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1. Introduction:  Of Chickens and Physicists 

A physicist can be defined as a person for whom a chicken is a uniform sphere of mass M.  The 

point of this joke (which this author first heard from a physics professor) is that physicists 

shamelessly omit a lot of detail when they attempt to model and predict the behaviour of 

complex physical systems; indeed, one of the important skills that physics students must learn is 

knowing what to leave out when setting up a problem. This penchant for simplification does not 

necessarily mean that physicists are hopelessly out of touch with reality, however; for one can 

learn a surprising amount about how real things behave by thinking about apparently simplistic 

models.   

A typical textbook example of a physical model might be the block sliding down an 

inclined plane.  The plane is at a definite angle with respect to the force of gravitation; the block 

(a rectangular chunk of indefinite stuff) has a given mass, and there will be a certain coefficient 

of friction between the block and the plane.  The assignment might be to calculate the coefficient 

of friction that would be sufficient to prevent the block from sliding down the plane, as a 

function of the angle of the plane.  Now, no block of material in the world is perfectly uniform, 

no planar piece of material is perfectly flat and smooth, no actual coefficient of friction is known 

to arbitrary accuracy, and gravity is never exactly uniform in direction and magnitude.  And yet, 

there are many physical systems in the real world which are sufficiently like idealized models 

such as this, to a definable degree of approximation, that their observable behavior can be 

predicted using such models.  Models are therefore useful not only because they help us to 

picture how basic physical principles work in a concrete situation, but also as frameworks on 

which to hang a practical calculation.   

Even textbook problems couched in terms of simple models such as the inclined plane 

amount to thought experiments of a sort.  Usually, though, we reserve the honorific 

Gedankenexperimente for idealized scenarios that give us new insights into the meaning or 

limitations of important physical concepts, usually by testing their implications in extreme or 

highly simplified settings.  Suppose, for example, that I confusedly believe that all objects fall at 

a rate that is a function of their mass.  Galileo has an elegant thought experiment that shows that 
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my notion is a mistake:  all objects in a uniform gravitational field must fall with the same 

acceleration (ignoring air resistance), on pain of outright contradiction.1   

Galileo’s thought experiment, like most typical textbook models, can be translated into 

experiments that can actually be performed.  But sometimes one can learn a lot even from 

thought experiments that cannot be done, at least in the simple terms in which they are first 

described.  Mach invited us to rotate the entire universe around Newton’s bucket of water.  No 

granting agency will fund that feat, and yet Mach’s insights contributed (in a complicated way) 

to the construction of a theory (general relativity) that has testable consequences (Janssen, 2014). 

 In this chapter I describe several thought experiments that are important in modern 

physics, by which I mean the physical theory and practice that developed explosively from the 

late 19th century onwards.  I’m going to mostly skip thought experiments that merely illustrate a 

key feature of physics2 in favour of those that contributed to the advancement of physics.  Some 

thought experiments (such as Galileo’s) provide the basis for rigorous arguments with clear 

conclusions; others seem to work simply by drawing attention to an important question that 

otherwise might not have been apparent.  Many of the most interesting thought experiments have 

ramifications far beyond what their creators intended.  I’ll pay special attention to one particular 

thought experiment, defined by Einstein and his collaborators Boris Podolsky and Nathan Rosen 

(1935).  The Einstein-Podolsky-Rosen (EPR) thought experiment dominates investigations of the 

foundations of quantum mechanics and plays a defining role in quantum information theory; I 

will suggest that it may even help us understand one of the central problems of cosmology.  In 

the form in which Einstein and his young colleagues first described it, the EPR experiment was 

another idealization that probably cannot be performed.  Despite this, it has evolved into 

practicable technology.  While the thought experiments to be discussed here are key turning 

points in the history of modern physical theory, in several cases (including the EPR experiment) 

their full implications remain to be plumbed.   

It is an extraordinary fact that most of the definitive thought experiments in twentieth 

century physics were born from the fertile imagination of one person, Albert Einstein.  This 

forces us to ponder the importance of individual creativity in the advancement of science.  Music 

would be very different, and much diminished, had Beethoven died young.  If Einstein had not 

lived, would others have made equivalent discoveries?  It seems likely that many of his advances 

would have been arrived at by other competent physicists sooner or later—except perhaps for 

general relativity, for the very conception of the possibility of, and need for, such a theory was 

due to the foresight and imagination of Einstein alone.   

 

2. Sorting Molecules:  A Thought Experiment in Thermodynamics 

We’ll start with Maxwell’s Demon, a thought experiment that bridges 19th and 20th century 

physics.   

                                                 
1 For a nice analysis of Galileo’s thought experiment, see (Arthur, 1999). 
2 Such as the double-slit experiment.  For a lucid exposition, see (Feynman, Leighton, & Sands, 1965 Ch. 

1). 
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 James Clerk Maxwell (1831–79) is best known for his eponymous equations for the 

electromagnetic field.  He also made important contributions to statistical mechanics; in 

particular, he was the first to write the Maxwell-Boltzmann probability distribution which 

describes the statistics of particles in a Newtonian gas.  Although Maxwell did not originate the 

concept of entropy (which was due to Rudolf Clausius, 1822–88) he was well aware of the 

Second Law of Thermodynamics, which, in the form relevant to our discussion here, states that 

no process can create a temperature difference without doing work.  Maxwell fancifully 

imagined a box containing a gas at equilibrium, with its temperature and pressure uniform 

throughout apart from small, random fluctuations (Norton (2013a)).  A barrier is inserted in the 

middle of the box, and there is a door in the barrier.  A very small graduate student with 

unusually good eyesight is given the task of tracking the individual gas molecules and opening or 

closing the door so as to sort the faster molecules into (say) the left side, and the slower 

molecules into the right.  Apparently, then, a temperature difference can be created between the 

two sides by means of a negligible expenditure of energy.  The problem is to say precisely why 

such a violation of the Second Law of Thermodynamics would not be possible.   

There is a large literature on Maxwell’s demon, which we can’t hope to do justice to here.  

(For entry points, see (Maroney, 2009; Norton, 2013a).)  It is well understood that there is a 

sense in which statistical mechanics would, in principle, allow us to beat the Second Law—

albeit, in general, only for extremely brief periods of time.  The easiest way to create a 

temperature difference between the two boxes is simply to leave the door open for a very, very 

long time.  Eventually enough fast molecules will, by pure chance, wander into one side and 

enough slow molecules, again by pure chance, will wander into another, to create a measurable 

temperature difference between the gasses in the two boxes, at least until another fluctuation 

erases the gains made by the first.   Now imagine that the hole has a spring-loaded door which 

could snap shut as soon as a specified difference in temperature Δ𝑇 was detected between the 

two partitions.  The thermometer and door mechanism will have some definite energy 

requirement, but this can be made independent of Δ𝑇.   If we want Δ𝑇 to be large enough that it 

implies an energy transfer greater than the energy requirements of the door mechanism, all we 

have to do is wait long enough and eventually a large enough fluctuation will probably (not 

certainly) come along—although the larger we want it to be, the longer we (again, probably) 

have to wait.  (Let’s call this process “fishing for fluctuations”; like ordinary fishing the result 

can never be guaranteed.)  As soon as the desired temperature difference is detected, the door 

snaps shut and we would have “trapped a fluctuation” in a way that apparently violates the 

Second Law.  This example underscores the point made by Ludwig Boltzmann (and apparently 

well understood by Maxwell), which is that the Second Law is a statistical statement.  Violations 

of the Law by pure chance are possible.  In trying to exorcise Maxwell’s demonic assistant we 

are dealing with a question of what is overwhelmingly probable, not what is certain in a law-like 

way.  The question is not whether energetically-free sorting against entropic gradients (such as 

temperature or concentration) could be done at all, but whether it can be done reliably, 

repeatedly, and in a time span shorter than the life of the observable universe.   
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In 1914 Marian Smoluchowski presented a critique of the Demon in terms of the statistics 

of fluctuations (see Norton (2013a)), which Smoluchowski argued would almost always wipe out 

any gains against equilibrium that any conceivable demon could make.  Leo Szilard argued in 

1929 (1972) that information-theoretic constraints would prevent the demon from beating the 

Second Law.  The acquisition and manipulation of the information that the Demon would need in 

order to track the particles would, Szilard argued, inevitably dissipate more waste heat than could 

be gained by sorting the molecules.  John Norton (2013a) champions Smoluchowski’s analysis, 

and argues that the information-theoretic approaches to refuting the Demon popular from Szilard 

onward are all more or less circular in that they presume the validity of the Second Law.  More 

recently, Norton argues (Forthcoming) that the question of information is irrelevant and that the 

Demon can be ruled out on the basis of Liouville’s Theorem of statistical mechanics, which 

shows that the operation of a Maxwell’s Demon is strictly impossible in any system that 

undergoes Hamiltonian evolution (i.e., virtually every conceivable classical system).3  I will not 

attempt here to decide upon the correct theoretical analysis of the Demon.  Instead, let us invoke 

the other towering figure of 19th century science—Darwin—and sketch a view of the Demon 

from an evolutionary point of view.   

In biology it is well known that cell membranes regularly perform a process called active 

transport.  This involves the pumping of a wide variety of molecules or ions through tiny pores 

in a cell membrane against entropic gradients.  The intricate molecular machines that perform 

active transport in the walls of virtually all kinds of cells are the closest things in the biological 

world to Maxwell’s Demon, although they tend to create concentration differences, not 

temperature differences.  The crucial point is that any sort of active transport that has so far been 

observed and studied by cell biologists requires the expenditure of energy.  As R. N. Robertson 

puts it, 

Systems which can transport molecules against their concentration gradients or ions 

against their electrochemical potential gradients are called active transport systems… 

Such systems use energy provided by the cell to work against the tendency for everything 

to reach chemical equilibrium…  Formally, active transport is a reversal of the decrease 

in free energy which occurs when concentration or electrochemical systems tend toward 

equilibrium (1983, pp. 134–135). 

Is it conceivable that natural selection could arrive at a form of active transport that does not 

require the expenditure of some of a cell’s budget of metabolic energy?   

 There is growing evidence that natural selection tends to act so as to minimize the use of 

available energy.  Damian Moran and co-authors (2014) studied a species of eyeless fish which 

live in underground caves entirely devoid of light.  These fish use dramatically less metabolic 

energy than their surface-dwelling cousins, not only because they have no eyes, but because they 

do not partake in the energy-intensive circadian rhythm typical of animals exposed to the cycles 

of night and day.   As Moran et al. (2014) put it,  

                                                 
3 Norton also develops the same result for quantum systems.   



Happiest Thoughts  Page 5 of 34 

While it is a strange thought for terrestrial vertebrates to entertain, it may be unnecessary 

for animals living in caves or the deep sea to rouse their metabolism for the onset of a day 

that will never arrive. 

