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Abstract

This paper investigates the semantics and epistemology of conditional degree
of belief. It defends the thesis that conditional degrees of belief should be in-
terpreted counterfactually. This interpretation is the only one that explains the
guiding role of conditional degree of belief in probabilistic reasoning and the nor-
mative pull of Bayesian inference. Then, I explore the implications of this thesis for
the meaning of Bayes’ Theorem, chance-credence coordination and the Problem of
Old Evidence.
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1 Introduction

The normative force of Bayesian inference is crucially affected by the way one under-
stands conditional degree of belief. To see this, note that Bayesians represent subjective
degrees of belief by a particular mathematical structure—probabilities—and change
them by the principle of Conditionalization: the degree of belief in a hypothesis H
after learning evidence E is equal to the conditional probability of H given E. In other
words, pE(H) = p(E|H).

The latter probability is, in turn, crucially affected by the probability of E given H
and its negation ¬H, as evident from Bayes’ famous theorem:

p(H|E) = p(H)
p(E|H)

p(E)
(Bayes’ Theorem)

=

(
1 +

1− p(H)

p(H)

p(E|¬H)

p(E|H)

)−1

The theorem demonstrates that the conditional degree of belief in H given E, and
thereby also the posterior probability of H, pE(H), is a function of the prior degree of
belief in H and the conditional degrees of belief in E given H and ¬H.

Bayesians use the posterior probability of H as a basis for assessing theories and
making practical decisions (Jeffrey, 1971; Savage, 1972; Howson and Urbach, 2006).
Therefore, the normative force of Bayesian inference relies to a large extent on how
the conditional degrees of belief in evidence E given H and ¬H are constrained. After
all, (subjective) Bayesians typically allow for a wide range of rational prior degrees
of belief in H. If we want to defend Bayesian inference against the charge of total
arbitrariness, the conditional degrees of belief p(E|H) and p(E|¬H) cannot just take
any value. This motivates a detailed analysis of conditional degrees of belief, and how
they are constrained in Bayesian inference.

Two further observations shall back up this approach. First, agreement on p(E|H)

and p(E|¬H) is required to support the various convergence-to-truth theorems for
Bayesian inference (e.g., Blackwell and Dubins, 1962; Gaifman and Snir, 1982). These
theorems claim, in a nutshell, that different prior opinions will “wash out” as we col-
lect observations. When evidence E1, . . . , En accumulates, the ratio of p(E1, . . . , En|¬H)

and p(E1, . . . , En|H) will, in the limit n → ∞, eventually dominate the ratio of prior
probabilities in Bayes’ Theorem. Therefore, p(H|E) will converge either to one or to
zero, dependent on whether H or ¬H is true. However, if the conditional degrees of
belief p(En|H) and p(En|¬H) were to vary, agents would also reach different posterior
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probabilities. Consensus on the true hypothesis would be impossible.
Second, think of Bayesian statistical inference. A statistical model consists of a sam-

ple space S together with a set of probability distributions over S (e.g. Cox and Hink-
ley, 1974; Bernardo and Smith, 1994; McCullagh, 2002). If the model is parametric—as
most scientific models are—then each θ from the parameter set Θ is assigned a partic-
ular probability distribution which describes the probability of events E by means of a
probability density function ρθ(E).

For example, suppose that we want to model a repeated coin toss. The hypotheses
(Hθ , θ ∈ [0, 1]) describe the chance of the coin to come up heads on any individ-
ual toss. When we toss the coin N times, our sample space is S = {0, 1}N . Under
the assumption that the tosses are independent and identically distributed (hence-
forth, i.i.d.), we can describe the probability of observation Ek (=k heads and N − k
tails) by the Binomial probability distribution and the corresponding density function
ρHθ

(Ek) = (N
k ) θk (1 − θ)N−k. Bayesians routinely plug in such probability densities

for the values of p(Ek|Hθ) that figure in Bayes’ Theorem. These strong constraints on
conditional degree of belief often lead to approximate agreement on posterior proba-
bilities, as long as the priors are not too extreme.

Third, when conditional degrees of belief equal the corresponding values of prob-
ability density functions, we can straightforwardly calculate the Bayesian’s primary
measure of evidential support, the Bayes factor (Kass and Raftery, 1995). Bayes fac-
tors quantify the evidence for a hypothesis H0 over a competitor H1 as the ratio of
the probabilities p(E|H0)/p(E|H1)—or equivalently, as the ratio of posterior to prior
odds. When these conditional degrees of belief are unconstrained, there may be no
fact of the matter as to whether E favors H0 over H1, or vice versa. For the application
of Bayesian inference in the sciences where such judgments of evidential favoring are
urgently required, that would be a heavy setback. On the other hand, plugging in the
probability densities ρH0(E) and ρH1(E) for p(E|H0) and p(E|H1) ensures immediate
agreement on the Bayes factor.

