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Abstract. Many have suggested that the transformation standardly referred to

as ‘time reversal’ in quantum theory is not deserving of the name. I argue on the

contrary that the standard definition is perfectly appropriate, and is indeed forced

by basic considerations about the nature of time in the quantum formalism.

1. Introduction

1.1. Time reversal. Suppose we film a physical system in motion, and then play

the film back in reverse. Will the resulting film display a motion that is possible, or

impossible? This is a rough way of posing the question of time reversal invariance.

If the reversed motion is always possible, then the system is time reversal invariant.

Otherwise, it is not.

Unfortunately, the practice of reversing films is not a very rigorous way to

understand the symmetries of time. Worse, it’s not always clear how to interpret

what’s happening in a reversed film. The velocity of a massive body appears to
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move in the reverse direction, sure enough, but what happens to a wavefunction?

What happens to an electron’s spin? Such questions demand a more robust way to

understand the meaning of time reversal in quantum theory. It’s an important matter

to settle, as the standard mathematical definition of time reversal plays a deep role

in modern particle physics. One would like to have an account of the philosophical

and mathematical underpinnings of this central concept. This paper gives one such

account, which proceeds in three stages. We first show why time reversal is unitary or

antiunitary, then that it is antiunitary, and finally uniquely derive the transformation

rules.

1.2. Controveries. The problem does not yet have an agreed-upon textbook answer.

However, a prevalent response is that the transformation commonly referred to as

‘time reversal’ in quantum theory isn’t really deserving of the name. Eugene Wigner,

in the first textbook presentation of time reversal in quantum mechanics, remarked

that “‘reversal of the direction of motion’ is perhaps a more felicitous, though longer,

expression than ‘time inversion’” (Wigner 1931, p.325). Later textbooks followed

suit, with Sakurai (1994, p.266) writing: “This is a difficult topic for the novice,

partly because the term time reversal is a misnomer; it reminds us of science fiction.

Actually what we do in this section can be more appropriately characterized by the

term reversal of motion.” And in Ballentine (1998, p.377) we find, “the term ‘time

reversal’ is misleading, and the operation... would be more accurately described as

motion reversal.”

Some philosophers of physics adopted this perspective and ran with it. Callender

(2000) suggests that we refer to the standard definition as ‘Wigner reversal’, leaving

the phrase ‘time reversal’ to refer to the mere reversal of a time ordering of events

t 7→ −t. This leads him to the radical conclusion1 that, not just in weak interactions

1One precise way to derive this conclusion is as follows. Let ψ(t) be any solution to the Schrödinger
equation i d

dtψ(t) = Hψ(t), where H is a fixed self-adjoint and densely-defined operator. Suppose

that if ψ(t) is a solution, then so is ψ(−t), in that i d
dtψ(−t) = Hψ(−t). We have by substitution

t 7→ −t that −i d
dtψ(−t) = Hψ(−t), and so adding these two equations we get 0 = 2Hψ(−t) for all

ψ(t). That is only possible if H is the zero operator. So, if a quantum system is non-trivial (i.e.
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like neutral kaon decay, but in ordinary non-relativistic Schrödinger interactions, the

“evolution is not TRI [time reversal invariant], contrary to received wisdom, so time

in a (nonrelativistic) quantum world is handed” (Callender 2000, p.268).

Albert adopts a similar perspective, writing, “the books identify precisely that

transformation as the transformation of ‘time-reversal.’ ... The thing is that this

identification is wrong. ... [Time reversal] can involve nothing whatsoever other than

reversing the velocities of the particles” (Albert 2000, pgs. 20-21). This implies that

time reversal cannot conjugate the wavefunction, as is standardly assumed, which

leads Albert to declare, “the dynamical laws that govern the evolutions of quantum

states in time cannot possibly be invariant under time-reversal” (p.132). A detailed

critical discussion of Albert’s general perspective has been given by Earman (2002).

Both Callender and Albert argue that there is something unnatural about sup-

posing time reversal does more than reverse the order of states in a trajectory. The

standard expression of time reversal maps a trajectory ψ(t) to Tψ(−t), reversing the

order of a trajectory t 7→ −t, but also transforming instantaneous states by the oper-

ator T . Both Callender and Albert propose that time reversal is more appropriately

described by mere ‘order reversal’ ψ(t) 7→ ψ(−t). Callender explains the view as

follows.

David Albert... argues — rightly in my opinion — that the traditional

definition of [time reversal invariance], which I have just given, is in fact

gibberish. It does not make sense to time-reverse a truly instantaneous

state of a system. (Callender 2000, p.254)

Some quantities, such as a velocity dx/dt, may still be reversed. However, the view

is that these are not truly instantaneous quantities, but depend in an essential way

on the directed development of some quantity in time. A quantity that is truly only

defined by an instant cannot be sensibly reversed by the time reversal transformation.

One might refer to the underlying concern as the ‘pancake objection’: if the evolution

H 6= 0), then it is not invariant under ψ(t) 7→ ψ(−t). In contrast, most familiar quantum systems
are invariant under the standard time reversal transformation, ψ(t) 7→ Tψ(−t).
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of the world were like a growing stack of pancakes, why should time reversal involve

anything other than reversing the order of pancakes in the stack?

Here is one reason: properties at an instant often depend essentially on tem-

poral direction, even though this may not be as apparent as in the case of velocity.

Consider the case of a soldier running towards a vicious monster. In a given instant,

someone might call such a soldier ‘brave’ (or at least ‘stupid’). The time-reversed

soldier, running away from the vicious monster, would more accurately be described

as ‘cowardly’ at an instant. The situation in fundamental physics is analogous: prop-

erties like momentum, magnetic force, angular momentum, and spin all depend in

an essential way on temporal direction for their definition. The problem with the

pancake objection is that it ignores such properties: time reversal requires taking

each individual pancake and ‘turning it around’, as it were, in addition to reversing

the order.

