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Abstract

Constructive field theory aims to rigorously construct concrete, non-trivial solutions to
Lagrangians used in particle physics, where the solutions satisfy some relevant set of
axioms. I examine the relationship of solutions in constructive field theory to both
axiomatic and Lagrangian quantum field theory (QFT). I argue that Lagrangian QFT
provides conditions for what counts as a successful constructive solution, and that it
provides other information that guides constructive field theorists to solutions. Solutions
matter because they describe the behavior of QFT systems, and thus what QFT says the
world is like. Constructive field theory, in incorporating ingredients from both axiomatic
and Lagrangian QFT, clarifies existing disputes about which parts of QFT are
philosophically relevant and how rigor relates to these disputes.

∗I thank Bob Batterman and Michael Miller for comments and encouragement. Several anonymous referees
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1 Introduction
To date, philosophers of quantum field theory (QFT) have paid much attention to roughly
two kinds of QFT: axiomatic approaches to algebraic QFT (Halvorson and Müger, 2006),
and Lagrangian-based QFT as used by particle physicists (Wallace, 2006). Comparatively
less attention, however, has been paid to constructive QFT, an approach that aims to
rigorously construct non-trivial solutions of QFT for Lagrangians and Hamiltonians that
are important in particle physics, ensuring that such solutions satisfy certain axioms. In
doing so, constructive QFT mediates between axiomatic approaches to QFT and physicists’
Lagrangian-based QFT. It ensures that the various axiom systems have a physically
meaningful correspondence with the world. Since we usually take solutions in physical
theories to describe the behavior of systems falling under the theory and constructive QFT
aims to produce these solutions, constructive QFT deserves some philosophical attention.

Constructive QFT is rather different in approach and aims from what I call, borrowing
terminology that stems from Arthur Wightman (1973), axiomatic QFT.1 Following
Wightman and modern practictioners like Summers (2012), I define constructive QFT to
be the attempt to rigorously construct interacting models of QFT that correspond to the
repertoire of Lagrangians of interest to particle physics. In contrast, axiomatic QFT in this
terminology aims to derive results about the structure of QFT independently of any
particular Lagrangian. In this paper I examine two aspects of constructive QFT in the
functional integral tradition that are relevant to our understanding of the theoretical
structure of QFT. The first is the question of what counts as a solution to a specific
Lagrangian in constructive QFT. I argue that the criteria for what counts as a solution
include some kind of correspondence with perturbation series derived in Lagangian QFT.
This correspondence relation is not part of any of the standard axioms of QFT. Thus, the
constructed solutions may satisfy “physical criteria” that are not present in axiomatic QFT
taken by itself.

The second aspect of constructive QFT in the functional integral tradition that I
examine concerns the information that constructive field theorists use to construct
solutions. Methods of construction rely heavily on perturbative Lagrangian QFT. The
specifics of the regularization methods, counterterms, multiscale expansions, and so on that
are used affect the success of the construction. This suggests that a successful construction
of physically interesting solutions relies on information that may not be just in the axioms
of axiomatic QFT. This information, often derived from Lagrangian QFT, may thus be of
philosophical interest.

The paper proceeds as follows. In Section 2, I clarify what I mean by perturbative
Lagrangian QFT, constructive QFT, axiomatic QFT, and other key terms. In Section 3, I
provide a quick primer to perturbative Lagrangian QFT, which will help us understand

1See Section 2 for a fuller explanation of this terminology. As I also explain in that section, my more
precise terminology does not always line up with the more casual labels of physicists or the distinctions
drawn in the philosophy literature so far.
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some aspects of constructive QFT. In Section 4, I make the two main points described
above, then discuss their philosophical implications in Section 5. I conclude with some
reflections on general implications for the philosophy of applied mathematics.

2 Approaches towards Quantum Field Theory: A
Primer
This primer is necessary for two reasons. Firstly, there is a gulf between the methods that
physicists take to constitute QFT and the mathematical structures that philosophers of QFT
have often taken to constitute QFT. In the philosophy of QFT debate this has become
simplified into a contrast between “Lagrangian” QFT and “algebraic” or “axiomatic” QFT
(Wallace, 2011; Fraser, 2011), but more nuanced categories are required for my purposes.2

Secondly, the dominance of this terminology has led philosophers to gloss over a
distinction, long recognized in mathematical physics, between what I will call axiomatic
QFT and constructive QFT. This has led to much confusion about the role of perturbative
Lagrangian methods in the foundations of QFT. Here, I lay out some terminology that will
help clear up such confusions.

Most of the methods described in a standard QFT textbook for physicists involve
calculations in perturbative Lagrangian QFT. To remain consistent with previous
terminology used by Wallace (2006), I will simply refer to this approach to QFT as
Lagrangian QFT, even though physicists also use some methods that are Lagrangian but
not perturbative. In Lagrangian QFT, one takes as a baseline an exactly solvable model of
QFT in which there are no interactions. Having no interactions, this model is not of direct
physical interest. But to solve models in which there are interactions, one can consider the
interactions as small perturbations to the exactly solvable non-interacting model. This
allows one to apply the apparatus of perturbation theory to obtain what are known as
renormalized perturbation series. If we had a justification for the validity of perturbation
theory in QFT, then these would be good approximate solutions for the interacting model.3

However, perturbation theory is valid only under certain conditions, and it is hard to verify

2To keep things clear, I will use quote marks, as in the previous sentence, to indicate that I am referring
to terms used by philosophers so far, without necessarily endorsing those terms. Since I intend to make
more fine-grained distinctions than these terms alone allow for, I will mark terms that I endorse using
italics.

3Throughout this paper, I use the term “model” the way physicists do, as referring to a specific
instance of a system falling under a theory. I do not use it in the logicians’ sense. The distinction between
“solution” and “model” is that “solution” is a kind of success term, whereas it is common for physicists
to call something a “model” even if they have not obtained an adequate description of the model which
would count as a “solution”. For example, Rivasseau (1991, p. 11) uses the term “ϕ4

4 model” even though
there is as yet no such successful construction of such a model, i.e. there is as yet no solution to the
model. Gawedzki and Kupiainen (1985, p. 197) speak of models existing “on the level of the formal
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if these conditions apply in the case of QFT. Furthermore, Lagrangian QFT uses
mathematical tools known as Feynman path integrals. While the exact definition of path
integrals is still in flux, physicists have devised ways to compute them without adhering to
mathematical standards of rigor.

