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Abstract

In this paper I begin to lay out a conceptual scheme for: (i) analysing dualities as
cases of theoretical equivalence; (ii) assessing when cases of theoretical equivalence are
also cases of physical equivalence. The scheme is applied to gauge/gravity dualities. I
expound what I argue to be the contribution of gauge/gravity dualities to questions about:
(iii) the nature of spacetime in quantum gravity; (iv) broader philosophical and phyiscal
discussions of gauge/gravity dualities.

(i)-(ii) proceed by analysing duality through four contrasts. A duality will be a suitable
isomorphism between models: and the four relevant contrasts are as follows:

(a) Bare theory: a triple of states, quantities, and dynamics endowed with appropriate
structures and symmetries; vs. interpreted theory: which is endowed with, in addition, a
suitable pair of interpretative surjections from the triples to a domain in the world.

(b) Extendable vs. unextendable theories: which can, respectively cannot, be extended
as regards their domains of applicability.

(c) External vs. internal intepretations: which are constructed by coupling the theory
to another interpreted theory, respectively from within the theory itself.

(d) Theoretical vs. physical equivalence: which distinguish formal equivalence from the
equivalence of fully interpreted theories.

I also discuss three meshing conditions: between symmetries and duality, between
symmetries and interpretation, and between duality and interpretation. The meshing
conditions lead to a characterisation of symmetries as redundant or as physical, and to a
characterisation of physical equivalence as a commutativity condition between two maps.

[ will apply the above scheme to answering questions (iii)-(iv) for gauge/gravity du-
alities. I will argue that the things that are physically relevant are those that stand in a
bijective correspondence under gauge/gravity duality: the common core of the two mod-
els. I therefore conclude that most of the mathematical and physical structures that we
are familiar with in these models (the dimension of spacetime, tensor fields, Lie groups,
and the classical-quantum distinction) are largely, though crucially never entirely, not
part of that common core. Thus, the interpretation of dualities for theories of quantum
gravity compels us to rethink the roles that spacetime, and many other tools in theoretical
physics, play in theories of spacetime.



Contents
Introduction

1 Theories, duality, and physical equivalence

1.1 The conception of a theory . . . . . . . . . . . ... ... ...
1.1.1 Bare theory . . . . . . . . . . ...
1.1.2 Interpreted theory . . . . . .. .. ... .. ... .. ... ...,
1.1.2.a The two interpretation maps . . . . . .. . ... ... ...
1.1.2.b Theoretical principles . . . . . . .. .. ...
1.2 The conception of duality . . . . . .. ... ... ...
1.3 From theoretical equivalence to physical equivalence . . . . . . . . . . ...
1.3.1 External and internal interpretations of a theory . . . . . . . . . ..
1.3.2 A Newtonian example of external interpretation . . . . . ... . ..

1.3.3  Unextendability implies internal interpretations, and so duality im-
plies physical equivalence . . . . . . . ... ... oL
1.4 Comparison with Glymour’s notion of equivalence . . . . . . . ... .. ..

2 Spacetime eliminated?
2.1 What do the theories say? . . . . . . . . . .. ...
2.2 Does what the theories say include ‘spacetime’? . . . . . . ... ... ...

3 What are the broader implications of duality?
3.1 Implications for theory construction: support for holography . . . . . . ..
3.2 Metaphysical implications . . . . . . . . ... ...

4 Comparing with recent work on dualities
4.1 Some recent work on dualities . . . . . . . .. ...
4.2 Huggett on T-duality . . . . . . .. . .. .. .
4.3 Rickles and Fraser . . . . . . . . .. ...

Envoi
Acknowledgements

References

24
25

28
28
29

34
35
36

38
38
40
42

44

45

45



Introduction

Dualities raise interesting philosophical questions regarding the physical equivalence of
theories, the relation between duality and symmetry, and the nature and properties of
the ‘common core’ shared by two dual theories. Philosophers of physics have started to
address the philosophical significance of dualities in recent years.

In this paper I begin to develop a scheme for answering the question of physical
equivalence and the relation between duality and symmetry. I will apply the scheme to
the case of gauge/gravity dualities, thereby exhibiting part of the common core which is
shared by the two theories, with implications for the nature of spacetime as described by
these theories, and for the content which two dual theories take to be ‘physical’.

The paper has two parts. In the first part of the paper (Section 1), I will lay out
the conceptual scheme which I begin to develop here, and which will be used to answer
the questions of: (i) theoretical equivalence, (ii) physical equivalence. In the second part
of the paper (Sections 2-4), I will discuss the questions: (iii) the nature of spacetime in
theories of quantum gravity, and (iv) the broader philosophical and physical implications,
for the case of gauge/gravity dualities.

My argument in the first part of the paper will proceed by analysing dualities in terms
of four contrasts, as follows.

A duality is an isomorphism between theories (more specifically: between bare theo-
ries, see (a) immediately below). Then the four contrasts are:

(a) Bare theory vs. interpreted theory: A bare theory is a triple of states, quantities,
and dynamics, each of which are construed as structured sets, invariant under appropri-
ate symmetries. An interpreted theory has, in addition, a pair of surjections to physical
quantities (at the very least: but an interpretation will typically include more): which are
what we call the interpretation.

(b) Extendable vs. unextendable theories: theories which do, respectively do not, ad-
mit suitable extensions in their domains of applicability. I will also allow for a weaker
conception of ‘unextendable theory’, according to which unextendable theories may ad-
mit an extension via e.g. couplings to other theories in their domain, but such that their
interpretations are robust, i.e. unchanged under such extensions.

(c) External vs. internal intepretations:® interpretations which are obtained from out-
side (i.e. by coupling the theory to a second theory which has already been interpreted),
respectively from inside, the theory. Here, “inside the theory” means that the inter-
pretation stems from the structure and symmetries of the bare theories, i.e. the triples,
themselves: from the role which states, quantities, and dynamics have within the theo-
retical structure.

(d) Theoretical vs. physical equivalence: formal equivalence (i.e. agreement of the bare
theories, but with possible disagreement of the interpretations) vs. full equivalence of the
interpreted theories: i.e. agreement of both the bare theory and the interpretive maps.

These contrasts build on each other: so that (a) is used in the analysis of (b); (a) and

1See e.g. Rickles (2012), Matsubara (2013), Dieks et al. (2015), De Haro (2016, 2016a), De Haro et
al. (2016, 2016a, 2016b), Huggett (2016), Fraser (2016), McKenzie (2016), Rickles (2016), Castellani
(2016), Teh et al. (2016). For a comparison with these works, see Section 4.

2See Dieks et al. (2016: §3.3.2).



(b) are jointly used in the interpretative analysis of (c); and (a)-(c) are all needed in order
to reach a verdict distinguishing theoretical vs. physical equivalence, as (d) intends.

The scheme (a)-(d) contains three related maps, viz. symmetry transformations, in-
terpretative map, and duality. Since these maps have the theory concerned as a relevant
domain or codomain, there are three meshing conditions that we need to consider for
the corresponding notions, viz. between: (1) duality and symmetry, (2) symmetry and
interpretation, (3) duality and interpretation. I express these meshing conditions as ap-
propriate commutativity conditions for the respective maps:

(1: SymT) A symmetry transformation of the theory must commute with the duality
map between the models (§1.1.1 and §1.2).

There is a second kind of meshing condition which holds for symmetries of the models
which are not symmetries of the theory, and which is more restrictive:

(I': PSymM) A proper symmetry of the model (one that is not a symmetry of the
theory) is represented trivially on the duality map, i.e. d o o = d, where d is the duality
map, and o is the symmetry transformation of the model (§1.1.1).

(2: Physical) A symmetry transformation of the theory commutes with the internal
interpretation of the theory. This makes the corresponding symmetry transformation
physical, on the internal interpretation (§1.1.2.b).

There is a similar kind of strengthening of this condition to the one in (1’), when the
symmetries considered are proper symmetries of the models:

(2’: Redundant) A proper symmetry o of the model is represented trivially on the
internal interpretation map, i.e. Iy o ¢ = I, where Iy is the internal interpretation
map. This makes the corresponding symmetry transformation redundant, on the internal
interpretation (§1.1.2.b).

(3: PhysEquiv) The internal interpretation of a theory commutes with the duality
map between its models. Given appropriate conditions for the theory, this makes the two
models physically equivalent (§1.3.1).

My account will provide sufficient details so that the scheme introduced in this paper
can be readily applied to other cases, and I will give several examples that will work toward
applying the scheme to gauge/gravity dualities. However, a full account of theoretical and
physical equivalence, doing full justice to the intricacies of the matter, will have to be left
for the future.

Of course, not all of the above notions are completely new. But my construal of them
is largely novel (the only exception being the contrast (c), for which I am in full agreement
with, and just develop further, the position of Dieks et al. (2015) and De Haro (2016)). In
particular, the way I here articulate the notions of theoretical and physical equivalence in
terms of the contrasts (a)-(d), so that I can successfully analyse dualities, and the way I
here discuss the meshing conditions between duality, symmetry, and interpretation in (1)-
(3), are novel and are intended to add to the literature on both dualities and equivalence
of theories.

In the second part of the paper (Sections 2-4) I will apply the scheme (a) to (d), with
the meshing conditions (1)-(3), to gauge/gravity dualities in more detail, so as to clarify
the contribution of gauge/gravity dualities to answering the questions of: (iii) the nature
of spacetime in quantum gravity, (iv) the broader philosophical and physical implications,
including the question of the content which the theories regard as physical. Gauge/gravity
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duality is one particular approach to quantum gravity.® It was developed in the context
of string and M theory, but it has broader ramifications: e.g. applications to condensed
matter physics and heavy-ion collisions (Ammon and Erdmenger (2015: III)). Briefly,
gauge/gravity duality is an equivalence between:

(i: Gravity) on the one hand: a theory of quantum gravity in a volume bounded inside
a certain surface.

(ii: QFT) On the other: a quantum field theory defined on that surface, which is
usually, in most models, at ‘spatial infinity’, relative to the volume.

Such a relation between a (d + 1)-dimensional theory and its d-dimensional image is
also called ‘holographic’. I will argue that, despite the apparent innocence of the references
to spacetime appearing in the previous sentence summarising the duality: the physical
interpretation of this duality calls for a revision of the role that most of our physical and
mathematical concepts are supposed to play in a fundamental theory—most notably, the
role of spacetime. And the interpretation of the duality itself requires us to carefully
reconsider the philosophical concepts of theoretical equivalence and physical equivalence,
as in the first part of the paper.

The overall plan of the paper is thus as follows. Section 1 introduces the notions
of theory (§1.1), duality (§1.2), theoretical equivalence, and physical equivalence (§1.3);
and I compare with Glymour’s notion of equivalence (§1.4). In Section 2, I analyse
gauge/gravity duality as a theory with two models, whose ‘common core’ is what the the-
ory says (§2.1): and I discuss whether the content of this common core includes spacetime
(§2.2). In Section 3, I discuss the broader implications of duality for: (i) theory construc-
tion (§3.1); (ii) metaphysics (§3.2). In Section 4, I discuss the relation of my scheme to
recent work on dualities. The final Section concludes.

1 Theories, duality, and physical equivalence

In §1.1, I will specify more exactly what I mean by ‘theory’ and related notions, especially
a ‘quantity’ and an ‘interpretation’. In §1.2, I will give my conception of a duality between
such theories. §1.3 describes how, for theories ‘of the whole world’, duality is tantamount
to physical equivalence, i.e. the theories at issue being really the same theory. In §1.4, I
compare my account with Glymour’s notion of equivalence.

1.1 The conception of a theory

Before we are ready to engage with the interpretation of dualities (which we will do
in §1.2-§1.3), there is some work to do: we need to have conceptions of theory which
are sufficiently articulated that they make it possible to build an analysis of physical
equivalence on them. I first introduce, in §1.1.1, the notion of a bare theory. Then, in
61.1.2, T discuss what an interpretation is, and thus introduce the notion of interpreted
theory.

3For an expository overview, see e.g. Ammon and Erdmenger (2015). For a conceptual review, see De
Haro et al. (2016b).



1.1.1 Bare theory

I take a bare theory to be a triple T' = (H, Q, D) consisting of: (i) a set H of states,
endowed with appropriate structure; (ii) a set of physical quantities Q, endowed with
appropriate structure; (iii) a dynamics D. Such a triple will generally also be endowed with
symmetries, which are automorphisms s : H — H preserving (a subset of) the valuations
of the physical quantities on the states (for details, see De Haro et al. (2016: §3.3)), and
which commute with (are suitably equivariant for) the dynamics D.

For a quantum theory, which will be our main focus, we will take H to be a Hilbert
space; Q will be a specific subset of operators on the Hilbert space*; and D can be taken
to be a choice of a unique (perhaps up to addition by a constant) Hamiltonian operator
from the set Q of physical quantities.” In a quantum theory, the appropriate structures
are matrix elements of operators evaluated on states; and the symmetries are represented
by unitary operators.

A theory may contain many more quantities but it is only after we have singled
out the ones which have a physical significance that we have a physical, rather than a
mathematical, theory or model. The quantities O, the states H, and the dynamics D
have a physical significance at a possible world W, and within it a domain D, though
it has not yet been specified what this significance may be, nor what the possible world
looks like®. To determine the physical significance of the triple, a physical interpretation
needs to be provided: which I do in the next subsection.

So I will dub as the bare theory: just the formal triple T = (H, Q, D), together with
its structure, symmetries, and rules for forming propositions, such as: “the value of the
operator () € Q in the state s € H is such and such”. But there is no talk of empirical
adequacy yet.

We normally study a theory through its models. A model is construed as a represen-
tation of the theory, the triple (H, Q,D),” and will be denoted by M. A model M of
a theory T may include, in addition to the triple, some variables which are part of the
descriptive apparatus but have no physical significance (in the sense of the paragraph
before the previous paragraph) from the point of view of the theory: I will call this the
surplus representational structure of the model M. A theory (H, Q, D) will then be taken
to be an equivalence class of such models. Since the class can be represented by any
of its models, my account does not seek to eliminate the surplus representational struc-
ture, which varies from one model to another, but rather to identify the core (#, Q, D)

4Namely, self-adjoint, renormalizable operators that are invariant under the relevant symmetries.

SBut more generally: the dynamics does not always have to give rise to, or be limited to, a time
evolution. A non-trivial constraint imposed on the set of states will also count as dynamics.

6Tt is important to recognize that this framework allows for the construction of theories and models
that do not describe actual physical reality. While one can give various metaphysical construals to
concepts such as ‘possible worlds’, I am here just considering the ways in which the possible worlds can
be, in the context of a ‘putatively fundamental’ spacetime physics. Thus I do not mean to subscribe to
a specific metaphysics of possible worlds. See also footnotes 17 and 21.

"The representations should be equivalent. In the context of duality, the potential problem of having
inequivalent representations is avoided by the construal of a duality as an isomorphism between models,
so that the inequivalent representations are automatically ruled out by the duality. Thus a theory will
be an equivalence class of models. See §1.2.



of the theory: as that structure which is preserved across equivalent models (this kind
of isomorphism will be discussed in §1.2). In De Haro et al. (2016: cf. §3.1(1)) such a
construal of theory was called a ‘via media’. This account of model is more general than
a prevalent understanding of ‘model of a theory’ as a specific history of a system (but also
more specific in another respect, as explained in the same reference). In particular, in our
duality of interest, gauge/gravity duality, I will regard the two sides to be two different
models of the theory.

