2013), a card-
carrying mechanist, thinks that the phenomenon of robustness (in an important class of cases) lies outside the 
explanatory remit of a mechanism ontology. 
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(gained perhaps through various duplication events) which can take-up the slack of 

missing/mutated/disabled elements or, more intriguingly perhaps, in virtue of their ability to “re-wire” 

their regulatory architecture such that its non-isomorphic elements are able to become isofunctional, 

causally mirroring the required role within the perturbed network  - this is the phenomenon of degeneracy. 

 The quandary for an ontology of mechanism should be fairly plain: due to the generative 

robustness of the developmental systems in question, and their subsequent ability to existentially persist 

through substantive alterations in their constitutive elements, their metaphysical individuation via the 

entities and activities which comprise their aforementioned four-fold structure looks at best problematic, 

and at worst impossible; note that this isn‟t merely an epistemological worry – in order for it to be the case 

that mechanistic structures truly “carve at the joints” of the world, they must do so at that four-fold 

structure. In developmental systems whose robustness is derived from some measure of redundancy, we 

are confronted with systems whose parts (read: coding genes, proteins, etc.) are potentially transient, able 

to be removed or functionally disabled, with novel instances of functional connections arising from their 

replacements (Zhenglong et al. 2003; MacNeil & Walhout 2011). In other words, these are systems whose 

existential persistence isn‟t perturbed by their loss of entities – a fact which clearly does not sit well with the 

individuation requirements central to a mechanistic ontology wherein a change in the four-fold structure 

of any particular mechanisms is tantamount to the dissolution of that mechanism. In the more extreme 

case, where developmental systems‟ robustness is derived from their degenerative capacities, we are 

confronted with systems whose parts and causal connectives are transient, where one part capable of 

performing multiple functional roles can causally correlate downstream activity towards an end-state in a 

novel fashion (Edelman & Gally 2001; Mason 2010). In other words, these are systems whose existential 

persistence isn‟t perturbed by their loss of entities and their acquisition of activities – another, perhaps more 

worrying instance where the ontological individuation requirements of a mechanistic ontology seem ill-

fitted to capture the nature of these systems. 

It‟s easy to see why, if we want to be able to capture the fact that developmental systems undergo, 

and persist through, the homeostatic activity that typifies the phenomenon of robustness (as indeed we 

must, if we have ontological aims), characterising these systems as emergent, and multiply realisable is both 

natural and appealing: they can be individuated by a definable higher-order activity – namely, the specified 

production of their associated morphological structures – which remains invariant (over developmental, 

and eventually evolutionary time-scales) across a large set of substitutionary permutations in a series of 

particularised instances of a four-fold mechanistic structure. But while this characterisation is certainly a 

boon for theoretical simplicity, the facts upon which it is grounded are at the same time the bane of a 

mechanistic ontology: the robustness, and thus multiple realisability of developmental modules makes any 

hope of metaphysically individuating, and therefore defining the persistence conditions of these systems 

with respect to a single and stable four-fold structure appear fundamentally misplaced.10  

In this way, the dynamic, homeostatic capacities of developmental systems – and their 

accompanying ontological consequences - lie at the heart of contemporary critiques of the application of a 

mechanistic ontology in the biological realm. Thus the eminent Carl Woese urged: 

 

Let's stop looking at the organism purely as a molecular machine. The machine metaphor 

certainly provides insights, but these come at the price of overlooking much of what biology 

is…Machines are stable and accurate because they are designed and built to be so. The 

stability of an organism lies in resilience, the homeostatic capacity to reestablish itself. While 

a machine is a mere collection of parts, some sort of „sense of the whole‟ inheres in the 

                                                      

10 As Dupré (2013: 27) puts it, the worry is that, for many cases “…there is no unique and definitive sequence of 
molecular events” by which these mechanisms might be individuated. 
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organism, a quality that becomes particularly apparent in phenomena such as regeneration in 

amphibians and…in the homeorhesis exhibited by developing embryos (2004: 176) 

 

The question is, however: if we are convinced that we cannot look at the developmental systems which 

compose organisms as machines – how else ought we to view them? One sharply contrasting perspective 

which has been increasingly favoured in the context of these of questions is afforded by process ontology, 

wherein entities are eschewed in favour of activities: according to this ontology, “[w]hat are stable and robust 

in biology are not things, but processes” (Dupré 2013: 30). For the process theorist, the denizens of the 

biological world are fundamentally a set of interrelated, ever-fluctuating though meta-stabilised activities, 

and the entity-like parts and pieces of the developmental systems which compose them are themselves 

nothing more than the interlocking instantiations of further stabilised patterns of activity. The stability and 

discreteness which we have historically associated with the mereological constituents of modular 

developmental systems is, on this view, little more than an abstraction, affording only an incomplete view 

of “…a particular time slice from [the] developmental process” (Bapteste & Dupré (2013: 380-381) - to 

think otherwise is to commit what Whitehead (1925), the figurehead of modern process ontologies, 

colourfully called “the fallacy of misplaced concreteness”. In other words, the „entities‟ which populate the 

mechanistic ontology – be they parts of a mechanism, or whole mechanisms – are nothing more than 

particularly stable processes whose temporal persistence (and our subsequent ability to track them) 

consists in their repeated, patterned-based dynamical behaviour.  