In the interests of clarity, it is worth noting that there are perturbative treatments of
QFT that do not coincide with Lagrangian QFT as practiced by particle physicists. For
example, there are programs to “rigorously” analyse perturbative Lagrangian QFT
(Steinmann, 2000; Salmhofer, 2007), but these form a very small proportion of the work
on Lagrangian QFT. The “rigor” in these works concerns manipulating perturbative
formalisms according to strict, clearly delineated syntactic rules, which may nonetheless
lack non-perturbative justification. This lack means that the formalisms have an
indeterminate semantics, since, roughly speaking, we do not know if the perturbative
expressions “refer” to anything.4 The use of “rigor” to describe such programs is meant to
contrast with the more common practice among physicists of using approximations and
cancellations that may not even be syntactically consistent.

Besides these syntactically rigorous perturbative approaches starting from Lagrangians,
there are also perturbative approaches within algebraic QFT, which uses a different
mathematical framework from Lagrangian QFT (Brunetti, Duetsch, and Fredenhagen,
2009).

Lagrangian QFT has been helpful in providing what physicists regard as approximate
solutions to problems in QFT. However, the lack of rigor has driven philosophers to turn
their attention primarily to algebraic QFT. “Algebraic” here refers to the mathematics
used, namely the use of C∗ algebras to model local observables. The algebraic approach is
based on axioms like the Haag-Kastler axioms. Algebraic QFT is not the only strain of
QFT that philosophers regard as sufficiently rigorous. There are other sets of axioms that
one can work with, such as the Wightman axioms and the Osterwalder-Schrader (OS)

renormalized perturbation series” although no constructive solution has been found yet for these models.
The fact that “solution” is a success term while “model” is not explains language like Wightman’s (1973,
p. 2) when he writes: “the models under discussion are ones for which it seems very unlikely that an
explicit solution will ever be found.”

4In a simpler mathematical setting, a syntactic rule could be something like Euler’s custom of expand-
ing a function out as a “Taylor series” without checking for convergence. Thus, 1

1−x could be expanded
as 1+ x+ x2 + . . . even outside its conventional radius of convergence (Kline, 1983). This is an instance
of using a syntactic rule without semantic justification, because one is mechanically applying rules for
manipulating symbols without checking that the symbols refer to anything. To provide a semantic justifi-
cation, one has to then show that the series actually corresponds to some well-defined quantity. Applying
perturbation theory without a non-perturbative justification is similar—one can derive “perturbative ex-
pressions” by pure symbolic manipulation, but the resultant expressions may not refer to anything. My
use of “syntactic” and “semantic” in this context is consonant with that found in discussions of formalism
and other competing philosophies of mathematics, such as Detlefsen (2005, p. 250) and Wilson (2008,
pp. 541-3).
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axioms. The former work in Minkowski space, while the latter work in Euclidean space.
They are related to each other by the Osterwalder-Schrader Reconstruction Theorem, as I
explain below. The Wightman axioms use a mixture of functional analysis and operator
algebras. The OS axioms are the basis of rigorous functional integral approaches to QFT.
As with the term “algebraic”, this term refers to the mathematics used—in the OS
framework, Feynman path integrals used by physicists are reinterpreted in terms of
rigorous functional integrals in Euclidean space.

Figure 1: A rough taxonomy of rigorous approaches to QFT. This figure does not aim to be com-
plete, leaving out perturbative algebraic QFT (Brunetti et al., 2009) and “rigorous” perturbative
Lagrangian QFT (Steinmann, 2000; Salmhofer, 2007), for example. The embellished bubbles
indicate those constructive approaches of central interest to this paper, namely those that seek
to rigorously construct models of QFT corresponding to Lagrangians within the usual repertoire
of particle physics. As stated in the main text, constructive approaches using algebraic methods
are as yet not obviously related to the Lagrangians of particle physics.

Within both the Wightman and functional integral approaches to QFT, we can discern
two broad ways of investigating QFT. The first way is what has often been called axiomatic
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QFT, where the idea is to investigate the consequences of the axioms without relying on the
properties of any particular Lagrangians or Hamiltonians. The second way is a constructive
approach, which has a very specific aim: to construct concrete, non-trivial5 examples of
models of QFT that satisfy the relevant set of axioms. Figure 1 displays the taxonomy I am
describing. For example, one can take a constructive approach in the Wightman framework
that aims to construct a φ4

2 model and prove that it satisfies the Wightman axioms. This is
done by defining a Hamiltonian and showing that it has the requisite algebraic properties
(Glimm and Jaffe, 1968). One could also have a corresponding project in the functional
integral approach that aims to construct the same φ4

2 model using Euclidean functional
integrals (Glimm, Jaffe, and Spencer, 1974). Both these projects have the very specific aim
of showing that specific models that are used in particle physics are consistent with
axiomatic systems, and are to be distinguished from methods that aim to derive general
conclusions from axioms without reference to particular Hamiltonians or Lagrangians.

Finally, there is a different kind of constructive project in the algebraic framework,
where one constructs models that, in contrast with the Wightman and functional integral
constructions, are not guided by Lagrangian QFT (Summers, 2012, p. 38). I will not
discuss this kind of constructive work in this paper, as I am focusing on the significance of
constructive field theory as a mediator between Lagrangian QFT and axiom systems.
While algebraic approaches may one day hope to play such a mediating role, constructive
field theory in the functional integral tradition is at present much more in contact with
Lagrangian QFT.6 The lack of this mediating role for such purely algebraic constructions
makes their philosophical significance potentially very different from that of Wightman
and functional integral constructions.

I call the project of constructing non-trivial solutions to models of QFT, where such
models are derived from the usual repertoire of Lagrangian QFT as practiced by physicists,
constructive QFT. In doing so I am merely using terminology that dates from Wightman
and is still used by contemporary mathematical physicists. In an introductory article on
constructive field theory, Wightman writes:

Constructive quantum field theory differs from axiomatic field theory in that it
attempts to construct the solutions of specific concrete model theories,
typically simplified analogues of self-coupled meson theories or Yukawa
theories of meson-baryon couplings. On the other hand, axiomatic field theory
customarily attempts to make statements about all theories satisfying certain
quite general assumptions (Wightman, 1973, p. 1).

Wightman reiterates this distinction in other articles (Wightman, 1969, 1976), emphasizing

5In QFT, both physicists and mathematicians use “non-trivial” to refer to models containing interac-
tions, ruling out those that contain only free fields.

