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Abstract

Much recent philosophy of physics has investigated the process of sym-
metry breaking. Here, I critically assess the alleged symmetry restoration at
the fundamental scale. I draw attention to the contingency that gauge sym-
metries exhibit, i.e. the fact that they have been chosen from among a count-
ably infinite space of possibilities. I appeal to this feature of group theory to
argue that any metaphysical account of fundamental laws that expects sym-
metry restoration up to the fundamental level is not fully satisfactory. This
is a symmetry argument in line with Curie’s 1st principle. Further, I argue
that this same feature of group theory helps to explain the “unreasonable”
effectiveness of (this subfield of) mathematics in (this subfield of) physics,
and that it reduces the philosophical significance that has been attributed to
the objectivity of gauge symmetries.
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Highlights:

• Intrinsic features of group theory suggest that a metaphysics of fundamental laws
consisting of bigger local gauge symmetries welcomes further explanation.

• Said features help to explain the astonishing effectiveness of group theory in parti-
cle physics.

• Said features lessen any philosophical significance of the objectivity associated
with gauge symmetry.
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1 Introduction

As recent philosophical investigations have shown, distinctive features of Yang-
Mills gauge theories can be significant for the philosophical interpretation of the
laws they describe.1 In this paper, we will explore the philosophical significance
of one of these features. The resulting assessment is intended to attenuate the
enthusiasm that surrounds the predominant role of gauge symmetries in parti-
cle physics. After the privileged status that was conferred to global continuous
symmetries—deemed by Wigner (1967) as meta-laws or “super-principles”—the
astonishing success of local gauge symmetries in the constitution of modern par-
ticle physics bolstered the enthusiasm. I sketch why this has been so in section 3.
The aim of this paper is, in general terms, to attenuate this enthusiasm. The aim,
thus, is to target a widespread attitude: that of those who, satisfied by the elegance
and beauty (and by other virtues outlined in section 3) of the symmetries that
describe the dynamics of the world, seek no further explanation for such laws. I
argue that this attitude should change, as some have previously argued, albeit from
substantially different perspectives (e.g. Peirce (1867), Weinberg (1981), Wheeler
(1982), Froggatt and Nielsen (1991), or Unger and Smolin (2014)).2

More specifically, the aim is to attenuate the widely held satisfaction with the
postulation—well motivated by a variety of scientific and philosophical reasons—
of bigger and bigger symmetry groups in higher energy regimes. No gain will be
achieved, I argue, in our comprehension of certain metaphysical issues about laws
of nature in case we arrive to a Theory of Everything (ToE) whose fundamental
interactions are described by local gauge symmetries.3

This first conclusion targets physicists who seem to believe that the final
laws will be self-explanatory and will naturally dilute the current philosophical

1 See e.g. Kantorovich (2003, 2009), Baker (2010), McKenzie (2012, 2013), Nounou (2015),
or Filomeno (2014, ch. 1, 2).

2 I briefly compare their approaches with mine at the end of the paper.
3 I thus refer to any present or future theory based on what nowadays is our best empirically

tested physical theory, Quantum Field Theory (QFT). This includes ToE’s such as Superstring
Theory in its many variants, E8’s proposal, and ToE’s based on Canonical and Loop Quantum
Gravity. More details in section 2.
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questions regarding the nature of laws. Yet it also targets (certain) naturalistic
metaphysicians as well as primitivists about laws. Naturalistic metaphysicians
rely on our best physics to inform us about metaphysical issues—such as, say, our
comprehension of the nature of laws. They are well aware that of course future
physics may change our metaphysical picture of the world, but the best we can do
at the present day is to rely on what our current physics is telling us. However, this
first conclusion warns us about principled limitations of the naturalistic approach,
in that even future ToE’s will leave unsettled certain philosophical issues about
the nature of laws.4 Similarly, primitivists about laws are targeted, insofar as I
argue that these philosophical issues should be explained. So, while interestingly
some have argued that certain characteristics of current physical laws help to ex-
plain certain philosophical aspects of laws (see footnote 1), I argue that certain
characteristics of current physical laws suggest that some philosophical questions
will not be answered.

The way I argue for this conclusion is the following. In section 4, I exam-
ine in detail a characteristic of the local gauge symmetries ubiquitous in particle
physics. In short, this feature refers to diverse dimensions of contingency of the
mathematical representation: the fact that they have been chosen from among dif-
ferent layers of infinite possibilities. I spell this feature out by means of the spe-
cific case study of the Lie group SU(3) and the strong nuclear interaction. Then,
in section 5 I defend three philosophical consequences stemming from such a fea-
ture: the first conclusion advanced above and two others. In what remains of this
section I explain more in detail the three conclusions of this paper.

First, I argue that such feature of group theory diminishes the philosophical
significance sometimes conferred to the objectivity of the laws written in terms
of Lie groups—the objectivity implicit in the notion of symmetry was originally
highlighted by Weyl (1952), and has been recently stressed in the literature on
ontic structural realism, where the appeal to group theory is frequent (Ladyman,
2014, sec. 4.1); see also Nozick (2001), Earman (2003), Kosso (2003), Debs and

4 Critical assessments of naturalistic metaphysics are a hot topic today. See e.g. (French and
McKenzie, 2015), (Ross et al., 2015), or (Tahko and Morganti, 2016).

