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ABSTRACT. The renormalization group (RG) has been characterized as merely a
coarse-graining procedure that does not illuminate the microscopic content of quantum field
theory (QFT), but merely gets us from that content, as given by axiomatic QFT, to
macroscopic predictions. I argue that in the constructive field theory tradition, RG techniques
do illuminate the microscopic dynamics of a QFT, which are not automatically given by
axiomatic QFT. RG techniques in constructive field theory are also rigorous, so one cannot
object to their foundational import on grounds of lack of rigor.
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1. INTRODUCTION

The renormalization group (RG) in quantum field theory (QFT) has received some
attention from philosophers for how it relates physics at different scales and how it makes
sense of perturbative renormalization (Huggett and Weingard 1995; Bain 2013). However, it
has been relatively neglected by philosophers working in the axiomatic QFT tradition, who
take axiomatic QFT to be the best vehicle for interpreting QFT. Doreen Fraser (2011) has
argued that the RG is merely a way of getting from the microscopic principles of QFT, as
provided by axiomatic QFT, to macroscopic experimental predictions. Thus, she argues, RG
techniques do not illuminate the theoretical content of QFT, and we should stick to
interpreting axiomatic QFT. David Wallace (2011), in contrast, has argued that the RG
supports an effective field theory (EFT) interpretation of QFT, in which QFT does not apply
to arbitrarily small length scales. Like Wallace, physicists generally regard the RG to be
foundationally significant, as recent QFT textbooks indicate (Zee 2010; Duncan 2012).

My main objective is to question Fraser’s claims that the RG is only a way to get from
the microscopic principles of QFT to macroscopic predictions, and that it has no significance
for the theoretical content of QFT. Unlike Wallace, I do this without endorsing an EFT
interpretation of QFT. Instead, I elucidate the foundational significance of the RG by
describing its role in determining whether various Lagrangians could possibly describe QFTs
living on continuous spacetime—that is, whether these Lagrangians are well-defined in the
ultraviolet (UV) limit. This problem is an important one in the foundations of QFT and it is
the central aim of constructive field theory, which attempts to construct interacting models of
QFT satisfying certain axioms. The existence of the UV limit is relevant to whether we should
interpret a particular Lagrangian as describing an EFT or as potentially applicable to all length
scales, so if the RG helps determine the existence of this limit, then the RG is significant for
the interpretation of QFT.

To forestall the objection that RG methods are not rigorous enough for philosophical
attention, I look at the RG as used in constructive field theory, a tradition that philosophers
take to be rigorous. Many in this tradition use RG methods to determine whether various
Lagrangians have a well-defined UV limit. The rigor of these RG methods as compared to the
RG methods that physicists typically use lies in the employment of well-controlled
approximations rather than ill-controlled approximations.

My plan is as follows. In the next section, I provide more specifics on the various
theoretical approaches to QFT and flesh out the claims that I have attributed to Fraser. In
Section 3, I sketch the formalism of perturbative QFT, describing the problems that
constructive QFT aims to solve. In Section 4, I sketch the “physicists’ version” of the RG as a
pedagogical attempt to show how the RG can answer the question of whether a UV limit for a
given Lagrangian exists. In Section 5, I explain how constructive field theory tries to resolve
the problems with perturbative QFT and how it attempts to fill in the mathematical gaps in the
physicists’ version of the RG. In doing so, I sketch how constructive field theory uses RG
methods to try to construct models of QFT that exist in continuous spacetime. I conclude by
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musing on what the argument of this paper implies about the relationship between the various
theoretical strands of QFT.

2. THE DEBATE SO FAR

In the early days of QFT, physicists ran into a host of mathematical pathologies such
as divergences in their perturbation expansions. To get around these, they deployed
calculational methods such as perturbative renormalization without fully understanding why
these methods worked.