For the process theorist then, what ontologically persists (and thus what truly exists) in the 

biological realm are higher-order patterns of activity, and the underlying flux of seemingly static entities which 

variously instantiate these patterns are only conceptual artefacts which, while perhaps heuristically 

powerful, are unable to properly carve that realm at its joints. Accordingly, on this perspective, to capture 

the dynamical flow of a system is to capture its essence, defined by the “…dynamical interactions among its 

constituents, not the constituents per se” (Jaeger & Monk 2015). The process theorist will, for instance, 

grant ontological primacy to developmental pathways, rather than to any specific configurations of entities 

which compose those pathways in any particular case, or at any particular time (Gilbert & Bolker 2001): 

on their view, it is the dynamic features of the pathway – the spatio-temporally ordered, continuously 

connected stages of its causal structure11 – which accurately capture the ontological facets of biological 

objects, rather than any static set of entities in a particular four-fold configuration which might enter into, 

or satisfy that structure.12   

 Even from this rather simple picture of what it is to be a „process‟, it‟s not difficult to see why one 

might find this ontology to be an attractive framework for conceptualising the biological realm – but here 

I want to focus on two reasons which seem to be the most compelling, and which have subsequently 

received the most attention in the literature. The first is relatively straightforward, given the previous 

discussion: a process ontology can easily accommodate the emergent nature of developmental modules. For 

note that processes, being higher-order, multiply realisable entities, are neither defined by nor existentially 

dependent upon the stability of any particular “lower-level” structures – indeed, the fact that those 

structures are in constant flux is a simple consequence of the ontology. On that ontology, stability is 

located at a higher-order: the parts and pieces below that level may come and go as they please, so long as 

they collectively instantiate a particular higher-order dynamic „pattern of activity‟. In this way, it‟s clear that 

                                                      

11 These „pathway features‟ are the comparative basis of so-called developmental homologies; see Gilbert & Bolker (2001), 
Rosa & Etxeberria (2011), and Nathan and Borghini (2013) for recent discussions of the conceptual distinctions 
between phylogenetic and developmental homology. 
12 One might also consider the higher-order, patterned-based nature of Goodwin‟s (Webster & Goodwin 1996) 
„morphogenetic fields‟ as another instructive example. See Levin (2012) for some interesting recent work inspired by 
this approach. 
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one and the same process is capable of existentially persisting throughout (lower-level) structural variation. 

Thus, if developmental modules are conceived as processes, the phenomenon of generative robustness is 

no longer a threat to their persistence: as their ontological continuance will consist solely in their 

producing (or their capability to produce) a particular morphological feature, variation in precisely how that 

role is performed – that is, variation in which specific four-fold configuration satisfies that dynamic 

structure – over developmental (and eventually, evolutionary) time-scales is of little existential 

consequence.  

 The second reason is more complicated, and perhaps more compelling. Plausibly, if the biological 

world is correctly carved-up into processes, we should expect these higher-order entities to possess an 

accompanying higher-order explanatory prowess, being causally capable in a fashion that is independent 

and irrespective of their lower-level constituents. In other words, in line with the widely adopted „Eleatic 

Principle‟, if we‟ve no evidence of emergent, higher-order causal competence, we‟ve no evidence of a 

process ontology.13 As it happens, such competence is precisely what we find in the models of cutting-

edge evo-devo research, where the explanatory burden with respect to the development of particular 

morphological traits rests upon a high “causality horizon”, operating above the particularities of any 

specific lower-level network-regulatory configurations. In particular, this is what we find in dynamic systems 

theory (DST), a now prominent research project.14 

 Rather than attempting to model the morphological development of a particular module via the 

conceptual decomposition of its GRN into a precisely detailed explication of its every elemental 

constituent and their variously interconnected causal intricacies, the guiding methodology of DST is to 

take a more holistic approach. Instead of conceptualising a module‟s development as its step-wise causal 

progression through a series of discrete state-changes in a collection of isolatable elements, DST views the 

developmental process as a continuous series of temporally successive transitions between entire system 

states. On this perspective, one can model the development of a module as the tracing of a temporal 

pathway through an abstract state space – a multi-dimensional map whose coordinate points represent 

possible whole system states, or the complete „genetic expression profile‟ of the entire imaginal disc. 

Importantly, because the transitions between states within that space are governed by the 

regulatory architecture of that module in virtue of it determining how the expression of particular sets of 

the module‟s constitutive genetic elements at one time affect other sets at later times (via enhancing or 

repressing their transcription rates, for instance), we can assign to each state a relative stability value – e.g. a 

value representing the likelihood the system will shift to another state within that space (Kim & Wang 

2007; Bhattacharya et al. 2011). If we then represent the stability of each state of the system within that 

space along another, additional dimension by assigning it an elevation value (where a higher elevation 

represents a higher level of regulatory instability), our abstract state space becomes a structured topology, 

complete with peaked hills and low-lying valleys. Utilising this abstract three-dimensional representation 

of the collection of possible system-wide states of a module, DST models the morphological development 

of these systems as a kind of kinetically-constrained temporal traversal across the topological curvatures of 

this epigenetic landscape, from the high peaks of the system-wide instability of its initial conditions 

“downward” toward a state of regulatory stability (Wang et al. 2011; Huang 2012; Davila-Velderrain et al. 