4



Redhead (2009).
Second, I argue that said feature makes the astonishing success of group the-

ory in particle physics not unreasonable but, on the contrary, to be expected. Thus,
this second argument adds up to a certain literature in philosophy of mathematics
that aims to explain the unreasonable effectiveness of mathematics in physics; e.g.
Bueno (2011), Räz and Sauer (2015), or Pincock (2004). This literature explores
the idea of a mapping of the structure of the world with the structures described by
mathematics; I support this idea by spelling out how this mapping obtains in the
especially astonishing case of the effectiveness of gauge symmetries in particle
physics.

Finally, again from said characterization of section 4 I defend the conclusion
advanced at the beginning: I argue that the bigger symmetry groups conjectured
by current ToE’s, when intended to play the role of fundamental laws, welcome
further philosophical elucidation. Let me specify in what sense. This last con-
clusion relies on a premise that states that it is asymmetry, not symmetry, that is
to be associated with the notion of design and hence demands explanation. This
premise is elaborated and defended by Kosso (2003), and is in line with Curie’s
first principle. My argument, then, is the following. Given that the characteri-
zation of group theory of section 4 shows that bigger symmetry groups will not
correspond to a state of absolute dynamical symmetry but will still display a cer-
tain degree of asymmetry, the symmetry argument of Kosso (2003) will lead us to
conclude that bigger symmetry groups, in the role of fundamental laws, welcome
further explanation.

Before, in the next section 2 I begin by making some assumptions. Notably,
these assumptions help my opponent—i.e., if any of them were false, it would
bolster the conclusions of the paper. So, while they are plausible assumptions, I
also cite how some of them have been disputed. Then in the next sections we will
leave them aside, and we will focus on the main arguments aforementioned.
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2 Preliminary Assumptions

In what follows, I will assume the necessary condition for fundamentality in QFT
that the theory is asymptotically safe. Asymptotic safety is the condition that in
the ultraviolet regime all the coupling constants must possess a finite value; that
is, the QFT has to be well defined at all energies without being perturbatively
non-renormalizable. In other words, a QFT must correspond to a trajectory of
the renormalization group that converges asymptotically to a fixed point in the
UV regime. This technical requirement is necessary to be able to speak of a
fundamental ToE rather than of a tower of autonomous effective field theories (for
philosophical debates about effective field theories, see e.g. Castellani (2002), Cat
(1998), or Cao (1988)).

Second, I will assume that the prospect of a future unification of all the ele-
mentary interactions succeeds. The failure of unification would aggravate the dis-
satisfaction with the resulting metaphysical picture, in line with what I will argue.
And let me note that a successful unification faces several challenges: Maudlin
(1996) and Morrison (2000, 2013) highlight diverse threats. For instance, Morri-
son (2013, 383) (and similarly Maudlin (1996, 143)) points out that the Standard
Model is not a truly unified theory with a single group but an amalgam of three
groups U(1)⊗SU(2)⊗SU(3), and that unification presupposes that gravity cor-
responds to an elementary interaction like the others, whereas General Relativity
successfully explains gravity without the postulation of such a force-carrier (the
effects of gravitation are due to spacetime curvature).

Third, I will assume that the unnaturalness of QFT is resolved in future ToE’s.
This is because the characterization of gauge symmetries that I give in section 4
highlights their non-trivial degree of ad hoc contingency. Thus, the lack of natu-
ralness of QFT can be seen to support this characterization. Roughly, the notion
of unnaturalness is related with the apparently ad hoc (and fine-tuned) values of
many parameters. The idea behind is that of putting in by hand the parameters in
order to enable the model to obtain empirical adequacy. An overarching definition
is found in (Williams, 2015), where naturalness is defined as the lack of sensitive
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correlations between widely separated physical scales.5 The already existent un-
naturalness increased after the experiments carried out at the Large Hadron Col-
lider, where the detection of the Higgs boson in the scale of 125 GeV is ruling out
the most natural versions of Supersymmetry, such as the Minimal Supersymmetric
Standard Model.

Fourth, I will adopt an ontological interpretation of local gauge symmetries.
This means that, paraphrasing Wigner, local gauge symmetries have an ontolog-
ical “active” role and provide physically significant claims about the carvings of
nature. The falsity this assumption amounts to an interpretation of gauge sym-
metries as redundant surplus mathematical structure (as in Wigner (1967), Ismael
and Van Fraassen (2003) or Redhead (2003)). If this assumption is false, two of
my conclusions are more easily met: if symmetries are not physically significant,
there will be a further reason to demand that ToE’s welcome further philosoph-
ical elucidation, and the objectivity of symmetries will be of less philosophical
significance.

Last but not least, I will consider that the process of (both explicit and spon-
taneous) symmetry-breaking is well understood. There is a variety of philosoph-
ical literature discussing the process of symmetry breaking; e.g. Kosso (2000),
Morrison (1995, 2003), Castellani (2003), Earman (2003), Strocchi (2012), or
Friederich (2013). For instance, I will assume that the spontaneous breaking of
a symmetry does make sense without needing to presuppose an unknown hidden
law that is pushing the system to execute the phase transition from one group to
one of its subgroups, or that those hidden unobserved postulated bigger sym-
metries really correspond to more fundamental true laws. Flaws of this sort
would bolster my critical assessment of a metaphysical picture of fundamental
laws based on the restoration of gauge symmetries in higher energy scales.

The next section 3 briefly recaps some of the novel and non-trivial virtues of
the gauge paradigm that have led to the enthusiasm mentioned in section 1, which

5 In addition to Williams (2015), for a philosophical assessment of the notion of naturalness
cf. Friederich et al. (2014). Other discussions around unnaturalness include Borrelli (2011), Feng
(2013), Evans et al. (2014), and Fowlie (2014).
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I critically assess in the rest of the paper.