Hence, explaining why conditional degrees of belief in E given H and ¬H are
rationally constrained is vital for those Bayesians who would like to defend the objec-
tivity and intersubjective appeal of Bayesian inference in science (e.g., Bernardo, 2012;
Sprenger, 2016). Moreover, it is a vital issue for all Bayesian reasoning about belief,
evidence and rational decisions. This brings us to our main question:

Main Question What justifies the equality between conditional degrees of belief and
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probability densities that is required for meaningful Bayesian inference?

p(E|H) = ρH(E) (The Equality)

Various scholars derive The Equality from a general epistemic norm. They consider
it a requirement of rationality that degrees of belief be calibrated with information
about the empirical world (e.g., Lewis, 1980; Williamson, 2007, 2010). For instance,
according to the Principle of Direct Inference (PDI) (e.g., Reichenbach, 1949; Kyburg,
1974; Levi, 1977), if I know that a coin is fair, I should assign degree of belief 1/2
that heads will come up. David Lewis (1980) formalized a related intuition in his
Principal Principle (PP): the initial credence function of a rational agent, conditional on
the proposition that the physical chance of E takes value x, should also be equal to x.

Do these principles apply to Bayesian inference in science? Only partially so. A
(statistical) hypothesis H describes the probability of possible events E by the density
function ρH(E), which satisfies the axioms of probability. So ρH is a probability func-
tion. Moreover, ρH does not depend on subjective epistemic attitudes, but just on the
definition of the statistical model. So it is objective. But not all objective probabilities
are ontic probabilities, that is, physical chances that could figure in PDI or PP (Rosen-
thal, 2004). Sentences that feed typical applications of PP and PDI, such as “the chance
of tossing two heads in two tosses of this coin is 1/4”, make an empirical statement
and do not refer to a statistical model. Their truth conditions depend on the properties
of the (physical) coin and the tosses. Probability density functions, on the other hand,
do not describe properties of an object or an experimental setup. The truth value of
sentences such as ρH(E) = 1/4 is entirely internal to the statistical model: if H denotes
the hypothesis that the coin is fair and E the observation of two tosses, then it is part
of the meaning of H that the probability of E given H is 1/4 (see also Sprenger, 2010).
That is, the sentence

If a fair coin is tossed repeatedly, then the chance of two heads in two i.i.d.
tosses is 1/4.

has no empirical content—it has a distinctly analytical flavor. It does not refer to
chances which are instantiated anywhere in the real world; in fact, there need not exist
any fair coins for this sentence to be true. Many scientific models are of this idealized
type and do not have any real-world implementation (Frigg and Hartmann, 2012). The
Principle of Direct Inference and the Principal Principle, by contrast, apply to physical
chances: there has to be an event whose actual, objective chance is 1/4. PDI and PP are
silent on chances that are conditional on an idealized statistical model. Therefore, they
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fail to justify The Equality. It is the task of this paper to provide such a justification—
and at the same time, to explain which role chance-credence coordination plays in
Bayesian reasoning.

Hence, our paper joins the efforts by philosophers of science to clarify the nature
of objective probability in scientific reasoning. Hoefer (2007) articulated this research
program as follows:

the vast majority of scientists using non-subjective probabilities [...] in their
research feel little need to spell out what they take objective probabilities
to be. [...] [T]o the extent that we intend to use objective probabilities
in explanation or predictions, we owe ourselves an account of what it is
about the world that makes the imputation and use of certain probabilities
correct. (Hoefer, 2007, 550)

While the role of physical chance in explanation and prediction is well-explored (Hoe-
fer, 2007; Suarez, 2011a,b), the role of probability density functions in informing and
constraining conditional degree of belief has barely been investigated. At this point, I
would like to stress that statistical inference serves as a neat case study for studying
the semantics and epistemology of conditional degree of belief, but that my theses to
more general cases of Bayesian inference, too.

The rest of the paper is structured as follows. Section 2 examines a reductive anal-
ysis of conditional degree of belief: the ratio analysis of conditional probability. I
argue that it fails to account for The Equality and to explain the practice of Bayesian
reasoning. Section 3 develops a semantics of conditional degrees of belief: they should
be interpreted counterfactually, similar to what Frank P. Ramsey proposed almost a
century ago. We then elaborate on how this proposal justifies The Equality, that is,
the agreement between conditional degrees of belief and probability densities, and
we explain the role of chance-credence coordination in deriving The Equality. Sec-
tion 4 explores the implications of our proposal for Bayesian inference and extends
the counterfactual interpretation of conditional degree of belief to prior and posterior
probabilities. Thereby we explain why Bayesians can assign positive degrees of belief
to a hypothesis which they know to be wrong. Section 5 discusses the roles of learning
and supposing in Bayesian inference in the light of our proposal. Section 6 wraps up
our findings.
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2 The Ratio Analysis

According to most textbooks on probability theory, statistics and (formal) philosophy,
the conditional probability of an event E given H is defined as the ratio of the proba-
bility of the conjunction of both events, divided by the probability of H (Jackson, 1991;
Earman, 1992; Skyrms, 2000; Howson and Urbach, 2006).

p(E|H) :=
p(E∧H)

p(H)
(Ratio Analysis)

By applying a Dutch Book argument, we can transfer this reductive analysis of con-
ditional probability to conditional degree of belief (e.g., Easwaran, 2011a). It can be
shown that the conditional degree of belief in E given H, operationalized by a bet on E
that is called off if ¬H, must be equal to the ratio of the unconditional degrees of belief
in E∧H and H if a Dutch book is to be avoided. Therefore one might conjecture that
our search for a justification of The Equality is a Scheinproblem: conditional degrees of
belief are determined by the coherence constraints which Ratio Analysis imposes on
them, and this explains why they have to satisfy The Equality.