2015).15 More picturesquely, on DST the state of a developmental system at any time is conceptualised as 

a frictionless orb, and the temporal succession of various distinct states of that system throughout its 

morphological development is modelled as the dynamic trajectory of that orb through a pathway 

                                                      

13 A principle derived from Plato‟s Sophist, but more recently articulated by Armstrong (1997) 
14 There are now a number of specialist journals which focus on holistic treatments of developmental phenomena – 
see, for instance, Molecular Systems Biology and BMC Systems Biology. 
15 Contemporary forms of DST represent the theoretical union of Waddington‟s (1957) geometrical-dynamical 
models and Kauffman‟s (1969) Boolean network configurations.  
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geometrically constrained by the topological ridges and valleys of the system‟s Boolean regulatory 

configuration. 

Accordingly, in this framework a developmental system‟s morphological end-state is 

conceptualised as a particular collection of system-wide states of regulatory stability, and thus its area 

within state space functions as an attractor whose wide, low-lying basin of attraction dynamically constrains 

the system‟s various possible causal trajectories to follow a pathway toward those states within the sloping 

walls of its surrounding topology. Thus it is the higher-order, formal properties of a developmental system – 

that is, the dynamic flow of the system‟s topology, represented by the vectorisation of its state space and 

defined by its regulatory architecture of Boolean network connectives – which are explanatory with 

respect to why that system reaches a particular end-state: the dynamics of attractor states (and their metric-

bending basins) possess the relevant causal-cum-explanatory power.16 In contrast, the system‟s non-formal 

properties – that is, the other characteristics of whatever it is to which those Boolean values belong (read: 

the underlying “entities and activities”) which secure the stability measures of this topology – are 

explanatorily irrelevant, and seemingly causally impotent: the flow of causation in the process of 

development is directed solely by the contours of their collective phase space, its path effectively oblivious 

to any lower-order, non-geometric features. 

This is of course a gross simplification of the rather complex formalism of DST, but it adequately 

illustrates the relevant point – namely, that developmental systems exhibit emergent, higher-order causal 

competence, precisely as predicted by (and required for) a process ontology. Furthermore, understanding 

the nature of that competence according to DST lays bare, in a more formal fashion, the multiple realisability 

afforded by a process ontology: one and the same process, defined by a “pattern of activity”, or a 

directedness toward a particular end-state via a specifically contoured dynamic landscape, can be realised by 

any number of distinct sets of underlying constituents which instantiate that topology (Gilbert & Bolker 

2001; Dupré 2013; Jaeger & Monk 2015). All of this suggests that in order for our ontology to correctly 

and fully capture the developmental capacities, and perhaps even the existential persistence of these 

modules, it requires the inclusion of multiple realisable, uniquely causally potent processes.17 The 

resources of a mechanistic ontology, wherein a system‟s causal activity is constituted merely by the 

ordered orchestrations of miniscule manipulations in an unchanging set of inflexible clockwork cogs, just 

don‟t look up to the task. 

 

Mechanisms, Emergence, and Explanation 
It‟s clear that although a process ontology undoubtedly represents a picture of the world which is 

scientifically unorthodox, it isn‟t empirically unmotivated - it may be theoretically costly, in that its 

framework demands that our fundamental categories be substantially restructured, but perhaps, if we wish 

to truly understand the empirical data of contemporary biological science, that‟s simply the cost of 

admission. Be that as it may, it‟s wise to exercise caution before investing in such revisionary stock and in 

what follows, I make a case for that caution. On my view, adopting a process ontology amounts to buying 

in to an inflated market – the theoretical benefits, I argue, have been overvalued. 

Importantly, I don‟t want to argue that the benefits gained from higher-order causal modelling of 

the sort provided by DST aren‟t worth paying for: as far as I‟m concerned, these models afford us genuine 

and wide-reaching explanatory power with respect to everything from sub-organismal cell-fate 

                                                      

16 Note that this is true even in the case of non-autonomous systems (Corson & Siggia 2012) where that topology 
changes over developmental time. 
17 That process ontology and DST are natural bedfellows has been pointed out before. Waddington (1969) himself 
professed to being deeply influenced by Whitehead, the founder of modern process ontology, as Gilbert & Bolker 
(2001) note. More recently, Hall (2013) has characterised the contemporary, mathematical models of DST as having 
a natural home within a Whiteheadean ontology. 
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(Bhattacharya et al. 2011; Verd et al. 2014) to the evolvability of organism populations (Streider 1998; 

Jaeger & Monk 2014).18 What I do want to argue however is that these are benefits that our current 

mechanistic ontology already affords us, and at no extra charge. In the literature, one often encounters just 

the opposite view functioning as an implicit premise in an argument for process ontology: if we want to 

account for the higher-order nature of developmental systems (and we certainly do, and must), then we 

have no choice but to pay the price in adopting an ontology of processes.19 However, my argument is that 

this implicit transcendental claim – namely, that a process ontology functions as a necessary condition for the 

possibility of the existence of higher-order phenomena – is simply false. That claim is false for a simple, but 

powerful reason: the true transcendental claim, so far as we know or have any reliable evidence of, 

concerns an ontology of mechanisms. For although the claim that a mechanistic ontology functions as the 

logically necessary condition for that possibility is certainly too strong, that ontology is, at the very least, one 

such condition – and importantly, it is one whose transcendental role can be, and has been laid bare by 

empirically testable, predictive models. 