3 The “Unreasonable” Success of (Gauge) Symme-
try Principles in Physics

As contended decades ago by Wigner (1967), global continuous symmetry prin-
ciples could be plausibly considered some sort of “superprinciples”, in the sense
of some kind of necessary or a priori meta-laws. The advent of more symmetries
of a new type, local (also called ‘internal’) and following the so called gauge prin-
ciple, has bolstered the enthusiasm and has been taken as a sign of the “elegance
of nature” (Wilczek, 2008, 63).6 Remarkably, it turns out that nowadays all the
elementary interactions of the Standard Model can be described according to this
procedure.

Furthermore, physicists have formulated the theories as a result of conceptual
(mathematical) work much before the posterior solid experimental support: see
Bangu (2013, 2008) for the study of impressive historical cases, like the prediction
of the Ω− boson. Moreover, it turns out that the gauge paradigm exhibits an
appealing simplicity in that few inputs are required to specify full theories (Martin,
2003, p.53). This, in turn, leads us to one of the most attractive features of this
new physics: its unificatory role. All elementary interactions (though gravitation
only in theory) are described in terms of local gauge symmetries.

Additionally, as I will discuss in section 5, the distinctive kind of invariance
that group theory is able to express has been taken to characterize the notion of
objectivity (Ladyman, 2014, sec. 4.1). This characterization allegedly allows
physics to get rid of the confines of a particular coordinate system.

Martin (2003, 41) describes the enthusiastic attitude:
6 The gauge principle specifies a procedure for obtaining an interaction term in the Lagrangian

which is symmetric with respect to a continuous symmetry. The results of localizing (or ‘gauging’)
the global symmetry group involves the introduction of additional fields so that the Lagrangian is
extended to a new one that is covariant with respect to the group of local transformations.
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“the ‘gauge philosophy’ is often elevated and local gauge symmetry prin-

ciples enshrined. Gauge symmetry principles are regularly invoked in the

context of justification, as deep physical principles, fundamental starting

points in thinking about why physical theories are the way they are, so to

speak. This finds expression, for example, in the prominent current view of

symmetry as undergirding our physical worldview in some strong sense”

and (ibidem, 52):

“gauge invariance is often invoked as a supremely powerful, beautiful, deeply

physical, even undeniably necessary feature of current fundamental physical

theory”

In sum, all these features have been central reasons for the enthusiasm to-
wards this new physics and the judgements of (both vaguely stated) elegance and
necessity. However, having outlined some key points of the particular success
and novel features of gauge symmetry principles, let’s examine in depth another
feature of group theory to show that this success should not be interpreted in too
strong a manner.

4 The Contingency of Gauge Invariance – the Case
of the Strong Interaction

In this section, I explain in detail the multiple layers of contingency of local gauge
symmetries. The three arguments that I propose in section 5 appeal to this feature.
I make it explicit by means of a specific case, that of the strong interaction. This
feature makes evident that the particular type of symmetry groups constituting the
Standard Model of particle physics are, in spite of their remarkable virtues, not
a priori reasonable nor necessary at all, but significantly contingent and chosen
due to empirical adequacy among a large space of possibilities. In addition to
this well known feature, we will see that sometimes something stronger holds:
group-theoretic underdetermination, that is, empirical adequacy and mathematical
constraints do not uniquely determine the specific local gauge group.
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First of all, though, bear in mind that my focus is on gauge symmetry, not
on other kinds of symmetry principles. In fact, a strong metaphysical interpreta-
tion might be given of the symmetry principles that Wigner dubbed ‘geometrical’
(unlike those dubbed ‘dynamical’, to which gauge symmetries belong). The ‘ge-
ometrical’ concern the invariance of all the laws of nature under geometric trans-
formations tied to regularities of the underlying spacetime, while the ‘dynamical’
concern the invariance of the form (also labeled as covariance) of the laws govern-
ing particular interactions under groups of transformations not tied to spacetime
(Martin, 2003, 50). It is the former type which was contended by Wigner (1967)
to be akin to meta-laws, “almost necessary prerequisites” for laws.

With this in place, let’s focus now on one of the elementary interactions, the
strong nuclear interaction, which displays one of the local gauge symmetries of
the Standard Model, the color local gauge invariance of quarks. The color in-
variance is represented by the symmetry group SU(3), the Special Unitary group
of degree 3. The theory of Quantum Chromo Dynamics (QCD) successfully de-
scribes the color strong interaction: the property named ‘color’ is conserved due
to a certain type of bosons (force carrier particles) called gluons, exchanged in the
interactions. Each of them carries one unit of color and one unit of anticolor; thus
they guarantee the conservation of the initial color that changes in the quark in a
‘strong’ interaction with another quark. The invariance is achieved by adding a
new term in the lagrangian that corresponds to a gauge field, so that the lagrangian
becomes invariant under the operations of the group.7 There are 3 charges of this
color interaction, named: ‘red’, ‘green’, and ‘blue’. Therefore, there are nine
logically possible combinations of the 3 colors: rr,rg,rb,br,bg,bb,gr,gb,gg.

Then, every symmetry group has the so called ‘representations’, and it is
always the so called ‘adjoint representation’ that describes the force carriers, in
this case the gluons.8 The adjoint representation of SU(3) is not nine but eight

7 For a detailed presentation of the mathematical machinery behind see Griffiths (2008, ch.
8), Robinson et al. (2008, Part II - Algebraic foundations (esp. 2.2.15)), and Cottingham and
Greenwood (2007, ch. 16).