If there is no particular survival advantage to paying the high metabolic cost of sight and all of 

the activities that go with it, a species that evolves its eyes away will have a survival advantage 

over one that does not.  And it seems likely that this would apply generally:  all things being 

equal, if there is a way to reduce energy expenditure it will tend to be found—and favoured—by 

natural selection.  Cellular life goes back well over three billion years, and natural selection has 

had all of that time to sample the possibility space for active transport and to converge on the 

means that are the most economical and efficient in their use of cellular resources, especially 

energy.  If it were indeed possible to micro-sort molecules against entropic gradients without the 

expenditure of energy, natural selection almost certainly would have found a way to do it by 

now.4   Arguably, then, we can take this as a good sign that Maxwell’s busy Demon is 

practically impossible, whether or not the last theoretical loopholes in the arguments against it 

can ever be closed.   

 

3. Thought Experiments in Relativity  

We turn now to a series of thought experiments that played important roles in the development of 

the special and general theories of relativity.   There is a vast literature on these thought 

experiments, and we can do little more here than sketch the most interesting ones and point in 

some directions in which philosophical or scientific questions about them may still linger.  

Einstein used a number of elegant models to illustrate how relativity works.  For 

example, he imagined a railway carriage rolling along at constant velocity with respect to a level 

embankment, and used this scenario to illustrate the relativity of simultaneity (Einstein, 1961).  

However, accounts of these illustrative models are widely available and they do not seem to have 

played a major role in his discovery of the theory.   

 

3.1 To Catch a Light Beam 

In his “Autobiographical Notes,” Einstein, writing more than fifty years after the fact, claims that 

he “hit upon” a paradox at the age of sixteen: 

If I pursue a beam of light with velocity c … I should observe such a beam of light as an 

electromagnetic field at rest though spatially oscillating.  There seems to be no such 

thing, however, neither on the basis of experience nor according to Maxwell’s equations.  

… One sees in this paradox the germ of the special theory of relativity…  (Einstein, 

1951) 

As John Norton explains (2013b), both the exact timing and content of Einstein’s youthful 

insight are open to question; quite likely Einstein, as do many of us, had gently revised his 

recollections decades after the events he describes.  In a much earlier account given by Einstein 

of this thought experiment (Norton, 2013b, pp. 130–31) he denied that he had, at age sixteen, a 

                                                 
4 Norton (Forthcoming) makes essentially the same argument with respect to ribosomes. 
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clear notion of the constancy of the velocity of light; rather the function of the thought 

experiment for the young Einstein simply seems to have been that it raised a striking and 

suggestive question:  precisely what would one see if one could catch up with a light ray?  In this 

respect the light ray experiment is similar to Maxwell’s Demon—no clear conclusion, just a 

question.  Thus, we see that unlike Galileo’s thought experiment refuting the Aristotelian notion 

of variable rates of fall, which presents a rigorous reductio argument with a definite conclusion, 

thought experiments can contribute to advances in science simply by vividly directing attention 

to a problem that no one else seems to have worried about.    

It is easy for modern commentators to Whiggishly interpret the light ray experiment in 

the light of what is now known about relativity.  Prima facie, the post-1905 interpretation is as 

follows:  because all motion is relative, there should be no way to detect one’s velocity in any 

universal or absolute sense.  If I could catch up to a light beam then I would presumably see a 

pattern of standing waves; and if light waves move at a universal speed with respect to the 

hypothetical ether, which was supposed to be grounded in absolute space, then I would know my 

absolute velocity.  But even this line of thought is less clear than it first seems.  Einstein in his 

“Autobiographical Notes” claims that according to Maxwell’s equations there is no such thing as 

a standing light wave.  This was an odd thing for Einstein in the late 1940s to have said, since he 

must have known that there are indeed standing wave solutions of the field equations.  It is a 

question of having the right boundary conditions.  For instance, a standing electromagnetic wave 

can be set up between two mirrors facing each other.  Perhaps what Einstein had in mind was a 

free wave propagating in empty space—a highly idealized conception in itself.  Or perhaps what 

he meant was that there is no such thing as a single electromagnetic wave pattern that can be 

either standing or moving depending only upon an observer’s state of motion.  For whether or 

not an electromagnetic wave pattern is standing or travelling depends upon the phase 

relationships among its components, and phase relations are Lorentz covariant.  Thus, a wave 

pattern that is standing in one frame is standing in all.5  Post-1905, what the light ray experiment 

actually says is that there is no such thing as catching up to a travelling electromagnetic wave 

until it turns into a standing wave—although this is really a logical consequence of the constancy 

postulate for light and not a ground for the latter.   

As Norton (2013b) points out, there is good reason to think that the pre-1905 Einstein 

was not in fact targeting the ether theory of light, but rather the emission theory of light—the 

view that the speed of light depends upon the speed of its source.  If the light ray experiment is to 

be interpreted as an argument at all, Norton says, it is an argument against the emission theory, 

not the ether theory of light.   

Whatever Einstein may have had in mind at the age of sixteen or seventeen, the upshot is 

that by 1905 he had arrived at a theory in which Maxwell’s equations are taken as laws of nature 

                                                 
5 John Norton (private communication) has cautioned me to speak carefully here.  Consider standing 

waves between two facing mirrors.  The nodes are at rest with respect to the mirrors, and so of course 

they must move with respect to someone moving with respect to the mirrors.  However, everyone will 

agree that the wave pattern is standing with respect to the mirrors.   
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which are the same for all inertial frames of reference.  These equations predict the existence of 

electromagnetic waves that travel with an invariant velocity, for the speed of light is a constant 

in the equations.  Therefore, if Maxwell’s equations are laws of nature, the speed of light must 

be, in effect, a law of nature itself.  As such, it must be independent of an observer’s state of 

motion, even when one is moving arbitrarily close to the speed of light.  As Einstein 

demonstrated, this assumption leads to the Lorentz transformations.  Then if we wish to make 

kinematics and dynamics consistent with Maxwell, we have to make them Lorentz covariant as 

well.  If the round Maxwellian peg won’t go into the square Newtonian hole, the hole must be 

made round—and Einstein showed precisely how to do this.    

The light beam thought experiment illustrates an important feature of the way physical 

theories develop:  the intuitive or heuristic viewpoint that stimulated a new development in 

theory is sometimes not preserved by the time that the resulting theory is formalized.  The 

presumption that such formative intuitions must always be preserved in the formalized theory 

that flows historically from them has been dubbed by John Woods (2003) the “heuristic fallacy”.  

That this presumption is indeed often false is all the more clear when we grasp that thought 

experiments do not always contribute to the advancement of a science by serving as arguments 

for any particular proposition—at least not in ways that can be unambiguously reconstructed 

decades after the fact.  Einstein himself described his light ray thought experiment as “child-like” 

and said, “Discovery is not a work of logical thought, even if the final product is bound in logical 

form” (quoted in (Norton, 2013b, p. 130)).   

 

3.2 “The Happiest Thought of My Life” 

By 1907 special relativity was consolidated.  After another foray into quantum mechanics, in 

which he produced the first qualitatively correct quantum theory of specific heats and in effect 

founded modern solid state physics (Pais, 1982, Ch. 20), Einstein turned his attention to the 

problem of unifying gravitation with the principle of relativity.  The obvious barrier to writing a 

relativistic theory of gravitation was that Newton’s law of gravitation contains no dependency on 

time, and is therefore an action-at-a-distance theory (a fact that Newton himself had deplored (I. 

Newton, 1692)).  There was a subtler but no less fundamental problem with Newton’s theory:  in 

his picture it is entirely a coincidence that gravitational mass (the “charge” that appears in the 

force law) and inertial mass (the resistance of an object to an accelerating force) happen to be 

precisely the same quantity.  Einstein reports that in the course of writing a review article on 

relativity, he was suddenly struck by “the happiest thought of my life” (Pais, 1982, Ch. 9): 

The gravitational field has only a relative existence in a way similar to the electric field 

generated by magnetoelectric induction.  Because for an observer falling freely from the 

roof of a house there exists—at least in his immediate surroundings—no gravitational 

field. … Indeed, if the observer drops some bodies then these remain relative to him in a 

state of rest or uniform motion…  The observer therefore has the right to interpret his 

state as ‘at rest.’   
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Galileo’s observation that all bodies in a uniform gravitational field fall with the same 

acceleration (neglecting air resistance) thus takes on a “deep physical meaning”:  gravitation is 

therefore simply a manifestation of inertia, a “fictitious force” such as the centrifugal and 

Coriolis forces.  Most important for Einstein, this fact is a manifestation of the Principle of 

Relativity:   

if there were to exist just one single object that falls in the gravitational field in a way 

different from all the others, then with its help the observer could realize that he is 

[falling] in a gravitational field…”.  [This is] therefore a powerful argument for the fact 

that the relativity postulate has to be extended to coordinate systems which, relative to 

each other, are in non-uniform motion (in Pais, 1982, p. 178). 

On the basis of this thought experiment, Einstein formulated his Equivalence Principle, which 

expresses the equivalence of gravitation and acceleration:  an accelerated frame is equivalent to 

an inertial frame experiencing a gravitational field.6  The Equivalence Principle is often 

illustrated by the elevator thought experiment, which appears in his first exposition of relativity 

for the general readership, written and published in 1916 (Einstein, 1961).  If I am floating in the 

midst of in a windowless elevator car in free-fall, I have no way of telling from any 

measurements I can perform within the car whether it is falling freely in a uniform gravitational 

field, or moving inertially in deep space, far from all matter.  (Out of a commendable concern for 

the safety of the experimenter, Einstein advises that he “fasten himself with strings to the floor” 

(Einstein, 1961, p. 66).)  If there is a rocket engine attached to the base of the elevator car, and I 

am held to the floor of the car by a constant force, I have no way of telling whether the rocket is 

burning with constant thrust, or whether I am sitting on the surface of a large planet whose 

gravitational field is such as to generate a uniform acceleration equal to that of the rocket.   

The idea that gravitation is an inertial force is simple and beautiful; it had to be right.  

However, it was incompatible with the long-held presumptions (which Kant thought were a 

priori) that space has to be Euclidean and time has to be absolute.  This was apparent to Einstein 

in at least two ways, which again can be illustrated with elegant thought experiments.   