In order to see this, consider first the case of the higher-order explanatory power of 

developmental systems as captured by the models of DST. My claim is that the causal competence 

exhibited in those models is mechanistically grounded, and thus is mechanistically explicable. Importantly, this is 

not the claim that the explanatory prowess of those models is illusory – no, those models are genuinely 

explanatory. Nor is it the claim that the causal structure inherent in these models is mechanistic – no, the 

activity captured by those models operates without “entities and activities”. But while the higher-order 

causal models of the sort offered by DST provide genuine explanations of the phenotypic products of 

developmental modules without the use of mechanisms, their ability to do so is yet underwritten by the 

mechanistic constitution of those modules. For though the explanatory weight of those models rests solely 

upon the dynamic pathway of the orb of development flowing down the curvatures in a landscape of 

various carved-out trajectories, the character of that landscape – the geometrical mapping which defines 

its topology – is shaped by the mechanistic architecture of an underlying GRN. 

Note that, in DST modelling, a system‟s dynamic landscape from which we derive the relevant 

higher-order explanatory power is constructed from two elements – an exhaustive collection of possible 

system states which defines its state space, and a surjective assignment of elevation values on that space. 

Capturing this landscape then first requires the definition of a specific state space, each unique point of 

which represents a distinct system-wide expression profile – that is, a quantifiable measure on the 

concentration and activity of a particular proteome (Wang et al. 2011; Huang 2012). Of course, the 

specification of this profile cannot be had without a corresponding specification of a particular set of 

causally responsible coding regions embedded in a particular genotype which are expressed. In this way, the 

collection of states in the state space which defines a particular developmental module just is a collection 

of all the possible configuration-outputs of the expression of a specific set of components in its 

constitutive GRN. Note then that this entails that our ability to have even a simple, one-dimensional plane 

upon which to subsequently place the orb of development in our dynamic model depends upon our 

correctly mapping the causal capabilities of a certain set of mechanistic resources – for surely the production 

of the proteome via the transcription and translation of coding regions is mechanistically explicable if 

anything is (Darden & Craver 2002). 

                                                      

18 There is a lively and interesting debate concerning whether higher-order, dynamic models can be genuinely 
explanatory – see Brigandt (2015) and Kaplan (2015) for opposing views. Even if one isn‟t convinced that they are 
so, the point can be granted for the sake of argument. 
19 See for instance Dupré‟s (2013) argument that a process ontology is required for the phenomenon of robustness, 
Jaeger & Monk‟s (2015) claim that a process ontology is the required to utilise the explanatory power of DST with 
respect to regulatory networks, or Gilbert & Bolker‟s (2001) argument that a process ontology is required to 
understand the embryonic organising prowess of homologous structures. 
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 Perhaps the process theorist will not find this point convincing, replying that we ought to focus 

on what it is that‟s doing the higher-order causal work – namely, the topological features of a dynamic quasi-

potential energy landscape: it is here that the aforementioned underlying mechanisms are fundamentally 

ignored. This brings us to the aforementioned second requirement in the construction of our landscape – 

the assignment of an elevation value to each state within that landscape – as these values collectively 

determine the “flow” of the system which constitute its unique causal structure. As we have seen, the 

dynamics which ground the higher-order explanatory power of DST are represented in a mapping of 

measures of stability over a state space, and these measures are inversely reflected in the elevation values of 

each state within that space – the higher the elevation, the less stable the state.20 Once we have a complete 

elevation assignment, we have a structured topology and a set of trajectories throughout that landscape 

which converge on a particular state: we have the system dynamics, and thus, its higher-order causal 

structure. 

 However, the important question for our purposes is: what determines the elevation value-mapping 

of such a system? For while no one will deny that all we need in order to give a higher-order causal 

explanation of a system‟s development is this topologically defining connective structure, there yet 

remains the further important question as to what kind of structure is required, and what determines that 

structure. An immediate answer is that this mapping represents a functional assignment of system stability. 

True enough – but what determines the stability of each system state? Again, an immediate answer is that 

the Boolean value of each state is determined by a function which specifies how a set of inputs (read: 

other state‟s values) are connected to a set of outputs (read: other state‟s values) – thus the stability of a 

state is a reflection of the causally connective structure of its system. Again, true enough – but what 

determines that structure? 