8 A representation of a Lie group is one of the ways of representing the elements of the group
as linear transformations of the group’s Lie algebra, where the elements constitute a vector space.
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dimensional. In this representation the nine states are structured in an octet and
the other state is a singlet element apart. The linearly independent base vectors
that constitute the octet can be written as9:
|1〉 = (rb+br)/

√
2 |5〉 = −i(rg−gr)/

√
2

|2〉 = −i(rb−br)/
√

2 |6〉 = (bg+gb)/
√

2
|3〉 = (rr−bb)/

√
2 |7〉 = −i(bg−gb)/

√
2

|4〉 = (rg+gr)/
√

2 |8〉 = (rr+bb−2gg)/
√

6

and the singlet element is:
|9〉 = (rr+bb+gg)/

√
3 The combination rr+bb+gg is not verified in exper-

Figure 1: The pattern of strong charges for the three colors of quark, three antiquarks,

and eight gluons (in black) with two of zero charge overlapping in the center. The vertical

axis is strangeness and the horizontal is isospin.

iment (Griffiths, 2008, 285); later I will come back to this detail. Thus, the eight
gluons that exist in nature are described by the eight so called ‘generators’ that

Then, an adjoint representation is defined as a (finite-dimensional irreducible) representation in
which the structure constants themselves form a representation of the group. (The ‘structure con-
stants’ of a Lie group determine the commutation relations between its generators in the associated
Lie algebra).

9 The states are added in linear combinations according to the principle of superposition of
Quantum Mechanics. The numerical parameters are required for normalization.
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compose the octet, the set of linearly independent vectors above that form a vec-
tor base of the group SU(3). Each generator aims to represent the color state of
a certain type of gluon.10 The situation is beautifully illustrated in figure 1. The
octet of the figure illustrates indeed the existence of a tight pattern between the
gluons (and with the quarks).

Now, to what extent should we “celebrate” the beautiful and unified pattern
exhibited between the gluons? In the next paragraphs I argue that we should not
celebrate too much, as the mathematical model is not mysteriously successful nor
necessary nor a priori reasonable as these aesthetic patterns and all that has been
said in section 3 might suggest.

The first thing to note is that different gauge fields and different couplings
between the gauge fields and matter fields lead to different local symmetry groups.
Thus, we can have a classification of all the possible gauge fields which can exist
in a universe in function of the possibility space of such groups.

Then, the most general constraints upon a free (i.e. non interacting) system
are the following. In QFT a free particle can be any irreducible, projective, unitary
representation of the local space–time symmetry group (see McCabe (2011, 6)
for the details). This group is the largest possible local symmetry group of our
actual Minkowski space–time, and is the the semi-direct product SL(2,C)nR3,1

(McCabe, 2011, 16).11 The constraint of this group determines a whole set of
possible families of free particles that could exist in the world. It is the specific
actual values of masses and spins of the actual universe that single out the actual

10 In general, the force-carriers correspond to the eigenvectors of the generators, while the
eigenvalues of these eigenvectors are the physically measurable charges (color, in our case).

11 This group is determined by the spatiotemporal dimension, the geometric signature, and the
spatial and temporal local orientation of our world. Such group is determined by the large-scale
structure of a space–time, which is described by a pseudo-Riemannian manifold (M,g), in our
actual world of dimension 4 (Lorentzian manifold, isomorphic to Minkowski space-time), and a
metric of 3 spatial + 1 temporal dimensions. More exactly, the group is the so called restricted
Poincaré Group and is O(3,1)nR3,1 (McCabe, 2011, 16). The simply connected version of
O(3,1)nR3,1 is the so called universal covering group, which is SL(2,C)nR3,1. I am simplifying
not introducing the further restrictions of local space orientation and local time orientation. To the
interested reader I refer to McCabe (2011, 38).

12



free elementary particle types.
Then, further restrictions on the free particles come from the gauge symme-

tries of the elementary interactions, like the mentioned SU(3). The groups consti-
tuting the elementary interactions of the Standard Model must belong to the class
of compact, simple, simply connected Lie groups; so, what is the possibility space
of this class? This has been classified in the ‘Cartan classification’ (Lederman and
Hill, 2004, 315); cf. (Simon, 1995, 151 Table VII.1):

1. Rotational symmetries of spheres that live in N real coordinate dimensions:
O(2) = U(1), SO(3) = SU(2), SO(4), SO(5), ... , SO(N), ...

2. Rotational symmetries of spheres that live in N complex coordinate dimen-
sions: U(1), SU(2), SU(3), SU(4), ... , SU(N), ...

3. Symplectic groups, which are the symmetries of N harmonic oscillators:
Sp(2), Sp(4), ..., Sp(2N), ...

4. The ’exceptional’ groups: G2,F4,E6,E7 , and E8

As it appears, the resulting landscape is infinite; there is a countably infinite num-
ber of possible Lie groups available. Thus, this classification allows us to realize
the first dimension of the contingency of the symmetry groups chosen: in the de-
scription of an elementary interaction, SU(3) is just one of the infinite possible
symmetry groups at our disposition.