I do not find this view convincing, but for reasons that differ from the usual ones.
Here is the standard objection to Ratio Analysis. Suppose that we reason about the bias
of a coin, with Hθ denoting the hypothesis that the bias of the coin is equal to θ ∈ [0, 1].
Usually, each single point in [0, 1], which corresponds to a particular hypothesis about
the bias of the coin, will have probability zero. In this case, we are virtually certain that
no particular real number describes the true bias of the coin. This sounds quite right
given the uncountably many ways the coin could be biased, but paired with Ratio
Analysis, it leads to strange results: we cannot assign a conditional degree of belief
to a particular outcome (e.g., two heads in two i.i.d. tosses) given that the coin has a
particular bias. This sounds outrightly wrong since intuitively, we are able to assign a
probability to E given H both from a frequentist and a subjective Bayesian perspective
(de Finetti, 1972, 81).

A similar challenge is presented by Borel’s paradox and related puzzles: “What is
the probability that a point on Earth is in the Western hemisphere (E), given that it lies
on the equator (H)?”. Intuitively, there seems to be a rational answer (one half), but ac-
cording to Ratio Analysis, we cannot even express such a degree of belief because for a
uniform probability distribution, p(H) = 0. Notably, even the well-known probability
theory textbook by Billingsley (1995, 427) writes that “the conditional probability of [E]
with respect to [H, . . . ] is defined [by Ratio Analysis] unless p(H) vanishes, in which
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case it is not defined at all” (notation adapted). In other words, the wide variety of
cases where we have conditional degrees of belief is not adequately captured by Ratio
Analysis. The seminal article by Alan Hájek (2003)—“What Conditional Probability
Could Not Be”—discusses these problems in detail.

However, the probability zero objection is not necessarily a knock-down argument.
Howson and Urbach (e.g., 2006, 37) propose the following fix. If H: θ = θ0 for some
parameter value θ0 ∈ Θ ⊂ R and p(H) = 0, then define Hε : θ ∈ (θ0 − ε, θ0 + ε). Then
we define

p(E|H) := lim
ε→0

p(E∧Hε)

p(Hε)

As long as the prior probability density over θ is continuous and strictly positive, this
quantity will be well-defined and can act as a surrogate for the direct calculation of
p(E|Hθ).

Hájek mentions another refinement of Ratio Analysis that may help to deflect the
probability zero objection. It is based on representing events and hypotheses as mea-
surable sets. Let H denote a measurable set of hypotheses (e.g., θ ∈ Θ). Then a
conditional probability p(·|H) is a measurable function from the σ-algebra of possible
events to the real numbers such that

p(EH) =
∫
H

p(E|H)dp (Refined Ratio Analysis)

This definition of conditional probability, due to Kolmogorov (1933), is implicit: condi-
tional probabilities are functions that yield the product event p(EH) if one integrates
them over H, relative to the probability measure p(·). For atomic hypothesis sets
H = {H}, Refined Ratio Analysis reduces to Ratio Analysis, as one can readily verify.
Easwaran (2011b) and Myrvold (2015) show how this approach can be used to answer
Borel’s paradox and to rescue statistical inference with likelihood functions.

For the sake of the argument, I shall not take a stand in the debate and just concede
that Refined Ratio Analysis may be sufficient to talk meaningfully about events with
probability zero (though see Fitelson and Hájek (2016) for a dissenting view). What I
wanted to point out is that the probability zero objection is a promising, but not nec-
essarily conclusive attack on Ratio Analysis as a definition of conditional probability.
My own line of attack is therefore different: even if these technical problems were
solved, Ratio Analysis would fail to give an adequate explanation of how we reason
with conditional degrees of belief, even in those cases where p(H) > 0. It fails to
account for The Equality and to explain why conditional probabilities are often con-
strained in a seemingly objective way. For reasons of simplicity, I shall focus on those
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cases where probability zero is not a problem and Refined Ratio Analysis reduces to
Ratio Analysis.

I shall begin with the first objection. Ratio Analysis defines conditional degree of
belief in terms of unconditional degree of belief. The advantage of this move is that
we need no separate conceptual analysis of conditional degrees of belief: they are just
reduced to unconditional degrees of belief. However, this approach fails to do justice
to the cognitive role of conditional degrees of belief. We do not form conditional
degrees of belief via the conjunction of both propositions. If our degree of belief
in the occurrence of heads on two tosses of a fair coin is elicited, nobody will first
calculate her unconditional degree of belief in an occurrence of two heads, and her
degree of belief in the conjunction of two heads and the fairness hypothesis. It is
cognitively just too demanding to elicit p(E∧H) and p(H) and to calculate their ratio.
Instead, we directly assess how probable E is, given H. This is more than a purely
phenomenological argument: recent psychological evidence demonstrates that Ratio
Analysis is a poor description of how people reason with conditional probabilities,
pointing out the necessity of finding an alternative account (Zhao et al., 2009).