A supporter of Callender and Albert could of course deny that there are good

reasons to think that bravery, momentum or spin are intrinsically tied to the direc-

tion of time. Callender refers to many such suggestions as “misguided attempts,”

arguing on the contrary that from a definition of momentum such as P = i~ d
dx

in

the Schrödinger representation, the lack of appearance of a ‘little t’ indicates that it

“does not logically follow, as it does in classical mechanics, that the momentum...

must change sign when t 7→ −t. Nor does it logically follow from t 7→ −t that one

must change ψ 7→ ψ∗” (Callender 2000, p.263).

I am not convinced. There is a natural perspective on the nature of time ac-

cording to which quantities like momentum and spin really do change sign when

time-reversed, or so I will argue. This may not be obvious from their expression in

a given formalism. But, as Malament (2004) has shown, some quantities (like the

magnetic field) may depend on temporal direction even when there is not an obvious
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‘little t’ in the standard formalism2. I claim that the situation is similar in quantum

theory, and that consequently, it is no less natural to reverse momentum or spin under

time reversal than it is to reverse velocity.

Let me set aside arguments from monsters and other gratuitous metaphors for

the remainder of this paper. I only give them to provide some physical intuition

for those who find it helpful. My aim here is more general. In what follows I will

set out and motivate a few precise elementary considerations about the nature of

time, and then show how they lead inevitably to the standard definition of time

reversal in quantum mechanics, complete with the standard transformation rules on

instantaneous states. Along the way I will seek to dissolve three myths about time

reversal in quantum theory, which may be responsible for some of the controveries

above.

1.3. Three Myths. The skeptical perspective, that the standard definition of time

reversal is not deserving of the name, arises naturally out of three myths about time

reversal in quantum theory. In particular, these myths suggest that the justification

for the standard time reversal operator amounts to little more than a convention. If

that were true, then one could freely propose an alternative definition as Callender

and Albert have done, without loss. I will argue that there is something lost. The

standard definition of time reversal cannot be denied while maintaining a plausible

perspective on the nature of time. It is more than a convention, in the sense that the

following three myths can be dissolved.

Myth 1. The preservation of transition probabilities (|〈Tψ, Tφ〉| = |〈ψ, φ〉|) is a con-

ventional feature of time reversal, with no further justification. Many presentations

presume this is just a conventional property of ‘symmetry operators.’ A common

myth is that there is no good answer to the question of why such operators preserve

transition probabilities. I will point out one good reason.
2Malament illustrates a natural sense in which the magnetic field Ba is defined by the Maxwell-
Faraday tensor Fab, which is in turn defined with respect to a temporal orientation τa. So, since
time reversal maps τa 7→ −τa, it follows that it Fab 7→ −Fab and Ba 7→ −Ba (Malament 2004, §4-6).
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Myth 2. The antiunitary (or ‘conjugating aspect’) of time reversal is a convention,

unjustified, or else presumes certain transformation rules for ‘position’ and ‘momen-

tum.’ When it is not posited by convention, one can show that antiunitarity follows

from the presmption that time reversal preserves position (Q 7→ Q) and reverses mo-

mentum (P 7→ −P ), as we shall see. This argument has unfortunate limitations. I

will propose an improved derivation.

Myth 3. The way that time reversal transforms observables is a convention, un-

justified, or requires comparison to classical mechanics. When asked to justify the

transformations Q 7→ Q and P 7→ −P , or the claim that T 2 = −1 for odd-fermion

systems, authors often appeal to the myth that this is either a convention, or needed

in order to match the classical analogues in Hamiltonian mechanics. I will argue

neither is the case, and suggest a new way to view their derivation.

Callender and Albert have fostered the second myths in demanding that time

reversal invert the order of instantaneous states without any kind of conjugation; they

have fostered the third in arguing that it doesn’t necessarily transform momentum and

spin3. However, these perspectives aside, I hope that the dissolution of these myths

and the account of time reversal that I propose may be of independent interest. In

place of the myths I will give one systematic way to motivate the meaning of time

reversal in quantum theory, and argue that it is justifiably associated with the name.

As in the case of Malament’s perspective, skeptics may still wish to adopt alternatives

to the standard use of the phrase ‘time reversal’. Fine: one is free to define terms how

one chooses. But as with Malament’s perspective on electromagnetism, this paper

will aim to show just how much one is giving up by denying the standard definitions.

The account builds up the meaning of time reversal in three stages, dissolving each

of the three myths in turn along the way.

3Callender argues that momentum reverses sign in quantum theory only because of a classical cor-
respondence rule. I discuss this argument in detail in Section 3.2 below.
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2. First Stage: Time reversal is unitary or antiunitary

2.1. Wigner’s theorem. Wigner’s theorem is one of the central results of modern

quantum theory, first presented by Wigner (1931). The theorem is often glossed

as showing that any transformation A : H → H on a separable Hilbert space that

deserves to be called a ‘symmetry’ must be unitary or antiunitary. The statement is

more accurately put in terms of rays, or equivalence classes of vectors related by a

phase factor, Ψ := {eiθψ | ψ ∈ H and θ ∈ R}. Since each vector ψ in a ray gives the

same expectation values, it is often said that rays are what best represent ‘physical’

quantum states. There is an inner product on rays defined by the normed Hilbert

space inner product 〈Ψ,Φ〉 := |〈ψ, φ〉|, where ψ ∈ Ψ and φ ∈ Φ; this product is

independent of which vectors in the rays are chosen. What Wigner presumed is that

every symmetry, including time reversal, can be represented by a transformation S

on rays that preserves the inner product, 〈SΨ,SΨ〉 = 〈Ψ,Φ〉. From this he argued for

Wigner’s Theorem, that every such transformation can be uniquely (up to a constant)

implemented by either a unitary operator or an antiunitary operator.