Axiomatic QFT grew out of attempts to make the mathematical character of QFT
clearer. One variant of axiomatic QFT is algebraic QFT, which I will not discuss here.
Instead, I focus on the Wightman axioms or the Osterwalder-Schrader (OS) axioms, which
specify the properties that a theory’s Wightman functions or Schwinger functions,
respectively, must satisfy to define a QFT.1 However, these properties are insufficient to define
a QFT’s dynamics. For more dynamical details, we turn to constructive QFT (CQFT),2 which
attempts to construct specific interacting models of QFT that satisfy the OS axioms. Such
models, if they exist, automatically satisfy the Wightman axioms, according to the
Osterwalder-Schrader reconstruction theorem (Rivasseau 1991). CQFT takes its models of
interest to be those characterized by Lagrangians that physicists use. One of the aims of
CQFT is to find out if these Lagrangians correspond to non-trivial QFTs in the UV limit.

A QFT that satisfies either set of axioms must have a UV limit: effective field theories
violate the axiom of postivity in the OS axioms. A typical approach in CQFT is to start with a
lattice QFT or an effective field theory with a momentum cutoff, and then to figure out what
happens to the Lagrangian at a fixed momentum scale when the lattice spacing is taken to
zero, or when the cutoff is taken to infinity. If the model that results when this limit is taken is
trivial (all the coupling constants in the Lagrangian go to zero) or ill-defined (some coupling
constant becomes infinite in the limit), then one concludes that there does not exist a
non-trivial model of that QFT in continuum spacetime.

The RG was first developed in an unrigorous manner within perturbative QFT. It
provides an account of how the dynamics of QFTs change with length or energy scale. These
changes are manifested as changes in the value of the coupling parameters in a theory’s
Lagrangian. Part of the importance of the RG lies in how it explains the empirical success of
perturbative renormalization. The RG provides a physical picture of why one has to change
the values of coupling parameters in order to avoid divergences. As mentioned earlier,
physicists have generally regarded the RG to be foundationally and interpretively significant.

In contrast, there is a refrain among philosophers along the lines sketched by Fraser
(2011, 131):

RG methods make a significant contribution to the articulation of the empirical
content of QFT and to clarifying the nature of the relationship between the

1The Schwinger and Wightman functions are important because any observable can be computed from them.
2Also known as constructive field theory.
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empirical and the theoretical content. However, RG methods do not shed light
on the theoretical content of QFT. For this reason, appeal to RG methods does
not decide the question of which set of theoretical principles are appropriate
for QFT. . . The reason that constructive field theorists are able to exploit RG
methods—even though they reject elements of the theoretical content of
LQFT—is that RG methods concern the empirical structure of the theory
rather than the theoretical content.

In a similar vein, Kuhlmann, Lyre, and Wayne (2002) characterize the RG as providing “a
deductive link between fundamental QFT and experimental predictions”. This echoes the
thought, latent in Fraser’s writings, that there is some “fundamental QFT” given prior to using
the RG, presumably by some axiomatic form of QFT, and that all the RG does is link this
fundamental theory to experimental predictions. Fraser takes this thought to undercut
Wallace’s argument that RG methods support a particular interpretation of QFT.

This pattern of reasoning is common in the philosophy of physics: for foundational or
interpretive purposes, we should focus on only the “fundamental principles” of a theory, given
by its axioms, because these constitute the entire theoretical content of the theory. Methods to
extract predictions from these principles add no new theoretical content, only pragmatic
filigree.

However, as I shall argue, RG methods do have foundational significance because they
are one of the main ways in which CQFT proves the existence or non-existence of models of
QFT satisfying the OS axioms. Thus, they bear on the interpretively relevant question of
whether certain models of QFT can exist in continuous spacetime. Furthermore, there exist
rigorous ways to implement the RG, and these are used in CQFT.