The models of the theory can, in their turn, have a set of models, in the more restricted
sense of ‘solutions to the equations’ describing histories of the system. On a suitable
physical interpretation, many of these solutions will be inequivalent. So we quotient a
theory by its equivalence class of models on the main sense of models which I use in this
paper, but not on the more restricted sense. In what follows, I will use ‘model’ exclusively
in the sense defined above, viz. as a representation of the triple T

Having introduced theories and their models, we should now distinguish the symme-
tries of the theory from the proper symmetries of the models:

(SymT) [version 1] The symmetries of the theory are automorphisms s : H — H
preserving (a subset of) the valuations of the physical quantities on the states (for de-
tails, see De Haro et al. (2016: §3.3)), and which commute with (are suitably equivariant
for) the dynamics D. In the conception of a duality which I will introduce in the next
subsection, I will require the duality to preserve the symmetries of the theory. Because
the symmetries of the theory T are constitutive to the its definition as a triple, and the
models M instantiate the theory, it follows that the symmetries of the theory are also
symmetries of the models (though the way in which these symmetries are represented
does, of course, vary from model to model: and the more interesting a duality is, the
more these representations differ!). More precisely, a symmetry s of the theory T induces
a symmetry o(s) of the model M. For an example of a symmetry of the theory, see the
discussion of conformal symmetry, in §2.2, as being part of the ‘common core’ of the two
models.

(PSymM) [version 1] The proper symmetries of the models are those symmetries of
the models (viz. of a single model) that are not symmetries of the theory, in the sense of
being trivially represented (as identity maps) by the theory (and by the other models of
the theory). In other words, they are symmetries of the surplus representational structure
of a particular model. Since a proper symmetry of a model is not a symmetry of the
theory (nor is it a symmetry of the other models of the theory), these symmetries do not
map (they map trivially) across duality.

In the seemingly intermediate case in which a symmetry of a model maps only partially
(through a forgetful map), but nontrivially, to another model under duality, the part of
that symmetry which is common to all the models still counts as a symmetry of the
theory. ‘Mapping partially’ here should be understood in terms of the generators of the
symmetry: a (PSymM), e.g. a diffcomorphism, usually has several generators: some of
which map, and some of which do not map, under duality. In such a case, in which the
generators form a symmetry which maps under duality and hence generate a symmetry
of the triple, the part of the symmetry which maps counts as a symmetry of the theory.



In other words, from this intermediate symmetry we can derive a true symmetry of the
theory. Thus we count as ‘symmetries of the theory” any symmetries of the models which
furnish nontrivial representations of some symmetry of the theory. An example of this
are the conformal transformations in gauge/gravity duality, as represented on the gravity
side.

The above view on symmetries was active, i.e. it was defined as a map changing the
states s : H — H. This immediately prompts the idea of a passive symmetry, through s’s
dual map on quantities, s* : @ — Q (De Haro et al. (2016: §3.3)).

In what follows, it will be convenient to regard a symmetry, whether active or passive,
as a map on a triple. For an active symmetry, the map s : T" — T acts on non-trivially
the states, s : H — H, and it commutes with (it acts trivailly on) the elements of Q
and with the dynamics. A passive symmetry s* : T' — T acts as the unit map on the
states, it maps s* : @ — @, and it commutes with the dynamics. As I argued above,
the symmetries of the theory are also symmetries of the models, hence a symmetry s of
a theory T induces a map o(s) : M — M on each of its models, i.e. an automorphism of
the model.

Notice that the question whether symmetries should map across duality is a different
one from the question which symmetries should be regarded as physical; though the two
questions are, of course, related. The reason for the difference is that the question of
what is physical can only be answered once an interpretation has been given (which I
will do in the next subsection). The distinction between symmetries which are redundant
and symmetries which are non-redundant (hence physical) was discussed, in the case of
dualities, in De Haro et al. (2016: §2).

1.1.2 Interpreted theory

There is a certain minimalism to the above definition of theory: since in scientific practice
one must be able to tell, in a given experiment or physical situation to which the theory
is supposed to apply, what the relevant quantities are which correspond to the empirical
data. The above specification of a theory as a triple makes no reference to this as yet:
only the existence of some such relation, for some possible world W, is assumed. So,
when interpreting a theory one wishes to do the following (the numbering below follows
the numbering of the interpretation maps, in §1.1.2.a):

(0) establish the meaning of certain theoretical entities (if one is a realist), whether
directly measurable or not.

(1) establish some kind of bridge principles between the physically significant parts of
the theory and the world.

These two desiderata will be fulfilled by the two interpretative maps (which will be
denoted I3, , and I}, j, respectively, in 1.1.2.a), where T'is the theory and D is the relevant
domain which it describes, at the world W .8 Furthermore, one may also wish to establish
theoretical principles (1.1.2.b) which, for example:

8D is called the ‘domain’ because it is the physical domain of the world which is described by the
theory. But D is, mathematically, the codomain, rather than the domain, of the interpretative map.
There should be no confusion between the physical and mathematical uses of ‘domain’.



(2) interconnect various experimental results (causality, locality, and symmetry being
just three examples of such theoretical principles often considered in physics);

(3) plug interpretations into some of the things that go into the choices made by the
experimenter.

Doing this is the role of the ‘physical interpretation’, which consists of two parts:

1.1.2.a The two interpretation maps

I take a physical interpretation to be a pair of surjective maps, preserving appropriate
structure, from the theory to some suitable set of physical quantities. I will denote the
maps as Irw = (I, Irw) : T — D, where T is the triple (or Cartesian products
thereof)? and D is the domain at the possible world . (Since, once the theory is spec-
ified, it is also clear which domain it purports to describe, I will often drop the second
subscript and write the map as Ir.)

The first surjective map, I2, is from the triple, H, @ and D, to the quantities in the
world (potential energy, magnetic flux, etc.), realized in a particular laboratory experi-
ment, in the domain D to which the theory applies.

An example of such a map is: I%(Q) = g, where ¢ is the quantity'’® (endowed with
appropriate units) in the laboratory experiment corresponding to Q € Q. For classical
theories, ¢ is itself a map recording the time evolution of the possessed value, ¢ : R — R,
given by ¢ — q(t), where t represents time, and ¢(t) is the possessed value of the quantity
at time ¢. For instance, in a classical theory that is invariant under time translations, ()
could represent the Hamiltonian and ¢ the energy, which is a constant map sending each
time instant ¢ € R to the (time-constant) value ¢(t) of the energy in the system.

The second surjective map, I}, preserving appropriate structure, is from the triple,
H,Q and D (or Cartesian products thereof), to the set of values (the set of numbers
formed by all possible experimental outcomes) in the domain D to which the theory
applies, at some world W. That set of values is typically (minimally) structured, and
such minimal structure is to be preserved by the map. Thus typically, the second map
maps: I+ : H x @ — R, where R is endowed with addition and multiplication (for a
concrete example, see §1.3.1), and there is a similar map for the dynamics. As mentioned,
Cartesian products of elements of the triple with themselves are needed in some cases.

Alternatively, the second map can also be described as mapping the wvalues of the
physical quantities Q, evaluated on the appropriate states, to the possible experimental
outcomes.*!

9In quantum mechanics, the interpretation map maps e.g. expectation values to real numbers in the
world. The expectation values themselves are maps from Cartesian products of states and quantities to
real numbers. This is why Cartesian products of theories are needed.

10Tn what follows, ‘physical quantity’ will always refer to members of Q, so there will be no confusion.

"Tn a classical theory, there is usually no need for the distinction of the two maps (I%, I1.), because the
physical quantities have definite values. In a quantum theory, the instrumentalist, who is not necessarily
commited to a particular interpretation of states and operators as corresponding to definite physical
quantities, may wish to do away with the first map, so that only the second map, I}, is left. The latter is
the map the values of which are the probabilities (when evaluated on states) and Born-rule expectation
values (when evaluated on operators). We will take these differences in our stride, so that the interpretive
scheme developed here should apply to all these cases, once the maps are judiciously chosen (or, as the



The codomains of I% p and 1%7 p thus defined seem, at first sight, to be again just formal
entities, themselves in need of interpretation—a space of functions in the first example,
a set of real numbers endowed with addition and multiplication, in the second. But this
is not quite what we are doing. We should really think of the codomain as representing
the real world in a straightforward way: so, the reals measuring the energy are to be
thought of as, for example, the position of a voltimeter’s pointer on a scale: a location
in space labelled by a number with appropriate units—or, simply, a real number, with
its units, on the voltimeter’s electronic display: a specific digital signal (for some explicit
examples, see §1.3.1). The point is to map from theories to structured sets of functions
and numbers, which do not describe more theory, but rather are identified with a set of
possible physical situations, physical configurations, or experimental outcomes.

The domain of the interpretation maps, which is the theory T, is large enough that
many possible worlds are described by the same theory T and different interpretation
maps. For instance, the state space H will generally contain single-particle as well as
many-particle states, whereas a specific domain D, or even a particular possible world
W, may only contain one-particle states. So, for instance, take five different domains
Dy, ..., Ds; then, for each of them, we have a map Ir; : T — D; (i = 1,...,5). This
means that, for given D;, most elements of 7" map to the empty set ) C D;, where the
empty set straightforwardly corresponds to ‘nothing in the domain’. For example, the
interpretation map Ir; interprets a state s € H mapping to the empty set as ‘there is
no physical situation, in the domain of the world D;, corresponding to the state s’. And
a quantity, mapped by Ir; to the empty set, is interpreted as ‘there is no magnitude, in
the domain of the world D;, corresponding to that quantity’. And so on. Because the
domains D; are typically much smaller than what the theory 7" possibly describes, a large
number of elements in the domain map to the empty set for a given map Ir p, (but all
the elements in 7' should map nontrivially to some domain D at some possible world ).
Alternatively, one can take the interpretation maps to be partial maps, i.e. they do not
map all the elements in the domain 7" to elements in the codomain D. But given such a
partial map, one can always construct a total map in the way just discussed: by adding
the empty set to the codomain and mapping to it, thus obtaining the interpretation of
‘nothing in the domain’, as discussed above.

The above still leaves open the question of how these quantities in the world represent
the theory, which is what the contrast of external vs. internal interpretation (below, and
in §1.3) seeks to clarify.

In the above discussion I have so far assumed that the interpretative maps are from
the elements of the triples themselves, rather than from their models, to quantities in the
world. That is, we have assumed a map Iy p : 7' — D from elements of the theory 7" to
the domain D at the possible world W. We will call such an interpretation internal: it
requires nothing but the theory. But, as I will discuss in detail in §1.3.1, there are often
good reasons to pursue a different kind of interpretation: one which couples T to some
other theory T,,.., which is already interpreted, so that T" inherits its interpretation from

case may be, they be left empty, i.e. they map to the empty set on most of the domain, see two paragraphs
below). Thus the aim of this interpretive scheme is not to decide on metaphysical issues, but to formalise
our views once those decisions are made, so that the interpretations can be contrasted.
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T, es- Often, the coupling of T" to T,,.... will differ for the various models M of T'. In other
words, T,... may be coupled to M through M’s surplus representational structure. So we
need to distinguish:

(1) Ezternal interpretation of T: a pair of maps, as above, Ip; : M x T,,... — D from
the model M of the theory T, that is coupled to the theory of measurement T,..., to the
domain D C W. Obviously, a theory can have as many external interpretations as models
and as measurement theories to which it is to be coupled. Again, one may write the map
as Ip,p, but I will often drop the codomain.

(2) Internal interpretation of T a pair of maps, as above, It : T'— D from the theory
T to the domain D C W. There is no coupling to T,... needed.

External and internal interpretations will be taken up in detail in Section 1.3. As
remarked before, the domain of the map may involve Cartesian products of elements of
M or of T.

Internal interpretations must always map from theories not from models (I discuss this
further at the end of §1.3.1). On the other hand, the domain of an external interpretation
may be either the model M of the theory T, or the theory itself, depending on the inter-
pretation. So, a map Iy : T x T,... — D always gives rise to an external interpretation,
despite its mapping from T x T,... rather than M x T,.... Indeed, the key distinction
between the external and the internal interpretations is whether the domain of the inter-
pretative map includes anything more than the theory—viz. whether it includes a theory
of measurement, an extension of 7', or some of the surplus representational structure in a
model M of the theory T'. In Section 1.3 it will become clear, once we discuss the notion
of extendability, when one should apply an external or an internal interpretation.

1.1.2.b Theoretical principles

The physical interpretation provides the formalism with theoretical principles (to be real-
ized in an experiment) which constrain the phenomena, play a role in their explanation,
and describe various of their properties.!? Typically, these principles (of which the afore-
mentioned causality, locality, and symmetry are examples: cf. (2)-(3) in the preamble to
§1.1.2) are expressed as properties of, or appropriate restrictions on, the interpretive maps:
e.g. indicating symmetries, correlations between the possible experimental outcomes, etc.
For the purposes of this paper, the only theoretical principle which I will consider in detail
is that of symmetries. Working out examples of other theoretical principles, which are
reflected in the properties of the interpretative maps (e.g. locality as a property of the in-
terpretation map, seting to zero the correlations between quantities evaluated at spatially
separated points), will be left for the future. Nevertheless, I discuss them here briefly
because they are important to the discussions of the interpretations of theories which one
finds in the literature, as well as for the completeness of the interpretive scheme just laid
out.

We should now consider appropriate meshing conditions between the maps (1.1.2.a)

12A physical interpretation (which, for brevity, I will refer to as an ‘interpretation’) should not be
thought of as something imposed ‘from the outside’ on the theory (see §1.3). For this reason, I will use
the phrase ‘physical quantities’ rather than ‘observables’.
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and the principles (1.1.2.b) just introduced. For simplicity, I will concentrate on sym-
metries and on the internal interpretation. There are two meshing conditions between
symmetries and the internal interpretation to be considered. My two classes (Physical)
and (Redundant) below correspond to the non-redundant and redundant symmetries, re-
spectively, in the taxonomy of De Haro et al. (2016: §2), in the specific case of the internal
interpretation. They also correspond, broadly speaking, to Caulton’s synthetic, respec-
tively analytic symmetries (Caulton (2015)). They are as follows:

(Physical) An internal interpretation Iy must commute with every element of
(SymT). This is because the symmetries (SymT) are symmetries of the theory, which
must be respected by an internal interpretation, since the latter is based on the theory,
and the theory only.

By ‘commutes’ here, I mean that, if s : T — T is a symmetry of the theory,'® then
there is a corresponding map s’ : D — D on the domain of the physical world, such
that there is a commuting diagram: Ir o s = s o Ip. I will call the map s" a symmetry of
the world. Furthermore, s’ should be non-trivial whenever s is (see two paragraphs below).

(Redundant) A proper symmetry o of the model M is trivially represented on
an internal interpretation: Iy o o0 = Ip. Alternatively, in the notation of (Physical),
s' = 1id."* This is because the set (PSymM) was defined (in §1.1.1) as symmetries of the
models which are not symmetries of the theory. Since an internal interpretation has only
triples in its domain (and nothing else), it cannot map a symmetry of the surplus repre-
sentational structure (which is the structure on which the symmetries (PSymM) act) to a
non-trivial symmetry in the world: on pain of giving physical salience to things that are
not in the triple—and this is not the job of the internal interpretation. In other words,
a proper symmetry transformation should not make any difference on an internal inter-
pretation, since it changes elements in the model without changing anything in the theory.

One might think that there are cases of symmetries s of the theory T" which are not
symmetries of the world (in the sense of s’ : D — D under (Physical)), and thus commute
according to the more restrictive (Redundant), viz. as Iy o s = Ir. These putative
symmetries are found in the theory but not in the world. And so one might be inclined to
relax the condition (Physical), allowing s’ to be trivial. But since these are not symmetries
of the world, the putative theory 7' (more precisely: the formulation of it with which one
is working) has a redundancy. So one is actually dealing with a model M of T rather than
T itself. On quotenting M by s, one obtains a more perspicuous representation of 7', on
which s is trivially represented. So the putative (Physical) s is actually a (Redundant)
symmetry of M, and one should not relax (Physical).