Second, Ratio Analysis fails to grasp the normative role of conditional degree of
belief in statistical inference. In the introduction, we have seen that it is part of the
meaning of H to constrain p(E|H) in a unique way. Recall the example. For determin-
ing our rational degree of belief that a fair coin yields a particular sequence of heads
and tails, it does not matter whether the coin in question is actually fair. Regardless
of our degree of belief in that proposition, we all agree that the probability of two
heads in two tosses is 1/4 given that the coin is fair. On Ratio Analysis, this feature
of conditional degree of belief drops out of the picture. p(E|H) is constrained only
via constraints on p(E∧H) and p(H). But even if we suspend judgment on p(E∧H)

and p(H), there are still constraints on p(E|H). Ratio Analysis therefore misses an
important aspect of conditional degree of belief.

Finally, it is notable that Refined Ratio Analysis defines a new conditional density
rather than calculating the value of the density via Ratio Analysis. That is, to the extent
that it circumvents the problems created by the naïve definition of Ratio Analysis, it
acknowledges the need of viewing conditional probability as an independent, and pos-
sibly primitive, concept. Unsurprisingly, Fitelson and Hájek (2016) advocate replacing
Kolmogorov’s axioms by the Popper-Rényi axioms (Rényi, 1970; Popper, 2002) where
conditional probability is take as primitive. This emphasizes the need for a proper
semantics of conditional degree of belief, which I will provide in the next section.
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3 The Counterfactual Analysis

Between the lines, the previous sections have anticipated an alternative analysis of
conditional degree of belief. Rather than conforming to the ratio analysis, we could
understand the concept in a counterfactual way. That is, we determine our degrees of
belief in E given H by supposing that H were true.

There are two great figures in the philosophy of probability associated with this
view. One is Frank P. Ramsey, the other one is the Italian statistician Bruno de Finetti
(1972, 2008). I will focus on Ramsey since de Finetti also requires that H be a verifi-
able event if p(E|H) is to be meaningful (de Finetti, 1972, 193). This is unnecessarily
restrictive.

Here is Ramsey’s famous analysis of conditional degrees of belief:

If two people are arguing ’if H will E?’ and both are in doubt as to H, they
are adding H hypothetically to their stock of knowledge and arguing on
that basis about E. (Ramsey, 1926)

The above quote is ambiguous: it is about conditional (degree of) belief, the truth con-
ditions of conditionals, or about their probability? Many philosophers, most famously
Stalnaker (1968, 1975), were inspired by the latter readings and developed a theory of
(the probability of) conditionals based on the idea that assessing the conditional H→E
involves adding H to one’s background knowledge.

I would like to stay neutral on all issues concerning conditionals (e.g., Douven,
2016) and interpret Ramsey’s quote as an analysis of conditional degrees of belief.
Indeed, in the sentence that follows the above quote, Ramsey describes the entire
procedure as

We can say that they are fixing their degrees of belief in E given H. (ibid., my
emphasis)

This makes clear that regardless of the possible link to the epistemology of condition-
als, Ramsey intended that hypothetically assuming H would determine one’s condi-
tional degrees of belief in E, given H. That is, p(E|H) is the rational degree of belief in
E if we supposed that H were true.

In other words, this analysis of conditional degree of belief asks us to imagine a
possible world ωH, created by supposing H. ωH is genuinely chancy, regardless of
whether the actual world is: the possible events are elements of the sample space S ,
and their probability is described by ρH. This is the essence of supposing a statistical
model and a particular hypothesis within that model. It is the meaning of ρH(E) to
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express the chance of E if H were the case. The (physical) chance of two heads in two
tosses in ωH is 1/4. If a chance-credence calibration norm is ever to work, this must the
place: our degrees of belief, conditional on supposing H, should follow the objective
chances that H imposes on possible events. Therefore, the counterfactual analysis of
conditional degree of belief directly yields The Equality.

Incidentally, this interpretation of conditional degree of belief differs from Ram-
sey’s in a crucial nuance: where Ramsey suggested that H is added to existing back-
ground knowledge, I propose that H overrules conflicting knowledge about the real
world, leading to a genuinely counterfactual interpretation of conditional degree of
belief. Even if we know that a given coin is not perfectly fair and that the tosses are
not i.i.d., the conditional degree of belief in the occurrence of k heads in N tosses,
given a statistical model of the coin toss, is derived from supposing that the modeling
assumptions are valid. Indeed, reasoning with scientific models is typically coun-
terfactual and involves substantial abstraction steps (e.g., Batterman, 2002; Weisberg,
2007; Frigg and Hartmann, 2012). Statistical models are no exception.

It is important to understand the role of the Principle of Direct Inference (PDI) and
the Principal Principle (PP) in this picture. Both principles apply to real-world, ontic
chances, e.g., “the chance of this atom decaying in the next hour is 1/3” or “the chance
of a zero in the spin of this roulette wheel is 1/37”. The principles simply claim that
degrees of belief should mirror such chances. Compare this to the picture that we
sketch for conditional degree of belief. We do not deal with real-world chances; rather
we observe that in the world ωH described by H, there is an objective and unique chance
of E occurring, and it is described by the probability density ρH(E). In other words,
we do not apply PDI/PP in the actual world ω@, but in the counterfactual world ωH

described by H, and we adapt our (conditional) degree of belief in E to ρH(E). By
supposing a world where the occurrence of E is genuinely chancy, the counterfactual
account of conditional degree of belief explains why our conditional degree of belief
in E given H is uniquely determined and obeys The Equality. Note that this is really
an initial credence function, as PP demands: information about the actual world ω@

that may conflict with H is irrelevant in ωH.
I would like to add that complications induced by inadmissible information (e.g.,