6Thus Jaffe and Witten’s description of the Clay Institute’s Millenium Problem of constructing a
four-dimensional interacting Yang-Mills theory with a mass gap, for example, focuses on attempts at the
problem from the functional integral point of view (Jaffe and Witten, 2005).
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each time that the concrete models chosen are those from the repertoire of Lagrangian QFT.
A more modern review of QFT confirms that Wightman’s distinction still exists.

Fredenhagen, Rehren, and Seiler (2006, p. 4) write that “The power of the axiomatic
approach resides not least in the ability to derive structural relations among elements of the
theory without the need to actually compute them in a model.” They then continue in the
section on constructive QFT:

The axiomatic approach, on the other hand, does not answer the question
whether the axioms are not empty, i.e. whether any nontrivial QFTs satisfy
them. The constructive approach is in principle addressing both of these
problems. On the one hand it attempts to show that the axiomatic framework of
QFT is not empty, by mathematically constructing concrete nontrivial
examples satisfying these axioms, and on the other hand it provides
non-perturbative approximation schemes that are intimately related to the
attempted mathematical constructions; the prime example[sic] are the lattice
approximations to QFTs (Fredenhagen et al., 2006, p. 14).

Constructive QFT is thus very different from axiomatic QFT in its aims and
methodology. Philosophers have for the most part focused only on axiomatic QFT or
perturbative Lagrangian QFT.7 Looking at the rigorous approaches, when philosophers do
consider models of QFT at all, these have been non-interacting models, which are not the
focus of constructive QFT.8 Constructive QFT contains the best attempts so far to construct
rigorous solutions to Lagrangian models, having done this successfully for several systems
with dimensions other than four.9 Since the actual world is four-dimensional, the main aim
is to extend these successes to the case of four dimensions, but this has not been achieved
yet for Lagrangians resembling those used by particle physicists.

One can think of constructive QFT as performing the important task of ensuring that
that our axiom systems have a physically meaningful correspondence with the world. That
is, since the confirmation of QFT proceeds via deriving the consequences of specific

7For examples of the former, see Halvorson and Clifton (2002) and Baker and Halvorson (2010). For
examples of the latter, see Wallace (2006) and Teller (1997). There are one or two exceptions that perhaps
fall in a middle ground, such as Fraser (2008).

8See Ruetsche (2011) and Clifton and Halvorson (2001) for philosophical work on non-interacting
models. To some extent, whether or not one includes non-interacting models in the category of “con-
structive QFT” is a terminological issue. I am merely following one (sensible) convention, adopted by
Fredenhagen et al. (2006) in the quote above, who specify that the models have to be non-trivial. Insofar
as the main purpose of constructive QFT is to mediate between empirical data and axioms, it makes sense
to consider its main focus to be on interacting models.

9The construction can also be done with Hamiltonians, but in either case, constructive QFT is about
constructing models of QFT containing specific interactions, whereas the whole point of axiomatic QFT
is to avoid reference to specific interactions. To avoid textual unwieldiness, I will just say “Lagrangian
models” from now on with the understanding that Hamiltonian models are also allowed.
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Lagrangian models, we need to show that our axiomatic systems can accommodate such
models. That is why constructive QFT does not just attempt to construct models of random
Lagrangians, but focuses on specific ones, such as the ones in four dimensions, the ones of
Yang-Mills theory, the Higgs interaction, and so on.10 In philosophy of language terms, we
can think of constructive QFT as attempting to show that our axiomatic systems are not
just games of symbols played according to fixed syntactic rules; that they have external
validity in addition to the internal consistency that their syntax provides. External validity
lies in the connection to empirical success, which is why Wightman emphasizes the
connection to heuristic Lagrangian QFT.11

A few caveats ought to be made at this point. Firstly, my categorization of different
approaches to QFT does not rule out borderline cases. There are constructive projects
combining functional integral methods with Wightman-oriented methods, and others
combining algebraic and Wightman methods (Summers, 2012, pp. 4, 8, 12). Secondly,
there is some variation in terminology within the mathematical physics community. While
I follow Wightman and others in classifying under “axiomatic QFT” those approaches that
do not rely on the properties of specific Lagrangians or Hamiltonians, Arthur Jaffe (1969)
has written an article titled “Whither Axiomatic Field Theory?” in which he discusses
what I here call constructive field theory. Similarly, Huzihiro Araki (1972) discusses
constructive QFT as an “area” of axiomatic field theory. However, both Jaffe and Araki are
in agreement that constructive field theory involves constructing models of QFT, these
models being concrete realizations of particular Lagrangians or Hamiltonians. Jaffe (1969,
p. 576) writes: “Constructive field theorists have approached this problem with Lagrangian
field theories and attempted to solve particular model Lagrangians.” Araki (1972, p. 1)
writes: “[Constructive field theory] is an attempt to construct a quantum field theory for a
given interaction such as φ4 and ψψφ in a mathematically satisfactory manner.” Thus, there
is a consensus in the literature that constructive field theory, whether one classifies it under
the axiomatic program or not, is an approach which is defined by its attempt to construct
models of particular interactions, represented by Lagrangians or Hamiltonians.

In short, we can clearly recognize, and the community does recognize, a distinction
between approaches that proceed from the axioms alone and approaches that work with
concrete models, where these models are taken from Lagrangian QFT. I have, following
one convention, chosen to call the former axiomatic and the latter constructive.
Terminological disputes aside, it still remains a fact that philosophers have paid little
attention to the latter, and that the latter affords many interesting connections with

10Later, we will see that one of the main problems in constructive QFT is figuring out in what sense the
“Lagrangians” used in constructive QFT correspond to the semi-formal “Lagrangians” used in Lagrangian
QFT.

11In an applied math context like QFT, external validity lies in ensuring that our language latches on to
the world in some sense. I leave it open what this “latching on to” relation is in the details. The simplest
account of it would be some kind of isomorphism to mathematical objects (Pincock, 2004), but more
complex views are possible (Batterman, 2010).

8



Copyright Philosophy of Science 2016
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

Lagrangian QFT that are easy to ignore if one concentrates on the former as the paradigm
example of rigorous QFT.

Now that we have a clear terminology, I will move on to provide more details about the
general approach of Lagrangian QFT. This is necessary to explain later how solutions in
constructive QFT relate to Lagrangian QFT.