Time reversal, as we shall see in the next section, falls into the latter ‘antiunitary’

category. But before we get that far: why do we expect time reversal to preserve inner

products between rays? Or, in terms of the underlying Hilbert space vectors, why

should time reversal preserve transition probabilities? Of course, Wigner is free to

define words however he likes. But one would like to have a more serious reason.

2.2. Uhlhorn’s theorem. Here is a general way to answer this question that I think

is not very well-known. To begin, consider two rays that are orthogonal, 〈Ψ,Φ〉 =

0. In physical terms, this means that the two corresponding states are mutually

exclusive: if one of them is prepared, then the probability of measuring the other is

zero, in every experiment. To have a simple model in mind: take Ψ and Φ to represent

z-spin-up and z-spin-down eigenstates, which are orthogonal in this sense.

Suppose we interpret a ‘symmetry transformation’ to be one that preserves

orthogonality. For example, since z-spin-up and z-spin-down are mutually exclusive
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outcomes in an experiment, we suppose that this will remain the case when the

entire experimental setup is ‘symmetry-transformed’, by say a rigid rotation or by a

translation in space. And vice versa: if two symmetry-transformed states are mutually

exclusive, then we assume the original states must have also been mutually exclusive.

In the particular case of quantum mechanics, we thus posit the following natural

property of symmetry transformations: two rays are orthogonal if and only if the

symmetry transformed states are too. Uhlhorn (1963) discovered that, surprisingly,

this requirement is enough to establish that symmetries are unitary or antiunitary4

(when the dimension of the Hilbert space is greater than 2).

Theorem (Uhlhorn). Let T be any bijection on the rays of a separable Hilbert space

H with dimH > 2. Suppose that 〈Ψ,Φ〉 = 0 if and only if 〈TΨ,TΦ〉 = 0. Then,

〈TΨ,TΦ〉 = 〈Ψ,Φ〉.

Moreover, there exists a unique (up to a constant) T : H → H that implements T on

H in that ψ ∈ Ψ iff Tψ ∈ TΨ, where T is either unitary or antiunitary and satisfies

|〈Tψ, Tφ〉| = |〈ψ, φ〉| for all ψ, φ ∈ H.

In other words, as long as a transformation preserves whether or not two states

are mutually exclusive, it must either be unitary or antiunitary.

2.3. Time reversal. The interpretation of Uhlhorn’s theorem is perspicuous in the

special case of time reversal, where it immediately dissolves our first myth. Suppose

some transformation can be interpreted as involving ‘reversal of the direction of time’.

That is, I wish to speak not just of ‘motion reversal’ as some textbooks prefer to say,

but ‘time reversal’, whatever that should mean. Whatever else one might say about

time reversal, let us at least suppose that two mutually exclusive states remain so

under the time reversal transformation, in that the states Ψ and Φ are orthogonal if

4A concise proof is given by (Varadarajan 2007, Theorem 4.29); I thank David Malament for pointing
this out to me. Uhlhorn’s theorem was considerably generalised by Molnár (2000); see Chevalier
(2007) for an overview.
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and only if TΨ and TΦ are too. Why believe this, when nobody has ever physically

‘reversed time’? The reason is that whether two states are mutually exclusive has

nothing to do with the direction of time. Orthogonality is a statement about what is

possible in an experimental outcome, independently of their time-development. Ac-

cepting this does not require any kind of lofty metaphysical indulgence. Orthogonality

is simply not a time-dependent concept.

This is all that we need. We can immediately infer that time reversal preserves

transition probabilities, and is implemented by a unitary or antiunitary operator.

That is the power of Uhlhorn’s theorem. Contrary to the first myth, there is indeed

a reason to accept that time reversal preserves transition probabilities and thus is

unitary or antiunitary. It emerges directly out of a reasonable constraint on what it

means to reverse time, together with the mathematical structure of quantum theory.

3. Second Stage: Why T is Antiunitary

3.1. Antiunitarity. We have argued that time reversal must be unitary or antiuni-

tary. But the standard definition further demands that it is antiunitary in particular.

An antiunitary operator is a bijection T : H → H that satisfies,

(1) (adjoint inverse) T ∗T = TT ∗ = I, and

(2) (antilinearity) T (aψ + bφ) = a∗Tψ + a∗Tφ.

It is sometimes useful to note that these conditions are together equivalent to,

(3) 〈Tψ, Tφ〉 = 〈ψ, φ〉∗.

Properties (2) and (3) underlie claims that time reversal ‘involves conjugation’. They

are also slippery properties that often throw beginners (and many experts) for a

loop, since they require many of the familiar properties of linear operators to be

subtly adjusted.

When is a transformation antiunitary, as opposed to unitary? It is not the

‘discreteness’ of the transformation, since the parity transformation is discrete and

unitary. It is rather a property that holds of all ‘time-reversing’ transformations,
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including T , PT , CPT , and indeed any UT where U is a unitary operator. Once one

has accepted that the time reversal operator T is an antiunitary bijection, it follows

that the transformations of the form UT are exactly the antiunitary ones: if T is

antiunitary, then so is UT when U is unitary; and conversely, if A is any antiunitary

operator, then there exists a unitary U such that A = UT , as one can easily check5.