In the case of biological systems, that structure is constructed from regulatory relations specified by 

the architecture of GRNs: it is this structure which shapes and constrains the dynamic evolution of system 

state values during development. In other words, the elevation values assigned to each state within a 

system are a reflection of it underlying network logic: stability is a function of the system‟s expression 

profile and a particular set of regulatory relations governing state-transitions. Importantly then, in any 

particular developmental system, these relations are determined by, and are therefore ontologically dependent 

upon, the character of its constitutive GRN which encodes a specific set of available protein-protein and 

gene-protein interactions, their directionality (constituting upstream and downstream expression control), 

and their interaction modalities (activation, repression, etc.) This is evidenced by the fact that mutational 

changes in both the protein-coding and cis-regulatory regions of a system‟s genome are capable of 

substantially modifying its dynamical landscape: these alterations effect both the topology (the number, kind, 

and relative placement of attractors and their associated basins) and the geometry (the position, shape 

and/or size of attractors and their associated basins) of that landscape (Kim & Wang 2007; Jaeger et al. 

2012; Verd et al. 2014). Thus, the regulatory structure of a particular genome which determines the specific 

elevation mapping, and thus the higher-order dynamics of any particular developmental system is, in the 

end, mechanistically explicable: the regulatory logic governing the stability of its states is one whose 

content is cashed-out by the familiar and well-studied causal role of transcription factors at cis-regulatory 

regions – a role which has been quite naturally explicated via a mechanistic ontology. 

This strongly suggests that the argument from „novel explanatory power‟ to „novel entities‟ 

doesn‟t work: a process ontology doesn‟t look to be a necessary condition for the possibility of the 

existence of higher-order explanatory power. The proponent of a mechanistic ontology then is not 

required to regard the higher-order explanatory prowess of the sort offered by DST modelling as illusory 

                                                      

20 Elevation levels can also be conceptualised as (inversely) representing probability measures – see Huang (2009), 
and Zhou et al. (2012). 
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if she is unwilling to countenance the existence of higher-order entities to which that power belongs: 

taking the former seriously does not commit one to treating the latter likewise. Indeed, as we have seen, so 

far as we have any evidence of, assigning the proper theoretical weight to the former is a job which 

requires the conceptual resources afforded by a mechanistic ontology. For while the holistic, dynamical 

explanations of the causal activity of developmental systems offered by DST take place at a higher-level, 

abstracted away from any particular mechanistic underpinning, the specification of those dynamics 

ontologically depends upon the particular workings of a set of underlying mechanisms, and their role in 

transcendentally grounding the possibility of such higher-order explanatory power is one we now have a 

fairly firm empirical grip upon (Davila-Velderrain et al. 2015).21  

But what of the other higher-order phenomenon associated with developmental modules – 

namely, their multiple realisability: if we are to account for this, must we adopt a process ontology? Recall 

that what we want to capture is the higher-order stability of those modules, one which reigns over and 

above the underlying flux of its part-like constituents. Due to their generative robustness, we require an 

ontology which can account for the persistence of those modules throughout substantial variation in their 

constitutive collection of entities and activities. While this phenomenon poses no problems for a process 

ontology, the same cannot be said for an ontology of mechanisms – for, as we have seen, mechanisms are 

ontologically individuated with respect to those collections, and precisely so: the aforementioned four-fold 

structure which defines any particular mechanism consists of a specific set of entities and activities.22 

How is the defender of a mechanistic ontology to respond? A popular reply to this worry is to 

insist that it simply misses the mark in virtue of the fact that the static conception of „mechanism‟ it trades 

on is outmoded and should be abandoned: entities and activities are no doubt central to our contemporary 

concept of „mechanism‟, but so is a particular dynamism among those elements, and the correct concept must 

reflect that (Bechtel & Abrahamsen 2010; Brigandt 2015; Kaplan 2015). Here the defender of a 

mechanistic ontology is essentially calling for a reform of her concept of „mechanism‟. This isn‟t a move 

without precedent - our „mechanism‟ concept has been reformed in important ways before, after all. We 

no longer consider spatial linearity as constitutive of that concept, for instance – the entities and activities 

which constitute a mechanism need not follow a uni-directional connective causal pathway in producing 

their effect, but are acknowledged to bring about them about via a complex, branching web of 

interactions. The discovery of the importance of auto-regulatory elements and feedback loops has 

informed our „mechanism‟ concept too: strict temporal linearity is no longer a requirement on a system 

qualifying as properly mechanistic. Perhaps it‟s open then to the defender of a mechanistic ontology to 

further reform her concept of „mechanism‟ to account for a certain fluidity in their four-fold structures in 

such a way that the persistence of a particular mechanism need not depend so rigidly upon its being 

constituted by a static set of entities performing a static set of activities. 

                                                      

21 One could hold a hybrid view according to which both mechanisms and processes are understood as ontologically 
robust, and in which no process is without some mechanistic configuration which operates as its metaphysical 
ground by specifying its higher-order dynamic profile. The argument just offered was not meant to take this sort of 
view off the table, but it may very well serve to undercut its motivation: if the conceptual resources of a mechanistic 
ontology are capable of performing this grounding role, and higher-order explanatory power need not be attributed 
to any higher-order entities, what do we stand to gain by positing the existence of (ontologically robust) processes? 
Thanks to an anonymous reviewer for raising this point. 
22 It‟s worth noting that it‟s conceptually open to the mechanist to simply deny that any such stability exists, 
understanding it instead as a heuristic abstraction from the underlying metaphysical state of novel mechanisms 
popping in and out of existence whenever reconfiguration events take place. I don‟t think this is an attractive view, 
for a variety of reasons, but notice that adopting it doesn‟t require any novel ontology: even if which mechanisms 
underlie a particular phenomenon becomes a matter of relative indiscernibility, this doesn‟t commit the ontology to 
countenancing anything other than mechanisms as the performers of that causal work. 
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Notably, Bechtel and Abrahamsen (2010: 323) have recently offered this sort of amendment: “a 