3 Perturbative Solutions in Lagrangian Quantum
Field Theory
For physicists, the dynamics of QFT are derived from a quantity known as the action:

S[φ] =
∫

d4xL (φ(x) ,∂φ(x)/∂xµ) ,

where L is the Lagrangian of the quantum field φ. The square brackets indicate that S[φ] is
a functional, not a function. It depends on the values of φ everywhere, not just at some
particular point of spacetime. The form of the Lagrangian is based on considerations of the
kind of interactions we expect in the system of interest, and on the symmetries we expect
the system to obey. The action is closely related to the classical field equations by way of a
variational principle. Essentially, postulating that S[φ] has to be at an extremum will lead
us to the classical field equations. Thus, the action can be regarded as representing the
dynamics of the theory.

From the action we get the partition function, which is defined as follows:

Z =
∫

DφeS[φ] (1)

Here, the integral is a functional integral, meaning that we are integrating over all possible
combinations of φ’s values over spacetime.12 Once we know Z, we can typically calculate
all the empirical quantities associated with that particular Lagrangian, such as the
scattering cross-sections found in particle physics experiments. Thus, finding an
expression for Z is a primary goal of much of QFT. A successful evaluation of Z is
considered to be a solution of Lagrangian QFT.

3.1 Perturbative Renormalization
Equation 1 can be given a straightforward finite, analytic expression when the action
involved is that of a free scalar field with no interactions, also known as a “Gaussian” field.

12Later, we will see that the difficulties of defining a measure for this integral is one reason why
Lagrangian QFT is commonly thought to be unrigorous. Constructive field theory is distinguished from
Lagrangian QFT in part because it attempts to define a measure rigorously.
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In this case, L = 1
2

(
(∂φ)2 −m2φ2

)
. For interacting fields, physicists typically use

perturbation theory to evaluate the path integrals. Since the path integral for the free field
has a known analytic expression, the perturbations are applied using the free field case as a
reference—we consider the interaction as a small perturbation to the free field Lagrangian.
The following example illustrates how this is done in a simple case.

Suppose a small13 interaction − λ

4! φ
4 is added to the free field Lagrangian, so that

L = 1
2

(
(∂φ)2 −m2φ2

)
− λ

4! φ
4. This is the Lagrangian of the so-called φ4 theory, which

describes a self-interacting scalar field. The partition function is

Z =
∫

Dφe
∫

d4x(((∂φ)2−m2φ2)− λ

4! φ4).

Assuming λ to be small, we then convert the e−
λ

4! φ4
factor into a Taylor series in λ:

Z =
∫

Dφ

(
1− λ

4!

∫
x1

φ
2 (x1)dx1 +

1
2

(
λ

4!

)2 ∫
x1 ,x2

φ
4 (x1)φ

4 (x2)dx1dx2 + · · ·

)
e
∫

d4x
(
(∂φ)2−m2φ2

)
, (2)

where I have included only the first two terms of the Taylor series to illustrate the
general rule.

Unlike in the free field case, when evaluating path integrals such as the above,
several mathematical problems arise. One is how to define the measure Dφ.
Physicists calculate Z without a precise definition of the measure. Constructive
field theorists attempt to define it rigorously. The second class of problems
surrounds infinities known as divergences that arise in one’s calculations. These
divergences occur in two forms. Firstly, individual terms in the perturbation series
might diverge. Secondly, the perturbation series itself may not be a convergent
series, though it may be an asymptotic series that can be summed by special
summation methods.

To deal with the first type of divergence, physicists perform the following
procedures:

1. Regularization, which is the reduction of the number of degrees of freedom in
the problem by adding momentum cutoffs, dimensional regularization, or
moving to a lattice formulation;

2. Addition of counterterms to compensate for the regularization.

A theory is said to be perturbatively renormalizable if after regularization and the
adding of counterterms, the number of coupling parameters in the theory is finite
and constant at each order in perturbation theory. Another way of putting this is
that renormalization occurs when the effects of regularization and the adding of

13In the perturbative context, a small interaction is one for which the coupling constant, when ex-
pressed in dimensionless units, is less than 1.
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counterterms are absorbed entirely by changing only the values of a finite number
of coupling parameters. For example, in the φ4 model, the Lagrangian we start
with before regularization and renormalization is L = 1

2(∂φ)2 − 1
2m2φ2 − λ

4!φ
4. In

carrying out dimensional regularization, we first go from 4 dimensions to 4− ε

dimensions. This introduces a new scale µ and an ε exponent into the Lagrangian,
so that L = 1

2(∂φ)2 − 1
2m2φ2 −µ2ε λ

4!φ
4 after regularization. After both dimensional

regularization and renormalization, we obtain a renormalized Lagrangian Lren with
counterterms Lct (Ramond, 1981, p. 132):

Lren = L +Lct ,

where

Lren =
1
2
(∂φ0)

2 − 1
2

m2
0φ

2
0 −

λ0

4!
φ

4
0,

L =
1
2
(∂φ)2 − 1

2
m2

φ
2 −µ2ε λ

4!
φ

4,

and

Lct =
1
2

A(∂φ)2 − 1
2

m2Bφ
2 −µ2ε λ

4!
φ

4.

The coupling parameters φ, m and λ have been renormalized as follows:

φ0 = (1+A)1/2
φ,

m2
0 = m2 1+B

1+A
,

λ0 = λµ2ε 1+C

(1+A)2 .

A, B and C are constants that determine how the coupling parameters are
renormalized. As one can see, the counterterms that are added preserve the form of
the interactions in the original Lagrangian, so that one has to change only the
existing finitely many coupling parameters in L in order to obtain Lren. This is
why the φ4 theory is said to be perturbatively renormalizable.

The perturbation series with the new coupling parameters is known as the
renormalized perturbative series, which has the same terms as the original one, but
with the renormalized coupling parameters instead of “bare” coupling parameters.
This series is the basis of many, if not most, successful empirical predictions in
QFT. However, because it is unclear whether the series converges or whether it is
asymptotic to some function we can derive in constructive field theory, the series is
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purely “formal”, in the sense of being a mere string of symbols that may have no
mathematical referent.14

We will see next that the renormalized perturbation series also plays an
important role in constructive QFT, forming part of the success conditions for a
constructive solution.

4 Constructive Solutions in Quantum Field Theory
Constructive QFT is the effort to construct, according to the usual standards of
mathematical rigor, solutions to Lagrangian models in QFT, and to prove that these
solutions satisfy certain axioms that we expect to apply to all Lagrangian models.
In the functional integral tradition, the usual method is to shift from Minkowski
spacetime to Euclidean spacetime. This is done by a Wick rotation, where one
replaces the time parameter in Minkowski spacetime with an imaginary time
variable −it. This turns out to be extremely helpful for constructing the functional
integral measures needed for Equation 1—many constructions that are possible in
Euclidean spacetime have not been accomplished directly in Minkowski spacetime.