Lewis, 1980; Hoefer, 2007) do not occur in our case because the worlds ωH are so
simple and well-behaved. The events in ωH are elements of the sample space S and
H assigns a definite and unambiguous probability to them. More on the interaction of
H with past observations shall be said in Section 5. For the moment, we can explain
why chance-credence coordination is so important for probabilistic reasoning without
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committing ourselves to the existence or nature of physical chance in the actual world.
No scientist needs to reason about the nature of physical chance when she uses a
statistical model to inform her credences. It is a distinct strength of this analysis of
conditional degree of belief that it is compatible with any account of physical chance.

Let us wrap up the essence of my proposal. Bayesian inference requires two things
for coordinating conditional degrees of belief with probability densities: First, the
counterfactual interpretation of conditional degree of belief which supposes that H is
true—even if we actually know that it is false. Second, in these counterfactual sce-
narios, degrees of beliefs should be coordinated with known objective chances (Lewis,
1980). To repeat, we are talking about chance-credence coordination in hypothetical
worlds where the space of possible events (=the sampling space) is determined by the
statistical model, not about chance-credence coordination in the actual world ω@. This
consequence is very desirable because most statistical models are strong idealizations
of the real world that neither capture physical propensities, nor limiting frequencies,
nor chances according to a best-system account. Think of the omnipresent assump-
tion of normality of errors, focusing on specific causally relevant factors and leaving
out others, and so on. Probability density functions inform our hypothetical degrees of
belief, not our actual degrees of belief.

The proposed interpretation matches the thoughts of the great (non-Bayesian)
statistician Ronald A. Fisher on the nature of conditional probability in scientific infer-
ence:

In general tests of significance are based on hypothetical probabilities
calculated from their null hypotheses. They do not lead to any probability
statements about the real world. (Fisher, 1956, 44, original emphasis)

That is, Fisher is emphatic that the probabilities of evidence given some hypothesis
have hypothetical character and are not physically realized objective chances. Probabil-
ities are useful instruments of inference, not components of the actual world. Accord-
ing to Fisher, statistical reasoning and hypothesis testing is essentially counterfactual—
it is about the probability of a certain dataset under the tested “null” hypothesis. The
null hypothesis usually denotes the absence of any effect, the additivity of two factors,
the causal independence of two variables in a model, etc. In most cases, it is strictly
speaking false: there will be some minimal effect in the treatment, some slight devia-
tion from additivity, some negligible causal interaction between the variables (Gallistel,
2009). Our statistical procedures are thus based on the probabilities of events under a
hypothesis which we know to be false—although it may be a good idealization of re-
ality. Hence, the proposed counterfactual interpretation of conditional degree of belief
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naturally fits into the practice of statistical inference with its emphasis on testing ide-
alized point hypotheses, e.g., in null hypothesis significance testing. We now proceed
to its wider implications for Bayesian inference.

4 Implications I: The Model-Relativity of Bayesian Inference

An obvious objection to the picture sketched in the previous section concerns the
demarcation of the statistical hypothesis H (e.g., that the parameter θ takes a specific
value) and the other assumptions which are part of the statistical modelM. Consider
the case of tossing a coin. When we evaluate p(E|H) with H = “the coin is fair”, we
already assume that the individual tosses of the coin are independent and identically
distributed. However, this assumption is not part of H itself: H just describes the
tendency of the coin on any particular toss. If we contrast H to some alternative H’, we
notice that the differences between them are typically expressed in terms of parameter
values, such as H: θ = 1/2 versus H’: θ = 2/3, H”: θ > 1/2, etc. Crucial assumptions
on the experimental setup, such as independence and identical distribution of the coin
tosses, do not enter the particular hypothesis we are testing. Does this jeopardize our
analysis of conditional degree of belief? No. These assumptions are already part of
general model in which we compare H to H’. In other words, there are two layers in
the modeling process. First, there is the general statistical modelM = (S ;P) where S
denotes the sampling space, that is, the set of possible observations in an experiment,
and P denotes the set of probability distributions over S . Second, there is the layer
of the individual statistical hypotheses which are elements of P . Considering only
a narrow set of hypotheses (e.g., the set of Binomial distributions B(N, θ)) makes an
implicit assumption on the experimental setup (e.g., that the tosses are i.i.d.): the
hypotheses do not differ from each other in how they describe several aspects of the
experiment.

This implies that the conditional degree of belief p(E|H) is not only conditional
on H, but also conditional on M. Indeed, a Bayesian inference about the probabil-
ity of heads in the coin-tossing example takes M as given from the very start. This
is especially clear in the assignment of prior probabilities p(H): Bayesian inference
regarding particular parameter values is relative to a model M into which all hy-
potheses are embedded (e.g.,M = ({0, 1}N ; B(N, θ), θ ∈ [0, 1])), and degrees of belief
are distributed only over elements of M. In particular, also the prior and posterior
degrees of belief, p(H) and p(H|E), are essentially relative to a model M. In the
above example, a Bayesian might distribute her prior beliefs according to a probability
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density over θ ∈ [0, 1], such as the popular beta distribution Beta(α, β) with density
p(θ ∈ [a, b]) =

∫ b
a (1/B(α, β)) xα−1 (1− x)β−1 dx.