mechanism is a structure performing a function in virtue of its component parts, component operations, 

and their organization. The orchestrated functioning of the mechanism, manifested in patterns of change over 

time in properties of its parts and operations, is responsible for one or more phenomena”. On this type of 

definition, a mechanism is not only individuated with respect to its entities and activities, but also with 

respect to its “orchestrated functioning”. The specification of this „orchestration‟ will undoubtedly contain 

a certain set of entities and activities, though importantly accompanied by the ways in which those 

components might differ both compositionally and functionally over a certain time-scale. 

However, even if this redefinition solves some of the mechanist‟s conceptual difficulties, it‟s easy 

to see why the defender of a process ontology might remain rather unimpressed: this conceptual 

reformation may appear to amount to little more than an ad hoc reshuffling of the goal-posts. Thus, in 

discussing the individuation of mechanisms in this fashion, Dupré (2013: 28) laments that “…it may well 

be possible to shoehorn descriptions of biological systems into talk of mechanisms if one is sufficiently 

determined…[but] there is a serious danger of vacuity…in which it seems that mechanisms are just 

whatever explains whatever happens”. Even if one doesn‟t find the sort of definition given above 

conceptually empty, the point is nonetheless worth heeding: if we are to allow the mechanistic ontology 

such a central conceptual redefinition, it had better be on account of something more than its defenders‟ 

desire to discharge a particularly difficult objection to it. 

Plausibly though, in this case, there are independent reasons for permitting such a move. Note 

firstly that adequately modelling the development of organisms is a job which is going to require capturing 

the coming about/production of novel entities and activities – this is a simple consequence of the nature 

of ontogenesis. And because whatever it is that‟s ultimately causally responsible for the production of an 

organism‟s morphology must itself be formed and shaped within the process of development, any ontology 

attempting to capture that process must necessarily be flexible with respect to its “stock of entities” (and 

so, its “stock of activities”). With that in mind, a refusal to allow the mechanistic ontology a redefinition 

of the aforementioned sort looks akin to disallowing ab initio even the possibility of that ontology correctly 

modelling that process: this strikes me as being at the very least rather uncharitable. But perhaps a more 

compelling reason for permitting the mechanist‟s proposed redefinition is that it accords with the 

„mechanism‟ concept as it is utilised in contemporary biology; this is, after all, a stated goal of that 

ontology‟s proponents (Darden 2007; Bechtel & Abrahamsen 2010; McManus 2012).  

When one examines the literature, it‟s a trivially easy task to find a large swathe of widely accepted 

and well understood mechanistic models of developmental processes which feature the sort of “flexibility” 

the redefinition calls for. There are mechanisms which feature transient entities and activities, such as 

those responsible for the development of distal digits which involve the removal of entities and their 

associated activities (Tickle 2003), as well as those which feature non-standard, specialised entities and 

activities, such as those responsible for cell-fate determination via morphogen gradients, where a certain 

concentration of entities – fleeting though its individual members at any time may be – are causally relevant 

(Tabata 2001). This being the case, it strikes me as rather difficult to accuse the defenders of a mechanistic 

ontology of an ad hoc revision of their central concept - this adjustment might plausibly be understood 

instead as a simple reflection of the tried and true methodology of contemporary scientific classification. 

Still, I grant that some will view the argument for the dynamical redefinition of the concept of 

„mechanism‟ from the practice of contemporary science as misguided, and that‟s fair enough - we can‟t 

always reliably infer ontology from methodology. There is however another, and I think more decisive 

reason that a more dynamic definition of „mechanism‟ ought to be allowed and accepted, and it is this: the 

variational flexibility which typifies robust developmental systems is a phenomenon for which we already 

possess a plethora of richly explanatory mechanistic models. The phenomenon of developmental robustness 

is, after all, no conceptual outlier in contemporary biology – it is widely acknowledged within the 

discipline of evo-devo to play a central role in the evolutionary process (Edelman & Gally 2001; Kitano 
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2004; Whitacre 2010). It‟s no surprise then that the phenomenon has been extensively studied and 

comprehensively modelled within the prevailing mechanistic paradigm – a project which has borne 

considerable explanatory fruit, both at an abstracted level of generality and in a wide variety of specific 

cases. 