In Euclidean field theory, the relevant axioms to be satisfied are the OS axioms.
These axioms state the properties that the Schwinger functions of the model must
satisfy. The Schwinger functions are as follows:

SN(z1, . . . ,zN) = Z−1
∫ N

∏
j=1

φ(z j)e−
∫

V (φ(x))dxdµ0(φ), (3)

where
Z =

∫
e−

∫
V (φ(x))dxdµ0(φ). (4)

V is the interaction part of the Lagrangian. The measure dµ0(φ) is a Gaussian
measure on the Schwartz space of rapidly decreasing functions. This measure
accounts for the free field part of the Lagrangian, so that Equation 4 is a translation
of Equation 1, even though the former does not contain the free-field portion in the
exponential (Sénéor, 1988, p. 23).

The OS axioms are related to the Wightman axioms by the
Osterwalder-Schrader Reconstruction Theorem, which states that any set of

14It is not an entirely unmotivated string of symbols, since it is derived by an extension of the syntax
of perturbation theory to a case where perturbation theory might apply. However, without a proof that
perturbation theory is valid in this context, we do not know if this syntactic expression has a mathematical
referent.
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functions satisfying the OS axioms determine a unique Wightman model whose
Schwinger functions form that set (Rivasseau, 1991, p. 22). This theorem allows
constructive field theorists in the functional integral tradition to work in Euclidean
spacetime, knowing that any successful construction satisfying the OS axioms can
be translated into a successful construction satisfying the Wightman axioms. This
way, they can exploit the advantages of Euclidean spacetime when it comes to
defining a measure for Equation 1, while ensuring that they are still effectively
constructing models that can live in Minkowski spacetime.

A solution in constructive QFT would be a construction of Schwinger functions
that satisfy the OS axioms and some other conditions (to be described below).
Before evaluating Equation 3, however, we have to provide a meaning to it. We
have to define what the integral over function space could possibly mean. This is
not a straightforward task because for interacting fields, we encounter the same
problems as in Lagrangian QFT with regularization and counterterms.15 These
questions of defining the functional integral will be discussed in Section 4.2.
Additionally, to make sure that the construction is indeed a solution that
corresponds to an interaction of interest in Lagrangian QFT, we have to show that
the construction has some kind of correspondence to the renormalized perturbation
series that physicists derive for the corresponding Lagrangian in Lagrangian
QFT.16 Crucially, this latter property, which I will discuss next in Section 4.1, is
not part of the OS axioms.

4.1 Correspondence with Physicists’ Perturbative Methods
A large part of the motivation of constructive QFT is to show that the Lagrangian
models that physicists have used with such empirical success do in fact have
solutions that are rigorously defined. Physicists have long used their own
“solutions” in the form of renormalized perturbation series, but, as explained
above, these are obtained in mathematically dubious ways. Nonetheless, the
empirical success of these series suggests that they are like solutions. We want the
rigorously constructed solutions of constructive QFT to be connected, somehow,

15There are also non-perturbative issues in defining the functional integral, which I will not discuss in
this paper, such as trying to put bounds on regions in which φ is large (otherwise known as the large field
problem). These are usually dealt with by multiscale expansions (Rivasseau, 1999, pp. 6-7).

16This correspondence is a kind of “ultimate” success condition. Much of constructive field theory
consists of constructing toy models that resemble Lagrangians used in particle physics but are not neces-
sarily identical to them, such as “wrong sign” planar four-dimensional φ4 (Rivasseau, 1991, Chapter II.5).
These toy models serve as a useful test ground for techniques that may help us to construct solutions that
do correspond to Lagrangians used in four-dimensional particle physics.
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with this empirical success, and thus with the renormalized perturbation series. We
also want to make sure that the Lagrangian we construct a solution for is “the
same” Lagrangian that the physicists use. This is more involved than it appears
because the physicists’ Lagrangian is not mathematically well-defined as it stands.
While physicists can write down the formal identity L = 1

2

(
(∂φ)2 −m2φ2

)
− λ

4!φ
4,

say, this is not enough to constitute defining L rigorously, because the rules with
which they manipulate L are not well-defined.

Suppose, then, that I show that for a particular L , the right-hand side of
Equation 3 can be rigorously constructed. Wightman asks:

How can you answer the question, “What problem did you solve?” The
answer would be “I solved the problem of showing that certain limits
existed and that they had certain properties.” But you never write down
any condition which fixed the theory you were talking about. We argue,
of course, that conventional renormalized theories are fixed by choosing
coupling constants and masses (Wightman, 1986, p. 226).17

The choice of coupling constants and masses is fixed by the renormalized
perturbation series of the Lagrangian. In other words, to make sure that we have
solved a Lagrangian that “is” the φ4 Lagrangian, say, we have to make sure that our
construction somehow reproduces the same coupling constants and masses that the
renormalized perturbation series for the φ4 interaction has.

Wightman makes a similar point in an earlier paper, when he asks what it
means to “solve” a theory:

Of course, one can answer by saying one wants to construct a field
satisfying the usual axioms of quantum field theory that somehow
solves the equations of the model, but in fact, one wants much more
than that (Wightman, 1973, p. 3).

The first of the “much more than that” objectives is as follows:

1. Renormalized Hamiltonian: Hren in the space of physical states. How
one recognizes that it is the renormalized Hamiltonian for the somewhat
illdefined[sic] model one starts out from is a question about which much
will be said later (Wightman, 1973, p. 3, underlining in original,
emphasis mine)

On a similar note, James Glimm asks:

[H]ow does one recognize a solution to the problem? In general terms a
solution should possess as far as possible the expected properties. For

17Wightman is using “theory” where I would use “model”.

14



Copyright Philosophy of Science 2016
Preprint (not copyedited or formatted)
Please use DOI when citing or quoting

example the Taylor coefficients [of the perturbation series] should agree
with the standard formulae (Glimm, 1969, p. 103).

For a more modern source, we can look to Gallavotti and Rivasseau (1984, p.
209), who point out that a φ4

4 theory cannot be just something that satisfies certain
axioms, is four-dimensional, and is scalar, but must also “correspond at least in
some sense to a φ4

4 lagrangian[sic].”18 They then add that given the historical
success of perturbation theory in other field theories, this notion of correspondence
should include at least some notion of being asymptotic to the renormalized
perturbation series.