Some of the mystery about antiunitary operators can be dissolved by noting that

there is a similar property in classical Hamiltonian mechanics. In local coordinates

(q, p), interpreted as position and momentum, the instantaneous effect of time reversal

is normally taken to preserve position and to reverse momentum (q, p) 7→ (q,−p). But

it is easy to check that it is not a canonical transformation. The mathematical reason

for this is that time reversal does not preserve the symplectic form ω = dq∧dp, which is

the geometric structure underpinning Hamilton’s equations. Instead, the symplectic

form reverses sign under time reversal. For this reason, time reversal in classical

Hamiltonian mechanics is more correctly identified ‘anticanonical’ or ‘antisymplectic’,

which is directly analogous to antiunitarity in quantum mechanics.

Earman (2002) has offered some ‘physical’ motivation for an antiunitary time

reversal operator in quantum mechanics:

[T]he state ψ(x, 0) at t = 0 not only determines the probability distri-

bution for finding the particle in some region of space at t = 0 but it

also determines whether at t = 0 the wave packet is moving, say, in the

+x direction or in the −x direction. ... So instead of making armchair

philosophical pronouncements about how the state cannot transform,

one should instead be asking: How can the information about the di-

rection of motion of the wave packet be encoded in ψ(x, 0)? Well (when

you think about it) the information has to reside in the phase relations

of the components of the superposition that make up the wave packet.

5The former follows immediately from the definition; the latter follows by setting U := AT−1 and
checking that U is unitary.
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And from this it follows that the time reversal operation must change

the phase relations.

In short, phase angles in quantum theory contain information that is temporally

directed. As a consequence, one cannot reverse time without reversing those phase

angles. This is precisely what an antiunitary operator does, since Teiθψ = e−iθTψ.

I find Earman’s motivation compelling. However, one would like to have a

more general and systematic derivation of antiunitarity. I will consider two such

derivations below. The first is a common textbook argument (see e.g. Sachs 1987),

which works when there is a position and momentum representation, but has certain

shortcomings. I will then turn to what I take to be a better and much more general

way to understand the origin of antiunitarity, which stems from the work of Wigner.

3.2. The position-momentum approach to time reversal. Suppose we are deal-

ing with a system involving position Q and momentum P satisfying the canonical

commutation relations, (QP − PQ) = i~. Suppose we can agree that time reversal

preserves position while reversing momentum, TQT−1 = Q and TPT−1 = −P . Then,

applying time reversal to both sides of the commutation relation we find,

Ti~T−1 = T (QP − PQ)T−1 = (TQT−1)(TPT−1)− (TPT−1)(TQT−1)

= −(QP − PQ) = −i~.

Since i~ is a constant, this outcome is not possible if T is unitary, since all unitary

operators are linear. So, since T is not unitary, it can only be antiunitary, following

the discussion of the previous section.

Why is it that time reversal preserves position and reverses momentum in quan-

tum mechanics? It is often suggested that we must simply do what is already done in

classical mechanics. But why do we do that? And, even presuming we have a good

grip on time reversal in classical mechanics, why should time reversal behave this way

in quantum mechanics too?



12 Bryan W. Roberts

Craig Callender has argued that it is because of Ehrenfest’s theorem. This clever

idea can be made precise as follows. Ehrenfest’s theorem says that for any quantum

state, the expectation values of quantum position Q and momentum P satisfy Hamil-

ton’s equations as they evolve unitarily over time. This means in particular that

q := 〈ψ,Qψ〉 and p := 〈ψ, Pψ〉 can be viewed as canonical position and momentum

variables given a quantum state ψ. Now, assume classical time reversal preserves this

canonical position and reverses the sign of momentum, (q, p) 7→ (q,−p). Assume also

that quantum time reversal corresponds to a transformation ψ 7→ Tψ that respects

the classical definition, in that it satisfies (q, p) 7→ (q,−p) when q and p are defined as

above in terms of expectation values. These assumptions amount to the requirement

that for all ψ,

〈Tψ,QTψ〉 = 〈ψ,Qψ〉

〈Tψ, PTψ〉 = −〈ψ, Pψ〉.

This implies6 that TQT ∗ = Q and TPT ∗ = −P . On this sort of thinking Callender

concludes that, “[s]witching the sign of the quantum momentum, therefore, is ne-

cessitated by the need for quantum mechanics to correspond to classical mechanics”

(Callender 2000, p.266).

Callender’s suggestion certainly helps to clarify the relationship between clas-

sical and quantum time reversal. It can be applied when we restrict attention to

quantum systems with a position and momentum representation. However, it does

require us to understand time reversal in classical mechanics before knowing its mean-

ing in quantum mechanics. That is perhaps unusual if one takes quantum theory to

be the more fundamental or correct description of nature. And, although he does

not mention it, Callender’s argument also relies on a particular correspondence rule,

that quantum time reversal is a transformation ψ 7→ Tψ that gives rise to classical

6We have 〈ψ, T ∗QTψ〉 = 〈ψ,Qψ〉 and 〈ψ, T ∗PTψ〉 = −〈ψ, Pψ〉 for arbitrary ψ, which implies that
T ∗QT = Q and T ∗PT = −P (see e.g. Messiah 1999, Theorem I of Volume II, Chapter XV §2). A
technical qualification is needed due to the fact that Q and P are unbounded: by ‘arbitrary ψ’ we
mean all ψ in the domain of the densely-defined operator Q (and similarly for P , respectively).
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time reversal on expectation values. Although this assumption is plausible, it is not

automatic.

There are other shortcomings of the position-momentum approach. Some have

complained that it is ‘basis-dependent’ in the sense of requiring particular position

and momentum operators to be chosen (Biedenharn and Sudarshan 1994). A more

difficult worry in this vein is that many quantum systems do not even admit such

operators, in the sense that they do not admit a representation of the canonical

commutation relations. This is often the case in relativistic quantum theory, where

localised position operators are difficult if not impossible to define7.