This move resolves a simple, but pertinent problem of Bayesian inference. On the
subjective interpretation of probability, the probability of a hypothesis H, p(H), is stan-
dardly interpreted as the degree of belief that H is true. However, in science, we are
often in a situation where we know that all of our models are strong idealizations of
reality. It would be silly to have a strictly positive degree of belief in the truth of a
certain hypothesis. It would be even more silly to bet on the truth of any particular
model, as operational interpretations of subjective probability demand. Also the sam-
ple space is highly idealized: a coin may end up balancing on the fringe, a toss may
fail to be recorded, the coin may be damaged, etc. All these possibilities have a certain
probability, but we neglect them when setting up a statistical model and interpreting
an experiment.

In other words, Bayesian inference seems to be based on false and unrealistic
premises: the interpretation of degrees of belief that H is true fails to make sense
for p(H). So how can Bayesian inference ever inspire confidence in a hypothesis? Do
we have to delve into the muddy waters of approximate truth, verisimilitude, and so
on? No. The considerations in this paper suggest a much simpler alternative: to in-
terpret prior probabilities as conditional (and counterfactual) degrees of belief, that is,
degrees of belief in H that we would have if we supposed that the general model of the
experiment M were true. Instead of p(H), we talk about p(H|M). This move makes
the entire Bayesian inference relative to M. Similarly, we replace the marginal likeli-
hood p(E) by p(E|M) and interpret it counterfactually, in agreement with the Law of
Total Probability. p(E|M) is the weighted average of the conditional probabilities of
E, and thus our subjective expectation that E occurs ifM were the case.

p(E|M) = ∑
H∈M

p(E|H,M) · p(H|M)

However, we notice that not all conditional degrees of belief are of the same kind.
There is a relevant difference between p(E|H,M) on the one hand and p(H|M) on
the other hand. When we calculate the first value, we suppose that M and H are
the case and argue that the probability of E should be equal to ρM,H(E). However,
supposing M does not yield a uniquely rational value for p(H|M). There is no
objective chance of H in the hypothetical world ωM, nor a corresponding uniquely
determined probability density. Does this mean that the counterfactual analysis of
conditional degree of belief only applies to those cases where a probability density
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function fixes the rational degree of belief?
To my mind, the answer is no. The fact that p(H|M) is not uniquely determined

does not mean that it cannot be interpreted counterfactually. People may reason dif-
ferently about what the degree of belief in H, given M, should be. But it is part and
parcel of subjective Bayesianism that these choices are essentially unconstrained. Some
choices may lead to a better match between the statistical model and the target system
(e.g., the repeated coin toss) than others. But this is a matter of which priors are better
calibrated with our knowledge about the external world, and not a question that can
be answered from within the model. That is, a Bayesian inference is trustworthy to
the extent that the underlying statistical model is well chosen and the prior probabili-
ties are well motivated. Of course, this is no peculiar feature of Bayesian inference: it
is characteristic of all scientific modeling. Garbage in, garbage out. Hence, Bayesian
inference makes sense even if all models are known to be wrong, as long as some are
illuminating and useful (Box, 1976). In this picture, it is evident that Bayesian inference
is just another way of model-based reasoning in science.

The same remarks apply to the posterior probability p(H|E,M). By itself, suppos-
ing E and M allows for different degrees of belief in H. There is no reason why, in
the absence of further information, agents should assign the same degree of belief to
H, given E, since the world ωM,E does not determine an objective chance of H. This
points to a divergence in our analysis of conditional degree of belief: for probabilities
of the type p(E|H,M), supposing H and M constraints the conditional degrees of
belief in an objective way, but supposing E and M does not deliver such a result for
p(H|M) or p(H|E,M). How can eventual agreement on posterior probabilities be
rescued if this diagnosis is correct? In a very simple way: p(H|E,M) is constrained
to the extent that p(E|H,M) p(E|M) and p(H,M) are, by means of Bayes’ Theorem.
Assume that we have a sharp degree of belief p(H|M), as a matter of psychological
fact, or by calibrating p(H|M) with our background knowledge. Assume further that
we have a sharp degree of belief p(E| ±H,M), by supposing H and ¬H, as explained
in Section 3. Then our degrees of belief in p(E|M) and p(H|E,M) are fixed as well
because p(·|M) is a probability function and therefore satisfies Bayes’ Theorem:

p(H|E,M) = p(H|M)
p(E|H,M)

p(E|M)
(Bayes’ Theorem, model-relative)

If our conditional degrees of belief do not satisfy this equality, we will also violate
Ratio Analysis, run into a Dutch Book and violate the Bayesian norms of rationality.
The normative pull for constraining p(H|E,M) does not emerge directly from the
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counterfactual interpretation of conditional degrees of belief (=supposing E and M),
but from the requirement of probabilistic coherence.