3. PERTURBATIVE QUANTUM FIELD THEORY

CQFT arose out of a need to mathematically justify perturbative QFT. In much of
QFT, perturbative renormalization is a key technique for deriving finite results for empirically
measurable quantities like scattering cross-sections. A first pass at calculating these quantities
leads to divergent terms in the relevant perturbation expansions. Perturbative renormalization
adjusts the coupling parameters so as to remove these divergent terms. However, this
procedure, as presented in introductory QFT textbooks, is carried out on a purely formal
basis. While the procedure is justified in one sense by its empirical success, it is not justified
by a mathematical understanding of the nature of the perturbative expansion. One of the aims
of CQFT is to justify these rules mathematically. In the rest of this section, I offer a brief
sketch of perturbative renormalization in a simple case so as to illustrate the room for
justification that CQFT tries to provide.

One quantity of central importance in QFT is the partition function, which is defined
in terms of the Lagrangian L(φ) as follows:

(1) Z =
∫

DφeS[φ],
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where S[φ] =
∫

L(φ)d4x. Here I have assumed four dimensions for the purpose of the
example. The “D” indicates that this integral is a functional integral, sometimes called a
Feynman path integral. Intuitively, the integration ranges over the space of “possible
functions” φ, for some value of “possible”.3 Path integrals also feature in expressions for the
Green’s functions, which are closely related to experimental measurements.

These path integrals can be given a straightforward finite, analytic expression when
the action involved is that of a free scalar field with no interactions. In this case,
L = 1

2

((
∂φ2)2−m2φ2

)
. For interacting fields, physicists typically use perturbation theory to

evaluate the path integrals. Since the path integral for the free field has a known analytic
expression, the perturbations are applied using the free field case as a reference—we consider
the interaction as a small perturbation to the free field Lagrangian. The following example
illustrates how this is done in a simple case.

Suppose a small interaction − λ

4!φ
4 is added to the free field Lagrangian, so that

L = 1
2

((
∂φ2)2−m2φ2

)
− λ

4!φ
4. This is the Lagrangian of the so-called φ4 theory, which

describes a self-interacting scalar field. The partition function is

Z =
∫

Dφe
∫

d4x
((
(∂φ2)

2−m2φ2
)
− λ

4! φ4
)
.

Assuming λ to be small, we then convert the e−
λ

4! φ4
factor into a Taylor series in λ:

(2)

Z =
∫

Dφ

(
1− λ

4!

∫
x1

φ
2 (x1)dx1 +

1
2

(
λ

4!

)2∫
x1,x2

φ
4 (x1)φ

4 (x2)dx1dx2 + · · ·

)
e
∫

d4x
(
(∂φ2)

2−m2φ2
)

where I have included only the first two terms of the Taylor series to illustrate the general rule.
Unlike in the free field case, when evaluating path integrals such as the above, some of

the individual terms in the Taylor series are infinite. These divergences make it difficult to
directly compute experimentally measurable quantities, such as scattering cross-sections,
from the path integral. In many cases, the divergences can be removed by the process of
perturbative renormalization. This process starts with regularization, a way of eliminating the
influence of high-momenta processes which cause the divergences, and, for some methods of
regularization, the addition of counterterms to compensate for regularization. Regularization
is typically followed by renormalization, which consists of rewriting the Lagrangian and
expressions for quantities like cross-sections in terms of “renormalized” coupling parameters
rather than the “bare” parameters that we started with. These methods have proven to be
empirically successful for theories like quantum electrodynamics.

Even though perturbative renormalization removes the term-by-term divergences that
occur in (2), they leave unresolved other issues. It is suspected that expansions like (2) do not
converge and are at best asymptotic. An asymptotic series can be useful if we know which

3As we will see later, one of the first tasks of constructive field theory is to give a precise meaning to the measure
Dφ.
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function the series is asymptotic to, but perturbative QFT on its own does not provide this
information. Part of the CQFT program involves showing that some properties of the
non-perturbative solutions to the equations of motion guarantee that certain methods of
summing asymptotic perturbative expansions will lead to a unique solution. I will not discuss
this part of the CQFT program. The part I will discuss in Section 5.2 involves using the RG to
evaluate (1). Here the problem of divergent perturbation series manifests itself as the so-called
large field problem, which will also be addressed in Section 5.2.