First, go back to the elevator car sitting on the surface of a spherical planet.  Small test 

masses will fall toward the centre of mass of the planet; thus, two test masses released side by 

side will move toward each other as they fall.  Now, the gravitational potential is a function of 

the distance from the centre of mass of the planet.  Therefore, two test masses released one above 

the other will tend to move apart from each other when they are released and allowed to fall 

freely.  (The one closer to the centre of mass falls with greater acceleration.)  The tendency for 

freely falling matter to be stretched radially and squeezed tangentially is called the toothpaste 

tube effect.  It can be described as a manifestation of tidal forces, which are due to differences in 

gravitational potential from point to point.  A gravitational field can be detected by the tidal 

                                                 
6 There are several readings of the Equivalence Principle; one must in particular distinguish between what 

Einstein himself seems to have had in mind, which he expressed in more than one way during the years in 

which he developed General Relativity, and the way it is used in modern formulations of the theory.   See 

(Anderson, 1967; Misner, Thorne, & Wheeler, 1973; Norton, 1986).   
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accelerations it produces (which, again, become vanishingly small within a small enough region 

of spacetime).  Here is the catch:  if we want to follow the Equivalence Principle and insist that 

the test particles are moving inertially, and if we accept that inertial motion follows the shortest 

paths (the “geodesics”) in a geometry, then we are forced to the conclusion that in the presence 

of gravity the geometry of space (more precisely, spacetime) cannot be Euclidean—for in a 

Euclidean geometry the inertial paths would be parallel.7   

Second (and here is yet another thought experiment), Einstein considered a circular disk 

rotating with uniform angular velocity about its centre.  Those portions of the disk not at the 

centre will be Lorentz-contracted in the tangential direction with respect to the centre; the 

Euclidean relationship between the circumference and diameter of the circle will therefore fail.   

In this way the Equivalence Principle combined with well-established conclusions from 

special relativity led Einstein to the realization that in order to fulfill his ambition to create a 

fully relativistic theory of gravitation, he would have to radically alter the geometry of 

spacetime.  It might have been less intellectually risky to give up on the notion of gravitation as a 

manifestation of inertia, but Einstein boldly grasped the second horn of the dilemma and (under 

Marcel Grossman’s tutelage) taught himself the requisite mathematics—Riemannian geometry 

and tensor analysis.  Thus it was that a theory that was sparked by beautifully intuitive and 

simple thought experiments quickly acquired mathematical complexity so daunting that in 1913 

Max von Laue (who had made a key contribution to general relativity by defining the 10-

component stress-energy tensor) wrote of the “extraordinary, in fact inconceivable complexity” 

of the nascent theory as a reason for rejecting it (quoted in (Gutfreund & Renn, 2015, p. 115)). 

The rest is (complicated) history:  after a number of false starts, Einstein perfected his 

field equations of gravitation in late 1915.  They received their first experimental confirmation 

with Eddington’s famous eclipse expedition of 1919 that showed Einstein’s prediction of the 

bending of starlight near the limb of the Sun to be correct (to within, at that time, a rather large 

margin of error).  The theory has since then survived every observational test to which it could 

be subjected.  While few experts doubt that general relativity must eventually be replaced with a 

quantum theory of spacetime, it remains the limit toward which such theories must converge 

within its very large realm of applicability, just as general relativity itself had to converge to the 

Newtonian picture where the latter is applicable.   

Einstein devoted the larger part of his later research efforts to formulating a unified field 

theory that would, in principle, provide a geometric picture of all forces in nature (Sauer, 2014).  

In very simple terms, the idea of the unified field theory was to see whether every sort of force 

could be inertial.  This implies further leaps in the complexity of spacetime geometry.  It is clear 

by now that it is impossible to fully account for the structure and behaviour of elementary 

particles without taking quantum mechanics into account.  Einstein’s later attempted unified field 

theories were all classical—local, continuous, and deterministic—and are now generally 

                                                 
7 For an exceptionally clear and user-friendly explanation of how these thought experiments imply the 

curvature of space-time, see (Norton, 2015a).   
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considered to be magnificent failures (Pais, 1982, Ch. 17).  Perhaps the fact that they were not 

guided by any clear, intuitive thought experiments had something to do with this.   

 

3.3 Holes in Spacetime 

We need to also take a quick look at Einstein’s “hole” argument, which played a key role in 

Einstein’s tortuous route to the final form of his field equations for gravitation.  There is a large 

literature on this subject, much of it dealing with issues beyond the scope of this paper.  (See 

(Janssen, 2014; Norton, 2015b; Stachel, 2014).)  What we need to do here is, again, see the 

simple, intuitive picture that guided Einstein—or in this case, almost misguided him.    

 By 1912 Einstein had nearly succeeded in formulating the gravitational field equations 

that he would publish three years later.  However, he was stymied by two difficulties, one 

technical, the other conceptual.  The technical problem was that the field equations he and 

Grossman had constructed did not seem to reduce to the Newtonian picture when they should 

have.  This glitch disappeared by the time Einstein arrived at the correct equations, but it led him 

to question whether it would be possible to find field equations that were generally covariant.  

He formulated his “hole” argument in order to show that the field equations could not be 

expected to be generally covariant, but the argument instead helped him to clarify the meaning of 

the concept of covariance. 

 General covariance was intended by Einstein to be an extension of the special-relativistic 

Principle of Relativity to all possible states of relative motion.  Philosophically, general 

covariance is an expression of Einstein’s realism, which implies among other things that physical 

realities are not affected merely by how we choose to describe them.  In practice, Einstein 

thought, this would mean that a mere coordinate transformation should make no difference to the 

observable predictions that we should be able to extract from the theory; therefore, the form of 

the equations of the theory should be preserved by any smooth (continuous and differentiable) 

mathematical transformation.  Transforming from one coordinate system to another—for 

instance, transforming from Cartesian to polar coordinates—should make no difference to what 

it is that the coordinates are being used to describe.  The methods of differential geometry 

pioneered by Gauss and Riemann were thus ideal for Einstein’s purposes, since they enable one 

to make a distinction between intrinsic properties of a geometric structure (such as curvature) 

and extrinsic properties which are purely an artifact of the choice of reference frame or 

coordinate system.   

 But would it be possible to write a generally covariant theory of gravitation that satisfied 

the Equivalence Principle, which implies that the mass-energy structure of spacetime determines 

the inertial paths of matter?  Einstein asked what would happen if there were a hole in spacetime, 

a bounded vacuole containing nothing that could serve as a source of the gravitational field; i.e., 

no matter, energy, fields, or particles whatsoever.  If determinism holds, the field inside the hole 

should be fixed in a unique way by the matter outside it.  Presumably we can extend our 

coordinate grid to cover the hole.  Now, apply a smooth transformation to the grid-points inside 

the hole (but not those outside it).  This should transform the gravitational field inside the hole, 
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since the field is a function of the metric structure.  By general covariance, both the original and 

the transformed coordinates should be equally acceptable descriptions of the situation inside the 

hole.  And yet, one seems to have two distinct field structures that are somehow a consequence 

of the same mass-energy distribution.  Given the stark choice between abandoning determinism 

or general covariance, Einstein chose the latter.   

 Einstein seems to have been briefly satisfied with his hobbled field equations of 1913, but 

it became increasingly apparent that they were not observationally adequate.  Spurred by 

competition from David Hilbert, Einstein returned to general covariance and in late 1915 arrived 

at the set of field equations that so far remain by far the best theory of spacetime structure we 

have.  In 1916 Einstein set aside worries about holes in spacetime by arguing that the only things 

that can actually be observed are coincidences in space and time between “material points”: 

All our space-time verifications invariably amount to a determination of space-time 

coincidences (2015, pp. 187–188). 

These are the only things that we actually observe and so our theory should be built out of them; 

how we paint coordinates onto those observable point-coincidence events should make no 

difference to the physics we describe.  Carlo Rovelli puts it in more modern terms: 

Reality is not made up of particles and fields on a spacetime:  it is made up of particles 

and fields … that can only be localized with respect to one another.  No more fields on 

spacetime:  just fields on fields (2004, p. 71). 

In short, the best answer to Einstein’s “hole” argument is that the notion of an entirely matter-

free hole in spacetime has no physical meaning.  If a cosmological constant is admitted (as it 

must be) then even empty space itself has a gossamer “dark energy”, but one need not invoke the 

cosmological constant to see the point.  By about 1920 Einstein himself acknowledged (Einstein, 

1922) that the old ether of the 19th century is reborn in general relativity as a dynamic substance 

ultimately indistinguishable from the matter that lives within it.  As the distinguished relativist 

Bryce DeWitt explained,  

General relativity not only restores dynamical properties to empty space but also ascribes 

to it energy, momentum and angular momentum.  In principle, gravitational radiation 

could be used as a propellant.  Since gravitational waves are merely ripples on the 

curvature of spacetime, an anti-etherist would have to describe a spaceship using this 

propellant as getting something for nothing—achieving acceleration simply by ejecting 

one hard vacuum into another.  This example is not as absurd as it sounds.  It is not 

difficult to estimate that a star undergoing asymmetric (octopole) collapse may achieve a 

net velocity change of the order of 100 to 200 km s-1 by this means (DeWitt, 1979, p. 

681).8   

Will the warp-drive spacecraft of the future climb to the stars on jets of pure ether?   

                                                 
8 Note that DeWitt’s account of space as capable of possessing momentum is in interesting tension with 

what Einstein said in 1920:  “[A]ccording to the general theory of relativity space is endowed with 

physical qualities; in this sense, therefore, there exists an ether. … But this ether may not be thought of as 

endowed with the quality characteristic of ponderable media, as consisting of parts which may be tracked 

through time.  The idea of motion may not be applied to it” (1922, pp. 23–24). 
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4. The Role of Thought Experiments in Einstein’s Discoveries 

Obviously, Einstein’s discoveries were not based purely on thought experiments.  By 1905 he 

was almost certainly aware of the negative result of the real experiment done by Michelson and 

Morley9 though he does not mention it by name in “On the Electrodynamics of Moving Bodies” 

(Einstein, 1905).  Rather, he begins his great paper by objecting to the redundancy and 

arbitrariness in the way that Maxwell’s electrodynamics was “usually understood”10 at the time.  