It would be nice to have a more general way to understand why time reversal

is antiunitary, without mere appeal to convention, and without appeal to classical

mechanics. In what follows, I will point out one such account. Let me begin with a

discussion of invariance.

3.3. The meaning of invariance. Many laws of nature are associated with a set

of dynamical trajectories, which are typically solutions to some differential equation.

These solutions represent the possible ways that states of the world can change over

time. We say that such a law is invariant under a transformation if and only if this set

of dynamical trajectories is preserved by that transformation. In other words, invari-

ance under a symmetry transformation means that if a given dynamical trajectory is

possible according to the law, then so is the symmetry-transformed trajectory.

The same thinking applies in the language of quantum theory. Let the dynamical

trajectories of a general quantum system be unitary, meaning that an initial quantum

state ψ evolves according to ψ(t) = e−itHψ for each real number t, where H is a fixed

self-adjoint operator, the ‘Hamiltonian’8. Suppose a symmetry transformation takes

each trajectory ψ(t) to a new trajectory φ(t). If each transformed trajectory is also

7This is a consequence of a class of no-go theorems established by Hegerfeldt (1994), Malament
(1996), Halvorson and Clifton (2002), and others.
8This is the ‘integral form’ of Schrödinger’s equation: taking the formal derivative of both sides and
multiplying by i yields, i d

dtψ(t) = −i2He−itHψ = Hψ(t).
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unitary, in that φ(t) = e−itHφ for all t, then we say that the quantum system is

invariant under the symmetry transformation.

Our concern in this paper will be with invariance under transformations that

correspond to ‘reversing time’. There are many of them: one can reverse time and also

translate in space; reverse time and also rotate; and so on. But these transformations

share the property that, in addition to however they transform a state ψ (possibly by

the identity), they also reverse the order of states in each trajectory.

Call the latter ‘time-order reversal’. What exactly does that mean to reverse

the time-order of a quantum trajectory ψ(t)? For example, ψ(t) 7→ ψ(−t) reverses

time order, but so does ψ(t) 7→ ψ(1/et). Which is correct? A first guiding principle

is that time-order reversal should not change the duration of time between any two

moments; otherwise it would do more than just order reversal9. To enforce this we

take time-order reversal to be a linear transformation of the reals, t 7→ at+b for some

real a, b. A second guiding principle is to take ‘reversal’ to mean that two applications

of the transformation are equivalent to the identity transformation; this is to say that

t 7→ at + b is an involution. The only order-reversing linear involutions of the reals

have the form t 7→ −t + t0 for some real t0. So, since the quantum theories we are

concerned with here are time translation invariant, we may set t0 = 0 without loss of

generality, and take time-order reversal to have the form ψ(t) 7→ ψ(−t) as is usually

presumed.

This time-order reversal must now be combined with a bijection T : H → H

on instantaneous states. So, the time-reversing transformations can be minimally

identified as bijections on the set of trajectories ψ(t) = e−itHψ that take the form,

ψ(t) 7→ Tψ(−t) = TeitHψ,

where T at this point is an arbitrary unitary or antiunitary operator, possibly even

the identity operator Iψ := ψ. As with general symmetry transformations, we say

9No such criterion is adopted by Peterson (2015), which leads him to consider a wealth of non-
standard ways to reverse order in time.
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that a quantum system is invariant under these ‘T -reversal’ transformations if and

only if each trajectory Tψ(−t) can be expressed as a trajectory φ(t) that satisfies the

same unitary law, φ(t) = e−itHφ. This statement can be summarised in a convenient

form. Defining φ(t) := Tψ(−t) = TeitHψ (and hence that φ := Tψ), T -reversal

invariance means that,

TeitHψ = e−itHTψ

for all ψ.

3.4. A general approach to time reversal. Suppose that we know almost nothing

about some T -reversal transformation, other than that it is unitary or antiunitary.

But let us suppose that, whenever this transformation represents ‘the reversal of

the direction of time’, possibly together with other transformations too, then there

is at least one realistic dynamical system that is T -reversal invariant in the sense

defined above. Here is what that means in more precise terms. A realistic dynamical

system requires a Hamiltonian that is not the zero operator, since otherwise no change

would occur at all. Moreover, all known Hamiltonians describing realistic quantum

systems are bounded from below, which we will express by choosing a lower bound

of 0 ≤ 〈ψ,Hψ〉. Finally, suppose that at least one of those Hamiltonians satisfies the

T -invariance property that TeitHψ = e−itHTψ. Of course, some Hamiltonians will fail

to satisfy this, such as those appearing in the theory of weak interactions, and this is

perfectly compatible with our argument. However, we do suppose that at least one

of these Hamiltonians — perhaps a particularly simple one with no interactions — is

T -reversal invariant. This turns out to be enough to establish that T is antiunitary.10.

Proposition 1. Let T be a unitary or antiunitary bijection on a separable Hilbert

space H. Suppose there exists at least one densely-defined self-adjoint operator H on

H that satisfies the following conditions.

10This proposition, a version of which is given by Roberts (2012b, §2), makes precise a strategy that
was originally suggested by Wigner (1931, §20). I thank David Malament for suggestions that led
to improvements in this formulation.
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(i) (positive) 0 ≤ 〈ψ,Hψ〉 for all ψ in the domain of H.

(ii) (non-trivial) H is not the zero operator.

(iii) (T -reversal invariant) TeitHψ = e−itHTψ for all ψ.

Then T is antiunitary.