 We now know that the robustness of developmental modules can be understood in an abstracted 

sense as a function of certain thematic connective motifs in the “logic” of their constitutive GRNs – by 

means of their regulatory architecture featuring, for instance, „integral feedback control‟, wherein particular 

downstream elements have feedback loops which send the time integral of system “errors” back into the 

upstream input elements (Yi et al. 2000; Alon 2007). That robustness can also be understood in a more 

specific sense as a function of certain complex causal roles of its constitutive network elements. One 

prominent mechanism which is understood to undergird the robustness of GRNs is the causal “cross-

talk” established by pleiotropic transcription factors which functions as a redundancy “safety net” when 

system perturbations occur (Frankel et al. 2010; Whitacre & Bender 2010); rather tellingly, studies have 

shown that a system‟s robustness is significantly compromised when the coding regions for these highly 

pleotropic transcription factors are rendered non-functional (Wagner 2005). Another instance of this is 

exhibited by the multi-faceted control features of cis-regulatory elements where, for instance, two 

structurally non-isomorphic proteins might naturally perform a collective regulatory role for which neither 

is necessary, and either is sufficient (Edelman & Gally 2001; MacNeil & Walhout 2011). Without getting 

too far into any particular details, the important point is this: all of these various  well-understood ways by 

which the robustness of developmental systems is secured are underwritten by the operational capacities 

of mechanisms, and are thus mechanistically explicable; we have a well-defined set of participating entities and 

their governing activities responsible for protein binding, cis-regulatory control, acyclical 

enhancer/repressor relations, etc. 

The fact that the robustness of developmental systems is explicable within a mechanistic ontology 

is not trivial, remembering that, in the current context, to account for robustness is to account for multiple 

realisability. This is because, as we have seen, the stability of a system throughout alterations in its four-fold 

mechanistic structure which underlies the requirement that it be individuated at a “higher-level” is itself a 

reflection of that system‟s generative robustness.23 In this way then, the phenomenon of multiple 

realisability ought to pose no threat to an ontology of mechanisms, it being a phenomenon for which we 

have multiple mechanistic explanations – that is, explanations which posit and appeal to discrete 

collections of separable entities, their intrinsic causal capacities, and the interplay among them. That being 

the case, why shouldn’t we permit the aforementioned dynamic redefinition of „mechanism‟, given that the 

reason such a move has been deemed necessary is to account for a phenomenon which is itself 

mechanistically explicable? 

Of course, it may be the case that the entities and activities responsible for a mechanism‟s 

robustness are not included in any particular model of that mechanism, as those elements typically don‟t 

directly contribute to the mechanism‟s explanatory prowess with respect to its relevant explanandum 

(read: the production of a particular morphological feature), but that isn‟t a reflection on its ontological 

make-up: there is not – nor should we expect there to be – a bijective mapping of „definitional elements‟ 

from metaphysic to model.24 Nevertheless, widening the „mechanism‟ concept to reflect the dynamism 

entailed by the phenomenon of generative robustness inherent in developmental systems seems both well-

motivated and necessary: any sufficiently precise mechanistic definition meant to capture the underlying 

ontology of those systems must include the “entities and activities” causally responsible for that 

                                                      

23 Even on evolutionary time-scales, the higher-order stability of developmental systems qua the canalization of 
phenotypic traits is a long-term reflection of their mechanistically explicable network robustness. See Flatt (2005). 
24 For a more full discussion of the relationship between „ontology‟ and „models‟, see Bechtel & Abrahamsen (2005) 
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phenomenon. And in doing so, as we have seen, that definition will at the same time capture the 

ontological (and ultimately, mechanistic) basis for the higher-order persistence, and thus the multiple 

realisability of those systems. 

There is a final plea to be made to those who remain yet unconvinced that the defenders of a 

mechanistic ontology ought to be allowed their redefinition on these grounds, and it is based on the 

following theoretical consideration: if whichever ontology we choose must be capable of capturing a 

particular phenomenon, and we have two competing ontologies which are able to do so, we ought to 

prefer the one which does not merely weather that phenomenon, but rather forecasts it.25 For note that it is 

one thing for the phenomenon of multiple realisability to simply “fall out”, as a natural consequence, of an 

ontology, and quite another for an ontology to possess the conceptual resources to explain and predict the 

occurrence, empirical limitations, and general structural features of that phenomenon.26 As we‟ve already 

seen, one can easily account for the phenomenon of multiple realisability from within a process ontology, 

as its fundamental entities are causally dynamic patterns whose individuation is ontologically untethered from 

any patterned particulars.27 In this respect, having that phenomenon functioning at the “ground floor” of 

that ontology is certainly a virtue: on a process ontology, where that phenomenon is taken as primitive, it 

is simply the “of the nature” of processes to be multiply realisable. 

But in another respect, this primitiveness is a vice: for, in virtue of being ontologically fundamental, 

the character of that phenomenon is incapable of being given a satisfyingly robust analysis, or explication 

by that ontology. This is in sharp contrast to an ontology of mechanisms where, as we have just seen, there 

exist a great variety of models which explain for which reasons and in which respects developmental systems are 

multiply realisable, and subsequently predict under which conditions and to which degrees those systems are so. A 

mechanistic ontology then is capable not only of weathering that phenomenon, but also forecasting it: 

utilising its models allows one to get a firm explanatory grip on how and why developmental systems are 

multiply realisable.28 Prima facie, for the aforementioned reasons, the same cannot be said for an ontology 

of processes.29 Importantly however, even if it can, the onus is decidedly on the defender of that ontology 

to show that it has the conceptual resources to do so: accounting, in a suitably rich sense, for the multiple 

realisability of robust developmental systems is a theoretical burden on process ontology, not an ontology 

of mechanisms. In light of the fact that a mechanistic ontology possesses the conceptual resources 

required in order to offer a properly explanatory account of the system dynamics which constitute the 

phenomenon of generative robustness, and hence the phenomenon of multiple realisability, allowing an 