The other problem with perturbative QFT that CQFT tries to resolve is a proper
definition of the measure of (1). Again, we will see in Section 5.2 how this is done in CQFT.
For now, I move on to discussing how the RG is important not just as a way to calculate
empirical quantities, but also to determine whether a given Lagrangian exists in the UV limit.

4. THE RENORMALIZATION GROUP

The RG explains perturbative renormalization non-perturbatively. It gives an account
of changing coupling parameters that is not based wholly on formal perturbative series and
perturbative renormalization. The RG is widely used in the non-rigorous variants of QFT used
by physicists and in constructive field theory. For convenience, I follow Wallace (2011) in
calling the former “conventional QFT”. While the constructive field theory treatment of the
RG plugs many mathematical gaps in conventional QFT, the important conceptual insights are
already present in the conventional treatment. The conventional understanding of fixed points
and RG flows suffices to help us understand how RG techniques give us not just macroscopic
information, but also information about the existence of a UV limit. Here, I sketch the RG as
typically presented conventionally, explain its significance for foundational questions, and
point to the places where a constructive treatment might fill in some gaps. I leave the
constructive treatment to Section 5.2.

The RG is a particularly effective way of computing the partition function (1).
Intuitively, the operation of an RG transformation can be thought of as integrating out
high-momentum degrees of freedom to obtain an effective action over the remaining low
momenta. Formally, this transformation is often written as follows:

(3)
∫

DφL

∫
DφHeS[φH ,φL] =

∫
DφLeSΛ[φL],

where φL indicate field configurations whose Fourier transforms have support over momenta
less than Λ, and φH indicate field configuations whose Fourier transforms have support over
momenta more than Λ. SΛ[φL] is known as the effective action because it “acts like the full
action” S[φH ,φL] but involves fewer degrees of freedom. It behaves like the full action when
we describe our system with a reduced set of variables, that is, with only φL instead of
φL +φH . This strategy of using effective actions at lower momentum scales to help evaluate
the full integral is important in constructive field theory and in less rigorous work within QFT.
Roughly speaking, RG methods proceed by doing many such integrations over infinitesimal
momentum shells. This is a more effective way of computing the partition function compared
to methods that try to integrate over all momenta at once, because many of the expansions that
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we have found to be helpful in evaluating the partition function are effective only at fixed
momentum scales.

Denote the transformation (3), taking a more fine-grained action to a more
coarse-grained action, by R . The more times we iterate R on the action S, the larger the range
of momenta we can integrate over. Each application of R changes the coupling parameters of
terms in the action.4 That is, each R moves S along a trajectory in the space of actions.
Sometimes this flow can end up in a fixed point: a point where the transformation maps the
action defined by that point in the space of actions to itself. That is, a fixed point is a point S
where R S = S.

The existence of a fixed point is important for determining if a given Lagrangian has a
UV limit. A continuum theory exists if at an arbitrary fixed momentum scale ΛL, the effective
action SΛL that we calculate using RG transformations converges as the momentum cutoff
goes to infinity. That is, suppose we have calculated SΛL by iterating R many times on an
initial action SΛUV , where ΛUV is a momentum scale higher than ΛL. We then see what
happens to the SΛL that we calculate with iterated R s as we increase ΛUV . The theory
associated with SΛL has a UV limit if there is some S for which limΛUV→∞ SΛL = S. That is, it
has a UV limit if, as we raise ΛUV and have to repeat R more and more times in order to
compute SΛL from increasingly fine-grained actions, we get a stable result for SΛL , showing
the existence of a fixed point. In this way, the existence of fixed points of a certain sort can
help us answer the question about whether various models of QFT can exist in contiuous
spacetime.