The commutativity requirement for (SymT) implies that, under the internal interpre-

13For how s acts on each of the components of the triple T, see the remark in the penultimate paragraph
of §1.1.1.

More precisely, but perhaps a bit pedantically, one might write: IroFos = IpoF, where F : M — T
is a forgetful map, from the model to its corresponding triple. This forgetful map effectively removes
the surplus representational structure from M and embeds the remainder into 7', by isomorphism. I will
continue to use the shorthand above.
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tation, these are physical symmetries, in the sense that they are found in the world—hence
the label (Physical). Typically, such symmetries relate physically different situations, and
so they have noticeable effects. The internal interpretation maps the symmetries of the
theory T' to symmetries of the physical domain D at W. On the other hand, (Redundant)
are not physical symmetries but just redundancies of the models.

I will call a bare theory, once it is equipped with an interpretation, the interpreted the-
ory.*® Tt is the physical interpretation that enables the theory to be empirically successful
and physically significant. The physical interpretation should also make the ontological
commitments explicit (more on this in §1.4).6

Both (1.1.2.a) and (1.1.2.b) involve, of course, philosophically laden issues. And the
aim here is not to settle these issues, but rather to have a scheme in which the for-
mal, the empirical, and the conceptual are clearly identified and—as much as possible—
distinguished, within the structure of the interpreted theory. Indeed, I believe that the
conflation of these three aspects can easily lead to confusion.

The above formulation of a bare theory as a triple is minimalistic. But, with (1.1.2.a)
added, it is strong enough—because of the complete specification of the set of physical
quantities—that, with an additional requirement below, it will be able to determine when
two theories are about the same subject matter. Questions concerning the identity of
two such triples will be questions concerning the sameness of theories (§1.3.1), rather
than standard cases of underdetermination of theory by empirical data: since the triple
T = (H,Q, D), together with the valuations constructed from the syntax, is assumed
to be well-defined and consistent, and to encompass all the empirical data, in a certain
domain D at W.'" I will call such a theory complete. Completeness is then a necessary
condition for there to be a duality.

1.2 The conception of duality

In this subsection, I introduce the conception of a duality, based on the notion of a theory
developed in §1.1. In §1.3 I will relate this conception of duality to the discussion of
theoretical vs. physical equivalence.

With the conception of a theory considered in §1.1, a duality is now construed as an
equivalence of bare theories. More precisely, it is an isomorphism d : M; — M, between

150f course, there is a rich literature that conceives ‘quantum philosophy’ and the controversies on ‘the
interpretation of quantum mechanics’ as a matter of what to add to a ‘minimal quantum mechanics’.
This is of course not the business of my (a) and (b): cf. also next paragraph.

6]smael and van Fraassen (2003: §2) start with a theoretical ontology and only later add a set of
laws; in my approach, the formal and ontological steps are reversed. The reason for this is not my
preference for one aspect over the other, but simply because the ontology of ‘unextendable’ theories
(cf. §1.3.1) is not a priori clear, and so we get a certain economy of thought by starting with the formal
structure and considering only those interpretations that are consistent with it (see §1.3). As it turns
out, the ontologies used to formulate theories independently of any duality are not helpful in interpreting
dualities for unextendable theories (cf. §1.3.1). But I believe that several aspects of what I have to say
are broadly in line with Ismael and van Fraassen’s discussion of symmetries.

"The qualifications of a domain and a possible world are important because the theory need not be
complete in our world, and the relevant domain may change from one world to another. A theory may,
for example, be complete within a given range of parameters which does not contain the values they take
in our world. Hence, completeness of a theory is to be construed as relative to D and W.
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two models M; and M of a theory T": there exist bijections between the models’ respective
sets of states and of quantities, such that the values of the quantities on the states, e.g. in
the case of quantum theories the set of numbers (s1|Q|s2), where s, 59 € H, Q € Q, are
preserved under the bijections; the duality also commutes with (is equivariant for) the
two models’ dynamics and preserves the symmetries of the theory, (SymT), as defined in
§1.1.1.18

In defining duality this way, one should keep in mind the conception (§1.1.1) of what I
am calling a model: since what is here called a ‘model’ is often called a ‘theory’. And one
should clearly distinguish the notions of theory and model, understood as given mathe-
matical structures, from the way one gets to recognise these notions in an example. So
one may start with two theories 7} and T3 (as triples) and find a duality map between
them: in which case, one identifies the triples as being one and the same bare theory. In
such a case, the original theories (with their surplus representational structure) are now
revealed to be models of one theory. But this is mere historical record: what matters, for
a duality, is that one has two models which are isomorphic in terms of their triples. Also,
I do not mean to limit duality to just two theories: in principle, there can be a duality
between any number of theories (cf. for example: S-duality in quantum field theory, where
the duality group is SL(2,Z) (Vafa and Witten (1994: §1))).

On the above conception of duality as an equivalence between models, we can now
understand the two kinds of symmetries, (SymT) and (PSymM), introduced in §1.1.1,
as meshing conditions between duality and symmetry, and reformulate them using the
duality map:

(SymT) [version 2] is the condition that the symmetry in question commutes with
the duality map, so this is a natural meshing condition between symmetry and duality.
By ‘commutes’, I here mean the following. Given two models M; and M, of a theory T,
and given two symmetries oy : My — My, 09 : My — M, (defined as in the penultimate
paragraph of §1.1.1), the following two conditions must be met:

(Visible) o7 and o9 are both non-trivial representations, o1(s) and o3(s), of a sym-
metry s of the theory, where ‘non-trivial’ here means that they are not the identity map.
Thus, for a symmetry to be ‘visible’ in the theory, is for it to be non-trivially represented
by the theory.

(Commutative) Duality and symmetry form a commutative diagram: d o oy(s) =
o9(s) o d.

This generalises to the intermediate case, mentioned in §1.1.1 just after the introduc-
tion of (SymT) and (PSymM), of symmetries which act not only on the triples but also
on some of the surplus representational structure.

18Tn mathematics, duality is a diverse phenomenon, of which there is no single definition. At the most
basic level, duality boils down to the notion of a natural isomorphism (in category-theoretic language: an
adjoint functor). I am refraining from this and other refinements of the notions of duality and of theory:
for to make my main points, I will not need to articulate such mathematical details. For an account of
theoretical equivalence in physics using category-theoretic terms, see Weatherall (2015). Note also that I
am using (s1|Q|sz2) (i.e. matrix elements using two different states), not the more obvious (s|Q|s) (i.e. an
expectation value in a single state), for reasons of quantum theory.
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(PSymM) [version 2] is the condition that the symmetry o : My — M is repre-
sented trivially on the codomain of the duality, M,. (This is analogous to what happens
in the case of the internal interpretation (Redundant): cf. §1.1.2.b.) Here, o1 maps non-
trivially the surplus representational structure of M, rather than the triple. (PSymM)
can helpfully be expressed in terms of the following invisibility condition on the symmetry
o1 of the model M; and the duality map d:

M —(Invisible) do oy = d, where d : M; — M,. In such a case, we say that oy
is My—(Invisible). On the other hand, given a (PSymM) oy : My — Ms, then oy is
M;—(Invisible) just in case 09 o d = d. Alternatively, we require that either oy or oy in
(Commutative) are identity maps, i.e. one of the two representations is trivial. If oy is
trivial, then oy is M;—(Invisible); if oy is trivial, then oy is My—(Invisible). Notice that
o1 and o9 are not (Visible). Hence, they do not represent an underlying symmetry s of
the theory T

A symmetry o of the model M is a (PSymM) if it is N—(Invisible) for some model
N.

For more on the visibility and invisibility conditions in the case of diffeomorphism
symmetry, see De Haro (2016a: especially §3).

The notion of duality in this section is motivated by both physics and mathematics.
Duality in mathematics is a formal phenomenon: it does not deal with physically inter-
preted structures (even though, of course, several of the mathematical dualities do turn
out to have a physical significance). But this is also how the term is used by physicists:
it is attached to the equivalence of the formal structures of the theories, regardless of
their interpretations, i.e. without it necessarily implying the physical equivalence of the
theories which describe two concrete systems.

Duality, as a formal equivalence between two triples without the requirement of iden-
tical interpretations, is thus a special case of theoretical equivalence. For an account of
theoretical equivalence of unformalised theories, cf. e.g. Coffey (2014).

Like the conception of a theory, my conception of a duality is minimalistic: on this
definition, for instance, the verdict over position-momentum duality in quantum mechan-
ics is that it is indeed a duality. The duality has two models, namely the formulations
based on, respectively, the x- and the p-representations of the Hilbert space: Fourier
transformation being the duality map (for more on this case, cf. §3.2). This duality is,
of course, somewhat trivial, because the two models contain the same amounts of surplus
representational structure, in the sense above: namely, a single variable. The two models
are already formulated in terms of their triples of states, quantities, and dynamics. And
I indeed regard it as a virtue that my conception of duality is general enough that both
familiar, and relatively simple, dualities, as well as the more sophisticated ones in string
theory and quantum field theory, all qualify as dualities, under the same general concep-
tion. Indeed, I take it that one of the lessons of duality is that ‘widely differing theories’
are (surprisingly) equivalent to each other, in the same sense that two notational variants
differ from each other. And my interest in this paper will not be—and I will not need—to
distinguish between ‘simple’ and ‘sophisticated’ dualities (or cases in between), though in
principle my notions do allow for such a characterisation.

Indeed, I submit that my notion of surplus representational structure, and in partic-

15



ular (PSymM), can distinguish ‘simple’ from ‘sophisticated’ dualities, and thus can be
used to indicate how ‘surprising’ a duality is supposed to be, by the amount of surplus
representational structure by which the models differ. The larger the amount of (PSymM)
which the models possess, the more they differ. But as remarked before, for the purposes
of this paper (anwering (i)-(iv) in the Abstract) I will not need to further refine the notion
of duality along these lines.

Another way in which, in the physics literature, a distinction is sometimes made be-
tween ‘simple’ and ‘sophisticated’ dualities, is as follows. Physicists sometimes reserve the
word ‘duality’ for cases of equivalent quantum theories with different classical descriptions
(Aganagic (2016: Abstract), Polchinski (2016: §1)). While I sympathise with the aim of
this notion, it seems to me too restrictive, for: (i) it only allows for dualities between
quantum theories; (ii) the notion of a classical description of a theory is not always nec-
essary, or even clear: sometimes, quantum theories have more than one classical regime,
and then additional criteria would need to be gived as to which classical regimes one
should compare; (iii) the notion of ‘different’ classical regimes is vague and would need
to be replaced with ‘inequivalent’, on pain of counting as different those classical lim-
its which merely differ by being formulated in different terms. But then an account of
classical equivalence is also needed. An example of this is the quantum mechanics of a
point particle in a velocity-independent potential, formulated in terms of a path integral
over all positions, or in terms of a path integral over all positions and momenta. These
two theories are quantum mechanically equivalent, but their classical limits give rise to
Lagrangian, respectively Hamiltonian, models of the mechanics of a point particle under a
velocity-independent potential. The latter models are of course equivalent at the classical
level: but introducing a notion of classical equivalence undermines the need to require
that the equivalence can only be quantum mechanical.

Introducing the notion of models for a single theory, and construing duality as an
isomorphism between such models, solves this problem: if two models are dual, any two
other models isomorphic to them are dual as well.

The two-pronged conception of an interpreted theory (or model) as a triple plus an in-
terpretation, together with the formal definition of duality, allow us to introduce the notion
of physical equivalence of interpreted models. The discussion of duality indeed prompts
us to distinguish theoretical equivalence from physical equivalence: the latter being the
equivalence of two theories as descriptions of physical systems, i.e. theories with identi-
cal interpretations. More on this in §1.3. The difference may be cashed out as follows:
theoretically equivalent theories, once interpreted, ‘say the same thing’ about possibly
different subject matters (different parts of the world), whereas physically equivalent the-
ories say the same thing about the same subject matter (the same part of the world). We
will see also later a linguistic/syntactic conception and infer the quasi-linguistic nature of
theoretical equivalence, but throughout we will be mainly concerned with theories in the
sense of triples, and thus with duality as an isomorphism between such triples.

An example of the former is the diffusion equation with constant diffusion coefficient:
it describes a wide variety of different phenomena—including the Brownian motion of
particles on a liquid, and the diffusion of heat in a material. These two models, taken
formally, are isomorphic: the isomorphism mapping one value of the diffusion coefficient
to another, and the density of Brownian particles to the temperature distribution for the
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heat equation: but the two isomorphic models, physically interpreted, clearly describe two
different parts of the world, viz. Brownian motion of particles, and heat conduction. This
is an example of a ‘simple’ duality, in the sense discussed earlier in this subsection (after the
example of quantum mechanics), i.e. of introducing only minimal surplus representational
structure, though that structure can appear if we couple the diffusion equation to a theory
of hydrodynamics, in the first model, or to thermodynamics, in the second (but in that
case there ceases to be theoretical equivalence).

An example of the latter, viz. of isomorphic models describing the same part of the
world, is provided by the Lagrangian and Hamiltonian formulations of mechanics, which,
under standard assumptions on the class of models considered, are isomorphic and widely
taken to describe the same physical systems.

Duality, then, is one of the ways in which two theories can be theoretically equivalent,
without its automatically implying their physical equivalence. For instance, a duality can
relate a real and an imagined or an auxiliary system. In such a case, duality is a useful
and powerful calculational device—and nothing more. Thus it is a good idea, in line
with both the physicists’ and the mathematicians’ practice, to keep the notion of duality
formal, as an isomorphism between bare theories.

But it is, of course, those cases in which dualities do reveal something about the nature
of physical reality, that prompts the philosophical interest in dualities: cases in which the
interpretation of the duality promotes it to physical equivalence.

1.3 From theoretical equivalence to physical equivalence

Having introduced the notions of theory, interpretation, and duality in the previous two
subsections, we now come to the central question in this Section: when does duality
amount to physical equivalence? I will first discuss, in §1.3.1, the external and internal
interpretations of a theory, already briefly introduced in §1.1.2.a. In §1.3.2, I will give a
Newtonian example of an external interpretation; and in §1.3.3, I will discuss the physical
equivalence of dual theories that are unextendable. In §1.4, I will compare my account
with extant notions of equivalence, specifically Glymour’s (1977) notion.

1.3.1 External and internal interpretations of a theory

In §1.2, I emphasised that, according to both physicists and mathematicians, duality is
a formal feature of theories and that, before it is given an interpretation along the lines
developed in §1.1.2, it implies next to nothing about the world. In this subsection I will
develop the external and internal interpretations in more detail, and in particular two
cases: (i) cases of external interpretations, in which physical equivalence fails to obtain
despite the presence of a duality; (ii) cases in which an external interpretation is not
consistently available (where ‘consistently’ will be qualified below), so that one can only
have an internal interpretation, and hence also physical equivalence.

Let me first illustrate the external interpretation with an example which should make
clear the difference between duality as a case of theoretical equivalence, and physical
equivalence.
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Consider, as an elementary example, classical, one-dimensional harmonic oscillator
‘duality”: an automorphism H — H, defined by H > (z,p) = (;5, —mwz), from one har-
monic oscillator state to another, leaving the dynamics D invariant—namely, the Hamil-
tonian H = % + 3 k2? and the equations of motion are invariant under it.'? So it is an
automorphism of Ty, = (H, Q, D). But this automorphism of (H, Q, D) does not imply
physical equivalence of the states:?° the two states are clearly distinct and describe dif-
ferent physical situations: since the map relates an oscillator in a certain state of position
and momentum, to an oscillator in a different state.