This first layer of contingency is further bolstered by past episodes in the
history of particle physics, before the solid empirical confirmation of the current
theory: episodes involving the possibility of a ninth gluon. We have seen that the
singlet element above corresponds to one of the nine logical possibilities, but that
it does not appear to exist. One can then wonder why there are eight gluons instead
of nine (in fact, see e.g. Griffiths (2008, 285) or Bottomley and Baez (1996)).
Indeed, such a ninth gluon could have existed; a nine-gluon theory is perfectly
possible in principle, but it would describe a world very different from the actual
(Griffiths, 2008, 285). In that case, it would be as common and conspicuous as
the photon, and Griffiths (2008, 303) considers the case that the ninth gluon would
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have corresponded to the photon. This is now discarded but it was investigated in
the eighties (Fischbach et al., 1986).12 The adjoint representation of SU(3), in this
scenario, could have been properly used to describe the situation; the ninth gluon
would have corresponded to the singlet state of SU(3). Thus, the group SU(3) is
not univocally correspondent with the actual world but is at least compatible with
two different possible worlds.13

Likewise, in the possible world of nine gluons the symmetry group of QCD
could have been other than SU(3). Specifically, a theory of nine gluons can be
also described by the group U(3) (Griffiths, 2008, 286). The experimental results
that discover eight gluons require us to discard an alternative such as U(3). This
is a usual way scientific practice is carried out, and so it has to be (I am of course
not disputing this procedure of scientific research). To remark this practice in this
field of physics is aimed to show that there is no a priori reason—no sufficient
mathematical constraints—to prefer the group SU(3) over U(3). In sum, we have
identified, in addition to the first layer of contingency—i.e., the contingency in
the choice of a specific group from a countable infinity of groups—a situation of
group-theoretic underdetermination.

A further layer of contingency becomes evident when we focus not on the
gauge force fields (the bosons, such as the gluons described by the SU(3) group),
but on the gauge matter fields (the fermions, such as the quarks, also described by
the SU(3) group) and on the possibility space of representations. While for the
bosons the representation chosen is always unique, namely the adjoint represen-

12 In (Griffiths, 2008, 303, Problem 8.11) it is explained how the situation would look like: the
gluon would couple to all baryons with the same strength, not, as the photon does, in proportion to
their charge. In the end this would look like as an extra contribution to gravity, contrary to actual
evidence.

13 The phenomenon of confinement states that all naturally occurring free particles have to be
color singlets. Correspondingly, the gluons of the octet are not free particles. Instead, |9〉 is a
color singlet, and if it would exist as a mediator it should be a free particle. We do not know a
priori that this is not the case, so it is empirical evidence that makes us discard this option. Indeed,
if |9〉 would exist it could be exchanged between two color singlets—a proton and a neutron,
say—bringing about a long range coupling of the color strength (Griffiths, 2008, 286), but this is
contrary to actual evidence.
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tation, for the fermions the physically significant representations are the so called
‘irreducible representations’. The states in the irreducible representation are those
that possess the determinate properties measured in reality, like isospin and hy-
percharge for the case of SU(3). Informally, the irreducible representations of a
group are the representations of the smallest possible order, i.e., those that cannot
be further reduced (more technically, they are said to have no nontrivial invariant
subspaces). The connection of a symmetry group with physical reality is made
through the choice of an irreducible representation of the group. Thus, there is a
mapping of the irreducible representation with a physical interpretation of fami-
lies of matter particles (fermions) that could exist in the world. It turns out that
there are countably infinite representations of this type, for SU(3) as well as for
any other group. Therefore, there are infinite possible classes of sets of particles
(the particle multiplets) allowed for each of the (in turn infinite) symmetry groups.
The moral I want to draw is that, in the end, the particular final choice is made
from among an extremely vast space of possibilities.

In conclusion, I want to underline that, pace the virtues of the new physics
portrayed in section 3, the mathematical description of the strong interaction is a
contingent representation chosen from among a wide space of possibilities, and is
not a priori reasonable nor (logically or metaphysically) necessary in spite of the
mathematical constraints, of its elegance, of the unification with the rest of inter-
actions, and of the theoretical predictions much before the astonishing empirical
success. Along with the particular case of SU(3), of course a similar diagnosis
can be extended to the rest of gauge invariances, from those that describe the ele-
mentary interactions of the Standard Model, the product U(1)⊗SU(2)⊗SU(3),
to, say, the exceptional group E8.14

Martin (2003, 52) shares a similar diagnosis “against” gauge invariance. He
remarks other factors that have to be taken into account when a gauge-invariant

14 The stronger claim of underdetermination, illustrated before with the cases of SU(3) vs. U(3),
might not generalize to other groups. We need not: the coming arguments hinge on the weaker
feature that I have dubbed as the contingency of gauge symmetry; i.e., the contingency in the
choice of a specific group from different layers of infinite possibilities. Thanks to an anonymous
referee for raising this point.
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term is added into the lagrangian: Lorentz invariance, simplicity, and renormaliz-
ability. His main upshot is to highlight the heuristic character of such symmetries,
showing how “the gauge fields are put in by hand to large extent" (ibidem, 45).
See also Bangu (2013, 298), who wonders about the metaphysical and epistemo-
logical grounds upon which to demand local gauge invariance or, as he puts it, to
demand the justification of the Yang-Mills gauge principle.

5 Significance of the Contingency of Gauge Invari-
ance

After the previous characterization of gauge symmetries we can realize the lack
of any a priori reasonableness or necessity stronger than physical necessity. In
spite of the virtues previously portrayed, such a strong interpretation is deferred
to Wigner’s geometrical invariances, if at all. With this in place, from the charac-
terization of the previous section we can now pursue the conclusions mentioned
at the beginning of the article.