In particular, he disliked the fact that the induction of a current in a conductor by a magnetic 

field was described in different ways depending upon whether the conductor or the magnet were 

presumed to be at rest, even though the observable effects depend only upon the relative motion 

of the two.  (As several authors have pointed out, this simple consideration in itself constitutes an 

elegant thought experiment.)  Einstein was guided by his acute sense of logical economy as 

much as his physical intuition.  But of course, one should not under-rate Einstein’s “muscles of 

intuition”11 when he was in the “prime of his age for invention.”12  Einstein trained those 

muscles during his years in the patent office, where he was constantly required to analyse how 

alleged inventions were actually supposed to work.13  As Peter Galison documents (2003), many 

of these inventions were concerned with the measurement of time or the determination of 

synchrony.   

The role of many of Einstein’s thought experiments such as the light beam chase in the 

formation of his theories seems to have been essentially suggestive, not logical.  A comparison 

can be made with August Kekulé’s apocryphal vision of a snake swallowing its tail, which he 

claimed led him to grasp that benzene has a ring structure.14 Just as Kekulé envisioned a physical 

structure, thought experiments such as the light beam chase lead us to picture an argument 

structure; that is, they don’t always constitute an argument, but they suggest one.  Consider 

Einstein’s “happiest thought”; in itself, it was simply an observation that a person falling freely 

in a uniform gravitational field would not feel a force due to gravitation.  Much of the impact of 

this observation for Einstein, from his personal accounts of the event, seems to have been its 

affect; seeing the point of the experiment (that gravitation is remarkably like an inertial force) 

was like grasping the punch-line of a good joke.  (Einstein was known for his often-raffish sense 

of humour.)  There is a sense of pleasant surprise, of immediate certainty, like Martin Gardner’s 

aha! moment when you get the trick that solves a problem (1978).  A good thought experiment 

has the effect of an instantaneous paradigm shift:  staring at the duck for a long time, you finally 

                                                 
9 Pais (1982, Ch. 6) marshals evidence to this effect.   
10 Quotation from (Stachel, 2005, p. 123) 
11 Keynes’ famous phrase (Keynes, 1978) applies to the young Einstein as much as Newton. 
12 This is adapted from the phrase that Newton applied to himself during that fertile period when he 

created the differential calculus and laid down the elements of his mechanics (S. I. Newton, 1888). 
13 A. Fölsing:  “…for young Albert Einstein, examining patents was more than just a livelihood… His 

virtuosity with ‘mental experiments’ was not all that far removed from intellectual penetration of an 

invention…” (1997, p. 103). 
14 See (Martin, 1997, pp. 165–167).  Kekulé proclaimed (perhaps with tongue in cheek), “Let us learn to 

dream, gentlemen, then perhaps we shall find the truth.” 
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see the rabbit (Kuhn, 1970).  It is, in itself, not an argument but a perception that suggests an 

argument.  Almost everyone has fallen or jumped off of something at some time; only Einstein 

noticed the implications.  Pasteur famously said that chance favours the prepared mind; so, also, 

do thought experiments.   

 

5. Thought Experiments in Quantum Mechanics 

With the advent of quantum mechanics, physics moved away from the intuitive and the 

visualizable.  Nevertheless, some notable thought experiments played key roles in the growth of 

quantum theory.  There is not space to analyse all of them here in detail.  I’ll make just a few 

comments about the virtual oscillators that Planck used to justify his blackbody radiation law, 

another elegant model by Einstein which he used in 1909 to demonstrate the wave-particle 

duality of light, and Heisenberg’s microscope and the role it did or did not play in his derivation 

of the Uncertainty Relations in 1927.  I’ll have a lot more to say about the Einstein-Podolsky-

Rosen (EPR) thought experiment and the lead-up to it.   

 

5.1 Planck’s Resonators 

In late 1900 Max Planck finally accepted that he had to adopt Ludwig Boltzmann’s discrete 

counting methods in order to find a derivation for the radiation formula that he had stumbled 

upon by a combination of interpolation and inspired guesswork a few weeks earlier.  But he 

needed the most general possible model he could devise for the interaction of matter and the 

radiation field.  In 1900, of course, virtually nothing was known of the detailed structure of 

matter; furthermore, the whole point of the calculation was to arrive at a formula that would be 

valid for any kind of material whatsoever (for the only defining characteristic of a perfect black 

body is that it absorbs all the radiation that hits it).  So Planck imagined that radiation exchanges 

energy with “virtual” harmonic oscillators or resonators in the walls of the radiation cavity.  

Planck’s virtual oscillators were “spherical chickens,” shorn of all detail except the physically 

plausible assumption that they could somehow come into resonance with incident radiation.  But 

the model was not enough; in order to get the right formula, Planck had to commit what he called 

an “act of desperation” (Stone, 2013, p. 59) and assume that radiation exchanged energy with the 

resonators in discrete chunks of magnitude E=hν, where ν is the frequency of the incident light 

and h is a new constant of nature.15  Thus was quantum mechanics born, though it would take 

over twenty years more (and much hard work by the “valiant Swabian” and others) before it was 

widely accepted that the radiation field itself is quantized. 

Should Planck’s story about his virtual resonators count as a thought experiment, or just 

as an apt model on which a calculation could be hung?  Models can be of specialized systems of 

narrow interest, while a game-changing thought experiment focusses attention on a key feature 

                                                 
15 John Norton (private communication):  “The amazing result in thermodynamics is that if systems A and 

B are in equilibrium, all that matters for A about B is B’s temperature. … Whatever properties the matter 

may have, the equilibrium state of the radiation will be the same.”  So Planck needed only the sketchiest 

picture of matter, combined with the assumption of quantization, to get his result.   
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of wide generality and suggests what calculations must be done in a large class of cases.  Planck 

used his model to ask, what are the most general features of the way in which radiation must 

interact with any conceivable kind of matter?  It was simply mathematics that forced Planck to 

introduce energy quantization, because that was the only way he could get the right answer.  

Quantization for Planck was simply a formal step, for which he could not see any independent 

physical justification.  The defining features of Planck’s model were not by themselves sufficient 

to point to the solution of the problem he set it, but the simplicity and generality of the model 

clarified the question to the extent that it left Planck only one mathematical option.  For this 

reason I’m happy to count Planck’s resonator model as one of the most consequential thought 

experiments of the new physics.   

 

5.2 Of Fluctuations and Mirrors 

Now we turn to another ingenious scenario by Einstein which certainly does count as a thought 

experiment of the first order (although it requires a good knowledge of statistical mechanics to 

fully appreciate it).  In 1909 Einstein imagined a mirror inside a Planckian cavity, able to travel 

back and forth freely on a rail perpendicular to its face (Einstein, 1909; Pais, 1982, pp. 408–409; 

Stone, 2013, pp. 136–140).  In the cavity is a quantity of ideal gas and radiation, all in 

equilibrium at a definite temperature.  What we do next is Einsteinian simplicity at its best:  ask 

what is required for the mirror to be in equilibrium with the gas and radiation—for it must be.  

But this thought experiment is no mere dazzling aperçu.  Einstein applied his mastery of the 

statistics of fluctuations, which he had exhibited in his work in 1905 on Brownian motion, and 

derived a key formula for the radiation fluctuations that the mirror must experience in order to 

remain in equilibrium.  The mirror is subject to pressure fluctuations both from the gas and from 

the radiation, and the gas and radiation fluctuations must be in equilibrium with each other.  The 

new thing Einstein did was to use Planck’s blackbody energy distribution formula to compute the 

fluctuations due to radiation.  Planck gives the energy distribution at the given temperature in 

terms of frequency, which shows the energy flux to which the mirror is subject.  Then the 

crowning touch:  Einstein imagined the mirror to be transparent to all frequencies except a 

narrow band; using Planck’s Law for the energy density in that band, he arrived at an expression 

for the root-mean square fluctuations in the position of the mirror due to what he called 

“radiative friction.”  The key result was that this expression contains two terms.  One represents 

wave-like fluctuations caused by constructive and destructive interference, due to small 

variations in phase, polarization, and frequency.  (In modern terms, the light in the cavity would 

be said to be incoherent.)  The other has the form of fluctuations due to impacts from discrete 

bundles of energy of magnitude hν.  At low radiation densities, the particle-like fluctuations 

strongly dominate.  Einstein took this result, which is a direct consequence of Planck’s well-

verified distribution law, as good evidence for his view that “the next state of theoretical physics 

will bring us a theory of light that can be understood as a kind of fusion of the wave and 

emission [particle] theories of light” (in (Stone, 2013, p. 137)).   
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5.3 Heisenberg’s Microscope 

This is not the place to recount the whole story of how modern quantum mechanics burst on the 

scene from 1925 to 1927.  (For a short version see (Peacock, 2008); for exhaustive detail, see 

(Mehra & Rechenberg, 1982).)   By 1927, it was clear that the new quantum theory challenged 

classical intuitions in a number of related ways.  Schrödinger had created wave mechanics in 

1926, hoping that it would give a realistic, classical underpinning to quantum statistics.  And yet, 

it soon became apparent that QM only gives us probabilities, which are calculated indirectly 

from the (complex-valued) wave function by means of the Born Rule, 𝑃(𝑥) = |Υ(𝑥)2|.  What, 

then, did Υ(𝑥), which Einstein sarcastically dubbed the Gerspensterfelder (ghost field), actually 

represent?  The one thing that Schrödinger’s theory did not do was get rid of what he called the 

“damned quantum jumps” (Stone, 2013, p. 268); rather, it simply gave a remarkably efficient set 

of algorithms for using the “ghost field” to calculate the probabilities that those jumps would 

occur.  Why these algorithms work so well remained (and remains) a mystery.   

Another profound mystery was the appearance of non-factorability (or non-

factorizability, as it is sometimes more awkwardly called).  As soon as two or more particles 

undergo some sort of dynamical interaction, the wave function for the combined multiparticle 

system has cross-terms which imply much stronger statistical interdependencies between the 

particles than seemed to be possible.  These cross-terms are in general algebraically irreducible 

(except for the special and limited case of so-called product states); once the particles have 

interacted their observable properties remain closely correlated (or anti-correlated) even when 

the particles have separated to arbitrary distances.  Schrödinger (1935b) coined the term 

“entanglement” (from the German, Verschränkung) to describe this mysterious interdependency 

of non-factorable systems, and famously stated,  

When two systems, of which we know the states by their respective representatives [wave 

functions], enter into a temporary physical interaction … and when after a time the 

systems separate again, then they can no longer be described … by endowing each of 

them with a representative of its own. I would call that not one but rather the 

characteristic trait of quantum mechanics.  (1935, p. 555) 

A remarkable property of entangled states is that, as Schrödinger suggested, the individual 

particles in an entangled state cannot be represented as pure states, only as mixtures (classical 

ensembles of quantum states).  They are not “things in themselves”!  Einstein hated this feature 

of quantum mechanics, and he was convinced that it marked a fundamental flaw in the theory. 