For example, there is an independent way to define the ‘position’ of the oscillator, as
well as to measure its value at a given time: one couples the oscillator to a standard rod
and so carries out a measurement of the oscillator’s position, I}, . (x,r) € R, where
x is the position of the oscillator and r a physical location on the rod. Here, we have
coupled the harmonic oscillator theory Ty, to our theory of measurement 7., (in fact,
several theories: Euclidean geometry, and standard assumptions about the stability of the
measurement instruments based on their material properties). For an ideal measurement,
we summarise this with the map I, ... : Tho X Thewe — D (cf. §1.1.2.a). The role of
T .cas 18 to transfer its interpretation (e.g. of r as ‘rod position’) to Ty, (of x as ‘oscillator
position’), by spatial juxtaposition. For non-ideal measurements (which include non-
trivial interactions between the two theories), we have instead a new, extended theory
Tho4meas, and the above map is generalised to: 1}110 tmens - Tr0tmeas — D.

The above coupling to a theory of masurement takes place according to some, usually
unformalised, principles about the measurement procedures (such as juxtaposition). Since
the product form Ty X T,..s is only an idealization, in more realistic cases we can find
a more comprehensive theory such as Tio mes, in Which the original theories can be
embedded: Tyo X Theas € Thotmess (for more on the notion of ‘embedding’, see the next
subsection).

I will call such an interpretation of Ty, obtained by transfering its interpretation from
a theory of measurement 7,,,, (in other words, from an already interpreted theory), or
by extension t0 Thoimes, an external interpretation (cf. §1.1.2.a). And I call a theory,
that can be coupled or extended in this way, an extendable theory. T} is the extendable
theory, and T mes 18 the extended theory (itself again extendable).

But there are cases—such as cosmological models of the universe, and models of uni-
fication of the four forces of nature—in which these grounds for resisting the inference
from duality to physical equivalence—a resistance based on the possibility of finding an
external T,...—are lost. For the quantum gravity theories under examination—even if
they are not final theories of the world (whatever that might mean!)—are presented as
candidate descriptions of an entire domain of (possible) physical world: let us call such a

The angular frequency, here and in what follows, is given by w := \/k/m. The equations of motion
of the harmonic oscillator are p = m & and p = —kx. When the duality map is considered on solutions
of the equations of motion, the map effectively adds 7/2 to the phase of the oscillations, so that it maps
solutions to solutions with different initial conditions.

20In a world consisting of a single harmonic oscillator and nothing else, the two situations could not
be distinguished, and one might invoke Leibniz’s principle to identify them, which would amount to an
internal interpretation, in the sense of §1.1.2.
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theory T'.2! So there is no independent theory of measurement 7,... to which T" should be
coupled, because T itself should be a closed theory (an unextendable theory: see §1.3.3).

The interpretation of an unextendable theory (unextendability will be explicated fur-
ther in §1.3.3) is called an internal interpretation. Such an interpretation was defined
in §1.1.2. T will now discuss the bearing of an internal interpretation on the physical
significance of the duality map.

We return to dualities, and the interpretation of two models of the whole world, call
them M; and Ms. In the rest of this Section, the leading idea is that the interpretation has
not been a priori fixed (or, if by some historical accident, an interpretation has been fixed,
one should now be prepared to drop large parts of it), but will be developed starting from
the duality. The reason for this is that, as pointed out in §1.1.2, the internal interpretation
starts from 7”s invariant content. This invariant content is laid bare by the duality. Thus
starting from two dual models M; and M; of T, the duality map lays bare the invariant
content (H, Q,D), which is the starting point of the internal interpretation for both the
theory and the models. Therefore, the interpretation of the two models is now the same.
Indeed, the two models do say the same thing (in the sense of §1.2):

(i) their formalisms say the same thing, in particular they contain the same states and
physical quantities, and (ii) their physical content is also the same: for the interpretation
given to the physical quantities and states starts from the duality, and so the interpretative
maps are the same for both models, I, = Is,. Therefore, such thorough-going dualities
lead to physical equivalence between apparently very different models. This is likely to
be the case throughout the research area of quantum gravity, since any of its putative
theories Tf,s are e.g. cosmological models of the universe, or models of unification of the
four forces, which comprise the entire domain of physics.?? Such an interpretation, while
perhaps starting from extant interpretations of the models M; and M, will consider an
equivalence classes of such models. Thus it will be based, ultimately, only on the common
features of the models (§1.1.2a) and on the theoretical principles of the theory (§1.1.2.b).

In view of the above, the conception of an internal interpretation, for an unextendable
theory, can now be restated as follows. The internal interpretation of 71" is the same for all
models M of T, as I just argued; and, furthermore, the internal interpretation does not
depend on the addition of T,,..,, which would break the duality. Therefore, the interpreta-
tion is invariant across the duality: for unextendable theories, therefore, the interpretation
of the models of T is the internal interpretation. Thus we arrive at the following princi-
ple, which is a meshing condition between the duality map and the internal interpretation:

(PhysEquiv) For unextendable theories, the internal interpretative map Iy commutes

2IThese are candidate descriptions of possible worlds, rather than the actual world, because the models
which we will consider in the second part of the paper—viz. Ammon and Erdmenger (2015: §§5-7)—entail
a negative cosmological constant, whereas our universe seems best described by a positive cosmological
constant. But the interest in such models is, of course, that: (1) given their rarity, any consistent four-
dimensional theory of quantum gravity is interesting; and (2) such idealised models contain helpful lessons
for the case of a positive cosmological constant.

22 A complete theory of quantum gravity will have to address the problem of measurement in quantum
mechanics. But for the aims of the current discussion, and the simple models discussed in this paper, we
do not need to have this problem solved. The point I am making applies equally well to classical systems
(see the previous paragraphs).
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with the duality map.

Consequently also, if the interpretative map fails to commute with the duality map,
the interpretation is external.

On my conception of physical equivalence, discussed in §1.2, two theories are physically
equivalent if they are theoretically equivalent and, in addition, have the same interpreta-
tions. Thus (PhysEquiv) is the condition of physical equivalence for two dual theories.

What prevents us from concluding, in the consequence after (PhysEquiv), that “The
interpretation is external iff the interpretative map fails to commute with the duality
map”? This would make the notion of an external interpretation the contrary of the
internal interpretation, for an unextendable theory. That is, it would imply that whenever
there is an internal interpretation, there can be no external interpretation, and viceversa.
The reason why this stronger thesis does not follow is because external interpretations
can always be constructed, no matter whether the theory is extendable or unextendable.
But these two cases do differ: for unextendable theories, we cannot construct an external
interpretation that is physically consistent over the entire domain of the theory. By
unextendability, the theory T" cannot be coupled consistently to a theory of measurement
T,.cas, and there is no embedding of T" into some other theory either. One may, of course,
couple the theory by hand to such a theory of measurement: but the result will not give
a consistent theory, at least not over the entire domain. So, if one would require the
interpretation to be consistent over the entire domain, then one could rule out external
interpretations constructed by such means, on physical grounds. And in that case the
external and the internal interpretations would be each other’s contraries. But this is a
strong condition to require—it would, at least, require further explication. For we can
always construct inconsistent external interpretations, or external interpretations which
apply to limited domains. So there is no clear reason why we should impose such a strong
requirement. Thus I restrict the discussion to the weaker (PhysEquiv).

Another way in which one may wish to adopt an external interpretation, of an un-
extendable model, is if the surplus representational structure is supposed to have some
physical significance, i.e. to map non-trivially to the world. But this contradicts the as-
sumption that only the triple had a physical significance. In other words, if it is the case
that the surplus representational structure has a physical significance, then we are no
longer dealing with a model of the same theory, i.e. the theory without surplus represen-
tational structure. Rather, the model whose surplus representational structure is physical
represents a new theory, which is not theoretically equivalent to the other models of the
old theory. So this is not an objection, and we should not change our scheme here: it
is simply a change of theory. There is, despite there being some formal equivalence, no
theoretical equivalence between the old theory and the new theory.

A central aspect of my conception of physical equivalence, as stated in (PhysEquiv),
is that it crucially depends on the domain of the interpretative map. Thus one may never
conclude that two theories are physically equivalent without it being the case that they
describe the same unextendable domain. I will discuss the significance of the unextend-
ability condition, and of the domain, for (PhysEquiv), in more detail in §1.3.3, after we
discuss, in the next subsection, an example of an extendable theory.
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1.3.2 A Newtonian example of external interpretation

In this subsection, I will work out the external interpretation, and the concept of an
extendable theory, further, in an example. By contrast, this will give us the notion of an
unextendable theory, which we will use in the next subsection. The discussion will also
clarify the role of the domain of a theory, for its interpretation. Consider, for instance,
how an external interpretation is worked out, from the following uses of T}, which will
render it an extendable theory (see §1.1.2).

Rufus is a pet monkey attached to the end of a spring, described by Ty, which is
hanging next to the window in Sophia’s room. The displacement of the bob at the end
of the spring, in Tyo, is interpreted as the height of Rufus’ up-and-down movements,
which make Sophia laugh. Their description is valid to the accuracy specified by the
parameters of Ty,. But to give that interpretation—the displacement as the height of
Rufus’ jump—we have to specify more than the idealized Ty, and its interpretive maps
I° (x) = displacement and I3 (t) = time (I% and I} are defined in §1.1.2(a) and, as
mentioned there, in a classical theory the distinction between I9 and I} is not always
needed). To interpret the jump as being Rufus’ we must at least specify which monkey,
for example by his distinct shape and colours: so, if the two monkeys differ in their shape
and colours and nothing else, T}, alone cannot distinguish them: we need, in addition, a
theory of shape and colour. For mapping I3, (z, k, m) = Rufus, where k, m are the spring
constant and the mass, respectively, automatically rules out a second pet monkey, Kadee,
with different shape and colours, to be mapped from T}, because this theory does not
contain ‘shape’ or ‘colour’ parameters.

And to interpret the gravitational field, which modifies the rest length of the spring,
as being the gravitational field, inside Sophia’s room, of the earth (the same field that
keeps the moon on its path), we need some facts about Newton’s theory which explain
why the value of this field is different for Rufus and for the moon: and so we embed
Tho C Thoinewton- This embedding clearly allows us to distinguish, for instance, the
interpretation of the spring displacement, as: (1) ‘Rufus’ jumping height in Sophia’s
room at Wy’ from: (2) ‘Kadee’s jumping height in Oliver’s room at Wy’, where Wy
differs from W) in that the radius of earth is smaller by a factor of 1/N, and its mass
is smaller by a factor of 1/N?2. Thus in the replacement of W, by Wy, the gravitational
acceleration ¢ := GM/R? remains constant and nothing in the formulation changes: a
fact which we can only derive in Newton’s theory, since the quantities R and M do not
appear in the harmonic oscillator theory.

The Newtonian theory, on the other hand, can distinguish between the two cases,
since the radius and mass enter the equation of motion for the pet monkey not through
the constant acceleration g, but through the local acceleration GM/(R + x)?, where z
is the displacement from the rest position.?® Thus the extended theory Tho.xewion Call

ZExplicitly: the angular frequency of oscillation w = \/k/m is smaller, and equal to Q := \/w? — 2g/R,
in THotNewton- Lhis result is derived from Newton’s theory, by expanding the force in the small quantity
z/R, and keeping only the leading term. Thus, as long as 2 < w, this theory can distinguish between W
and Wy by a measurement of the frequency. Indeed, QF = w? —2g/R at Wy, whereas Q% = w? —2gN/R
at Wy. Even if Oy ~ w at Wy, Qn will differ significantly from w at Wy, for sufficiently large N: so
that the effect will not be negligible. This is how Tho4Newton 1S able to distinguish the two worlds. Ty
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distinguish between W; and Wy, while the extendable theory T}, cannot.

The way to see this from the interpretative maps is by noticing that the embedding
Tho C Thoinewton changes the interpretative maps in such a way as to make it possible
to interpret the displacement as being Rufus’, as I will now explain. (In what follows, I
will assume that Tio newion Nas been coupled to a suitable theory of measurement 7T,,...., as
discussed in the beginning of this subsection. So that, effectively, the Ty..i.. underlying
Tho4newton 18 an already interpreted theory, from which T}, inherits its interpretation.)

In Tyo, g has the interpretative map: I (g) = a, i.e. the acceleration at zero dis-
placement, which is a function @ : R — R mapping ¢ — a(t). In the present case, the
acceleration at zero displacement is a constant function, and so the second interpretative
map simply gives its value, which I denote with the same symbol a: I (g) = a € R. As
mentioned in the previous paragraph, it is the coupling to T,.., that gives a its operational
meaning as a possible measurement of acceleration.

On the other hand, the displacement z at equilibrium is interpreted as: I (2 |equitibrium) =
A/, i.e. the change in the spring’s rest length, which is due to the pull of gravity. Its value
is given by: Il (2|equimiam) = Iio(g/w?) = a/w? = Al € R, i.e. the theory relates the
displacement of the equilibrium position of the spring to the pull of gravity (and, again,
Al is a constant function and so I will use the same notation for its value). But there
is no independent definition of Il (g) which relates it to other quantities, since there is
no independent account of the gravitational acceleration in the theory. So, though the
equilibrium displacement is interpreted in terms of the acceleration at zero displacement
and the angular frequency: and though these quantities can be measured directly, the
maps contain no information about Rufus’ distinguishing properties.

In Thoinewton, the four values of the two interpretative maps calculated above are
upheld, with two changes. First, there is an important Newtonian correction to the rest
length:

1
IHO+Newton (I

cquilibrium) = a/w2 + 2a2/w4R =Al eR, (1)

again a constant. Second, we have to take into account the fact that Newton’s gravi-
tational law now does give an account of the acceleration in terms of other quantities,
viz. g := GM/R?. So we have the additional interpretive map:

]}:LIO+Ncwton (g) = a = ‘[P:lIO—Q—Ncwton (GM/RQ) (2)
— ]I}IO+Newton (G) X ]I:;O+Newton <M> 6 R
[}]-IO-&-Newton (R2) 7

i.e. the approximate local acceleration a is interpreted via GM/R?’s interpretation, where
G, M, and R each have their own independent interpretations in Tio,newton, thus adding
a new interpretation to g as the local gravitational acceleration on earth’s surface, i.e. a
planet of given radius and mass. Here, I have made use of the structure-preserving
property of the interpretative map (see §1.1.2). (Of course, there are also O-maps for each
of the newly introduced quantities.)

The correction to Al, Eq. (1), together with the new map map (2), can now be used
to reinterpret the displacement at equilibrium I} (z in terms of properties of

equilibrium)

cannot do this because it predicts the angular frequency w for all worlds.
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Rufus—namely, the radius and mass of the planet that he is hanging above. So Eq. (1)
now explicitly depends on R, and not just on the combination ¢ = GM/R? (which is
invariant across worlds), as was the case in Tyo. This is how I}, vewion (% ]cquitibrium) 1S able
to distinguish between W; and Wjy: hence between Rufus and Kadee, if we define them
as ‘the pet monkey hanging in a children’s room at the planet of radius R and mass
M’. Alternatively, the modified angular frequency of oscillation can also be used, as in
footnote 19.

Now that we have successfully compared, and distinguished, W; and Wy using the
embedding Thyo C Thoinewson, l€6 us discuss, before we return to unextendable theories
of quantum gravity and their internal interpretations, the domains to which the above
theories apply, viz. either Dy at W or Dy at Wiy: since this is part of the interpretive
scheme in §1.1.2 and it will explain Tyo’s extendability. Clearly, the embedding relation
is one of entailment: T}o, neweon €ntails Ty, but not the other way around. The entailment
relation is deduction by taking the second term in Eq. (1) to zero, compared to the
first one, i.e. g/w*R — 0: an approximation which is valid for very large radii of earth,
compared to the displacement of the spring’s rest length. In addition, entailment also
requires that the displacement of the string is much smaller than the radius of the earth,
/R — 0. So the ‘domain of validity’ of Tioinewton 1S Clearly larger than that of Tjo,
where ‘domain of validity’ is here meant in the innocuous sense (see the next paragraph)
of there being many more situations to which the Newtonian theory applies, and that Ty,
is obtained from T xewton DY taking the limit, lim,/r 0 limg .2 p—0 Tho+newton = Tno- The
requirement that the first limit can be taken restricts the kinds of models of T}o. newton
which can be considered. The second is a limit on the parameters of the model.