Proof. Condition (iii) implies that eitH = Te−itHT−1 = eT (−itH)T−1
. Moreover, Stone’s

theorem guarantees the generator of the unitary group eitH is unique when H is self-

adjoint, so itH = −TitHT−1. Now, suppose for reductio that T is unitary, and

hence linear. Then we can conclude from the above that itH = −itTHT−1, and

hence THT−1 = −H. Since unitary operators preserve inner products, this gives,

〈ψ,Hψ〉 = 〈Tψ, THψ〉 = −〈Tψ,HTψ〉. But Condition (i) implies both 〈ψ,Hψ〉 and

〈Tψ,HTψ〉 are non-negative, so we have,

0 ≤ 〈ψ,Hψ〉 = −〈Tψ,HTψ〉 ≤ 0.

It follows that 〈ψ,Hψ〉 = 0 for all ψ in the domain of H. Since H is densely defined,

this is only possible if H is the zero operator, contradicting Condition (ii). Therefore,

since T is not unitary, it can only be antiunitary. �

This proposition applies equally to both non-relativistic quantum mechanics

and to relativistic quantum field theory. It can also be straightforwardly extended

to contexts in which energy is negative, by replacing Premise (i) with the (i∗): the

spectrum of H is bounded from below but not from above; then the argument above

proceeds in exactly the same way11.

This line of argument is somewhat more abstract than the commutation rela-

tions approach. However, it is much more general. We do not need to appeal to

time reversal in classical mechanics, or even have a representation of the commuta-

tion relations. We do not even presume that time reversal transforms instantaneous

states by anything other than the identity. But we do derive that it does, contrary to

11In particular, we get r ≤ 〈ψ,Hψ〉 and r ≤ 〈Tψ,HTψ〉, so r ≤ 〈ψ,Hψ〉 = −〈Tψ,HTψ〉 ≤ −r,
which contradicts the assumption that the spectrum of H is unbounded from above. I thank David
Wallace for a discussion that led to this variation.
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the second myth discussed at the outset. The derivation hinges on the presumption

that there is at least one possible dynamical system — not necessarily even one that

actually occurs! — that is time reversal invariant. If there is, then time reversal can

only be antiunitary, pace the misgivings of the authors discussed above.

A similar but slightly stronger presumption has been advocated by Sachs (1987,

§1.4), which he calls “kinematic admissibility”. According to Sachs, “[i]n order to ex-

press explicitly the independence between the kinematics and the nature of the forces,

we require that the transformations leave the equations of motion invariant when all

forces or interactions vanish” (Sachs 1987, p.7). Requiring that admissible symmetry

transformations have this property is equivalent to requiring that the Hamiltonian

for free particles and fields is preserved by such symmetries. This is a special case of

what we have assumed above, since free Hamiltonians are generally non-trivial and

positive. It is also quite reasonable in my view. However, we simply do not need it

to establish the result above. Time reversal is antiunitary as long as there is some

positive non-trivial Hamiltonian that is time reversal invariant. Whether that turns

out to be the free Hamiltonian is beside the point.

Although this account of time reversal does not come for free, I think it does

help to clarify what’s at stake in debates like those of Callender (2000) and Albert

(2000). Denying that time reversal is antiunitary means that a non-trivial realistic

quantum system is never time reversal invariant, under any circumstances whatsoever.

Even an empty system with no interactions would be asymmetric in time. Earman

has called the disparity this creates with respect to the time symmetry12 found in

classical mechanics “the symptom of a perverse view” (Earman 2002, p.249). But even

setting aside moral outrage, there is little practical use in identifying time reversal

with a transformation that doesn’t make any distinctions at all, not even between a

12In fact the problem is more complicated: the Callender and Albert arguments seemingly entail
that one must reject the standard antisymplectic time reversal operator in classical Hamiltonian
mechanics as well, which would lead one to infer that classical Hamiltonian mechanics is not time
reversal invariant even for the free particle. This avoids the perversity Earman identifies at the cost
of introducing a new one: the failure of classical time reversal invariance!
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free particle and one experiencing an important time-directed process like a weakly

interacting meson. To those who value the alignment of philosophy of physics with

the practice of physics, this may be too high a price to pay, especially for a view that

is motivated by seemingly arbitrary metaphysics.

4. Third Stage: Transformation rules

4.1. Transformation rules. We now turn to what explains why time reversal pre-

serves position, Q 7→ Q, reverses momentum P 7→ −P , and reverses spin σ 7→ −σ.

The fact that time reversal is antiunitary is not enough, since there are many such

operators that do not do this. The commutation relations are not enough either13.

So, what is the origin of these rules? The myth is that it can only be a matter of

convention, or else an appeal to classical mechanics. This section will dissolve that

final myth. There is a fairly general strategy for determining how time reversal will

transform a given observable, which draws on how we understand the symmetries

generated by that observable.

Let me start by uniquely deriving of how time reversal transforms position

and momentum, then spin, and then discuss how the strategy can be applied to more

general observables. Along the way, I will also give a new perspective on why T 2 = −1

for quantum systems consisting of an odd number of fermions.

4.2. Position and momentum transformations. Standard treatments of time

reversal take the position and momentum transformation rules for granted. Non-

standard treatments such as Callender (2000) and Albert (2000) deny that these

transformation rules hold in general14, although Callender argues that the momentum

transformation rule can be justified by appeal to a classical correspondence rule. In

this section, I would like to point out that one can go beyond both of these treatments.