This reading of Bayesian inference is very close to Ramsey’s and de Finetti’s sub-
jective Bayesianism: we are free to assign degrees of belief to events as long as we
respect probabilistic coherence and the constraints which rational arguments impose
on us (e.g., when we suppose that H is the case and reason about the probability of E).
This clarifies that subjective Bayesianism should not be confused with an “anything
goes” attitude: rationality constraints for a subjective Bayesian can be substantial.

This brings us to the role of Bayes’ Theorem. First, a misunderstanding needs to be
avoided. The left hand side on the equation describes the conditional degree of belief
in H, given E andM, not on the degree of belief in H, givenM and after learning E. (I
will say more on this distinction in the next section.) It is a synchronic, not a diachronic
constraint, and Bayesian Conditionalization has not been invoked in stating the above
equality.

Second, Bayes’ Theorem is closely related to Ratio Analysis—in fact, it can be
derived easily from applying Ratio Analysis to both p(E|H,M) and p(H|E,M). This
underlines that the above equation is not about the definition of p(H|E,M), but about
constraining its value.

Third, on the counterfactual interpretation, we can regard Bayes’ Theorem as a
coordinating principle for various probability function that describe our conditional
degrees of belief. Rather than a theorem of mathematics that applies to a single prob-
ability function, it states how different functions representing conditional degree of
belief (p(·|M), p(·|H,M) and p(·|E,M)) should coordinate in order to avoid a Dutch
book. This way of looking at the theorem elucidates why it has philosophical signifi-
cance and why it is something else than a simple mathematical result.

The model-relativity of a lot of probabilistic inference, as well as the results of
the last two sections, suggest that conditional and not unconditional degree of belief
might be a more adequate primitive notion in probabilistic reasoning. This resonates
well with Hájek’s (2003) analysis which reaches the same conclusion. It requires some
changes on the axiom level, however. Kolmogorov’s three standard axioms (p(⊥) = 0;
p(A) + p(¬A) = 1; p(∨Ai) = ∑ p(Ai) for mutually exclusive Ai) will not do the job
any more. One way is to replace them by an axiom system that takes conditional
probability as primitive, such as the Popper-Rényi axioms (Rényi, 1970; Popper, 2002;
Fitelson and Hájek, 2016). Unconditional probability can then be obtained as a limiting
case of conditional probability. Another way is to define conditional probability in
terms of an expectation conditional on a random variable (Gyenis et al., 2016). It is up
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to future work to determine which road is the most promising one.
So far, we have discussed the statics of conditional degrees of belief. But what

about the dynamics? The next section tries to give answers.

5 Implications II: Learning vs. Supposing

Learning and supposing are two major elements of Bayesian inference and we will
now study their interaction in greater detail. To begin with, experiments in cognitive
psychology have shown that they are really different modes of reasoning. In a recent
study, Zhao et al. (2012) found a difference between participants who learned evi-
dence E (e.g., by observing relative frequencies) and participants who had to suppose
that E occurred, in terms of the probability estimates which they submitted after the
learning/supposing took place.

On a theoretical level, we have postulated that supposing informs conditional de-
gree of belief. Learning, on the other hand, happens by means of the principle of
Conditionalization which governs the dynamics of Bayesian reasoning. Essentially,
Conditionalization relates learning E to supposing E: for a hypothesis H and an ob-
servation E, pE(H) = p(H|E). That is, our degree of belief in H after learning E
should be equal to the degree of belief that we would have in H if we supposed E.
There are different ways how Conditionalization can be justified and attacked (e.g.,
Teller, 1973; van Fraassen, 1989; Easwaran, 2011a). Here, we are just interested in how
Conditionalization fits into the counterfactual interpretation and model-relativity of
conditional degree of belief. In particular, how does learning the observation E∗ affect
the conditional degree of belief pE∗(E|H)?

In a nutshell, the answer is that we evaluate this probability relative to the coun-
terfactual world ωH, taking into account the occurence of E∗ within that world.

This gives rise to several possible cases. First, E∗ could be impossible given H, such
as in the case where H asserts that a coin always comes up heads, and E∗ denotes an
observation of tails. In this case, the entire scenario is inconsistent and the conditional
probability pE∗(E|H,M) would not be well-defined.

Second, the case where E∗ and H do not contradict each other. Sometimes pE∗(E|H,M)

will then be equal to p(E|H,M), e.g., when E and E∗ denote two i.i.d. tosses of a coin
and H screens off both observations from each other. In other cases, a dependency
is possible. Another example are time series. Consider M : Yt = Yt−1 + Xt with
Xt ∈ {−1, 1} and the hypothesis H: p(Xt = 1) = 1/2. If E∗ : Xt−1 = 3 and E: Xt = 4,
then we can directly calcluate that pE∗(E|H,M) = 1/2. Statistical model, hypothesis
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and past evidence constrain pE∗(E|H,M) to a unique value.
The above reading of Bayesian learning introduces an implicit distinction between

propositions on a theoretical and observational level. After all, supposing M and H
specifies the sample space of possible observations, whereas E∗ corresponds to some
observation within this space. While the distinction is perhaps difficult to maintain on
a general philosophical level, it is sharp for most important applications of Bayesian
inference (e.g., statistical hypotheses vs. elements of the sample space).