But this innocuous sense is not what we mean by a ‘domain D at W’. For the differ-
ence beween the domains of applicability of Ty, newton a0d Tyo is purely configurational,
i.e. it is due to the specific properties a particular configuration of matter, in the given
model. When we consider the domain D at W in the sense intended in §1.1.2, we find
no fundamental difference between Ti;o  newion and Tt they are both models of classical
mechanics, both applying in the domain of that theory at W. The domain would change if
we were to, for instance, turn on quantum effects, or if we were to take relativistic effects
into account.

There is no claim here of my having made the notion of a domain D at W so sharp that
it can be straightforwardly applied to all theories—since for the purposes of this paper
the above considerations, which can be generalised on a case-by-case basis, will suffice.
A more general specification of the domain will require further formalising the relation
Tho C Thoinewton, SOmMething that is beyond the scope of this paper. But the concept of a
domain should by now be clear: when I speak of a new domain D at W, I mean a domain
that is conceptually, and not merely contingently, distinct from the old domain. Thus
I will distinguish the regime of applicability R, from the domain D, of a theory T at a
possible world W. On the former sense, Tyo and Tio newton are valid on different regimes of
applicability, Ry and Ry, defined through the above analysis of validity involving limits;
on the latter sense, Tyo and Tionewion are defined on the same domain (D; at Wy or Dy
at Wy), i.e. as both being models of classical mechanics. It is the latter sense of domain
that is relevant for the discussion of extendability and which I use throughout this paper.

The above makes precise the sense in which T}, is an extendable theory. Ty, ceases to
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give an accurate description of D at W when the correction terms in Eq. (1) cease to be
negligible. But T}, can be generalised t0 Tho 4 newton, Which does describe the larger class
of phenomena over the same domain D at W accurately: and Ty is correctly recovered
from it in the specified limit. Thus, T} is extendable.

1.3.3 Unextendability implies internal interpretations, and so duality implies
physical equivalence

Back to quantum gravity. For the theories T under consideration, there is no such
extra physics to which the theories can be coupled or extended. Being descriptions of the
entire physical universe, or of an entire domain of physics, the interpretation I, must
be internal to it. Thus, as a sufficient (though not necessary) condition for the use of
an internal interpretation, I will require that 7,,; be an unextendable theory. I, only
requires the triple T = (H, Q, D) as input, and it only involves the triple’s elements and
their relations—it does not involve coupling Tt to other theories. In such a case, duality
preserves not only the formalism, but necessarily also the structure of the concepts of two
complete and mathematically well-defined models: if one model is entirely self-consistent
and describes all the relevant aspects of the world, then so must the other model. And so
duality becomes physical equivalence. Thus, in other words, we are really talking about
different formulations of a single theory.

Let me spell out the (sufficient) condition, suggested by this discussion, for a theory
to admit an internal interpretation, since it will be important in §1.4. A theory T in a
domain D of a possible world W is unextendable iff:

(i) T is a complete theory in the physical domain D at W

(ii) There is no other theory T for the same possible world W and domain D, such
that: for some T isomorphic to T', 7" C T" (proper inclusion).*!

Remember that the notion of completeness of a theory, in (i), was introduced in §1.1.1:
as well-defined, consistent, and encompassing all the empirical data in a certain domain
D at W. Condition (ii), in addition, requires that there is no extension of the theory
at W: or, in other words, the theory already describes all the physical aspects of the
relevant domain at W. Since the relation of isomorphism in (ii) is formal, (ii) is a sort
of ‘meshing’ condition between (i)—or, more generally, between the idea of “not being
extendable”—and the formal relation of isomorphism.?

I have concluded that, on an internal interpretation, there is no distinction of content
between two dual theories. In §1.4, I will further disentangle three different purposes
for which the distinction between two dual theories is irrelevant: viz. logical, empirical,

24T is a fiducial theory that may well be identical to T. But in general, it may be the case that T c T"
is not true but T =2 7" C T" is. In other words, T C T" may only be true up to isomorphism.

25T have argued that unextendability is a sufficient, though not a necessary, condition for the coherence
of an internal interpretation. The condition is not necessary because one can envisage a theory (such as
general relativity without matter) receiving an internal interpretation (e.g. points being identified under
any active diffeomorphism, as in the hole argument). This interpretation does not change when we couple
the theory to matter fields: and I will say that such an internal interpretation is robust against extensions.
If all possible extensions of a theory preserve an internal interpretation, then such an interpretation is
justified. If the extensions suggest diverging interpretations, then we will have to specify the domain of
the extension before we are justified in interpreting the theory internally.
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and ontological purposes of the kind I have so far discussed. This is not to deny that
there are other significant—metaphysical, epistemic, and pragmatic—purposes or uses of
physical theories, for which the differences are significant.?% For instance, one of the main
pragmatic virtues of gauge/gravity dualities is that one theory is tractable in a regime
of values of the parameters where the other theory is intractable. This fact lies at the

heart of their applicability in real systems, such as heavy-ion collisions (cf. e.g. Ammon
and Erdmenger (2015: §§14.1.2, 14.2)).

1.4 Comparison with Glymour’s notion of equivalence

How does the conclusion, that the two theories related by gauge/gravity duality admit
internal interpretations, and that in such cases duality implies physical equivalence, com-
pare with the relevant philosophical literature on equivalence of physical theories? To
discuss this, I will recall the usual strategy by which, faced with apparently equivalent
theories, physicists try to break the equivalence; and relate this to an influential discus-
sion, of Glymour’s. I will agree with Glymour’s verdicts for his examples but I will argue
that this depends on the theories in the examples being extendable.

It is a commonplace of the philosophy of science that, confronted with theoretically
inequivalent, but empirically equivalent theories, physicists naturally imagine resorting to
some adjacent piece of physics which will enable them to confirm or disconfirm one of the
two theories as against the other. The classic case is: confronted with differing identifica-
tions of a state of rest in Newtonian mechanics, Maxwell proposes a measurement of the
speed of light. There is a parallel for gauge/gravity dualities: when two theories are both
theoretically and empirically equivalent, we can still argue, by an extension or by a resort
to some adjacent piece of physics, for their physical inequivalence. This is articulated in
the contrast, in §1.3.2-§1.3.3, between extendable and unextendable theories.

Glymour’s (1977) discussion of equivalence of theories uses the syntactic conception
of theory as a set of sentences closed under deducibility. He introduces the notion of
‘synonymy’: two theories are synonymous when they are, roughly speaking, logically
equivalent. That is, there is a well-defined inter-translation between them.?” Although
my use of theories as triples puts me closer to the semantic conception of theory (the
syntactic conception’s traditional rival), in fact Glymour’s criterion of synonymy meshes
well with my notion of a duality, construed as an isomorphism of triples. One considers
the set of well-formed sentences built from two triples T} and T5, e.g. statements of the
type “the value of the quantity @ € Q (resp. @)2), in such and such state, is such and
such”. Duality then amounts to isomorphism between two such sets of sentences. And
this is a case of synonymy in Glymour’s sense.

But does this immediately lead to physical equivalence? No. And the reasons pro-

26Ismael and van Fraassen (2003: §6.1) point out how, for some metaphysical and epistemic purposes,
the Principle of Recombination indeed makes the distinction relevant.

2"Technically, what is required is a common definitional extension. Barrett and Halvorson
(2015: §4, Theorems 1 & 2) show that Glymour’s ‘synonymy’, i.e. there being a common definitional
extension, is equivalent to an amendment of Quine’s ‘translatability’. The amendment is in the notion
of ‘inter-translatability’, which amounts, roughly speaking, to the existence of an isomorphism between
two theories, on a syntactic conception of ‘theory’. See §2.1.
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vided in §1.3.3 are similar to the ones Glymour gives. He envisages theories that are
both synonymous—they make the same empirical predictions—and logically equivalent,
in the sense just described: yet are not physically equivalent. Recall Glymour’s thought
experiment (p. 237):

“Hans one day announces that he has an alternative theory which is absolutely as good
as Newtonian theory, and there is no reason to prefer Newton’s theory to his. According
to his theory, there are two distinct quantities, gorce and morce; the sum of gorce and
morce acts exactly as Newtonian force does.”

Glymour denies that the Newtonian ‘force theory’ and Hans’ ‘gorce-and-morce theory’
are physically equivalent. He argues that they are empirically equally adequate, but not
equally well tested. His reasons for this are, partly, ontological (“I am, I admit, in the grip
of a philosophical theory”, p. 237), and his ontology leads him to prefer the Newtonian
theory: the gorce-and-morce theory contains two quantities rather than one, but there is
no evidence for the existence of that additional quantity. The argument is from parsimony:
he prefers a sparse ontology.

I agree with Glymour about this verdict, in so far as one is concerned with theories
that admit external interpretations, and this for two reasons:

(a) His examples deal with classical spacetime theories, i.e. extendable theories admit-
ting external interpretations, which can indeed vary widely (e.g. the same Ty can be
interpreted in terms of either ‘Rufus’, or ‘Kadee’, depending on the context: cf. §1.3.2).

(b) The force theory and the gorce-and-morce theory are empirically equivalent on a
restricted domain, but their extensions are not: “To test these hypotheses, the theory
must be expanded still further, and in such a way as to make the universal force term
[read instead: ‘gorce’] determinable” (ibid, p. 248). (On this point, see the remarks in the
second to last paragraph in this subsection, on effective theories.)

But, as I argued before: in cases in which the theory already contains all the physics it
can and should contain—in case the theory is unextendable—such extensions are simply
not given and the inequivalence does not follow. In such a case, no further relevant theory
construction could tell force apart from gorce and morce. The latter phrase then surely
does not refer to anything independent and distinct from what is meant by ‘force’, and
the two theories are physically equivalent. In other words: on an internal interpretation
of a theory, Glymour synonymy leads to physical equivalence.

Of course, these arguments have an ontological component. On an external inter-
pretation, we assumed that we already knew which terms in each sentence referred to
some things in the world (perhaps without yet knowing which things). Hans’ theory was
interpreted as saying that two things exist instead of just one, and this implied the in-
equivalence of the two theories. To explain how this was possible, given that the theories
were Glymour-synonymous, one envisaged extending the theory, thus giving an indepen-
dent account of what these terms refer to: an account of what the existence of these two
things would imply, upon formulation of the theory on a larger range of validity within
its domain. Thus, the difference between the two theories was indeed ontological: while
Newton postulates one quantity, Hans postulates two.

But on an internal interpretation we cannot assume we possess an account of what
‘force’ and ‘gorce and morce’ mean, from outside the theory. The impossibility of an ex-
tension, therefore the lack of an independent account of what those terms mean, implies
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that we should not make such ontological claims independently of the equivalence of the
two theories. Because the two theories are Glymour-synonymous, and there is no exten-
sion, they are also physically equivalent: and so we are not committed to two quantities
but just one. Thus, in this case, the verdicts turn out to be the same on an external and
on an internal interpretation®®. I will now explain how the failure of the unextendability
condition (cf. (a)-(b) above) makes the application of an internal interpretation problem-
atic for this theory.

Notice that considering extensions of theories is not some purely theoretical, or philo-
sophical, ideal: it is, according to the perspective of modern QFT, a basic desideratum of
any serious theory. The breakdown of Newtonian mechanics at short distances should be
seen as an indication that it is an effective theory. Effective field theories (see Weinberg
(1996: I, p. 523ff; II, p. 154)) are theories that are accurate for phenomena in some range
of (usually low) energies, but are corrected by higher-order terms in the Hamiltonian
which are relevant at high energies.

Beside, there is a more specific relation to the gorce-and-morce proposal. Unless there
is an exact symmetry given as part of the theoretical principles in 1.1.2.b, the introduction
of new fields will generically introduce higher-order terms which break the seemingly
symmetrical way in which those fields appear in the low-energy Hamiltonian. Thus if
gorce and morce are indeed distinct fields,?® most high-energy theories which reduce to
the gorce-and-more theory at low energies, will treat gorce and morce differently. They
have different interactions (unless an exact symmetry protects them). Thus the framework
of effective field theories promises to satisfy Glymour’s demand of parsimony, that there
should in principle be a way to determine the values of distinct quantities.

Thus, the force and the gorce-and-morce theories are generically not physically equiv-
alent, even though they are Glymour-synonymous. For there are very many possibilities
for extension to high energies, only some of which lead to theories equivalent to the New-
tonian theory’s own extension: most of them do not. The physical equivalence with the
Newtonian force theory can thus only be established if additional requirements are im-
posed, such as the stipulation of a particular extension of the theory, or a ‘protecting’
symmetry.

To sum up: Glymour’s remarks are concerned with extendable theories—and such theories
only admit external interpretations. The case for the physical equivalence of extendable
theories is inconclusive unless an extension is stipulated. To secure physical equivalence
without such a stipulation, one needs an internal interpretation, and hence two unex-

28] am here following Glymour’s tacit assumption that one’s formulation of the theory is sufficiently
perspicuous (e.g. in terms of a triple), so that the physical quantities can be read off from it. If this is not
S0, it might be equally natural to say that there is no fact of the matter about whether one is committed
to one or two quantities—or that such facts are underdetermined by the computation of the relevant
physical quantities. In other words, the argument assumes that one is dealing with physical quantities, so
that the discussion of the theory’s ontological commitments makes sense. Cf. the discussion, just below,
of effective field theory.

29The sum of gorce and morce is the derivative of the sum of two potentials. I envisage these two
potentials as pertaining to distinct fields—since Hans declares gorce and morce to be distinct.
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tendable theories that are valid for all ranges of the parameters. In physics jargon: such
theories are well-defined non-peturbatively and they are not coupled to anything else. For
such theories, Barrett and Halvorson’s (2015) notion of theoretical equivalence (cf. foot-
note 27) amounts to physical equivalence.

2 Spacetime eliminated?

Gauge/gravity dualities relate (d + 1)-dimensional theories (models!) of quantum gravity
to d-dimensional quantum field theories (QFT models) with gauge symmetries (hence
the name ‘gauge/gravity’). Given this one-line description of the duality, one might
be tempted to answer the question in the title of this Section in the negative: No,
gauge/gravity dualities do not eliminate spacetime as fundamental structure. The sug-
gestion would be that: (1) the duality sets the two models on an equal footing; (2) both
models seem to be formulated in terms of space and time; (3) hence, whichever model
one likes to choose, duality does not eliminate spacetime.

Yet the suggestion is too hasty: it misses the significance of dualities in physics as
opposed to, say, mathematics. The aim of this section is to elaborate on a correction of
this hasty suggestion.

In order to know whether spacetime is eliminated by a gauge/gravity duality, we have
to analyse: (i) what is it that the two models in question say? And: (ii) does this saying
include ‘spacetime’? In §2.1, I argue that what two dual unextendable theories say, is the
content they have in common: the common core. In §2.2, T argue that this common core
includes some, but not all, spacetime structure.

2.1 What do the theories say?

Even if one is not entirely convinced by the arguments on the internal interpretation
of unextendable theories in §1.3.3-§1.4, let us suppose that we do have a gauge/gravity
duality, that can be interpreted as physical equivalence, between a model of gravity in
(d+1) dimensions, and a gravity-free model of a QFT in d dimensions. What might that
imply for what the theory says?