5.1 The Reasonable Effectiveness of Group Theory in Particle
Physics

The first conclusion regards the intimate relationship between group theory and
the physical world, a conclusion that adds up to the the more general debate about
the mysterious, or “unreasonable” (Wigner, 1960), effectiveness of mathematics
in physics. Among the several dimensions that can raise our astonishment, I focus
here only on the astonishing empirical success (heuristically, at least) of group
theory in describing the world of particle physics (for other puzzles around the
effectiveness of mathematics see Wigner (1960)). Assuming an ontological inter-
pretation of gauge symmetries that grants them physical significance, the central
question is: Why is group theory so central to describing part of the physical
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world?15

Our characterization of the previous section can help to illustrate the accounts
that explain the effectiveness of mathematics in physics in virtue of a mapping of
the structure of the world with the structures described by mathematics—as e.g.
in (Bueno, 2011), (Räz and Sauer, 2015) or (Pincock, 2004). The underlying idea
of this type of accounts is roughly the following.

First, we have to distinguish two different issues that should not be conflated.
One is the fact that the physical world displays stable spatiotemporal patterns; that
is, the world is ordered, displaying stable patterns of behaviour—what the laws of
physics aim to describe. We have to assume this uncontroversial (yet philosoph-
ically compelling) fact, and distinguish it from the likewise puzzling fact that
mathematics seems unreasonably effective to describe the world. Now, for the
sake of exposition, consider a structuralist approach to mathematics, whether pla-
tonist or nominalist (e.g. Shapiro (1997) or Hellman (1989) respectively)—for
present purposes, it does not matter which. As the previous section 4 has empha-
sized, mathematics is a language full of non-actualized structures; in particular,
we have seen that group theory describes a wide range of actualized as well as
non-actualized structures. While the vast majority of these structures will not cor-
respond to the actual structures/patterns of the world, within this extremely wide
space of possibilities it is not unreasonable to expect that a subset of these abstract
patterns matches some of the actual patterns of nature. So, the specific groups that
actually constitute our best physical theories are only some of the infinite possible
mathematical descriptions of the regularities of a world. Understood this way, we
can see how it is not unreasonable to expect that part of the world investigated by
the physical sciences is going to be described by group theory.16

15 The question could be generalized to the whole of mathematics, asking not only about group
theory but also about Hilbert spaces, riemannian geometry, differential calculus, and so on and
so forth. Here, though, the focus is only on group theory—an especially interesting subfield of
mathematics due to its predominant role in particle physics and its apparent virtues and privileged
status (see sec. 3).

16 The huge expressive power of group theory is what makes its effectiveness in physics more
reasonable. It is not the other way around: it is not that given the abundance of possibilities is
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This line of thought, supported by the characterization of section 4, does not
need to confer any privileged ontological status neither to mathematical entities
nor to the laws of physics. As such, it can be considered a better (or at least more
economical) explanation than that of those that, too much nurtured by the effec-
tiveness of mathematics (and the other virtues portrayed in section 3), postulate
more abundant ontologies. Extreme examples of the latter are the several vari-
ants that confer existence to mathematics in the world, such as Tegmark (2014).
Also, ontic structural realists want to be realists about the gauge symmetries in
their well-known strong sense: the structures represented by the actual Lie groups
of particle physics constitute the fundamental furniture of the world. The expla-
nation now sketched, though, aims to dissolve any privileged ontological status
ascribed to the Lie groups in case the justification for such a status comes from
their astonishing effectiveness in particle physics.

Still, ontic structural realists invoke group theory (there is even the variant
of ‘Group Structural Realism’ (Roberts, 2008)) on other grounds; for example, by
emphasizing that the structures that group theory represent bear a special relation
with the cherished notion of objectivity, a notion that we certainly want to confer
to our best science and to our best metaphysical theories. This brings us to the
second main remark of this paper.

5.2 The Significance of the Objectivity

The characterization of gauge symmetries of the previous section bears on the ob-
jectivity that has been traditionally associated with the notion of symmetry. The
objectivity of a fact, in general, is taken to guarantee its independence from differ-
ent perspectives, agent’s beliefs, desires, observations, or measurements, as well
as to guarantee a lack of rational intersubjective disagreement about it (French
(2014, 161) who draws from Earman (2003), in turn from Nozick (2001); see also

even more unreasonable that one of them applies (this line of thought would mirror that of the
lottery paradox). It is just because we have at our disposition a rich language (group theory)
that is reasonable to expect that one of its many possible expressions (groups) will be capable of
describing a certain pattern of nature.
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the notion of ‘true generality’ of Van Fraassen (1989, ch. 11 esp. sec. 5)). Then,
Weyl (1952) famously defined objectivity as invariance with respect to the rele-
vant group of automorphisms. In particular, that the invariance that group theory
expresses can be taken to characterize the notion of objectivity has been stressed
(again) by advocates of ontic structural realism (Ladyman (2014, 4.1), Ladyman
and Ross (2009, 3.3), French (2014, 6.3), Lyre (2004)). Within the metaphysical
framework of OSR, the question we are now going to address is: Does said ob-
jectivity have any philosophical significance such that it provides any distinctive
support to OSR? Or more generally, not restricted to this particular metaphysical
view: To what extent does the sort of objectivity indeed exhibited by the gauge
symmetries is of any substantial significance for a metaphysical account of funda-
mental laws so constituted? Or, in other terms: Should we be more satisfied with
the resulting laws given their alleged objectivity?