Importantly, even though it is true that R only takes us from a more fine-grained,
microscopic action to a more coarse-grained, macroscopic action, it is nevertheless the case
that we can use R to determine whether a UV limit exists, by way of the fixed point analysis
just described. This reveals the mistake in Fraser’s claim that R , as a coarse-graining
procedure, can only be a tool to get from the microscopic principles to macroscopic
predictions and not a way to illuminate the microscopic content of the theory.

Indeed, in general, the methods used in constructive field theory to determine whether
a given Lagrangian exists in the continuum limit all rely on some kind of multiscale analysis
for problems with spacetime dimension D≥ 3 (Douglas 2011). The phase space analysis of
Glimm and Jaffe (1987) is another example of such a multiscale analysis. The importance of
the RG and phase space analysis in finding continuum solutions of QFT shows that the fact
that a mathematical method implements some kind of scaling does not imply that it is merely
a way to get from an already given microscopic physics to a merely “phenomenological”
macroscopic physics.

4This includes the possibility that terms that didn’t exist before gain a non-zero coefficient under the transforma-
tion.



Copyright Philosophy of Science 2015
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

5. CONSTRUCTIVE FIELD THEORY AND THE RENORMALIZATION GROUP

While we saw in the previous section how the RG as expressed in conventional QFT
sheds light on the existence of UV limits, constructive field theory distinguishes itself from
other means of finding a UV limit by its greater rigor. This rigor consists in:

(1) Making sure that the relevant functional integrals are well-defined;
(2) In computing the functional integrals, making sure that the approximations and

expansions used are well-controlled.
I illustrate point 1 in Section 5.1 and point 2 in Section 5.2.

5.1. Functional Integrals in Constructive Field Theory. I now sketch the constructive field
theory approach to defining functional integrals. For simplicity, I consider the φ4 theory (with
dimension unspecified for now). Constructive field theorists like to operate with Euclidean
functional integrals because this allows them to use the theory of Gaussian integrals. Much of
the work in defining (1) draws from this probability theory basis. In Euclidean field theory, we
can regard the real-valued fields φ(x) as random variables on the d-dimensional Euclidean
space Rd . These random variables are associated with a Gaussian measure that is perturbed
by an interaction term. The Gaussian measure is associated with the properties of free
particles, and the interaction term with interactions between particles.

The Gaussian random field φ(x) has a mean given by
∫

φ(x)dµC(φ) = 0 and a
covariance given by

∫
φ(x)φ(y)dµC(φ) = (−∆+m2)−1(x,y)≡C(x,y). We can formally write

C(x,y) =
∫
Rd

eip(x−y)

p2+m2 d p, which will help us understand ultraviolet regularization later. The
Schwinger functions 〈F(φ)〉 can be formally written as

(4) 〈F(φ)〉= 1
Z

∫
F(φ)e−V (φ)dµC(φ),

where Z =
∫

e−V (φ)dµC(φ). In the case of φ4 theory, V (φ) = λ
∫
Rd φ(x)4dx, where λ is a

coupling parameter.
The first task of constructive field theory is to modify the above expression for 〈F(φ)〉

so that it is well-defined. The measure dµC(φ) is generally not well-defined before the
following steps: ultraviolet regularization, infrared regularization, and, in four dimensions, the
addition of counterterms.5 Ultraviolet regularization is required to ensure that the product of
distributions φ(x)4 is well-defined. This is usually done through a momentum cutoff or lattice
regularization. For brevity’s sake, I outline only the momentum cutoff method. The
momentum cutoff is imposed by altering C(x,y) to Cε(x,y) =

∫
Rd

eip(x−y)

p2+m2 e−ε|p|2d p, ε > 0.
Infrared regularization imposes a finite volume Λ over which the integral for V (φ) is to be
carried out. So V (φ) becomes VΛ(φ) = λ

∫
Λ

φ(x)4dx. Finally, if d = 4, we have to add a
counterterm δVΛ,ε to VΛ, so we have VΛ,ε =VΛ +δVΛ,ε in the exponent instead.6

5In two or three dimensions, the φ4 model is superrenormalizable and no counterterms are needed.
6I leave out the details of the form of δVΛ,ε for brevity. See Watanabe (2000) for details.
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The upshot of all this is that the formal expression (4) is turned into a well-defined
expression:

(5) 〈F(φ)〉Λ,ε =
1

ZΛ,ε

∫
F(φ)e−VΛ,ε(φ)dµCε

(φ).