                                                      

25 Of course, this preference is only relevant if it‟s the case that the phenomenon in question is able to be given 
some further metaphysical analysis, and if only one of our competitors is capable of doing so. Below, I argue that 
both of these conditions are met. 
26 Cf. Mitchell‟s (2012) excellent discussion of accounting for the phenomenon of „emergence‟ in the physical 
sciences. 
27 This is true at least in principle. In practice, the only examples I know of that explicitly discuss the identity 
conditions of particular processes focus on comparing „homologous processes‟ (in Gilbert & Bolker 2001, and Rosa 
& Etxeberria 2011) – but their homology seems to implicitly rely on a shared mechanistic underpinning. In Gilbert 
& Bolker (ibid.: 3-5) for instance, the „Wnt pathway‟ is conceived as a “modular unit of process” which has many 
distinct instances, but each of these instances are acknowledged to feature homologous sets of genes, proteins, and a 
certain set of interactions between them: this looks like individuation via mechanistic constitution, as already 
discussed. 
28 For comparison, consider the analogous point which Dispositionalists raise against their Humean opponents in 
the debate on the „laws of nature‟: while regularity-based accounts get the right laws, they can‟t explain how or why the 
these are the „laws‟. See Mumford (2004) for an excellent in-depth discussion. 
29 It‟s worth noting that there are DST models of robustness as well – see, for instance, Kitano (2004) and Huneman 
(2010). Though as I have already argued, even if they possess explanatory power in this respect, it is ultimately 
(ontologically) derived from the features of underlying operative mechanisms. For related discussions, see Kaplan & 
Craver (2011), Brigandt (2015), and Kaplan (2015).  
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appropriately dynamic definition of „mechanism‟ ought to be understood as not only acceptable, but only 

natural. 

 

A Few Final Thoughts 
Throughout this paper I‟ve argued that, contrary to claims of the process ontologists, a mechanistic 

ontology has the conceptual resources to not only accommodate, but importantly also to explicate the 

“higher-order” nature of the developmental modules which form the centre of the contemporary ontology 

of evo-devo. This is because, in short, we have conceptually plausible, empirically testable models 

according to which the phenomena of higher-order explanatory prowess and multiple realisability are grounded in 

the causal workings of sets of entities and their activities. Thus the implicit transcendental claim at the 

heart of the motivation for accepting a process ontology is false, and the cost of its revisionary 

metaphysics gratuitous: the theoretical benefits we gain from its purchase can be had by our current 

metaphysic, and at no extra cost. 

 As a final thought, one question worth asking is: why has there recently been a rise in the 

promoters of process ontology within the philosophy of biology? I suspect that a central reason has its 

origins in a muddling of the various senses of „mechanism‟ floating around in the literature (Allen 2005; 

Nicholson 2012). Indeed, the contemporary dialectic against organisms qua ontologically composed of 

mechanisms appears to often be focused on objections to organisms qua machines (Woese 2004; Dupré & 

O‟Malley 2007; Dupré 2013; Jaeger & Monk 2015). „Machines‟, being exhaustively dissectible into sets of 

entities whose activities can be studied in isolation, are strongly associated with the philosophical project 

of reductionism, and the rejection of holistic phenomena: after all, their 17th century origin as the centrepiece of 

the scientific revolution directly pitted them against the irreducible and immaterial forces of vitalism. No 

one ought to dispute the claim that machines of this sort are unable to ground the holistic, emergent 

phenomena which we now know characterises much of the biological realm: they are ontologically 

outmoded in, and their associated reductionist programme outmatched by our contemporary science, 

itself actively engaged in studying and classifying these phenomena (Callebaut et al. 2007; Mason 2010). 

But of course, no one does dispute this, least of all those who endorse an ontology of 

mechanisms – a point on which they have been quite clear (Darden 2007; Craver 2007; Bechtel & 

Abrahamsen 2008). As we have seen, unlike machines, the activity of contemporary mechanisms does not 

consist wholly in step-wise successions through linear series of clockwork-like connectives among their 

parts, but instead regularly feature spatially and temporally complex causal motifs such as self-replication, 

self-regulation, etc. And unlike machines, contemporary mechanisms, as we have seen, allow for holistic 

phenomena arising from the collective activity of parts which imbue entire systems with higher-order 

predictive, explanatory power. 

A contemporary mechanistic ontology is not an ontology of machines, and the conflation of the two 

seems to function as an implicit cause of much of the process theorists‟ ire. Indeed, many of their 

arguments can be read as various attempts to show that such a conflation constitutes a justified conceptual 

collapse. Understood in this way, the aim of this paper has been to illustrate the illegitimacy of this move: 

the higher-order, emergent features of developmental systems which are inexplicable within the machine 

ontology of old are the very ones which our contemporary mechanistic ontology is able to both 

accommodate and comprehensively account for. 
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