 In 1927 Einstein attempted to construct his own version of wave mechanics (Howard, 

2007).   His aim was to produce a wave mechanics without the pesky cross-terms, and he failed 

because it cannot be done.  The short paper he produced was presented at a meeting but remained 

unpublished (Einstein, 1927).  It was his last attempt to make a constructive contribution to 

quantum mechanics—and definitely not up to his usual standard.16   

 In the same year Werner Heisenberg introduced his indeterminacy relations.  Heisenberg 

was a complex and contradictory character.  His ethically dubious participation in the Nazi 

                                                 
16 See Peter Holland (2005) for a detailed analysis of Einstein’s abortive 1927 wave mechanics.   
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atomic project during WWII (Rose, 1998) sadly tarnishes the brilliance of his contributions to 

theoretical physics in his dazzling youth, when he laid down the essential principles of modern 

quantum mechanics at the age of 23.   

The central epistemological problem that quantum mechanics will not permit us to ignore 

is that it is impossible to observe and measure the properties of a particle without physically 

interacting with it.  Einstein based special relativity on operational definitions of quantities such 

as position and time, constructed so that it would be possible to clearly distinguish between these 

apparent properties of objects that are partially due to the way they are observed and those that 

are intrinsic to the objects.  Quantum mechanics forces us to ask whether the notion of intrinsic 

properties has any physical meaning at all.   

To investigate this problem, Heisenberg imagined a microscope designed to detect the 

position and velocity of an electron by scattering gamma rays off it (Heisenberg, 1927, 1930).  

By the wave-particle duality both electrons and gamma rays have both a wave and a particle 

aspect.  It is necessary to use high-energy gamma rays since there is an inverse relationship 

between wavelength and energy:  the lower the wavelength the higher the resolving power of a 

microscope, so that only high energy electromagnetic radiation has a short enough wavelength to 

detect an electron within any reasonable range of error.  The key idea of the thought experiment 

was to apply basic laws of optics to show that the more accurately one could resolve the 

momentum of the electron, the less accurately one could resolve its position, and vice versa.  

Heisenberg arrived at the now-familiar inequality, 

∆𝑥∆𝑝𝑥 ≥ ℎ, 

where the deltas are the uncertainties in position x and momentum px, and h is Planck’s constant 

of action.  We can’t measure one of the deltas with full precision without rendering the other 

completely indefinite.   

Are the indeterminacy relations merely epistemic, a reflection of our practical inability to 

know the precise values of quantities that are, in fact, pre-existent?  The microscope experiment 

itself suggests that these endemic uncertainties are merely the product of the fact that we cannot 

avoid using very short wavelength radiation to “see” an electron; because of the inverse relation 

between wavelength and energy, the more accurately we want to detect the position of the target 

particle, the more we must change its momentum.   This epistemic reading of the thought 

experiment seems to leave open the possibility that the electron may still have well-defined 

values of both position and momentum even if we can never hope to simultaneously measure 

them.  The problem, one might think, is only that there is no procedure in which we could reduce 

our “jiggling” of the observed system to zero.   

 Heisenberg realized that there are both mathematical and philosophical grounds for 

rejecting this naïve interpretation of the indeterminacy relations.  Mathematically, observable 

quantities come in conjugate pairs defined by commutation relations which show precisely the 

extent to which the commutative law fails for the linear operators representing those observables.  

Shortly after Heisenberg’s publication of the indeterminacy rules, Schrödinger and others 

showed that they are simply a mathematical consequence of the commutation relations between 
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position and momentum (Cohen-Tannoudji, Diu, & Laloë, 1977, pp. 286–287).  According to the 

mathematical formalism that emerged in the years 1926–30, this inability to simultaneously tie 

down both values of a conjugate pair is not merely due to unavoidable experimental clumsiness 

due to the finitude of the quantum of action.  Rather, in the mathematics of wave mechanics, 

asking for simultaneous, exact values of position and momentum is a mathematical contradiction 

in terms, like asking for a square circle (because position and momentum are Fourier transforms 

of each other).  Philosophically, Niels Bohr argued that this was a manifestation of what he 

called complementarity:  the types of experiments in which one can measure position are simply 

incompatible with the types of experiments in which one can measure momentum.  We need 

both wave and particle viewpoints to fully describe physics, and yet at the quantum level these 

two modalities cannot be applied simultaneously—where “simultaneously” does not necessarily 

mean “at the same time coordinate” but “in the same procedure”.  Thus, the microscope thought 

experiment is not a way of rigorously deriving the indeterminacy rules from the formal principles 

of quantum theory, but rather a highly suggestive semi-classical approximation.17   

 

5.4 Einstein Challenges Quantum Mechanics 

Einstein remained stubbornly convinced that the properties of physical systems could not depend 

upon the types of measurements we choose to perform on them, especially if those properties 

could be inferred from measurements performed at a distance.  He referred to Bohrian 

complementarity as the “tranquillizing philosophy—or religion?” which, he said, “is so 

delicately contrived that, for the time being, it provides a gentle pillow for the true believer from 

which he cannot very easily be aroused” (Fine, 1986, p. 19).  

In 1927–30, Einstein brought the full force of his ingenuity to bear on quantum 

mechanics and the indeterminacy relations in particular, trying to devise thought experiments in 

which they could be shown to fail.  For once his inventiveness failed him; Bohr and others were 

always able to find loophole in Einstein’s arguments that saved Heisenberg.  (See Bohr et al., 

“The Bohr-Einstein Dialogue,” in (Wheeler & Zurek, 1983, pp. 1–50).)   

By 1935 Einstein had given up on trying to beat the indeterminacy relations and tried a 

much subtler approach.  In that year he and two younger collaborators, Boris Podolsky and 

Nathan Rosen, published a short, difficult paper (Einstein et al., 1935) in which they outlined an 

enigmatic thought experiment aimed at showing that quantum mechanics cannot provide a 

complete description of the entities for which it purports to account.  The Einstein-Podolsky-

Rosen (EPR) gedankenexperiment has evolved from a hypothetical scenario to become a 

defining paradigm of modern quantum mechanics.18     

                                                 
17 Heisenberg’s rules are also often called the uncertainty relations.  However, as Richard Arthur (private 

communication) has pointed out to me, the latter term is potentially misleading since it suggests that the 

Heisenberg rules merely represent epistemic uncertainty about quantities that do, in fact, have definite 

values.   
18 There is not space in this paper to consider yet another thought experiment of Einstein’s, the box 

experiment, which makes essentially the same point as the EPR experiment.  See (Norsen, 2005). 
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We have already mentioned two features of quantum mechanics that were the most 

troubling to Einstein, noncommutativity and the indeterminacy relations that follow from them.  

Non-commutativity plays an important role in the EPR experiment.  However, as Don Howard 

says (2007), “[E]ntanglement, not indeterminacy, was the chief source of Einstein’s misgivings 

about quantum mechanics…  Indeterminacy was but a symptom; entanglement was the 

underlying disease.”   

The aim of the EPR paper was not to show that QM is incorrect, but rather that it is 

incomplete in the sense that it does not give a description of every “element of physical reality” 

(“EPR” again) belonging to an entangled state.  By this time, Einstein had decided that the 

indeterminacy relations of Heisenberg point to nothing more than the incompleteness of quantum 

mechanics itself (incompleteness in the sense that the theory fails to represent properties that 

particles presumably do have).  Part of the aim of the EPR paper was to make this notion of 

completeness precise.  A necessary condition for completeness, according to EPR, is that “every 

element of the physical reality must have a counterpart in the physical theory” (777).  And their 

sufficient condition for reality was this:  “If, without in any way disturbing a system, we can 

predict with certainty (i.e., with probability equal to unity) the value of a quantity, then there 

exists an element of physical reality corresponding to this physical quantity” (777).  The 

argumentative strategy for the paper would be to use the sufficiency condition for reality to show 

that quantum mechanics fails the necessary condition for completeness.   

Here is the gist of the argument.  Consider a composite system U + V comprised of two 

particles which interacted dynamically at one point and then separated far from each other in 

space.  Because they interacted they will possess quantities (such as total momentum or 

difference in position) that must be conserved globally.  EPR take pains to show that these 

quantities commute on the system as a whole.  This fact is crucial to the argument, since the 

mutually consistent global conservation requirements give us a basis for comparing the results of 

apparently incompatible measurement procedures on the individual particles.   

Now, measure (say) position on U at time t. This collapses the entangled state into a 

product state with V in an eigenstate of position, allowing us to predict its position with certainty.  

(As Schrödinger put it, this “steers” the V-system into a definite state.)  But we could have also 

measured momentum on U at time t, and this would collapse the entangled state into a product 

with V in an eigenstate of momentum at time t, allowing us to predict its momentum with 

certainty.  We can’t measure both position and momentum on U in the same procedure, but we 

are entirely at liberty at time t to choose which of the two types of procedures to apply.  Thus, 

measurements we can perform on U enable us to predict presumably non-commuting properties 

of V with certainty.  Therefore, there seems to be only two possibilities: either V was already in 

definite states of both position and momentum (despite Heisenberg), or our choice of 

measurement strategy on U at time t spookily influenced the state of V—at time t!  But EPR say 

(780), “no reasonable definition of reality could be expected to permit this,” precisely because U 

and V are spatially distant at time t.  Therefore, quantum mechanics must be incomplete since by 

its own admission it cannot represent properties that system V must have already had at time t.   
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The EPR argument thus establishes (validly) a disjunction:  either QM is incomplete (in 

the sense they specify) or there is spooky action (or perhaps both!).   

EPR illustrated their argument by applying it in detail to an entangled wave function 

which has some very interesting properties which I won't attempt to analyze here except to note 

that there seems to be no practical way to prepare particles in this particular state; thus the EPR 

experiment, as they described it in 1935, is a pure Gedankenexperiment.  Later, practicable 

versions of the experiment would be defined.   

Niels Bohr rushed to publish a response (1935).  He agreed with EPR that “of course 

there is in a case like that just considered there is no question of a mechanical disturbance of the 

system under investigation during the last critical stage of the measuring procedure” (699).  