Admittedly, the notion of objectivity has been applied to the invariance of re-
lations among properties, not to properties or objects, so this fact would help the
ontic structural realist to dispense with any commitment to fundamental objects
(along this line see Rickles and French (2003)). However, the characterization
of gauge symmetries of the previous section diminishes any substantive philo-
sophical significance of the objectivity that is (in fact) attained by the elementary
interactions described in terms of Lie groups; for the kind of contingency high-
lighted in the previous section leads us to admit that, regardless of the degree of
objectivity attained by a particular group (like our SU(3)), there are still infinite
other possible equally objective groups.

This argument is similar to what Debs and Redhead (2009) stress when they
remark that one should be able to sort out which symmetry is physically significant
amongst all the possible symmetries—at least, which is heuristically fruitful.17 In
response to this demand, French (2014, 161) (see also McKenzie (2014, 375-
6), French and Ladyman (2003, 75), and French (2010)) attempts to reply by

17 They opt to reject this standard association of symmetry with objectivity (called by them
‘invariantism’) and propose their so called ‘perspectival invariantism’, according to which the
objectivity is always subject to a choice of an invariance criterion—the choice of which is the
given group of transformations—and that choice is a matter of convention.
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appealing to the empirical consequences that only the actual chosen structures
exhibit: only these structures are those that can be related to physical phenomena.
French (2014, 161, his italics) for instance says: “this significance, understood
appropriately broadly, is ‘explained’, again, by the way the world is.” However,
this is clearly not satisfactory, since obviously some other structures could have
been those having empirical significance. His reply begs the question, as we are
asking why it is that this is the way the world is structured, so it is unacceptable
to answer ‘because this is the way the world is structured’.

The problem of the significance of objectivity is thus threatened by the char-
acterization exposed in section 4, which has led us to a more general threat that
the ontic structural realist has to face: the physical significance of some struc-
tures over the whole space of mathematical structures. This is just the point that I
am going to raise in the next paragraphs without restricting it to OSR, but rather
applying it to any metaphysics of fundamental laws.

5.3 The Fundamental Metaphysics that stems from Symmetry
Restoration

Third and last, the kind of contingency highlighted puts on the table the question
of why there are these laws—why these symmetries—and not others. Yet with-
out additional premises, such a contingency does not necessarily add a layer of
dissatisfaction to our grasp of the nature of laws, in so far as traditional accounts
of lawhood—such as the Necessitarian or the Humean—just plainly accept the
contingency of the laws. I argue for this dissatisfaction, though, providing a sym-
metry argument that appeals to such a characterization. This symmetry argument
gives a reason to think that bigger symmetry groups conjectured by ToE’s wel-
come further explanation.

The argument relies not only on the contingency highlighted, but also on
the premise that it is asymmetry, not symmetry, that demands explanation. The
demand of explanation is formulated in terms of the appearance of having been
designed; what seems to have been designed is what asks for further explanation.
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There is a common confusion of associating symmetry with appearance of design
and thus with the need of explanation. But is the other way around: Kosso (2003)
brushes away the confusion of associating a symmetric universe with the existence
of a designer that designed it, arguing that it is just the opposite. The “default
structure” is symmetry; “it is the symmetry breaking, not the symmetry, that is the
product of design” (Kosso, 2003, 421). This claim goes along the lines of Curie’s
first principle, which yields that it is asymmetry that creates the phenomena that
otherwise would be indifferentiable. We can find Curie’s principle stated thus:
“When certain effects show a certain asymmetry, this asymmetry must be found
in the causes which gave rise to them." (Curie, 1894, 401). Brading and Castellani
(2003, 313) point out the underlying idea: “Effects are phenomena which always
require a certain asymmetry in order to arise. If this asymmetry does not exist, the
phenomena are impossible.”

Ismael (1997) defends the necessary truth of this principle when properly
understood, and shows that instances of spontaneous symmetry breaking such as
those that we are here entertaining are not counterexamples to it (see also Castel-
lani and Ismael (forthcoming) and Brading and Castellani (2013, 4.2)). Brading
and Castellani (2013, 4.2) give us an understanding of Curie’s principle when ex-
tended to include spontaneous breaking of symmetries: we can maintain that an
asymmetry of the phenomena must come from the breaking (explicit or sponta-
neous) of the symmetry of the fundamental laws.

Crucially, notice now that the “default structure” corresponds to a case of
strictly absolute symmetry. Hence, as long as we follow the principle, the unique
satisfactory metaphysics of fundamental laws that would not demand explanation
would be a situation of absolute dynamical symmetry. This means that the state of
the world would have to be invariant with respect to all groups of possible trans-
formations. Rather than being invariant with respect to a specific finite collection
of group transformations, such as (say) SL(2,C)⊗ SU(3)⊗ SU(2)⊗U(1), the
state of the world would have to be invariant with respect to any group of possi-
ble transformations. But this will clearly not be the case for any of the ToE’s we
are entertaining—i.e., those based on QFT and constrained by bigger symmetry
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groups, no matter how big, and no matter which. The state of the world will be
invariant with respect to a finite set of symmetry groups, not with respect to all.
Hence, bigger symmetry groups will still be asymmetric to some degree, in that
they will not correspond to a state of absolute dynamical symmetry. Thus, this
leads us to ask for further explanation of the future final laws of a ToE composed
of bigger gauge symmetry groups.