Consider the following analogy with natural language. Most languages are not per-
fectly translatable, sentence by sentence. Understanding particular sentences requires
extra-linguistic facts such as gestures or facial expressions, or particular knowledge that
not every speaker of another language will possess. So a complete translation of such a
sentence is not possible because it may require an ezxplanation, which when given in place
of the original sentence, distorts key communicative aspects (the sharpness of a joke, the
specific emotion expressed). But let us imagine for a moment that there are such things
as universal languages: languages which can express every human thought and emotion
(i.e. they are unextendable!). Then any two such languages would be inter-translatable—
there would be no idiosyncracies which cannot be expressed in any of the languages. Any
complete sentence would therefore be translatable between such languages. But the indi-
vidual words need not be translatable, since their meaning may depend on the context.
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Full sentences would be the minimal semantic unit.°

An obvious objection to the above may come to mind: when each language is endowed
with a context (i.e. the facial expressions, ostensive gesturing etc., mentioned above), then
any two languages are pairwise translatable. Even admitting to the possibile truth of this
objection: such extra-linguistic elements are absent in our case: for, by assumption (see
the preamble of §2), our theories are unextendable, i.e. there is no relevant extra-theoretic
context that can be added to them. The reason for the absence of such a context is that
in the case of unextendable theories we seek an internal interpretation, rather than an
external one based on considerations of context or use, i.e. from outside the theory. In
other words, our imaginary agents are to communicate using language and language only.

Back to gauge/gravity duality. In the language analogy, only those things that have
a fixed meaning (full sentences) can be translated. This suggests that, in the cases under
consideration, the only things that the theories, given the duality between their models,
say about the world are the things which are inter-translatable: states, quantities, and
their valuations. Those are the things that have a unique physical meaning. They are
what I called, at the beginning of this subsection, the ‘common core’ of the theory. They
defined a theory in the first place. I was able to define a theory in this way because
these are indeed the things that get an internal interpretation. This is the same reason
why internally interpreted dualities gave us physical equivalence in §1.3: the theories
were equivalent because all they said was in the internal interpretation of the triple T,
common to the two models. Interpreting the models did not entail embedding them into
some larger theory (see §1.3.1).

2.2 Does what the theories say include ‘spacetime’?

Suppose, as we are assuming in this subsection, that we have a duality that amounts to
physical equivalence. Thus we have an isomorphism between the two Hilbert spaces and
between the physical quantities—so we are in fact considering unitary equivalence. And
it doesn’t matter which of the two models we choose, even though each representation has
its own, very different, intuitive picture of the world (i.e. its own external interpretation,
which is based on how the model is normally used, independently of the duality). One
model says the dimensionality of spacetime is d + 1, the other says it is d; one model
has gravity, the other does not. Our question is whether there is a common core to
the two models and whether this common core is spatio-temporal. That common core,
once interpreted on an internal interpretation, is what the theory says about the world
(§2.1), i.e. the interpreted triple T', which takes only the equivalent facts under unitary
equivalence as physical.

It turns out that there is such a common core: a d-dimensional spacetime M whose

30For the sake of the analogy with physical theories, I exclude cases in which only entire texts can be
translated, as irrelevant to the analogy. One may also worry that the linguistic criterion discussed in this
subsection may differ from Glymour’s definitional extensions, discussed in §1.4. However, Barrett and
Halvorson (2015: Theorems 1 and 2) show that the inter-translatability criterion (two-way translatability)
and Glymour’s criterion are equivalent in first-order logic (cf. footnote 27). Of course, it is a long way
from first-order logic to physical theories of the kind here discussed: so in the current context, one should
take the linguistic criterion with a pinch of salt.
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metric is defined only up to local (spacetime-dependent) conformal transformations (De
Haro et al. (2016b: §§6.1.2-6.1.3)), i.e. a conformal manifold. This works as the ‘core’
theory in the following sense. We examine the structures of the two models under duality:
the structure which is mapped by duality will be the content of the triple, which arises
as the common core of the two models. Actually, the duality map itself, as sometimes
presented in the literature (see especially the formulation in De Haro et al. (2016: §4.2)),
already makes explicit what the states and operators of the two models are, and how they
map across models. So let us look at the two models and extract their common structure.

On the gravity side, one evaluates the path integral over all metrics and topologies
with given boundary conditions: this determines the state in H.3' 1 will now discuss how
these two boundary conditions are interpreted in a boundary formulation of the model,
which will turn out to be equivalent to the CFT formulation (see the third paragraph
below).

There are two boundary conditions to consider. The first is an asymptotic boundary
condition on the form of metric, which is itself determined only up to a conformal factor;
in other words, one needs to specify a conformal manifold M together with a conformal
class of metrics, denoted [g], induced at the boundary. Thus, regardless of the chosen
class [g], the asymptotic symmetry algebra is the conformal d-dimensional algebra, and
the representations of this algebra form the states of H. (That this is really a state in the
state space H of the theory will become clear when we see that, on the gauge model side,
we have the same conformal structure and algebra. See the next paragraph. In the case
considered in this subsection, of matter fields set to zero, we only have a subalgebra of
the full superconformal algebra, hence only a subset of the states of H. See footnote 31.)

Second, a boundary condition needs to be imposed on the asymptotic value of the
canonical momentum II, conjugate to the metric induced on the boundary, on the given
state.?? This choice determines a subset of states of the conformal algebra (for instance,
(s|II;]s) = 0 is a boundary condition that fully preserves conformal symmetry, so that the
states s € H are representations of the d-dimensional conformal algebra; other choices will
break conformal symmetry and thus further constrain the set of states). Thus the latter
boundary condition is interpreted as a choice of a subset of states in the Hilbert space of the
theory, whereas the former corresponds to a choice of a source which is turned on for the
canonical momentum II,, thereby generating new states. We will write the resulting states
as [s) g € H, where s is the state, modified by the addition of a source [g] on M coupling

31For simplicity, I am now considering the case of quantum gravity without matter. This restricts our
considerations to a class of states with zero helicity. Adding matter can be done, and does not affect
the philosophical conclusions, but would involve some cumbersome qualifications—so I concentrate on
the matter-free case. (Briefly: adding matter on the gravity side corresponds to specific deformations
of the gauge theory Lagrangian, see e.g. Ammon and Erdmenger (2015: §5.3)). Also, in the rest of this
Section (except for one example with d = 4), I restrict the discussion to the case that d is odd, for
technical reasons. Also, I am considering Euclidean signature and solutions that are regular throughout
the (d + 1)-dimensional space, which in most cases determines the solution uniquely: see e.g. De Haro
(2009: §2.1), though I am not aware of a general proof. In Lorentzian signature, one needs, in addition,
to specify other boundary conditions.

32Tt is technically useful, but not always required, to impose boundary conditions for the metric at spa-
tial infinity. For instance, in semi-classical treatments of the gravity side, the second boundary condition
is often imposed in the deep interior of the space, rather than at the boundary.
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to II,. The set of states corresponding to all possible boundary conditions constitutes the
subset of the state space H which we are able to describe without introducing matter
fields. The basic physical quantities are the canonical momenta II, € Q conjugate to g
(De Haro et al. (2016: §4.2.2.1)).

On the side of the gauge model of the theory, there is a conformal field theory on a
d-dimensional manifold whose metric is defined, up to a local conformal factor, by the
very form of the asymptotic metric which one gets from the gravity model: in fact, we can
identify this, via duality, with the conformal manifold M. The states are representations
of the conformal symmetry algebra, the same algebra which we obtain on the gravity model
side (and again, we are only considering a subsector, obtained by setting the expectation
values of all operators, except the stress-energy tensor, to zero). The canonical momentum
II, corresponds, through the duality map, to the stress-energy tensor 7;; of the CFT (De
Haro et al. (2001: §3)): II, = T. The stress-energy tensor is the operator from which
the generators of the conformal symmetry algebra can be constructed (see e.g. Ammon
et al. (2015: 3.2.3)). Thus, the two models share the d-dimensional conformal manifold
M with its conformal class of metrics [g], the conformal algebra, and the structure of
operators, as claimed. The conformal algebra and class determine H and thereby the
valuations of this important subset {T;;} of operators of Q, namely the infinite set of
correlation functions aqg(s| 15, (1) - Tioji (Tn) [S) A [g) » fOr any n. This infinite set of
correlation functions contains important dynamical information about the CFT.33

The correspondence, through the duality map, between the states and the quantities
of the two models, obtained in the previous two paragraphs, justifies the appearance of
these states and quantities in the common core of the duality, which is part of H and Q.
Of course, there is no claim here that the common core which we have identified so far
gives us the entire triple T": only its subsector corresponding to the quantities considered
above. Nor is it my intention to do so—I do not aim at a full foundational discussion of
gauge/gravity duality here, but at an illustration of the concepts introduced in Section
1, and their practical application in gauge/gravity duality. For instance, we have not
discussed the dynamics—though the dynamics is, in fact, not hard to get. But its detailed
study would require more technical detail. (Briefly: one picks out a Hamiltonian operator,
which on the gravity side is the generator of radial translations, and on the CFT side is
the generator of conformal transformations. See Papadimitriou et al. (2005: §4.2)) More
importantly, as mentioned in footnote 31, there is no proof that, even for pure gravity, the
correlation functions of the stress-energy tensor exhaust the set of operators Q: non-local
operators such as Wilson loops may also be needed. Finally, the set of states |s)aqq € H
have been obtained under certain very natural assumptions about the regularity of the
gravity metrics, asymptotically. Again, there is no proof that there could not be some
singular states corresponding to e.g. degenerate boundary metrics in the same Hilbert
space. But, as mentioned, we do not need to resolve these technical issues here: the main
point being that, by considering the common core of (suitable limits of) the two models,
we have obtained an important subset of the states H and of the quantities O of the

33There is no claim here that it contains all of the information about the CFT, even for the subset of
states which we are considering. Nonlocal operators such as Wilson loops (and perhaps additional states)
may also be required.
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theory.

The common core (as per the conception of a theory in §1.1.1 and §1.2 as an equivalence
class of models) only contains those quantities which are physical in the two models.
However, the external interpretations, which are normally given to the conformal class of
metrics and to the operators, are of course completely different in the two formulations of
the theory. On the gravity side, the manifold M is the boundary of a (d + 1)-dimensional
manifold M, with a metric which can vary; whereas M is a manifold in the QFT with a
fixed metric. Also, on the gravity side the conformal class of metrics does not stand alone,
but is deformed to give a metric on the (d+1)-dimensional spacetime (in the semi-classical
limit: see De Haro (2016a: §2.1), also Ammon and Erdmenger (2015: §4.1.4, §5.1)). On
the gauge model side, the conformal class gives the class of geometries on which the QFT
is defined. Quantum mechanically, the d-dimensional conformal class of metrics provides
an arbitrary asymptotic boundary condition for the path integral of the quantum gravity
model. And the operators are externally interpreted as follows: Il (in its semi-classical
limit) is the gravitational, quasi-local stress-energy tensor at the boundary; whereas the
corresponding operator T;; in the CFT is the stress-energy tensor for the matter content
of the CFT.

The above discussion has an important consequence. We are considering gauge/gravity
dualities with pure gravity, and no matter fields, in the gravity model of the theory. The
QFT, of course, does have matter fields. But the specific set of matter fields is not part of
the invariant core. The description of Tj; as the ‘stress-energy momentum for a specific
set of matter fields of the QFT is thus not part of the common core. Only the stress-
energy tensor 7;; is part of the common core, even though in the gravity model of the
theory it figures (under an external interpretation) as a ‘gravitational’ tensor, while in
the boundary model it describes ‘matter’. Thus, the qualifications ‘gravity’ or ‘matter’
are just parts of our descriptions of the theory.

Of course, the challenge is now to work out the internal interpretation of the bare
theory—the common core—independently of the two external interpretations, i.e. work
out an interpretation for |s)p ) € H and T;; € Q, which are part of the bare theory
T = (H,Q, D), together with the conformal symmetry. I will not do this in detail in
this paper: since my aim here is to illustrate the content of the bare theory. But the
following elements of an internal interpretation can already be worked out. Indeed, the
fact that, in both models, the pair (M, [g]) is a conformal manifold with a conformal class
of metrics, and T;; describes stress, energy and momentum, suggests that (M, [g]) and
T;; are interpreted internally as representing, respectively: (i) a conformal manifold with
a conformal class of metrics, and (ii) stress, energy and momentum. There may be other
aspects to the internal interpretation of [¢g] and T;; but (i) and (ii) certainly seem to be
important elements of it!

Having discussed the states and quantities in the theory 7', let me now make some
comments about its symmetries. Clearly, the conformal symmetry is a symmetry of the
theory, in the sense of §1.1.1, because it is the symmetry that classifies the states and
the quantities. Different classes of states are given by different representations of the
symmetry algebra. This symmetry is also a symmetry of the conformal manifold with its
conformal structure, and it acts non-trivially on the stress-energy tensor (the vanishing of
the trace of the expectation value of the stress-energy tensor on any state being a direct
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consequence of this symmetry). De Haro (2016a: §3) gives a detailed argument why the
conformal symmetry is (Visible), in the sense introduced in §1.2. In this subsection I
have argued that the conformal algebra is also (Commutative), since it is represented
in both models, in two different ways which I have discussed above. Thus, conformal
symmetry is part of (SymT) [version 2] in §1.2. On the other hand, De Haro (2016a: §3.1)
argues that an important class of the general diffeomorphism invariance of the gravity
model is trivially represented on the theory T, so it is QFT-(Invisible) in the sense of
§1.2, and hence it is part of (PSymM) [version 2] in §1.2. This analysis implies that, once
an internal interpretation is adopted, the conformal symmetry is a physical symmetry, of
the type (Physical) discussed in 1.1.2.b; while the remaining diffeomorphism symmetry is
(Redundant).

As just mentioned, De Haro (2016a) shows that a subgroup of the diffeomorphism
group of the gravity model is (Visible) under the duality map and corresponds to the
group of conformal transformations of the theory. Other diffeomorphisms of the gravity
model are QFT-(Invisible), and map trivially under the duality. This analysis generalises
to other symmetries: in general, a part of the symmetries will be (Visible) to the theory
and hence belong to (SymT); while the remaining symmetries will be simply redundancies
of one of the models, being trivially represented on the theory, hence (Invisible) relative
to the other models, and they belong to (PSymM).

For this reason, ‘bag-type’ symmetry concepts, such as e.g. ‘gauge symmetry’, cannot
distinguish between symmetries which are (SymT) and symmetries which are (PSymM):
let alone symmetries which are (Redundant) and symmetries which are (Physical). An
analysis along the lines of De Haro (2016: §3), distinguishing the (Visible) from the (In-
visible) for the specific symmetry at hand, must be carried out before one can conclude
that a symmetry belongs to the model or belongs to the theory. Typically, ‘bag-type’
concepts, such as ‘gauge symmetry’, even specific ones (e.g. local U(1) gauge symmetry
in the gravity theory) are partly (SymT) and partly (PSymM).

Let us now discuss the common core and the surplus representative structure further,
in another example, of d = 4, i.e. the QFT is 4-dimensional and the gravity model is
5-dimensional. Specifically, let us take a look at the symmetries. The four-dimensional
gauge theory®* has an internal SU(N) gauge symmetry (this is the theory’s gauge sym-
metry group) that is Gravity-(Invisible), in the sense of §1.2. The theory is formulated so
that this symmetry is explicit—the states H and the observables Q are invariant under
it. Since the common core only contains states and quantities constructed from the triple
T = (H, Q,D), which are invariant under gauge symmetry, this gauge symmetry does not
belong to the common core: it lies in the set (PSymM).