Finally, the learning/supposing distinction also allows for a better assessment of
the Problem of Old Evidence and its proposed solutions. This problem deals with the
question how previously known (“old”) evidence E can confirm a new theory H that
manages to explain E, while other theories have been struggling with E. This pattern
of reasoning is frequently found in science (e.g., Glymour, 1980), but the standard
Bayesian account fails to retrieve it: if E is already known then p(E) = 1 and pE(H) =

p(H|E) = p(H) · p(E|H)/p(E) ≤ p(H).
Most solutions of the Problem of Old Evidence use an argument of the form

p(E|H,M) � p(E|¬H,M) with a counterfactual interpretation of these probabilities
(e.g., Garber, 1983; Howson, 1984; Earman, 1992; Sprenger, 2015; Fitelson and Hart-
mann, 2016). Given a scientific framework M and a particular hypothesis H in this
framework, E is way more expected under H than under the available alternatives.
This counterfactual reading allows us to “forget” that E has been observed and to
obtain a meaningful difference between the two conditional probabilities. Hence, E
confirms H (relative to M) on a Bayesian account. However, it is not clear how this
observation bears on a situation where E is already known.

Apparently, there is an equivocation regarding the relevant conditional degrees
of belief. The interpretation that feeds the problem in the first place looks at the
conditional degree of belief in E relative to H and all actually available information,
including the actual occurrence of E. That is, it looks at the probability distribution
pE(·). Then, all relevant values are equal to unity: pE(E|H) = pE(H ∧ E)/pE(H) =

pE(H)/pE(H) = 1, and pE(E|¬H) = pE(¬H ∧ E)/pE(¬H) = pE(¬H)/pE(¬H) = 1.
Various solutions, by contrast, are phrased in terms of the counterfactual condi-

tional degree of belief in E, that is, p(E|·,M). Indeed, when we evaluate conditional
degree of belief by counterfactually assuming that H is true, we get a different picture.
In a modelM where H competes with alternatives H’, H”, etc., it makes sense to say
that E favors H over the alternatives because p(E|H,M) � p(E|H′,M), p(E|H′′,M),
etc. This is the intuition which all those who believe that old evidence can confirm a
theory want to rescue. These degrees of belief can be read as a sort of ur-credences,
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conditional on M and H, and our account provides the conceptual framework for
expressing these credences (Howson, 1984; Sprenger, 2015).

Other solutions of the Problem of Old Evidence work with the probability function
pE(·) and aim to show that learning H ` E confirms H relative to this function (Jeffrey,
1983; Earman, 1992). Making the distinction between pE(·) and p(·|E,M) captures the
different sorts of confirmation (or evidential favoring) that matter in science. Hence,
our analysis of conditional degree of belief backs up technical solutions of the Problem
of Old Evidence by a philosophical story why we can have non-trivial conditional
degrees of belief in the first place. Similarly, it supports those Bayesians who believe
that Bayes factors based on such conditional degrees of belief can be objective—or at
least intersubjectively compelling—measures of evidence (Sprenger, 2016).

6 Conclusion

This paper was devoted to a defense of the claim that conditional degrees of belief
are essentially counterfactual, developing a proposal by Frank P. Ramsey. On the ba-
sis of this interpretation, it was argued that conditional degrees of belief equal the
corresponding probability densities, as The Equality postulated (p(H|E) = ρH(E)).
Furthermore, the counterfactual interpretation was extended to other probabilities in
Bayesian inference, and the relation between learning evidence E and conditional de-
grees of belief that suppose E was investigated.

We can now state our main results. They may be shared by other philosophers
of probability, but I am aware of no place where they are clearly articulated and de-
fended.

1. Ratio Analysis is a mathematical constraint on conditional degree of belief, but
no satisfactory philosophical analysis.

2. Conditional degrees of belief p(E|H) should be interpreted in the counterfactual
way outlined by Ramsey: we suppose that H were true and reason on this basis
about the probability of E.

3. The Equality follows directly from this counterfactual interpretation: conditional
degrees of belief in an event given a hypothesis follow the corresponding prob-
ability densities.

4. The counterfactual interpretation explains the seemingly analytical nature of
many probability statements in statistics, and it agrees with how scientists view
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probabilities in inference: as objective, but hypothetical entities. Scientific infer-
ence with probabilities need not be backed up by a particular interpretation of
objective chance.

5. The counterfactual interpretation rescues the normative pull of Bayesian infer-
ence, by contributing to agreement on the value of measures of evidential sup-
port such as the Bayes Factor.

6. The counterfactual interpretation explains the role of chance-credence coordi-
nation principles in scientific inference, such as the Principal Principle or the
Principle of Direct Inference.

7. All probabilities in Bayesian inference are conditional degrees of belief: they are
conditional on assuming a general statistical model. This approach counters the
objection that we should never have positive degrees of belief in a hypothesis
because we know it to be wrong.

8. Bayes’ Theorem expresses an epistemic coordination principle for various func-
tions that describe conditional degree of belief.

9. Bayesian Conditionalization relates the posterior degrees of belief (learning E) to
the conditional degrees of belief (supposing E).

10. The learning-supposing distinction and the counterfactual interpretation of de-
grees of belief jointly lead to a better assessment of the Problem of Old Evidence
and the various solution proposals.

If some of these conclusions withstood the test of time, that would be a fair result.
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