Much work in constructive QFT revolves around defining this correspondence
relation. One option is to say that the correspondence exists if the rigorously
constructed Z is asymptotic to the renormalized perturbation series. A function is
asymptotic to a series expansion if, roughly speaking, the successive terms of the
series provide an increasingly accurate description of how quickly the function
grows. Asymptotic series need not be convergent.19 However, as we come up with
new ways to sum series, we also find find new ways to prove asymptoticity.
Constructive QFT is engaged in finding new ways to sum physicists’ perturbation
series so as to relate them to the non-perturbative constructions of Z. This means
that the notion of “correspondence” is expanding as we find new ways to sum
perturbative series and possibly prove asymptoticity. There is also the possibility
that the notion of correspondence that would work is one that is weaker than
convergence (of a series to a function) but stronger than asymptoticity. Barry
Simon (1982, p. 6) for example proposes the notion of a strong asymptotic series
for this purpose. This latter kind of series has the advantage that at most one
function f has a given series as a strong asymptotic series, whereas multiple
functions may have the same series as an asymptotic series (Strocchi, 2013, p. 1).

In constructive field theory, the most commonly used variety of strong
asymptotic summability is that of Borel summability. This has been used in many
important constructions, such as that of Magnen and Sénéor (1977). Consider an
asymptotic series ∑

∞
k fkgk, associated with a function f (g), of zero radius of

convergence. If the divergence is caused by the coefficients fk growing factorially,
then we can obtain a series with non-zero radius of convergence by dividing each
term in the expansion by k!. This gives us the Borel transform of the function,
B(g) = ∑

∞
k Bkgk, where Bk = fk/k!. f (g) is Borel summable if the Borel transform

can be summed and analytically continued over the entire positive real axis. We

18Following standard practice in QFT, adding a subscript n to an interaction, as in φ4
n, indicates that

we’re working in n-dimensional spacetime.
19See Erdelyi (2010) for a technical definition of an asymptotic expansion.
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can then recover the original function f (g) via the integral f (g) =
∫

∞

0 dte−tB(gt).
The f (g) thus recovered is the Borel sum of the Borel summable series ∑

∞
k fkgk. In

this way, we can associate an analytic function f with the asymptotic series
∑

∞
k fkgk, just as a convergent Taylor series can be associated with an analytic

function. Part of the task of constructive field theory is to try to do this for
renormalized perturbation series.

There are ways to modify or generalize this notion of Borel summability. For
example, there is the Borel-Leroy transform (Kleinert and Schulte-Frohlinde,
2001, p. 293) and distributional Borel summability (Caliceti, Grecchi, and Maioli,
1986). It has been suggested that modified notions of Borel summability may be
required to deal with certain divergences, known as “renormalons”, of the φ4

4
model (Caliceti et al., 1986, p. 163). The crucial goal is to find a way of
associating a unique function with the renormalized perturbation series, and some
version of Borel summability is the main candidate so far.

4.2 Assigning a Meaning to the Functional Integral
Having described how the generating functional Z, which appears in the Schwinger
functions, needs to correspond to physicists’ renormalized perturbation series, I
will now highlight more ways in which a successful construction requires
information that is not in the OS axioms.

As I have emphasized, Equation 3 by itself is a mere formalism because we
have not yet assigned a meaning to the functional integral. Because it is a mere
formalism, there are multiple ways through which we may try to define it, though
not all of them might work.

One major barrier to defining the functional integral is that many of the more
naive attempts to define it imply that the integral is divergent and therefore
apparently not meaningful. Because of this, one has to regularize the integral with
both infrared (low-momentum) and ultraviolet (high-momentum) cutoffs, then
make sure that the integral has a well-defined limit when the cutoffs are removed.
If the limit exists, then the functional integral is meaningful. In constructive QFT
the regularization methods used include lattice regularization and Pauli-Villars
regularization (Gallavotti and Rivasseau, 1984, p. 187). While different
regularizations might seem like just different means to get the same product, i.e.
the Schwinger functions, this is not the case. Sometimes one method of
construction can work where others fail. The debate about whether the φ4

4 model is
trivial is instructive about this feature of constructive QFT. There are some heuristic
arguments from Lagrangian QFT that φ4

4 is trivial (Callaway, 1988). Constructive
field theorists have attempted more rigorous proofs of triviality, but the multitude
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of possible methods of constructing φ4
4 is proving to be an obstacle. Gallavotti and

Rivasseau (1984, p. 210) argue that to prove that φ4
4 theory is trivial, one has to

prove that all possible ways of taking the continuum limit, regularizations, bare
Lagrangians, and so on do not work, but to prove that a solution exists, one needs
to show only that a particular way of construction works. Similarly, Wightman
(1986, p. 221) downplays the significance of failed constructions on the basis that
other approximation methods could converge to a non-trivial solution. Douglas
(2011, Slide 18) points out that the proof by Aizenman (1981) of the triviality of φ4

in more than four dimensions is not a complete proof of triviality, because it’s
possible that alternative methods of construction may produce non-trivial
solutions. This is corroborated by Gallavotti (1985, p. 26), who thinks that there
are clues that Aizenman’s lattice regularization is inadequate.

Roland Sénéor (1988) describes another example where the choice of
regularization affects the success of the construction. He considers the problem of
constructing a finite volume Yang-Mills Euclidean theory. He argues that a method
of regularization which preserves gauge invariance fails, while one which initially
breaks gauge invariance succeeds—the gauge invariance being recovered when the
continuum limit is taken.