13Example: if [Q,P ]ψ = iψ, then [Q+P, P ]ψ = iψ. But although both pairs (Q,P ) and (Q+P, P )
satisfy the canonical commutation relations, an antiunitary T cannot preserve both Q and Q + P
while also reversing P .
14One might derive the p 7→ −p transformation rule on the non-standard view of time reversal
whenever dq/dt = p/m for some m 6= 0. But this is not generally the case, for example in electro-
magnetism when velocity is a function of both momentum and electromagnetic potential.
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The standard transformation rules can be derived from plausible assumptions about

the nature of time, without appeal to classical mechanics (or any other theory). Our

account makes this possible because we have adopted an independent argument for

antiunitarity above. Thus we are free to use antiunitarity in the derivation of the

position and momentum transformation rules. This is exactly the opposite of the

standard textbook argument described in Section 3.2.

Begin with momentum, defined as the generator of spatial translations. The

spatial translations are given by a strongly continuous one-parameter unitary repre-

sentation Ua, with the defining property15 that if Q is the position operator, then

UaQU
∗
a = Q + aI, for all a. At the level of wavefunctions in the Schrödinger rep-

resentation, this group has the property that Uaψ(x) = ψ(x − a). In other words,

translations quite literally ‘shift’ the position of a quantum system in space by a

real number a. This group can be written Ua = eiaP by Stone’s theorem, and the

self-adjoint generator P is what we mean by momentum.

The strategy I’d like to propose begins by asking how the meaning of time

reversal changes when we move to a different location in space. Let us take as a

principled assumption that it does not. After all, the concept of ‘reversing time’

should not have anything to do with where we are located in space. This means that

if we first time reverse a state and then translate it, the result is the same as when

we first translate and then time reverse,

UaTψ = TUaψ.

Since Ua = eiaP , this ‘homogeneity’ of time reversal has implications for the momen-

tum operator P . Namely,

eiaP = TeiaPT−1 = eT (iaP )T−1

= e−iaTPT
−1

.

15Translations can be equivalently defined by UaE∆U
∗
a := E∆−a, where ∆ 7→ E∆ is the projection-

valued measure associated with the position operator Q.
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where the final equality follows from the antiunitarity of T . This implies TPT−1 =

−P , since the generator of Ua = eiaP is unique by Stone’s theorem. Thus we have

our first transformation rule: TPT−1 = −P . We do not need to take this fact for

granted after all. It is encoded in the homogeneity of time reversal in space.

Callender (2000) and Albert (2000) have expressed skepticism about the pre-

sumption that time reversal should do anything at all at an instant. Viewing P (t) in

the Heisenberg picture, this is to express skepticism that time reversal truly trans-

forms P 7→ −P . Let me emphasize again that we have not presumed any such

principle here: rather, we have derived it from more basic principles. Namely, we be-

gan with an argument that T is antiunitary, and then showed that P 7→ −P follows

so long as the meaning of time reversal does not depend on one’s location in space.

From this perspective the transformation rule for Q is even more straightfor-

ward: if time reversal does not depend on location in space, then we can equally infer

that TQT−1 = Q. Alternatively, we could follow a strategy similar to the one above,

by the considering the group of Galilei boosts defined by Vb = eiaQ. Here it makes

sense to view time reversal as reversing the direction of a boost, just as the change

in position of a body over time changes sign when we watch a film in reverse. In

particular, if we time reverse a system and then apply a boost in velocity, then this

is the same as if we had boosted in the opposite spatial direction and then applied

time reversal, VbTψ = TV−bψ. Following exactly the same reasoning above we then

find that TQT−1 = Q. Thus, from either the homogeneity of space or the reversal of

velocities under time reversal, we derive the transformation rule Q 7→ Q as well.

In the Schrödinger ‘wavefunction’ representation in which Qψ(x) = xψ(x) and

Pψ(x) = i d
dx
ψ(x), we can define the operator T that implements these transforma-

tions as follows. Let T = K be the conjugation operator in this representation, which

is to say the operator that transforms each wavefunction ψ(x) to its complex conju-

gate, Kψ(x) = ψ(x)∗. It follows immediately from this definition that TQT−1 = Q

and TPT−1 = −P . And it is not just that we can define T in this way. Given an
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irreducible representation of the commutation relations in Weyl form16, this charac-

terisation of the time reversal operator is unique up to a constant:

Proposition 2 (uniqueness of T ). Let (Ua = eiaQ, Vb = eibP ) be a strongly continuous

irreducible unitary representation of the commutation relations in Weyl form, and let

K be the conjugation operator in the Schrödinger representation. If T is antilinear

and satisfies TUaT
−1 = Ua and TVbT

−1 = V−b, then T = cK for some complex unit

c.

Proof. For any such antilinear involution T , the operator TK is unitary (since it

is the composition of two antiunitary operators), and commutes with both Ua and

Vb. Therefore it commutes with the entire representation. But the representation is

irreducible, so by Schur’s lemma TK = c for some c ∈ C, which is a unit c∗c = 1

because TK is unitary. So, since K2 = I, we may multiply on the right by K to get

that cK = TK2 = T as claimed. �

4.3. Spin observables. Angular momentum can be defined as a set of generators of

spatial rotations in a rest frame, and spin observables form one such set. This is what

is meant when it is said that spin is a ‘kind of angular momentum’. For example, as

is well known, the Pauli observables {I, σ1, σ2, σ3} for a spin-1
2

particle give rise to a

degenerate group of spatial rotations,

Rj
θ = eiθσj , j = 1, 2, 3,

in which there are two distinct elements (Rj
θ and −Rj

θ) for each spatial rotation. This

owes to the fact that the group generated by the Pauli matrices is isomorphic to SU(2),

the double covering group usual group of spatial rotations SO(3). Nevertheless, each

operator Rj
θ generated by a Pauli observable σj can be unambiguously interpreted as

representing a rotation in space.