The task of constructive field theory is to show that this expression has a well-defined limit as
ε→ 0 and Λ→ ∞. If this limit exists, then the Lagrangian in question has a UV limit.
Multiscale methods allow one to evaluate the integral by decomposing it into momentum
scale-indexed parts. This decomposition allows for each scale-indexed part to be evaluated
using certain kinds of expansions, without running into problems with the expansions failing
when they try to cover too large a momentum range. The RG is one such multiscale method,
and we will now see how it works in constructive field theory.

5.2. Applying the Renormalization Group Rigorously. In Section 4 we saw a sketch of the
physical ideas behind the RG. Constructive field theorists implement the same ideas using
more rigorous mathematics. As with more cavalier implementations of the RG, the existence
of a UV limit in constructive field theory is linked to the existence of fixed points of RG
transformations. However, many RG methods used in conventional QFT fail to account for
the large field problem. Many non-perturbative approaches to the RG make use of
non-perturbative approximations that we do not know how to place error bounds on.7

Constructive field theory tries to find the UV limit using approximations that are better
controlled than those of conventional QFT. One way to do this is via the exact renormalization
group (ERG).8 The term “exact” in this context indicates that the RG is implemented
non-perturbatively and that the approximations involved are well-controlled. Benfatto,
Cassandro, Gallavotti, Nicoló, Olivieri, Presutti, and Scacciatelli (1980), Gawȩdzki and
Kupiainen (1983), Gawȩdzki and Kupiainen (1985), Brydges, Dimock, and Hurd (1995), and
Abdesselam (2007) are examples of how the ERG is used in constructive field theory. I now
sketch an RG analysis based on integrating out fluctuations over slices of momentum space,
showing how one may determine whether a given Lagrangian has a UV limit in this way.9

As mentioned in Section 4, the basic idea of the RG is to integrate the functional
integral over momentum slices. This avoids the failures of various kinds of expansions when
one integrates over a large range of momenta in one step. In the constructive field theory
framework this integration can take place by dividing the covariance Cε into parts that

7For example, this a defect of the “functional renormalization group” tradition, as Gurau, Rivasseau, and Sfondrini
(2014) point out.
8A note of caution: some who work in the tradition of the functional renormalization group take themselves
to be using the “exact” renormalization group, which they take to a term referring to Wilson’s non-perturbative
understanding of RG flows (Rosten 2012; Bagnuls and Bervillier 2001). However, as explained previously, the
lack of precise error bounds on their approximations sets them apart from the constructive field theory tradition.
9Besides momentum slice integration, another way of implementing the RG in constructive field theory is the
block spin transformation, where one treats the quantum field in a lattice setting.
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correspond to momentum slices. Notating Cε as D for convenience, we have

D =
N

∑
k=0

Dk,

with independent Gaussian variables φk(x) that each have mean 0 and covariance Dk. Each φk
corresponds to a fluctuation field of momentum scale Lk. The slices of measure Dk are defined
as follows:

Dk(x,y) =
∫
Rd

eip(x−y)

p2 +m2 (χ(L
−k)−χ(L−(k−1)p))d p, k = 1,2, . . . ,N,

D0(x,y) =
∫
Rd

eip(x−y)

p2 +m2 χ(p)d p,

where χ(p) = e−p2
serves as a cutoff function. The Dk serve the purpose of scale

decomposition because each Dk effectively isolates the range of momenta between Lk−1 and
Lk.