Besides regularization methods, there are other dimensions on which
constructions of Z can differ. One such dimension is the counterterms that we add
to the “bare Lagrangian”. In QFT, the Lagrangian is a scale-dependent entity. That
is, the form of the Lagrangian changes depending on the momentum scale at which
the phenomenon of interest occurs. In evaluating the right-hand side of Equation 3,
one initially takes L to be some “bare Lagrangian” of a certain form, which will
however have to be modified in the process of the construction, due to the presence
of multiple scales in the functional integral. In four dimensions, this modification
takes the form of “counterterms” which one adds to the bare Lagrangian. The
nature of these counterterms is generally determined by studying the calculational
methods that physicists have found to work in Lagrangian QFT (Rosen, 1973, p.
87, Summers, 2012, pp. 8, 17, 21, 22). Neither the axioms nor Equation 3 tell us
which counterterms to use. This is yet another dimension on which Equation 3 is
really just a bare formalism to be filled in with further information, rather than
something mathematically unambiguous.20

20It is important to note that even though the choice of counterterms is determined using information
from non-rigorous perturbation theory, the construction itself is still rigorous. In perturbation theory the
unrigorous part is not the addition of counterterms per se but rather the taking of limits on perturbation
series, the assumption that perturbation series have a meaning without checking conditions of validity, the
failure to define functional integrals properly, and various other things. Constructive field theory patches
these gaps, but does not eschew the use of counterterms.
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To complicate matters further, what we really want from a solution is for the
continuum Lagrangian, that is, the one we get after taking the relevant limits on the
cutoff integral or the lattice, to correspond to the Lagrangian that is used by
physicists in Lagrangian QFT. This can happen even if the bare Lagrangian one
starts with in constructive QFT contains terms different from those in the bare
Lagrangian that physicists use. The attempts to prove the trivality of φ4

4 provide
possible examples of this. Gallavotti and Rivasseau (1984, p. 186) find that cut-off
φ4

4 models which have a negative coupling constant could converge, after removal
of the cut-off, to the usual renormalized perturbation series with positive coupling
constant. They further argue that even if one fails to construct the φ4

4 model, say,

using an initial Lagrangian L = 1
2

(
(∂φ)2 −m2φ2

)
− λ

4!φ
4, which is the expression

that physicists use in perturbation theory, this does not rule out the possibility of
constructing the same model using an initial Lagrangian
L = 1

2

(
(∂φ)2 −m2φ2

)
− λ

4!φ
4 −µφ6 in a lattice context (Gallavotti and Rivasseau,

1984, pp. 211-212).21 Both these lattice Lagrangians could give rise to Zs that are
asymptotic to the renormalized perturbation series that physicists calculate from
the bare Lagrangian L using perturbation theory. Thus, they could both be possible
starting points for a construction of φ4

4. This creates further ambiguities in the
construction process, since it is not even clear what form of Lagrangian should be
the input for the right-hand side of (3). There is a kind of underdetermination
problem here: the formalism of Equation (3) and the criterion of correspondence to
renormalized perturbation series are insufficient to determine the raw materials
with which the solution is to be constructed.

In short, the success of a construction in constructive QFT depends on
obtaining for Z some kind of correspondence with the renormalized perturbation
series, finding a suitable regularization, incorporating counterterms suggested by
perturbation theory, and possibly even figuring out what Lagrangian to put into
Equation 3. All these factors influence the nature of the solution even though they
are external to the OS axioms. Indeed, the contribution of perturbation theory to
defining what it means to be a solution is particularly interesting, since part of the
prior philosophical debate on QFT concerned whether “Lagrangian QFT” is
relevant to the philosophy of QFT (Fraser, 2011). If we accept the solutions of
constructive QFT as relevant to philosophers, then the importance of perturbative
methods to these solutions suggests that “Lagrangian QFT” is indeed relevant.

21Note that this is separate from the counterterms issue. Counterterms are the difference between the
“bare” Lagrangian and the renormalized Lagrangian, whereas this is a question of what happens when
we move from the lattice to the continuum, not what happens with renormalization.
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5 Philosophical Implications
The features of constructive QFT I have discussed are of philosophical interest for
the following reasons. Firstly, while some philosophers attach little interpretive
significance to perturbative solutions in Lagrangian QFT due to their lack of rigor,
constructive QFT attempts to remedy this by providing rigorous non-perturbative
analogues of these perturbative solutions.22 Generally speaking, these solutions
describe the behavior of QFT systems and thus are of interpretive interest to
philosophers of QFT.

Secondly, the solutions of constructive QFT are a way to provide the axioms of
QFT with physical content. Perturbative Lagrangian QFT is confirmed by its
empirical success, but axiomatic QFT cannot be confirmed in as direct a manner.
Constructive QFT attempts to ensure that axiomatic QFT can be linked to
Lagrangian QFT and thus indirectly confirmed. It does this by trying to show that
we can construct solutions that satisfy the relevant axioms, and that these solutions
are in some sense “the same” solutions as the perturbative solutions of Lagrangian
QFT. Constructive QFT is thus important to those who are interested in confirming
or improving extant axiom systems.

Thirdly, critics of Lagrangian QFT like Fraser (2011) have dismissed the
relevance of Lagrangian QFT to the “theoretical content” of QFT on the basis of
Lagrangian QFT’s lack of rigor. Furthermore, Fraser marshalls the successes of
constructive QFT to defend rigorous approaches to QFT against Lagrangian QFT.
Against this, I have argued that information from Lagrangian QFT is key to the
success of constructive QFT. With the example of constructive QFT in the
functional integral tradition, we can see that unrigorous Lagrangian QFT is
extremely relevant to the rigorous program of constructive QFT, providing
essential guidance to a correct construction. By Fraser’s own lights, constructive
QFT might illuminate the theoretical content of QFT. But given how constructive
QFT relies on information from Lagrangian QFT, perhaps Lagrangian QFT itself
might contribute to theoretical content.

Fraser acknowledges that constructive QFT attempts to implement analogues of
renormalization group (RG) methods that are used in Lagrangian QFT. However,

22I use the term “analogues” here, rather than saying that perturbative solutions are approximations to
constructive solutions, for the following reason. As emphasized in Sections 3.1 and 4.1, from a mathe-
matical point of view, perturbation series are formal expressions that, in the absence of the right kind of
correspondence to a constructive solution, do not have a mathematical referent. It seems inappropriate to
call an expression with no meaning an approximation. Of course, should the constructive project succeed,
then we will have some way to assign meaning to perturbative expressions, and it may then be appropriate
to call them approximations.
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she interprets this fact as showing that RG methods “concern the empirical
structure of the theory rather than the theoretical content” (Fraser, 2011, p. 132). In
my view, it’s unclear that the elements of Lagrangian QFT borrowed by
constructive QFT fall on the “empirical” rather than “theoretical” side of the
divide—even supposing there is such a dichotomy. The implementation of the RG
concerns scaling properties of fields, which is not something that is merely
empirical, since it concerns more than just scattering matrices. Without further
argument, it is also hard to see why issues of regularization, counterterms, sign of
the coupling constant, and other issues mentioned in Section 4.2 are merely
empirical. The other main contribution of Lagrangian QFT to constructive QFT is
the requirement of correspondence to the renormalized perturbation series. While
this has some connection to empirical success, it is also something that goes
beyond mere empirical success. If we wanted to capture only the empirical content
of Lagrangian QFT, all we would ask for is equivalent scattering matrices. In
addition, we saw that the requirement of correspondence is not merely an “adding”
of content to constructive QFT, but is constitutive of its success. It’s not that
constructive QFT on its own already has theoretical content without Lagrangian
QFT, but to decide even what its theoretical content is, namely its solutions, we
need Lagrangian QFT for guidance. In other words, even if one insists on
interpreting the contribution of Lagrangian QFT as merely “empirical”, it’s still the
case that the empirical content is guiding what counts as acceptable theoretical
content. This should be unsurprising given the role of constructive QFT as
essentially mediating between empirical success and as-yet-unconfirmed axiom
systems.