However, one cannot hope for a single complete description of the system.  Rather, there are 

complementary descriptions of the system; in one, we can infer the momentum of V from 

momentum measurements on U, and in the other we can infer the position of V from position 

measurements on U.  But from these facts we cannot infer a pre-existent reality in which V 

possessed sharp values of both position and momentum, for one cannot infer sharp values of both 

position and momentum for particle V with a single procedure.  To ask for anything else would 

be to ask a foolish question, as Feshbach and Weisskopf put it (1988):  “If you ask an 

inappropriate question, you get a probability distribution as a response.”  Thus, Bohr’s cryptic 

and complicated response to some extent does clarify what the quantum mechanics of 1935 

actually says about the EPR scenario, but it is very difficult to avoid the suspicion that a deeper 

level of analysis is possible—even if it would not be precisely what either EPR or Bohr 

themselves likely had in mind.19  Indeed, J. S. Bell would later show that this is the case.   

It is often said that EPR argued for a “hidden variable” or “hidden parameter” account of 

QM (although they did not use those terms themselves).  Einstein in later years stated that he 

thought that there should be an ensemble interpretation of quantum mechanics (1969, p. 668), 

which he apparently understood as a probability distribution over possible local states of the 

particles.  The idea would be that the particles have some sort of complex internal coding 

(perhaps still far beyond the ken of our present physical theories) which is capable of telling 

them how to behave in order to obey the observed predictions of quantum mechanics, for all of 

the possible experimental questions they could be asked.   

This notion of hidden variables can be compared to heredity.  Why do siblings resemble 

each other?  Not because of anything “spooky,” but because of a common local cause, namely 

the shared DNA they got from their parents.  Although the role of DNA in heredity was not 

understood in 1935, EPR in effect implied (although they did not explicitly state) that there has 

to be some sort of “quantum DNA” encoded in the entangled particles when they interacted at 

their common source, sufficient to explain how the particles react when they are measured.  In 

1935 there was no obvious way to test this proposal.  And so there matters stayed until after 

WWII.  

                                                 
19 See (Howard, 2007) for an insightful analysis of what was at stake between Bohr and EPR.   
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The EPR thought experiment is widely misunderstood.  Its import was not to demonstrate 

the existence of entanglement, but rather to use entanglement as evidence that quantum 

mechanics could not be telling the whole story about the structure of particles.  The non-

factorability of wave functions for multi-particle systems had been well-known as early as 1927 

(Howard, 2007), although Schrödinger did not introduce the term “entanglement” until 1935.  

Einstein himself had grasped that light quanta were suspiciously too-well correlated from the 

time of his pre-1910 pioneering papers on the statistics of electromagnetic radiation.  The EPR 

paper did have the valuable effect of drawing attention to the phenomenon of entanglement in a 

way that its challenge to conventional notions of locality and causality could not be ignored.  Via 

the work of Bell (shortly to be described), the EPR thought experiment was one of the key sparks 

for the modern flowering of quantum information theory.  Thus, even though the paper did not 

accomplish what its authors hoped it would accomplish, it has proven to be one of the most 

provocative and unexpectedly fruitful of Einstein’s great papers.   

 

5.5 How the EPR Debate Might Have Gone 

It seems hard to imagine that anything useful could be added to the reams of analysis of the EPR 

paper that have already appeared, and yet one essential question has received very little attention.  

Is it actually the case that there is no dynamical interaction between the two particles “during the 

last critical stage of the measuring procedure”?  Both Bohr and Einstein themselves thought that 

this question did not even merit discussion, and numerous papers published since their time 

purporting to demonstrate “signal locality” in entangled states simply follow their lead and 

assume without argument that entangled systems are dynamically local.20  The bald assumption 

that spacelike separation guarantees dynamical independence (Einstein’s Trennungsprinzip, his 

Separation Principle) (Einstein, 1948) seems so utterly reasonable to most authors that very few 

have thought seriously to question it.  And yet, whether or not the separation principle is correct 

is one of the first questions that should have been examined, not the last.   

Had Einstein and other protagonists in the mid-1930s noticed a short remark by Pauli, 

published in 1933, the debate over the EPR scenario could have taken a different direction.21  In 

a review article on quantum mechanics Pauli includes a discussion of many-particle systems.  He 

notes that when there is no mutual interaction between the particles the system is represented by 

a wave function which is simply the product of individual wave functions belonging to the 

individual particles.  Pauli seems to suggest that in order for such a wave function to be a 

solution of the Schrödinger Equation for the system, the algebraic structure of the Hamiltonian 

(energy operator) must be parallel to the algebraic structure of the state function.  For a product 

state, the total Hamiltonian must be additive (i.e., simply the sum of the Hamiltonians for the 

individual particles):   

                                                 
20 E.g., (Ghirardi, Rimini, & Weber, 1980; Shimony, 1983).  For critiques of the orthodox approach to 

signal locality, see (Kennedy, 1995; Mittelstaedt, 1998; Peacock, 1992). 
21 My attention was drawn to this important passage in Pauli’s book by an unpublished presentation by 

Don Howard (2006).  
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An additive decomposition of the Hamiltonian into independent summands corresponds 

[entsprich] therefore, to a product decomposition of the wave function into independent 

factors.22 

Pauli does not directly comment on the Hamiltonian structure for non-product (non-factorable) 

states, but this pregnant remark raises questions that should have been obvious even in 1935.  

Does Pauli’s entsprich mean that a state is a product state if and only if its Hamiltonian is 

additive?  If so, then many-particle systems represented by non-factorable wave functions (such 

as the special entangled wave-function used as an example by EPR) would have to have non-

additive Hamiltonians with algebraically irreducible cross-terms.  If that is the case, then for any 

entangled state there must in general be eigenvalues (energy states) of the total system 

Hamiltonian that are not simply sums of local energy states for the individual particles; let’s call 

this the energy of entanglement.  Such nonlocal energy eigenstates would be properties of the 

entangled system as a whole, rather like the way in which the energy of an atomic orbital is a 

property of the orbital as a whole and cannot be spoken of as localized to the electrons associated 

with the orbital.  It is unclear whether the existence of such non-localized energies can be 

sensibly described as implying any sort of “action” at a distance, but their existence would be a 

clear challenge to Einstein’s dynamically-local realism because they it would mean that the 

particles in an entangled state are dynamically entailed no matter how far apart they are.    

Nothing I’ve said here is meant to suggest that Pauli himself would have been an 

advocate of such a flagrant challenge to relativistic orthodoxy.  One can surmise from his own 

dismissive remarks about the EPR paper23 that he did not think that the EPR argument merited 

close analysis.  Whatever Pauli may have thought, however, there is increasing evidence, both 

theoretical and experimental, for dynamical nonlocality in entangled states.  This is not the place 

to review that evidence in detail; suffice to say that the question of dynamic nonseparability in 

entangled states—and thus the ultimate interpretation of the EPR thought experiment—remains 

open.24   

Could it be, then, that both horns of the dilemma offered by EPR must be grasped?  Is 

quantum mechanics both endemically incomplete and dynamically nonlocal?  It is the case that, 

precisely as Pauli indicated in 1933, the one implies the other—something that perhaps should 

have been obvious a very long time ago?  To answer questions like these a systematic study of 

the dynamics of the EPR and other entangled states needs to be carried out, a task that remains to 

be done.  It is notable that entangled (non-additive) Hamiltonians are commonplace in the 

                                                 
22 (Pauli, 1933); quotation from English translation, (Pauli, 1980).   
23 “Einstein has once again expressed himself publicly on quantum mechanics … every time that happens 

it is a catastrophe” (Aczel, 2002, p. 117). 
24 Here in brief are two of the many pieces of evidence for nonlocal dynamics to be considered.  

Theoretical:  although many presentations of “Bohmian mechanics” carefully guard themselves from 

putting it this way, Bohm’s quantum potential, which is implicit in the mathematics of wave mechanics, is 

a manifestly nonlocal contribution to the total energy of multiparticle systems (Bohm, 1952a).  

Observational:  the recent and very important experiment of Lee et al. (2011) prima facie seems to show 

that two physically distant chips of diamond can be put into the same phonon energy state.   
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literature on quantum information; see, e.g., (Dür, Vidal, Linden, & Popescu, 2001).  No one 

seems yet to have studied the structure of the Hamiltonian for the special wave function used by 

Einstein, Podolsky, and Rosen in 1935, although this would be of great foundational interest.      

I’ll conclude the discussion of the EPR thought experiment by making a brief observation 

that some may find outrageous.  Modern cosmology is built upon the Big Bang model, according 

to which the universe that we observe expanded rapidly (and indeed is still expanding at an 

increasing pace) from a highly compressed state some 14 billion years ago.  (I need not review 

the very strong evidence for this picture here; see (Kirshner, 2002).)  But these are precisely the 

conditions that lead to quantum entanglement:  particles at close quarters interact dynamically 

and remain statistically entailed thereafter even when they separate in space and time.  It would 

seem that the entire universe is, in effect, a vast EPR apparatus.  And if so, what are its 

dynamics?  Is dark energy the entanglement energy of the universe?   

 

5.6 Schrödinger’s ‘Hellish Device’ 

Shortly after the EPR paper appeared, Schrödinger published his famous “cat” paradox which 

was intended to expose the contradictions inherent in quantum mechanics (Schrödinger, 1935a, 

1983).  The key idea of the thought experiment was in part due, again, to Einstein, and was 

hammered out in an extensive correspondence between the two physicists in 1935.  (For detailed 

analysis see Fine, (1986).)  Einstein’s first version of the experiment was entirely at the 

macroscopic level: 

The system is a substance in chemically unstable equilibrium, perhaps a charge of 

gunpowder that … can spontaneously combust, and where the average lifespan of the 

whole setup is a year.  … In the beginning, the ψ-function characterizes a reasonably 

well-defined macroscopic state.  But, according to your equation, after the course of a 

year … the ψ-function then describes a sort of blend of not-yet and of already-exploded 

systems … in reality there is just no intermediary between exploded and non-exploded.  

(Fine, 1986, p. 78) 

Schrödinger soon hit upon the idea of coupling a macroscopic system (an unfortunate cat) to a 

quantum-level system.  A bit of radioactive material has a half-life of an hour; if it decays the 

resulting alpha-particle triggers the release of a deadly poison that instantly kills the cat.  If this 

cruel apparatus is described in the language of quantum mechanics, the wave function for the 

radioactive atoms is entangled with the wave function for the cat, and the cat is presumably in a 

superposition of states, either alive or dead—until we open the box to see what has happened to 

it.  Schrödinger’s version of the experiment is in one respect cleverer than Einstein’s, since it 

shows that macrostates can be infected with quantum uncertainty if they are coupled to 

microstates in just the right way.  Since the idea of the cat being in a superposition of states is 

presumably absurd, and since the dividing line between the quantum and the macroscopic 

(classical) level is arbitrary, the idea of quantum systems being in superpositions must also be 

absurd.  Einstein’s simpler version of the experiment has the conceptual advantage that it 
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exposes the contradictions that seem to follow from assuming that quantum mechanics (which 

after all is advertised as a universal theory) is applied to ordinary macrosystems.   