16The commutation relations in Weyl form state that eiaP eibQ = eiabeibQeiaP . This implies the
ordinary commutation relations [Q,P ]ψ = iψ but is expressed in terms of bounded operators.
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We can now adopt our strategy from before, and ask: how does the meaning

of time reversal change under spatial rotations? And here again the answer should

be ‘not at all’, insofar as the meaning of ‘reversal in time’ does not have anything

to do with orientation in space. This means in particular that if we rotate a system

to a new orientation, apply time reversal, and then rotate the system back again,

the result should be the same as if we had only applied time reversal in the original

orientation. Equivalently, time reversal commutes with spatial rotations,

RθTψ = TRθψ.

But from this it follows that Rθ = eiθσj = TeiθσjT−1 = e−iθTσjT
−1

, which implies

that TσjT
−1 = −σj for each j = 1, 2, 3. As a result, time reversal transforms the

Pauli spin observables as σj 7→ −σj, as is standardly presumed. As with position

and momentum, the spin transformation rules for time reversal are more than a

convention: they arise directly out of the fact time reversal is isotropic in space.

We can give the explicit definition of this T by expressing the Pauli spin ob-

servables in the standard z-eigenvector basis as σ1 =
(

1
1

)
, σ2 =

(
−i

i

)
, σ3 =

(
1
−1

)
.

Let K be the conjugation operator that leaves each of the basis vectors {
(

1
0

)
,
(

0
1

)
}

invariant, but which maps a general vector ψ = α
(

1
0

)
+ β

(
0
1

)
to its conjugate

ψ∗ = α∗( 1
0

)
+ β∗( 0

1

)
. Then one can easily check that the transformation T = σ2K

reverses the sign of each Pauli observable: since Kσ2K
∗ = −σ2 and KσiK

∗ = σi for

i = 1, 3 we have,

TσiT
∗ = (σ2K)σi(Kσ2) = σ2(σi)σ2 = −σi

Tσ2T
∗ = (σ2K)σ2(Kσ2) = σ2(−σ2)σ2 = −σ2.

Thus, unlike time reversal in the Schrödinger representation, time reversal for spin is

conjugation times an additional term σ2 needed to reverse the sign of the matrices

that don’t have imaginary components. This immediately implies the famous result

that, for a spin-1
2

particle, applying time reversal twice fails to bring you back to
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where you started, but rather results in a global change of phase:

T 2 = σ2Kσ2K = σ2(−σ2) = −I.

This property is in fact unavoidable: as before, there is a uniqueness result17 for the

definition of T for spin systems, which includes the fact that T 2 = −I:

Proposition 3 (uniqueness of T for spin). Let σ1, σ2, σ3 be an irreducible unitary

representation of the Pauli commutation relations, and let K be the conjugation op-

erator in the σ3-basis. If T is any antiunitary operator satisfying TeiσjT−1 = eiσj for

each j = 1, 2, 3, then T = cσ2K for some complex unit c, and T 2 = −I.

Proof. For any such antiunitary T , the operator −Tσ2K is unitary (since it is the

composition of two antiunitary operators) and commutes with all the generators σ1,

σ2, σ3. Thus it commutes with everything in the irreducible representation, so by

Schur’s lemma −Tσ2K = cI. This c is a unit c∗c = 1 because −Tσ2K is unitary. So,

multiplying on the right by σ2K and recalling that (σ2K)2 = −I we get, T = cσ2K,

and hence T 2 = (cσ2K)2 = c∗c(σ2K)2 = −I. �

4.4. Other observables. The examples above suggest a general strategy for de-

termining how time reversal transforms an arbitrary observable in quantum theory.

The strategy begins by considering the group of symmetries generated by an observ-

able. We then ask how such symmetries change what it means to ‘reverse time’.

The resulting commutation rule determines how time reversal transforms the original

observable.

For example, in a gauge-invariant quantum system, it makes sense to presume

that gauge transformations do not change the meaning of time reversal. In more

precise terms this is to presume that the unitary gauge transformation U = eiΦ

commutes with the time reversal operator T . This implies the self-adjoint Φ that

generates the gauge must reverse sign under time reversal, TΦT ∗ = −Φ. The same

observation holds whether we begin with the U(1) gauge group of electromagnetism,

17A version of this was observed by Roberts (2012a, Proposition 4).
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or the SU(3) gauge group of quantum chromodynamics. As soon as we have a grip

on the way that time reversal transforms under a unitary symmetry group, we may

immediately infer how it transforms the self-adjoint generators of that group.

5. Conclusion

Apart from dissolving some common mythology, I have advocated a perspective

on time reversal according to which which its meaning is built up in three stages of

commitment. The first stage commits to the direction of time being irrelevant to

whether two states are mutually exclusive. This implies that time reversal is uni-

tary or antiunitary. The second stage commits to at least one non-trivial, physically

plausible system that is time reversal invariant. This guarantees that time reversal is

antiunitary. The third stage commits to the meaning of time reversal being indepen-

dent of certain symmetry transformations, such as translations or rotations in space.

This gives rise to unique transformation rules for particular observables like position,

momentum and spin.

Some may wish to get off the boat at any of these three stages. As with many

things, the more one is willing to commit, the more one gets. However, I do not

think even the strongest of these assumptions can be easily dismissed. The critics of

the standard definition of time reversal have at best argued that time reversal should

not transform instantaneous states. On the contrary, the perspective developed here

shows a precise sense in which the non-standard perspective is implausible. Instanta-

neous properties of a physical system are sometimes temporally directed, and when

this is the case, time reversal may transform them. As we have now seen, a few plausi-

ble assumptions about time in quantum theory give rise to just such a transformation,

and indeed one that is in many circumstances unique.
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