Fourthly, constructive QFT contributes some conceptual clarity to what is going
on in Lagrangian QFT. The Wightman axioms, for example, have a clear
conceptual content. They decscribe a Hilbert space, and they incorporate
straightforward physical principles like microcausality. This kind of physical
content may be somewhat obscured in the complicated techniques of Lagrangian
QFT. Constructive QFT thus serves as a bridge between the physical content of the
Wightman axioms and the empirically successful techniques of Lagrangian QFT.23

Admittedly, this picture is complicated by the fact that this bridge proceeds via a
detour through the OS axioms, an issue that may deserve further philosophical
attention.

Finally, given the crucial role of Lagrangian QFT in setting the success
conditions for a solution in constructive QFT and in guiding us as to the details of
the construction, it is possible that Lagrangian QFT adds physical content to QFT,

23I thank an anonymous referee for suggesting this point.
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over and above what the various axiomatic systems say. This might serve as
guidance to future, better axiomatic systems. One particular source of physical
content might be the contributions of the RG. The scaling properties of fields that
the RG reveals are not something that can be obviously read off the axioms. There
is also an open question of whether the diagrammatic methods used to manage
expansions in constructive QFT have any physical content.24 This is related to
ongoing debates about whether Feynman diagrams in Lagangian QFT are merely a
convenient calculational tool or have real physical content (Wüthrich, 2012). The
lack of mathematical rigor of Lagrangian QFT may be a reason to dismiss the
foundational importance of techniques associated with Lagrangian QFT, such as
the RG and Feynman diagrams, but their continued importance even in rigorous
enterprises like constructive QFT removes this reason.

6 Conclusion
In this paper, I highlighted two aspects of constructive QFT that have been
neglected by philosophers. The first is that a solution in constructive QFT must
have some kind of correspondence relation to the renormalized perturbation series
of Lagrangian QFT, even though the latter is not mathematically well-defined. The
second is that a successful construction depends on various choices of
regularizations, counterterms, and so on, and these choices depend at least partly
on information from Lagrangian QFT.

One perspective from which to view this situation is that the empirically
successful formalism of Lagrangian QFT and its distance from axiomatic QFT
creates a problem that constructive field theory tries to solve. The problem is to
show that the “solutions” of Lagrangian QFT, which are not well-defined, can be
reproduced in some sense by something that is consistent with the axioms.
However, the fact that we are trying to use mathematics to reproduce something
that is not mathematically well-defined suggests that the problem is not one of
mathematics alone. Rather, it also concerns how we can best translate a
semi-formal language, i.e. Lagrangian QFT, into rigorous mathematics. A good
translation ought to reproduce the important effects of the original language, and in
this case, constructive field theorists have judged that the renormalized
perturbation series are worth recovering. But this is a judgment that considers
extra-mathematical values concerning what the “important effects” that the
translation must reproduce are. There is an analogous situation in the case of

24This question has not, to my knowledge, being tackled by philosophers yet. Diagrammatic methods
are used in Rivasseau (1984) and Mack and Pordt (1985), for example.
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partial differential equations (PDEs) in applied mathematics. Often, there might
not be a strong solution to a given PDE—a solution that is a function that is
sufficiently smooth to have all the derivatives that appear in the PDE. In such
cases, we often look for generalized solutions, where we expand our search for
solutions to include more discontinuous options. There are many ways to expand
this search. Including distributions—entities of the same kind as delta
functions—is only one option. Crucially, the PDE by itself does not tell us what
kind of generalized solution is appropriate. Instead, the physical situation suggests
how we should define a generalized solution.25 The formalism of the PDE can be
conceived as applying to different types of solution spaces depending on the
physical problem of interest. There is an extra-mathematical judgment of which
solution space would best capture the effects of interest in that physical situation.

The point I am making has been noted elsewhere in the philosophy of
mathematics. Philip Davis (2009) has argued that in mathematics generally, it is
not clear that there is a homogeneous conception of what it means to solve a
problem. One could also view the issue as one in which the initial problem setting,
as a mere formalism, contains multiple possible mathematical interpretations.
Often, finding the correct solution involves first figuring out what the correct
mathematical translation of the problem setting is. Thus, in PDEs one must first
figure out which function space the derivative operators are acting on, and in QFT
one must figure out what the functional integral means and how it should relate to
perturbative series. Vincent Rivasseau, one of the leading figures in constructive
QFT, endorses this view of the flexibility of mathematical interpretations:

in mathematics non-existence theorems, although quite common, rarely
remain the last word on a subject. Often a problem with no solution is
simply badly formulated and has to wait until the proper formalism in
which it does have a solution is found (Rivasseau, 1991, p. 271).

Constructive QFT, as the best attempt to obtain solutions modelling particular
interactions in QFT, tells us the possible behavior of QFT systems with those
interactions. It thus ought to be interesting to philosophers who care about what
QFT says the world is like. Yet the mathematical structure of solutions in
constructive QFT is not simply given by the axioms they satisfy. These solutions
also have to satisfy some kind of correspondence to perturbative solutions and they

25Thus Terry Tao (, p. 1) writes of one possible definition of generalized solutions that in some
situations it fails to exclude “physically implausible” solutions, so we should turn to another definition in
those cases. In another example, Tao writes that in cases where we expect there to be no actual physical
singularities, then we should deal with mathematical singularities in the PDE by using a regularizing
parameter to define generalized solutions (Tao, , p. 2).
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can only be defined as limits of very specific kinds of approximations which
appear to be indispensable. Thus Lagrangian QFT might add constraints to the
kinds of QFT systems of interest to philosophers, constraints not to be found in the
axioms. Constructive QFT also offers an interesting example of the interaction
between unrigorous and rigorous mathematics, complicating the debate about
whether philosophers should take Lagrangian QFT seriously. For all these reasons,
constructive QFT deserves more philosophical attention.
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