There is thus surprisingly little invariant under the duality between these two theories,
yet they describe all that is physical about the theories. The (d + 1)-dimensional man-
ifold M, most of the diffeomorphism group (viz. diffeomorphisms that do not generate
transformations of the boundary metric), gauge symmetries: in the present context, these
are apparently all part of our description, rather than facts of nature. So are many global
aspects of the topology of a spacetime (i.e. of one model’s description, but not of the

34The theory in question is a ‘super Yang-Mills theory’, a specific supersymmetric variant of Yang-Mills
theory (Ammon and Erdmenger (2015: §3.3.6)), but the details are irrelevant here.
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other’s), such as the number of dimensions. Similarly also the concepts of vector fields,
tensor fields, Lie groups, differential geometry: though we use them to formulate our the-
ories, each such a concept is not part of nature, at least not part of the common core of
the models of a gauge/gravity duality. For example, tensor quantities in d 4 1 dimensions
do not map to tensor quantities in d dimensions under duality, and so do not belong to
Q. Rather, such quantities are part of the surplus representational structure of one of
the models. Nor does a sharp classical-quantum divide seem to be upheld, since one-loop
effects such as anomalies can be mapped to anomalies of classically defined quantities.

Thus, the answer to the question we posed in the title of this Section requires careful
articulation, as follows. I state it in terms of what is eliminated on the gravity side:

(i) In the gravity model of the theory, most of the spacetime structure is eliminated:
the entire interior region of the manifold M, on which a gravity model is defined (includ-
ing its topology), is eliminated.

(ii) All that remains is the asymptotic boundary manifold (M, [g]) with its conformal
structure, which plays the role of an asymptotic boundary condition for the equations
of motion, and so is arbitrary but fixed; the states |s)rq € H, and the stress-energy
tensor T;; € Q at spacelike infinity. So our theory 7' is made up of, in any case, of the
common core just identified. This common core is furthermore endowed with an action
of the conformal group, which is a (SymT). So, in particular:

(iii) All local gravitational structure has been eliminated: there are no local dynamical
gravitational degrees of freedom left. This agrees with the general expectation in the
quantum gravity literature.

(iv) It is, of course, already the case within general relativity that some of this space-
time structure is non-invariant: spacetime points in M are not the invariant objects,
being rather equivalence classes that are orbits of the relevant active diffeomorphisms.
But here we find that under diffeomorphisms that reduce to a conformal transformation
at the boundary, only a conformal manifold (M, [g]) with its conformal class of metrics,
which provides the boundary state |s)a,(q € H for the path integral, is left, in addition
to the stress-energy tensor T;; € Q at spacelike infinity.*

To summarize: at the end of the day, most, but not all, of the spacetime structure (as
specified in (iv)) has been eliminated.

3 What are the broader implications of duality?

In this Section, I consider the implications of gauge/gravity dualities for: (i) theory
construction (§3.1) and (ii) metaphysical accounts of the world (§3.2).

35The remaining question is: should and, indeed, can this remaining lower-dimensional structure be
eliminated? This question has been taken up by De Haro (2015: §§2.3.2-2.3.4), but I cannot consider it
here.
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3.1 Implications for theory construction: support for hologra-
phy

To see what gauge/gravity duality might imply for theory construction, let us first review
the invariant content of this duality. For this invariant content counts as the duality’s
‘common core’; the set of statements which are independent of a specific model: they are
what the theory says (see the discussion in §2). For pure gravity without matter, this com-
mon core was identified as |s) g € H and T;; € Q: a d-dimensional conformal manifold
(M, [g]) with its conformal class of metrics (§2.2, (iv)), the corresponding states as repre-
sentations of the conformal algebra, and the stress-energy tensor. The theory comes with
an action of the conformal group, which is a (SymT). General diffeomorphism symmetry
is not part of the common core because it is not part of the gauge model’s formulation,
though a subgroup of it is—mnamely, the subgroup that induces conformal transforma-
tions at infinity. I emphasise that this conclusion—that most diffeomorphisms are not
part of the common core—does not change if we analyse other examples of gauge/gravity
dualities.

I believe that here may lie the main contribution of dualities to our understanding of
the world: a duality can be used as a tool for figuring out, in concrete terms, the common
core of a set of models, thus giving us the theory.

What positive lessons can one draw from gauge/gravity dualities for other theories
of quantum gravity? That is, if one were to quantise another theory similarly to how
gauge/gravity duality quantises gravity (on its gravity side), what would one do?

Let us consider how the Hilbert space and the physical quantities are obtained from the
gravity model of the theory: we find that physical quantities are of codimension one and
that Hilbert spaces are associated with boundaries. It has been known for a long time that
the physical quantities of gravity could not be associated with points in spacetime, which
have no intrinsic meaning because they are moved around by active diffeomorphisms. In
classical general relativity, the received view is that physical quantities satisfying all the
necessary requirements are very rare and almost exclusively limited to the simplest ones:
ADM energy, angular momentum, and charge. But these are hardly enough to describe
an entire dynamical universe.

Gauge/gravity duality suggests that physical quantities are indeed associated with
global properties of the spacetime—in particular, with boundaries both in time and in
space. Thus these quantities are global (better, and usually, called ‘quasi-local’) in the
way expected for a theory of gravity, and they also have a well-defined classical approxi-
mation. But in general, in any quantum theory, physical quantities are operator insertions
in correlation functions that are calculated between two states. Therefore, to obtain quan-
tities which are independent of the spacetime points, one integrates the insertions over a
(maybe) smeared spacetime region.

This discussion vindicates a suggestion that 't Hooft (1993) made when he first pro-
posed the holographic principle: he interpreted the holographic principle as entailing that
quantum gravity is a topological quantum field theory: “[The holographic principle] means
that, given any closed surface, we can represent all that happens inside it by degrees of
freedom on this surface itself. This, one may argue, suggests that quantum gravity should
be described entirely by a topological quantum field theory, in which all physical degrees
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of freedom can be projected onto the boundary” (p. 6).

We can now see that gauge/gravity duality provides evidence for this idea. One can
now clearly see how duality suggests that quantum gravity is a topological quantum
field theory. For the duality indeed assigns a Hilbert space to each connected piece
of the d-dimensional boundary of a (d + 1)-dimensional spacetime, for which one sums
over geometries and topologies. Category theory seems the natural language in which
to formulate such a statement (for an application of category theory in two-dimensional
topological quantum field theories, see e.g. Koch (2003)).

This discussion raises another issue: namely, that for quantum gravity we may need
new mathematics. As we have seen, gauge/gravity dualities have significant implications
for theory construction. Namely, though various mathematical techniques (as found in
differential geometry, topology, and Lie groups) play some role in the common core defined
by the duality: the dualities, in fact, map between models in which these structures
take very different forms (§2.2). And so, describing the common core of dual models in
appropriate language may well require the development of new mathematics.

Remember the case of mirror symmetry (one of the prime examples of a duality
in string theory), where complex geometry and symplectic geometry were related in a
way that mathematicians found both unexpected and (at first) unbelievable. Atiyah
(2007: p. 83) describes it as follows:

“It is a spectacular coup: physicists go up into the sky, they land by parachute in
the middle of algebraic geometers and they capture immediately the whole city. The
discovery of mirror symmetry is certainly one of the most remarkable developments of the
last part of the 20th century. It provided an example of two different classical theories, two
different algebraic varieties, giving rise to the same quantum theory, and with spectacular
applications.”

Whether gauge/gravity dualities will turn out to have similar spectacular applications
in mathematics is yet to be seen. But arriving at a mathematically rigorous formulation
of them is likely to uncover new mathematical structures.

3.2 Metaphysical implications

I will restrict my comments to two main implications of gauge/gravity dualities for dis-
cussions in philosophy of science and metaphysics. Both remarks concern the relation of
theories of quantum gravity to the notion of physical equivalence.

The first comment proceeds from physical equivalence to the interpretation of physical
theories. AsIarguedin §1.3.1, in cases where a duality supports an internal interpretation,
duality amounts to physical equivalence. Recognising that two models are physically
equivalent can thus function as the first step to making precise an internal interpretation.
Namely, the duality yields a common core that is identified as what the theory says (§2.2).
This common core can itself be presented as a triple ' = (H, Q, D), together with its
syntax: it is what the two models have in common. And so, the physical interpretation
of a quantum gravity theory, and in particular the articulation of the ontology that may
underlie such a theory, starts from that common core.

The second comment is in a different direction: from the formalism to physical equiva-
lence. Duality can be found in both unextendable and extendable theories. Gauge/gravity
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dualities between string or M theory and QF T's are presumed to be exact dualities between
unextendable theories, which in particular should have non-perturbative formulations.?°
Similarly, position-momentum duality in elementary quantum mechanics (with respect to
a simple possible world, containing only the given quantum system) is a duality between
uneztendable models, i.e. equivalent formulations of a single theory: the two formulations
are therefore also physically equivalent.

Other dualities, on the other hand, are also exactly defined, but only on theories with
limited regimes of applicability. An instance of the latter case is Section §1.4’s example
of the Newtonian force theory and Hans’ gorce and morce theory. Such theories are
extendable: they break down beyond some regime of applicability inside their natural
domain D at world W, as argued in detail in that Section. But, as discussed in footnote
25, in the case of extendable theories we are not always justified in believing internal
interpretations, because an extension might always modify that interpretation®”, as in the
example of Rufus vs. Kadee: a coherent interpretation is always dependent on how the
theory is extended. In such cases, in which the theories are extendable and we do not know
whether they are robust, we are not justified in believing that the theories are in a true
relation of physical equivalence. We cannot a priori decide on the physical equivalence of
such theories. The effective field theory perspective in §1.4 suggested that such theories
are generically not physically equivalent.

In the light of duality, Glymour’s position is best restated as saying that we are not
justified in taking extendable theories with different formulations as physically equivalent,
since they may have different ontological commitments. On the other hand, physical
equivalence for unextendable theories makes sense. Such theories are highly constrained,
valid for all values of the parameters, and cannot be coupled to any adjacent physics while
preserving their theoretical equivalence.

This situation may be seen as an important contribution of the search for a theory of
quantum gravity to discussions of physical equivalence. It also underlines the importance
for philosophy of unextendable theories. Extendable theories abound: we have discussed
Newtonian mechanics and effective QFTs. There is also general relativity, with its singu-
larities due to gravitational collapse. Unextendable theories are rare but useful, and we do
have some good examples of them: several conformal field theories, topological quantum
field theories (some of which play a role in gauge/gravity dualities: Chern-Simons theo-
ries, various versions of Yang-Mills theory, WZW models), and topological string theories
(which describe subsectors of string theories). They should be important case studies for
the philosophical topics of theoretical and physical equivalence.

Finally, note that unextendable theories need not be ‘finished’ theories. Some of
the examples above (especially some two-dimensional conformal field theories) are indeed
understood with rigorous mathematics; but other examples (such as Chern-Simons theory
and Yang-Mills theory: see also footnote 36), though expected to be unextendable for good
mathematical reasons, are still “theory fragments”, in the sense of Huggett and Wiithrich
(2013: p. 284): the programme of “interpreting a theory ‘from above’; of explicating the

36We are proceeding on the plausible assumption that at least some of the known gauge/gravity dualities
are exact. There is circumstancial evidence for this but as yet no mathematical proof.
37Unless one can show that the interpretation is robust: cf. footnote 25.
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empirical significance of a theory, is both ‘philosophical” in the sense that it requires the
analysis of concepts, and crucial to every previous advance in fundamental physics... As
such, it must be pursued by the study of theory fragments, toy models and false theories
capturing some promising ideas, asking how empirical spacetime relates to them”. So
also for the theories mentioned above: completely rigorous mathematical proofs are still
lacking, even if these fragments are robust enough that they already contributed to a

Fields medal (for E. Witten: in 1990).38

4 Comparing with recent work on dualities

Let us take stock of the distinctions we have made so far: by discussing how they relate
to extant philosophical discussions of dualities in the literature.

Our main contrast was between theoretical and physical equivalence: dualities are
cases of theoretical equivalence, and as such they do not always have to relate to physically
equivalent theories. This is, of course, not a new theme in the philosophy of physics
literature: and the recent philosophy of dualities, in particular, has addressed it. In
§4.1, I will describe recent work on dualities and state its limitations when it comes to
clarifying the contrast just mentioned. In §4.2, I will discuss more closely Huggett’s (2016)
recent work on T-duality. In §4.3, I will discuss some aspects of Rickles’ (2016) account
of dualities as gauge symmetries, and of Fraser’s (2016) comparison of Euclidean field
theory and QFT.

4.1 Some recent work on dualities

Recent work on dualities engaging with the constrast between theoretical and physical
equivalence includes, for example, Matsubara (2013: p. 485). He stresses “the importance
of distinguishing between the mathematical formalism itself and the physical interpre-
tation”. Similarly, Dieks et al. (2015: §3.3.2) use the contrast of internal vs. external
viewpoints to distinguish cases in which duality leads to an identification of two theo-
ries, on the internal viewpoint (cases of physical equivalence) from cases where, despite
the perfect formal agreement of the two theories, they are inequivalent: on the external
viewpoint.3?

In a forthcoming special issue on dualities edited by Castellani and Rickles, several
authors engage with the distinction between formal and physical equivalence®’: De Haro
(2016: §2.4) further develops the internal and external points of view, introducing the re-
quirement of internal consistency and the concept of a ‘theory of the whole world’ for the
internal viewpoint. Huggett’s (2016: §1) “first interpretive decision: either the T-duals
agree on the physical world or they do not” is the question whether two theories, which

38 Atiyah (1990) mentions, in the medal citation, Witten’s contribution to topological quantum field
theory.

39Dieks et al. (2016: §3.3.2) spoke of external and internal ‘viewpoints’. In this paper, I have promoted
these to the status of ‘interpretations’: for I have given an account, in §1.1, of what bare theories and
interpreted theories are. I will continue to use ‘interpretation’ in what follows.

40T discuss these works in chronological order of appearance.
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are related by T-duality, are physically equivalent. Fraser (2016: §3) also distinguishes
predictive, formal, and physical equivalence, and compares Fuclidean field theories to
QFTs: two theories can be predictively and formally equivalent yet fail to be physically
equivalent. Also Rickles (2016: §2) distinguishes interpretive, formulational and theo-
retical underdetermination—with the resulting change in meaning because of the word
‘underdetermination’ rather than equivalence. But Rickles, too, states that “dual theo-
ries are simply examples of theoretically equivalent descriptions of the same underlying
physical content” (2016: Abstract).*! Castellani (2016: §3.3), from the perspective of the
elementary particle vs. soliton distinction, contrasts representational /functional democ-
racy with ontological democracy, where this ‘democracy’ means, roughly, the absence of a
hierarchy or fundamentality relation. De Haro et al. (2016: §3.2) emphasise “that usually
there are many token systems of the type treated by a theory”, therefore recognising “that
there are cases of two disjoint parts of reality... that: match exactly, ‘are isomorphic’, in
the taxonomy used by some theory... but are otherwise different.” And they also discuss
‘theories of the universe’ as one case in which the idea of distinct but isomorphic exis-
tences falls by the wayside, thus making room for the internal viewpoint and justifying
the verdict of physical equivalence where the latter is appropriate.

Clearly, the distinction between theoretical and physical equivalence is central to the
above authors. But much as I admire them, I submit that the extant accounts are
insufficient, for two reasons, which I state here and develop in §4.2 and §4.3:

(i) Despite the fact that some of these authors distinguish theoretical and physical
equivalence, they do not provide a satisfactory explanation of, or clear criteria for, when
what I have called ‘theoretical equivalence’ amounts to ‘physical equivalence’, and when it
doesn’t: they fail to give an analogue of my scheme of contrasts (a)-(d) in the Introduction,
as I will argue in more detail in §§4.2-4.3.