In sum, if we follow Kosso (2003), given the relation of asymmetry with
design and design in turn with need of explanation, and given the degree of asym-
metry still present in future symmetry groups, we conclude that such symmetry
groups, qua fundamental laws, welcome further philosophical elucidation.

The underlying rationale of this argument connects with what Weinberg (1981)
once illustrated. He envisaged two paths that scientific inquiry could take: explain
symmetries or explain their absence. The orthodox attitude in the physics commu-
nity corresponds to the second of Weinberg’s branches, i.e., physics has to explain
their absence.18 Notice that, having followed Kosso (2003), my argument is to be
framed within the orthodoxy; my critical assessment comes from the second of
Weinberg’s branches—physics has to explain the absence of symmetry.

Additionally, it is interesting to note that the other branch also asks for an
explanation of the (same) symmetry groups, although for other reasons. Those
who hold that it is symmetry that demands explanation (i.e., those who seek to
understand what is permanent in terms of what changes) take as the default nat-
ural state something that now would amount to “absolute asymmetry”. But what
does this mean? This state of absolute asymmetry, which the first of Weinberg’s
branches takes it to be the only acceptable and natural primitive state, is intended
to correspond to the lack of any stable laws of nature. This is in fact the un-
derlying idea in Wheeler’s ‘law without law’,19 in C. S. Peirce’s motivation of
his evolutionary cosmology,20 and in several projects in contemporary theoretical

18 This dichotomy is analogous to what Klein and Lachièze-Rey (1993, 11) set forth regarding
the goal of physics: to study “what changes in terms of what is permanent” or “what is permanent
in terms of what changes”.

19See Wheeler (1982), Wheeler (1983), and a critical assessment in Deutsch (1986).
20 See Peirce (1867), and a critical assessment in Reynolds (2002).
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physics which seek to derive (all) the fundamental symmetry principles from a
complex underlying level.21 This other branch, then, is also unsatisfied by the
metaphysics that stems from current ToE’s, but now because they would only be
satisfied with (something as) a lawless fundamental level from which symmetries
somehow emerge.22

6 Conclusion

I have argued that, despite the remarkable virtues of the new physics portrayed
in section 3, the characterization of the laws of such physics laid out in section 4
leads us to consider such laws not in less need of philosophical elucidation than
other previous laws of nature.23

In section 4 we gave a characterization of gauge symmetries through the anal-
ysis of the strong nuclear interaction. We started by pointing out the constraints
that determine a free and then an interacting particle. A free particle is only de-
termined by transforming under the space-time symmetry group SL(2,C)nR3,1,
and an interacting particle transforms under SL(2,C)nR3,1 and a generic infinite-
dimensional group of gauge transformations—which in our world turns out to be

21 According to the team led by H.B. Nielsen, all complex Lagrangians lead in the low-energy
limit to the symmetries of current physics Froggatt and Nielsen (1991, 2002), Chadha and Nielsen
(1983), Chkareuli et al. (2011) (see also Mukohyama and Uzan (2013) or Jacobson and Wall
(2010) for the case of Lorentz symmetry). They are considering a fundamental level ruled by
an undetermined highly complex behaviour, labeled by them as “random dynamics”. Also the
(speculative) projects of entropic forces should be mentioned, such as that of Verlinde (2011) or
the more elaborated derivation of the Einstein field equations from thermodynamic assumptions
of Jacobson (1995).

22 Perhaps the reader has noticed the interesting convergence of the lawless fundamental state
of the second branch with the state of absolute dynamical symmetry of the first branch. That
is, it could be elsewhere explored that the absolute dynamical symmetry that we would expect
following Kosso (2003) amounts to the random dynamics of Froggatt and Nielsen (1991)—in the
same sense as the liquid state of water is more symmetric than the frozen snowflake, in spite of the
randomness and lack of ordered organization of the molecules in the liquid state.

23 This conclusion, though, is not intended to discourage the search for ever more encompassing
symmetry groups as a principle of heuristics.
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SU(3)⊗ SU(2)⊗U(1). Yet then we saw that a generic interacting particle is
strongly underdetermined by these two constraints. Namely, we saw that:

1. The symmetry group SU(3) associated to the bosons of the strong interac-
tion is chosen due to empirical adequacy from among an infinite space of
possible symmetry groups;

2. Unlike the case of bosons (which are uniquely determined by the adjoint
representation), the individuation of fermions with an irreducible represen-
tation of SU(3) is itself chosen due to empirical adequacy from among an
infinite space of possible irreducible representations;

3. SU(3) even with a fixed representation does not univocally correspond to
one possible world—it can at least correspond to a world with eight or with
nine gluons;

4. Conversely, there is no a priori reason to prefer one group (SU(3) over U(3))
in the possible world of nine gluons described above, so that two different
groups could be chosen to represent the same state of affairs.

Thus, even if assuming the (disputable) claims laid out in section 2 that any
ToE constructed from QFT 1) is asymptotically safe, 2) succeeds in its prospect of
unification, 3) exhibits no unnatural parameters, and 4) the process of symmetry
breaking is satisfactorily understood, the arguments of section 5 conclude that not
only are symmetries neither a priori reasonable nor (logically or metaphysically)
necessary, but they are neither unreasonably effective, nor significantly objec-
tive, nor absolutely symmetric. And this lack of absolute symmetry, if we follow
Curie’s 1st principle and Kosso (2003), suggests that bigger local gauge symme-
tries should not be considered as fully satisfactory primitive dynamical principles
of a fundamental metaphysics.
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