A catalogue of responses to the cat paradox is equivalent to a catalogue of proposed 

solutions to the measurement problem, which is to show how it is that measurements on 

superposed quantum systems can apparently produce definite, classical results.  I can’t do justice 

to this literature here and I will only make a few general observations.   

Einstein and Schrödinger’s point can be seen to follow from the EPR sufficient condition 

for reality.  Since presumably opening the box presumably does not disturb the system (here we 

run into a problem similar to Maxwell’s demon), and since we know that when we open the box 

the cat will definitely be in an alive exclusive-or dead state, it must have been in precisely that 

state before the box is opened.  (That is, if we can think of “alive” as a state, then we can think of 

“alive XOR dead” as a state.)  Thus, one way of challenging Schrödinger’s thought experiment is 

to challenge EPR’s reality condition by pointing out that while in quantum mechanics the 

probability may be unity that a system will be found to be in a certain eigenstate when subject to 

a certain measurement procedure, that fact does not entitle us to say that the system was in that 

state before it was measured.   

Another obvious problem with the cat experiment is that a real feline, alive or dead, is a 

complex macrosystem comprised of an enormous number of particles in an incoherent state.  In 

quantum mechanical language it can only be described usefully as a mixture which will behave 

classically (to an extremely good approximation) even if it is coupled to a quantum-coherent 

system.  To this extent the cat was a poor example, even though it drew attention to the problem 

in an almost poignant way.  However, it is now possible to create “Schrödinger cat states”—

macroscopic coherent states (for there is in principle no limit to the size of a quantum coherent 

state) that can be in a superposition (Yam, 2012). 

There are at least two lessons to take from the Einstein-Schrödinger cat.  First, it is still 

not fully understood how quantum processes lead to definite or apparently definite results at the 

macroscale (this is the measurement problem).  Second, the thought experiment emphasizes the 

key fact that the non-classical features of quantum mechanics cannot be safely sequestered to the 

micro-level.  (Here we have another case of an important thought experiment that does not so 

much provide a conclusive argument as it memorably draws attention to a problem.)  As an 

illustration of this point, another important thing that happened in physics in the 1930s was the 

discovery of superfluidity and superconductivity, macro-scale phenomena that are entirely 

manifestations of quantum statistics.  If cost were no barrier, it would be possible to create an 

Olympic swimming pool full of superfluid helium—and recent work in observational cosmology 

shows that the entire universe is a Planckian cavity (Smoot & Davidson, 1993).  If physics is 

quantum all the way down, it is also quantum all the way up.   

 

6. After Einstein 

6.1 Neglected Potential 
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In 1951 the young American physicist David Bohm published an illuminating analysis of the 

EPR thought experiment in his text on quantum theory (1951).  Bohm reformulated EPR’s 

experiment in terms of spin observables.  His version of the experiment had the great virtue that 

it could in principle be performed, opening up the possibility of an experimental test of the 

“quantum DNA” hypothesis.  

Bohm then created a whole new version of (non-relativistic) QM, based on the quantum 

potential, a nonlocal potential field which is a function of the shape of the envelope of the wave 

packet (and thus, in effect, of the phase relationships within the wave function) (Bohm, 1952a, 

1952b; Cushing, 1994).  Bohm’s “interpretation” successfully reproduces the predictions of 

ordinary quantum mechanics and resolves some challenges (regarding scattering) to a similar 

theory that had been proposed by de Broglie in 1927 (see discussion in (Cushing, 1994)).  His 

quantum potential contributes to the energy of a composite quantum system as a whole; in 

general it is distance-independent and it can’t be localized to individual particles.  Most 

physicists were horrified; J. R. Oppenheimer (disgracefully) said, “If we cannot refute Bohm, we 

must choose to ignore him” (Peat, 1997, p. 133).25  All horror aside, Bohm had apparently done 

what John von Neumann had argued could not be done (1955), which was to construct a hidden 

variable theory that apparently could underpin quantum statistics—although in a way that is 

explicitly nonlocal.   

 

6.2 “The Most Profound Discovery of Science” 

John Stewart Bell, who evidently was unworried about whether his career would be irrevocably 

damaged if he were known to have read Bohm’s papers, noted that Bohm had done what von 

Neumann had claimed was impossible—namely, constructed a hidden variable underpinning for 

quantum statistics.  As noted, Bohm’s approach is explicitly nonlocal, and Bell set out to 

determine whether any completion of QM had to be nonlocal.   

Bell used Bohm’s version of the EPR experiment, and considered correlations between 

spin measurements taken on the entangled particles (Bell, 1964).  He took the novel step of 

considering measurements taken in different directions (which allowed comparison between 

different spin components), and he showed that if there were local hidden variables—“quantum 

DNA”—then the correlations must obey certain mathematical inequalities.  Bell then showed 

that according to quantum mechanics, the expectation values for these correlations violates the 

inequalities for a wide range of relative detector angles—they can be more strongly correlated 

(or anti-correlated) than quantum DNA would allow for.  By the 1980s (Aspect, Dalibard, & 

Roger, 1982), experiments showed that Bell's Theorem (the statement that QM violates “local 

realism”) is almost certainly correct, and recent results are closing the last conceivable loopholes 

(Miller, 2016).  There can be no such thing as quantum DNA!  Bell's discovery was called (by H. 

P. Stapp) the “most profound discovery of science” (1975), and well it might be.  It would have 

                                                 
25 Bohm was persona non grata not only because of his unorthodox physics but also due to his refusal to 

testify against his friends who were suspected of left-wing sympathies (Peat, 1997).  I have heard from a 

reliable witness that at Princeton in the 1960s it was a career-ender to mention Bohm’s name.   
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been fitting if Bohm and Bell had shared the Nobel Prize sometime in the 1980s—but the 

academic community did not quite have the courage to make such a radical move. 

The experimental devices that have been used to test Bell’s Theorem are real-world 

versions of the hypothetical EPR apparatus.  Particles are emitted from a source and sent to 

remote locations where they interact with measurement devices such as polarizers or Stern-

Gerlach devices (which detect spin).  A key feature of these modern EPR apparatuses is that they 

employ delayed-choice:  the decision about which parameter of the particles to measure (such as 

spin in various directions) is made (automatically, of course, by a randomizing process) after the 

particles are emitted.  The timing is thus such that it would be impossible for information about 

the detector choice on one side of the apparatus to be transmitted to the detector or particle on the 

other side at any speed less than or equal to the speed of light.  If Einstein’s separation principle 

is correct, then the distant particles should exhibit no stronger correlations than those that could 

be built into them at the source (by the fact, for instance, that their total spins must add up in 

certain definite ways).  But in fact, the Bell-EPR correlations violate the expectations of 

separability.  Does this mean that there really is “spooky action”?  The debate continues.26   

Bell’s Theorem is a special case of a more general result, the Kochen-Specker (KS) 

Theorem (Bub, 1997; Kochen & Specker, 1967; Redhead, 1987):  Quantum statistics cannot in 

general be under-pinned by a Boolean property distribution.  The notion of a Boolean structure 

can be defined precisely in terms of lattice theory (Bub, 1997) but it can be grasped intuitively by 

thinking of every possible measurement on a quantum system as asking the system a question 

(which can always be formulated so as to yield a yes or no answer).  (For instance, “is your spin-

x up?”)  Classical physics presumed that it would always be possible (in principle) to ask such 

questions in a non-invasive way and that the amount of information to be gathered by asking 

more and more questions would monotonically increase.  But for a quantum system, the list of 

possible experimental questions must include questions about non-commuting observables.  The 

Bell-Kochen-Specker results states that if we could answer every possible experimental question 

that could be asked of a quantum system, the set of answers would be logically inconsistent.  

Bell’s Theorem is essentially a special case of the more general Kochen-Specker result, applied 

to a spatially extended system.  As Demopoulos (2004) emphasizes, descriptions of quantum 

systems are incompleteable because the presumption of completeability entails a mathematical 

contradiction.   

This had been anticipated by Schrödinger in 1935: 

… if I wish to ascribe to the model [of a quantum mechanical oscillator] at each moment 

a definite (merely not known exactly to me) state, or (which is the same) to all 

determining parts definite (merely not known exactly to me) numerical values, then there 

is no supposition as to these numerical values to be imagined that would not conflict with 

                                                 
26 Current orthodoxy states that because of Bell’s Theorem, quantum mechanics violates “kinematic” 

locality but not “dynamic” locality; that is, orthodoxy holds that the dynamics of entangled particles is 

still local (additive) despite the endemic violation of Bell’s Inequalities in a wide variety of entangled 

systems.  In my view this position is hopelessly inconsistent, but this question is beyond the scope of the 

present paper.   
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some portion of quantum theoretical assertions ((Schrödinger, 1935a); trans. J. D. 

Trimmer, (1983)). 

Fitting quantum mechanical predictions to a Boolean substrate is like trying to smooth out a 

carpet molded to the surface of a sphere onto a flat floor.  There will be a lump!  We can move it 

around and even hide it under furniture, but we can’t make it go away.  Thus, it is not entirely 

accurate to call “no-go” results such as Bell’s Theorem “no hidden variable” theorems; more 

accurately, they are no Boolean variable theories.  Even more precisely, they are not enough 

Boolean variable theorems, since non-Boolean quantum systems can have Boolean subspaces 

defined by complete sets of commuting observables.   

 Bell’s Theorem is still not well-understood, even in the professional community.  Here is 

Nobel-winner Frank Wilczek on entanglement: 

Measuring the spin of the first qubit tells you about the result you'll get by measuring the 

second bit, even though they might be physically separated by a large distance.  On the 

face of it, this “spooky action at a distance” to use Einstein's phrase, seems capable of 

transmitting information (telling the second spin which way it must point) faster than the 

speed of light.  But that's an illusion, because to get two qubits into a definite [entangled] 

state we had to start with them close together.  Later we can take them far apart, but if the 

qubits can’t travel faster than the speed of light, neither can any message they can carry 

with them (Wilczek, 2008, pp. 117–118). 