(ii) A related problem is that some commentators, even though discussing the external
interpretation, are too quick to dismiss it as a possible interpretation of specific duali-
ties. As a consequence, they overlook important points: such as the difference between
extendable and unextendable theories.

I will now select a few of these problems in the literature and explain how my scheme
successfully deals with them. My criticism of the quoted authors will thus come down to
saying that the extant accounts, qua accounts of dualities, are not sufficiently articulated
to provide a clear difference-maker between theoretical and physical equivalence: other
than in very specific cases, and using judgments that do not strictly follow from the given
accounts. In their defence, one may add that it was not their purpose to look for such a
clear-cut difference-maker!

“'However, Rickles (2016) here uses the phrase ‘theoretical equivalence’, whereas most commentators
use ‘physical equivalence’. The reason for this may be in his footnote 14: “We must therefore remain
purely in the realm of theoretical considerations”, rather than making physical claims about the equiva-
lence of the duality, which can be easily broken by ‘external confounders’, e.g. adding point particles to
a theory of strings would break mirror symmetry.
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4.2 Huggett on T-duality

In this subsection, I discuss Huggett (2016), whose focus seems to be closest to the ideas
developed in this paper. Roughly, T-duality relates one kind of string theory in a space
with a circle of radius R to another kind of string theory in a space with a circle of radius
1/R. Given that the two theories are theoretically equivalent, in the sense used in this
paper, but postulate different radii for space, the question then arises as to whether the
two theories are also physically equivalent, and whether there is a fact of the matter about
the radius of space.

Huggett’s account gives a syntactic analysis of T-duality, which is an interesting alter-
native to mine, which as mentioned is closer to the semantic conception of theory (though
I have explicitly compared with Glymour’s account, which is syntactic, in §1.4).

Huggett (2016: §2) starts off his philosophical discussion reporting the philosophical
consensus: “Commentators have been pretty uniform in taking the stance that the T-duals
should indeed be taken as giving the same physical description... I argue below that they
are correct.” Huggett makes his first interpretive decision (that the T-duals are physically
equivalent) right at the beginning, so as to then move on to his second interpretive fork:
whether target space (the space postulated by the theory) and phenomenal space (a space
constructed using an experiment with photons) are the same. And after he has decided
that phenomenal space is not identical with target space, he goes back to arguing, in §2.2,
that “duality is considerably stronger than ‘empirical equivalence’.” He uses the example
of harmonic oscillator duality (which was apparently first contrasted with dualities in
string theory in Zwiebach cf. (2004: pp. 377-378), also cf. Matsubara (2013: pp. 478-479))
to illustrate how “systems which have dual descriptions... are not necessarily physically
equivalent”. For “if the theories describe literal, concrete, physical oscillators in our
world, then the two systems are not the same... and are indeed readily distinguishable,
by measuring the masses, for instance: the mass on the first spring is m, that on the
second 1/k... But the case is disanalogous to string theory, if that is taken as a theory of
everything. What happens if a duality applies to a ‘total’ theory, in the sense that it is
the complete physical description of a world, so that there is nothing outside the theory?”
(§2.2).

Huggett’s position here is, in essence, the same as that in Dieks et al. (2015: §3.3.3)
and De Haro (2016: §2.4) in the context of gauge/gravity dualities but also more gener-
ally for exact dualities: in some cases, there are ways of discriminating the duals, because
the quantities receive their interpretation externally, from outside the theory: there is an
external interpretation (in the harmonic oscillator case: measuring the masses indepen-
dently). But theories of the universe lack such an external viewpoint, and so the theory
must be interpreted internally: in which case—as suggested in §1.3.3—no meaningful
distinction can be made between two dual theories.

And yet such accounts are not entirely satisfactory. For “a theory of everything” (or,
better: a theory of the whole world, cf. De Haro (2016: §2.4.1)) is a slightly vague notion.
Leaving aside the fact that one must require the bare theories to have correct rules for
forming propositions and must be mathematically consistent (as I discussed in §1.1.1 and
§3.2). The requirement that the theory be “a theory of everything” is too strong, since
we do not need the theory to describe absolutely all the facts, not even all the physical
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facts, of a world, in order for it to admit an internal interpretation. It is sufficient that the
theory describes all the relevant physical facts, i.e. it is enough that it be unextendable
relative to a domain D of W (which, in particular, contains the notion of completeness:
cf. §1.3.3). The internal interpretation?® does not hinge on a strong physicalist thesis,
though it is compatible with it! My construal, in §1.1.2, of a physical interpretation I as
a pair of surjective maps, which (as per the discussion in §1.3.1 and §1.3.3) can be defined
for an unextendable theory on a domain D of W, clarifies and makes this point precise.

This lack of clarity regarding when an internal interpretation obtains is an example of
the first limitation, (i), listed in §4.1: the lack of a clear-cut criterion, in extant accounts,
which would discern theoretical and physical equivalence. I have argued that the key
concept needed in order to analyse this difference correctly, so that it could be applied
to other cases, starts from the notion of unextendability, and is articulated together with
the contrasts (a)-(d) listed in the Introduction. A bare theory, which is a triple 7', admits
an internal interpretation if it is unextendable: i.e. it is complete®® relative to W (it has
a well-defined syntax which is consistent and encompasses all empirical data in D C W)
and it cannot be extended (cf. especially §1.3.3).

As to problem (ii) pointed out in §4.1’s list, there are two points to make:

First and most important: on my analysis, there are significant cases in which the
external interpretation is to be taken seriously—cases for which it may, in fact, be the
only coherent interpretation: and my notion of extendability explains when this is in fact
the case: for one such example (and there are more!), see the discussion of black holes
in the next subsection. So my construal of physical equivalence allows for cases—also
cases of dualities in string theoryl—where one and the same duality can be interpreted
either internally or externally, depending on the context in which the theory is used.
On the other accounts, it is not clear whether, and how, this works. Thus, in my view,
the accounts of Huggett (2016), Fraser (2016), and Rickles (2016), for all their merits
in recognizing the importance of the internal interpretation, do not engage sufficiently
seriously with the external interpretation of dualities. Castellani (2016), and especially
McKenzie (2016), rightly deal with this question with more caution.

The second point relates to the logic of Hugget’s text (and I am grateful to him for
clarifications?*).

In (2016), Huggett first makes the decision about physical equivalence, i.e. before he
decides about other important matters such as the sameness of phenomenal and target
spaces. But physical equivalence is an endpoint of the analysis of bare theories, rather than
the starting point, in my account. Physical equivalence is the endpoint of the analysis of
bare theories, and the starting point of their interpretation. In order to move from duality
to physical equivalence, one first needs to: (a) distinguish bare vs. interpreted theories, (b)
decide on extendability vs. unextendability, and (c) decide on the availability of external
vs. internal interpretations. In other words: more conceptual work is needed before we are

42 As mentioned in the Introduction (b) and in footnote 25, the internal interpretation can be upheld
under slightly weaker conditions, namely when the theory can be extended to a larger domain but the
interpretation is robust against such extensions, i.e. none of the potentially relevant extensions change
the internal interpretation.

43Completeness was defined at the end of §1.1.1.

44Huggett, personal communication.
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entitled to conclude physical equivalence—on pain of missing relevant cases of physical
inequivalence!

The difference seems to me to be substantive. Huggett’s analysis is thus concerned
with cases of physical equivalence only. And our differences do not lie his first assuming
physical equivalence and arguing for it later, after the second interpretive fork—which
can simply be seen as a “deferred proof of a lemma”. The difference is that Huggett
unproblematically (though not uncritically!) endorses the consensus: the commentators
“have been pretty uniform in taking the stance that the T-duals should indeed be taken
as giving the same physical description... I argue below that they are correct.” Thus
while Huggett does have a discussion of why the two duals are physically equivalent, he
does not give any sign of envisaging situations in which one 7T-dual theory can, in fact,
be the correct description, and the other theory simply an auxiliary tool.

4.3 Rickles and Fraser

As mentioned in §4.1, Rickles (2016) distinguishes three cases of underdetermination,
duality qualifying as a case of ‘formal’ underdetermination. On Rickles’ analysis, “dual
theories are simply examples of theoretically equivalent descriptions of the same underly-
ing physical content.” (2016: Abstract). One interesting aspect of Rickles” account is his
assertion, which goes further than the other authors discussed, that theoretical equiva-
lence of dual theories should be understood as a case of gauge-type symmetry for all cases
of duality. Also, Rickles engages with the literature on equivalence by Ben-Menahem,
Earman, Norton, and others.

My account differs from Rickles’ in this obvious sense, that it is stated formally as an
isomorphism between triples, rather as a gauge-type symmetry.*> But the most important
difference is in points (i)-(ii) mentioned in §4: like Huggett, also Rickles does not seem
to contemplate serious cases of duality in which the theories could fail to be physically
equivalent, perhaps because of the lack of a detailed analysis of physical equivalence along
the lines of the scheme of contrasts (a)-(d) in the Introduction.

If one’s account moves too quickly from duality to physical equivalence, it may render
the external, and multifaceted, uses of dualities unintelligible. Rickles (2016: §2) gives
an interesting example of “applied dualities, in which, e.g. the gauge-gravity duality is
applied to a real-world manipulable system, such as condensed matter systems. In such
cases we simply know that we are not dealing with microscopic black holes in higher
dimensions.” How we “simply know” this fact is left unexplained by Rickles (though
the word ‘manipulable’ might be relevant). I have no doubt that Rickles knows, and
justifiably so, that we are not dealing with black holes in higher dimensions. But I submit
that such knowledge conflicts with his own construal of duality (at least, without further
elaboration), according to which duality is a gauge-type symmetry: “I hold that this can
be generalized to all cases in which one has a duality symmetry: they can always be
promoted to gauge-type symmetries because they just are gauge-type symmetries.” (§2,
penultimate paragraph).

An account of dualities as being gauge-type symmetries does not explain the black

45For more on the relation between duality and gauge symmetry, see De Haro et al. (2016, 2016a).
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hole case, at least not without further elaboration: for an explanation is needed for why
the ‘condensed matter-gauge’ is real and the ‘black hole-gauge’ is not. In its turn, the
characterisation of physical equivalence as ‘gauge-type’ does not work towards clarifying
the notion of ‘gauge’ either: a notion about which there is still much confusion in the
physics literature (on this point, cf. §2, and in particular footnote 1, of De Haro et
al. (2016): one needs to disentangle redundant from nonredundant gauge symmetries,
whether they be local or global; as well as the work done in §1.1-§1.2 of this paper). And
explaining the difference between these two ‘gauges’ is possible once we admit the idea of
an external interpretation.

Next I turn to Fraser (2016). My main point will revolve around the example of
Euclidean field theory (EFT) and QFT being not even a case of theoretical equivalence,
let alone physical equivalence. Further elucidating the distinction between theoretical
and physical equivalence indeed seems to be the main aim of Fraser’s (2016) example of
equivalence between EFT and QFT. She maintains that EFT and QFT are theoretically
equivalent*” but not physically equivalent. She contrasts this with dualities in string
theory, which, she says, are cases of physical equivalence. The example would seem to be
well chosen indeed: and an elaborate case study might be able to clarify what it is that
blocks physical equivalence in one case but not in the other. Fraser’s mastery of QFT is
indisputable: but, unfortunately, she does not give a detailed account of how these two
cases are supposed to differ (for Fraser’s own account of this, see two paragraphs below).

And, more importantly, the example itselfis deceptive if taken as a difference-maker for
theoretical and physical equivalence: for it is in fact not a case of theoretical equivalence!
As Fraser admits in the first three sections of her paper, EFT and QFT are not isomorphic:
there is a map from EFT to QFT but not the other way around. So “the ‘vice versa’
in the criteria [of theoretical equivalence| is not satisfied, and the theoretical relations
are entailments rather than equivalences... That the relations are entailments rather than
equivalences is not one of the points of comparison between the EFT-QFT case and string
theory that I want to emphasize” (§3, paragraph 3).

One may, of course, choose to downplay the role of equivalence, and to focus instead
on a one-way entailment, if one is just interested in a generic contrast between the EFT-
QFT case and dualities in string theory, as indeed Fraser is. But entailment relations will
not give us the difference-maker we need in order to distinguish theoretical from physical
equivalence, for the very reason that these are not cases of theoretical equivalence.*®

46Tn this case, the extendability of the two models rules out the internal interpretation. The black hole
case was discussed in detail in De Haro (2016: §3.2.3, 3.5).

4TFormally equivalent, as Fraser calls it. For Fraser, ‘formal equivalence’ entails: (i) the existence a
‘translation manual’ between the two theories, mapping the physically significant states, and the quanti-
ties, between the two theories; (ii) the map preserves the evaluations of all physical quantities which are
physically significant. From her discussion in Section 4.3, it seems that Fraser is also assuming equivari-
ance (though not identity!) of the dynamics with respect to duality. In the case of an invertible map,
these conditions thus together establish an isomorphism between the two theories, in the way I have
discussed it. For the case that the map is not invertible, this is what Fraser calls ‘one-way entailment’:
see the next paragraph.

480ne might argue that something might still be learned from the contrast between one-way theoretical
entailment and one-way physical entailment. But, unfortunately, here also Fraser proposes no clear
difference-makers.
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AsT have argued, the contrast of external vs. internal interpretations s such a difference-
maker. Such an account is thus needed, if we wish to explicate what is special about those
dualities which amount to physical equivalence, and what it is that the other dualities
lack.

The internal interpretation of dualities is also not restricted to a context of discovery,
as some accounts might suggest. Thus Fraser says: “This difference between the analytic
continuation and T-duality cases occurs in the context of discovery” (Fraser (2016: §4.1)):
“in the case of T-duality, each of the dual theories is only partially physically interpreted
prior to introduction of the duality transformations. Moreover, it is the fact that each
theory 1s only partially physically interpreted that makes possible the ultimate judgment
that the theories are physically equivalent” (her emphasis, 2016: §4.1). But the key suf-
ficient condition for claiming physical equivalence, in my view, is to secure an internal
interpretation, and this depends on an objective criterion—unextendability—not on a his-
torical or psychological one, such as the contingent fact that a theory happens to be only
partially interpretated. Thus I submit that my analysis applies in the context of discovery
as well as the context of justification. Of course, gravity theories in five dimensions, and
conformal field theories in four dimensions, were known—and interpreted!—long before
gauge/gravity dualities were discovered. The internal interpretation can thus correct,
where appropriate, an extant external interpretation.

The articulation of the internal interpretation in terms of the notions of bare and
interpreted theories and their unextendability, as in this paper, makes clear that a deci-
sion whether an internal interpretation exists is, first and foremost, a (complex) decision
about physics. But to then be able to move to physical equivalence, we need to secure
unextendability:*® and, as I have argued, unextendability is highly constrained by both
physics and by mathematics!

Envoi

Let me end by echoing an important remark: the discussion, in Section 3, of the philosoph-
ical significance of gauge/gravity dualities, returns us to the idea (echoed, for instance, in
the remark by Huggett and Wiithrich, quoted at the end of Section 3) that philosophical
analysis goes hand-in-hand with theory construction (cf. §3.1).

The analysis of gauge/gravity dualities shows specific features of this two-way street.
On the one hand, concepts such as theoretical and physical equivalence help us to con-
struct theories of quantum gravity, and so brings metaphysical analysis to bear on theory
construction.

But also, on the other hand: theories of quantum gravity, in particular gauge/gravity
dualities, help us achieve greater clarity about these two philosophical concepts (cf. §1.3),
thereby exhibiting the virtues of a ‘science first’ approach to metaphysics.

490r, at least, that they are sufficiently robust under extension: see footnote 42.
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