Defining H(φ)≡ HN(φ) = e−VΛ,ε(φ), φk,0 = ∑
k
j=0 φ j, and Dk,0 = ∑

k
j=0 D j,

k = 0,1, . . . ,N, we can define the operation of scaling out higher momenta as follows:

(6) Hk−1(φk−1,0) =
∫

dµDk(φk)Hk(φk +φk−1,0), k = N,N−1, . . . ,1.

Hk−1 is simply the coarse-grained version of Hk, with the higher momenta integrated out. In
an RG analysis, we would want to iterate this operation of integrating out higher momenta.
Before iterating it, however, we rescale the field φk−1,0 so that it has a wavelength comparable
to φk’s. The rescaled field is defined as φ̃k(x) = L−k(d−2)/2φk(L−kx). We also rescale the
covariance Dk, the details of which I omit for brevity.10 Then we define the rescaled Hk by

H̃k(φ̃k,0) = Hk(φk,o).

This gives us the RG transformation

H̃k−1(φ̃k−1,0) =
∫

dµD̃k
(φ̃k)H̃k(φ̃k(·)+L−(d−2)/2

φ̃k−1,0(L−1·)).

While we have been using the notation H(φ) = e−VΛ,ε(φ) for convenience, we can think
of the RG transformation as acting on the action V . Each transformation consists of the
following steps:

(1) Rescaling of the fields;
(2) Integrating over a momentum slice;
(3) Taking the logarithm of H̃k−1 to get the V needed for the next transformation.

10See Watanabe (2000) for details.
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The problem of finding a well-defined Lagrangian in the ultraviolet limit then reduces to
seeing if V converges in the limit of infinitely many RG transformations: in the limit of
k→ ∞. The convergence of V in this way corresponds to the existence of the fixed point we
are looking for, as explained in Section 4.

Constructive field theory differs from other ways of implementing the RG in how well
it controls the approximations that are involved. For bosonic interactions, the step of taking
the logarithm of H̃k−1 is not well-defined for certain values of φ. This is the large field
problem. Constructive field theory deals with this by carrying out the transformation only for
small fields. The steps of integrating out fluctuations in a momentum slice and taking the
logarithm are carried out only for small fields. This means that we can use a cluster expansion
for the former step and a Mayer expansion for the latter step. Both these expansions would
not be well-controlled in the large field region. There are various methods for controlling the
large field region. Because of their complexity, I can only list them here without going into
the details: the domination procedure (Feldman, Magnen, Rivasseau, and Sénéor 1987),
polymer systems (Pordt 1994), and using the fact that “large fields” occur with a relatively
small probability (Balaban, Imbrie, and Jaffe 1984).

6. CONCLUSION

I have argued against a view that the RG in QFT is merely a way to get from the
fundamental physics given by axiomatic QFT to macroscopic experimental predictions.
Rather, the RG is also an important method in constructive field theory to figure out whether
certain Lagrangians have well-defined UV limits that satisfy the axioms that we think a QFT
ought to satisfy. Furthermore, the RG as employed in constructive field theory is not of
questionable rigor.

The view that I criticise is one in which axiomatic QFT provides the theoretical
content of QFT while the RG provides a way to get from this theoretical content to
macroscopic empirical predictions. On this view, for interpretive purposes we need only focus
on axiomatic QFT. However, constructive field theory provides an important means of access
to more of the theoretical content of QFT, with the RG providing a means of access even to
the microscopic physics of QFT. This suggests that axiomatic QFT is at best a kind of partial
characterization of the theoretical content of QFT. Indeed, mathematical physicists have long
acknowledged that constructive QFT provides additional dynamical information that a pure
axiomatic approach does not (Wightman 1976; Horuzhy 1990). If so, we should not too
hastily dismiss the interpretive significance of computational methods that do not explicitly
appear in the axioms of QFT, for these methods may be able to tell us if certain dynamics can
occur in continuous spacetime.
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