Wilczek’s reasoning is unclear, but he seems to suggest that whatever leads to the correlations 

manifested in entangled states must have been built into the particles when they were emitted.  If 

so, the correlations of quantum mechanics would be no more mysterious than the fact that many 

copies of an issue of Physical Review Letters contain the same information because they were all 

printed on one press before they were mailed out to various subscribers.  It is distressing that a 

winner of a Nobel in Physics is seemingly unaware that there is a result called Bell’s Theorem 

whose import is precisely to rule out such “reasonable” explanations.27  The entire point of Bell’s 

Theorem is this:  the assumption that entangled particles are encoded at their source with 

instructions sufficient to satisfy the predictions of quantum mechanics is (in general) 

mathematically inconsistent with the correlations predicted by the theory (and observed in many 

kinds of experiments).  For an elementary but rigorous demonstration of this fact, see (Maudlin, 

2002, Ch. 1).   

 Bell’s momentous result itself is negative:  it rules out a certain class of explanations of 

quantum correlations, but does not by itself say what actually accounts for these correlations 

(beyond the quantum mechanical algorithms with which one calculates them).  The prima facie 

explanation, if there is one, is that there is indeed some sort of spooky action (faster than light 

                                                 
27 J. S. Bell:  “The discomfort that I feel is associated with the fact that the observed perfect quantum 

correlations seem to demand something like the ‘genetic’ hypothesis … For me, it is so reasonable to 

assume that the photons in those experiments carry with them programs, which have been correlated in 

advance, telling them how to behave.  This is so rational that I think that when Einstein saw that, and the 

others refused to see it, he was the rational man. … So for me, it is a pity that Einstein’s idea doesn’t 

work.  The reasonable thing just doesn’t work.”  (In Bernstein, 1991, p. 84.)   
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dynamics) going on, precisely as Einstein had feared.  An enormous amount of intellectual 

energy has been expended trying to find some way of explaining or interpreting quantum 

mechanics so as to avoid this conclusion, which Bell himself and so many others have found so 

distasteful.28  It is this author’s opinion that the dogged efforts to explain away the appearance of 

spooky action have become what Imre Lakatos called a “degenerating research programme” 

(Lakatos, 1976) but it is beyond the scope of this paper to defend this claim.  It is enough here to 

say that Bell’s momentous result remains poorly understood more than fifty years after its 

publication.   

 

6.3 Entangled Paths 

We’ll conclude our (incomplete) list of important thought experiments in modern physics with a 

brief look at interferometry, one of the most powerful tools of modern physics.  The essential 

idea of an interferometer is that particle or light waves are emitted from or collected from a 

common source, directed through different pathways, and brought together and allowed to 

interfere.  The interferometric Michelson-Morley experiment of 1887, no thought experiment, 

showed that it is impossible to detect the motion of the Earth with respect to the hypothetical 

luminiferous ether (Taylor & Wheeler, 1966, pp. 76–78).  Interferometry plays an increasing role 

in modern quantum information theory.  Nielsen and Chuang remark, 

We can now see what an actual quantum computer might look like in the laboratory (if 

only sufficiently good components were available to construct it), and a striking feature is 

that it is constructed nearly completely from optical interferometers (2000, p. 296). 

Given that it is still technically impossible to construct most types of quantum computers that 

have been envisioned, one must say that so far most of the very active field of quantum 

computing is still in the realm of the thought experiment.   

John A. Wheeler, like Mach, was not afraid to think on a cosmological scale.  Imagine a 

quasi-stellar object billions of light years from Earth with a massive galaxy roughly half-way 

between (Wheeler, 1983, pp. 190–195).  The galaxy will act as a gravitational lens (an effect 

predicted by Einstein), and can focus the light from the distant quasar onto detectors in an 

Earthly observatory.  Light emitted from the quasar can take either path on its route to the lab on 

Earth.  Gravitational lensing thus permits interferometry on a cosmological scale.  The light is 

passed through a filter and then through a lens which focusses the light on the input faces of two 

optical fibres.  The experimenters have a choice:  they can either interpose a half-silvered mirror 

at the point at which the two light beams converge, or leave the mirror out.  Omitting technical 

details, the key point is that with the mirror in place the experimenters will see interference 

between the light waves from the quasar, which is only possible if the waves had travelled 

through both paths; whereas with the mirror omitted, the experimenters will detect individual 

photons in one detector or the other and thus be able to tell which path the photons took.  It is 

                                                 
28 In an interview in 1988, Bell stated that according to his theorem, “maybe there must be something 

happening faster than light, although it pains me even to say that much” (Mann & Crease, 1988, p. 90). 
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precisely as if the choice of measurement procedure here on Earth determines (determined?) 

which path the photons took when they were emitted from the quasar billions of years earlier.   

Does this literally mean that the past has an indeterminate ontology? Wheeler himself 

suggests that it does: 

…we are dealing with an elementary act of creation.  It reaches into the present from 

billions of years in the past.  It is wrong to think of that past as “already existing” in all 

detail.  The “past” is theory.  The past has no existence except as it is recorded in the 

present.  By deciding what questions our quantum registering equipment shall put in the 

present we have an undeniable choice in what we have the right to say about the past 

(1983, p. 194).   

As with Bell’s Theorem, one could cautiously interpret Wheeler’s Cosmological Interferometry 

experiment in a purely negative way.  We have to concede that it is contradictory to say that the 

particle had a trajectory before we made our detector choice, but we could refuse to say more.  In 

particular, we might stubbornly refuse to say that our experimental choice here on Earth today 

creates something in the past.  But even if we take this cautiously agnostic stance, we are 

committed to the position that the past is ontologically “gappy.”  On pain of contradiction, there 

are some claims about the past that we just can’t make; Wheeler’s cosmic delayed choice 

experiment thus may well amount to an instance of the Kochen-Specker Theorem.29  Arguably it 

tells against the block universe theory, according to which the universe is a complete four-

dimensional, Riemannian plenum, and it may well provide support for the retrocausal 

interpretation of quantum mechanics, according to which amplitudes from future to past must be 

included in quantum-mechanical calculations (Cramer, 1986).  Like many of the thought 

experiments sketched in this review, there is still much to be learned from Wheeler’s grand 

interferometer.   

 

7 Have Thought Experiments a Future in Physics? 

Einstein himself had a very unusual ability to visualize—or, more accurately, kinaesthetically to 

feel how things work (Einstein, 1945).  An ordinary competent physicist may well believe that it 

is hopeless to attempt to intuitively grasp the workings of nature as fluently as Einstein, any 

more than an ordinary musician can hope to duplicate the cognitive feats of Mozart.  However, 

one can learn from those with extraordinary skills—one can at least try to do what they do.  

Einstein did one thing that can be done by anyone with sufficient intellectual courage:  he 

deliberately sought out the simple, the obvious, the perception that was right under everyone’s 

nose.  One quality that all effective thought experiments have is that the essential insight is both 

simple and obvious—once you see it.  The willingness to seek out the obvious that is not yet 

obvious to most people is as much a matter of temperament as raw cognitive ability, because it 

requires one to be unconventional (as was Einstein)—a risk that sometimes even exceptionally 

intelligent people are not willing to take.     

                                                 
29 This was pointed out to me by Jesse Supina (private communication).   
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 It is reasonable to ask whether there is still a creative role for thought experiments to play 

in physics as it grapples with the ever-increasing abstrusity of quantum gravity, particle physics, 

and string theory.  It could be argued that the frontlines of theoretical physics now operate on a 

level of abstraction that is so far from common experience that the kind of ordinary mechanical 

and spatiotemporal intuitions at which Einstein excelled may no longer have much relevance.  I 

have great faith in the flexibility and adaptability of the human imagination, and I think it is too 

soon to draw such a pessimistic conclusion.  But even if visualization comes to play a decreasing 

role in the physics of the future, it will always be good methodology to seek out the obvious—

and to question the conventional wisdom that too often prevents us from seeing it.   

 

 

Acknowledgements 

For helpful discussions or advice the author is grateful to Richard T.A. Arthur, Bryson Brown, 

Saurya Das, John Norton, David Siminovitch, and Jesse Supina.  The author also thanks the 

editors of this volume for the opportunity to write this paper, and James Robert Brown in 

particular for encouragement at many stages of this author’s career.  Thanks are also due to the 

University of Lethbridge and the Social Sciences and Humanities Research Council of Canada 

for essential financial and material support.  Of course, none of these fine persons or institutions 

are responsible for any errors or misconceptions that may have found their way into this work.   

  



Happiest Thoughts  Page 30 of 34 

References 

Aczel, A. D. (2002). Entanglement:  The Greatest Mystery in Physics. Vancouver: Raincoast Books. 

Anderson, J. L. (1967). Principles of relativity physics. New York: Academic Press. 

Arthur, R. (1999). On thought experiments as a priori science. International Studies in the Philosophy of 

Science, 13(3), 215–229. http://doi.org/10.1080/026985999085573622 

Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental Tests of Bell’s Inequality Using Time-

Varying Analyzers. Physical Review Letters, 49, 1804–1807. 

Bell, J. S. (1964). On the Einstein Podolsky Rosen Paradox. Physics, 1(3), 195–200. 

Bernstein, J. (1991). Quantum Profiles. Princeton, NJ: Princeton University Press. 

Bohm, D. (1951). Quantum Theory. Englewood Cliffs, NJ: Prentice-Hall. 

Bohm, D. (1952a). A Suggested Interpretation of the Quantum Theory in Terms of “Hidden Variables”. I. 

Physical Review, 85(2), 166–179. 

Bohm, D. (1952b). A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. 

II. Physical Review, 85(2), 180–193. 

Bohr, N. (1935). Can Quantum-Mechanical Description of Physical Reality be Considered Complete? 

Physical Review, 48, 696–702. 

Bub, J. (1997). Interpreting the Quantum World. Cambridge: Cambridge University Press. 

Cohen-Tannoudji, C., Diu, B., & Laloë, F. (1977). Quantum Mechanics (Vol. I). New York: John Wiley 

and Sons. 

Cramer, J. G. (1986). The Transactional Interpretation of Quantum Mechanics. Reviews of Modern 

Physics, 58(July), 647–688. 

Cushing, J. T. (1994). Quantum Mechanics:  Historical Contingency and the Copenhagen Hegemony. 

Chicago & London: University of Chicago Press. 

Demopoulos, W. (2004). Elementary Propositions and Essentially Incomplete Knowledge:  A Framework 

for the Interpretation of Quantum Mechanics. Noûs, 38(1), 86–109. 

DeWitt, B. S. (1979). Quantum gravity:  the new synthesis. In S. W. Hawking & W. Israel (Eds.), 

General Relativity:  An Einstein Centenary Survey (pp. 680–745). Cambridge: Cambridge 

University Press. 

Dür, W., Vidal, G., Linden, N., & Popescu, S. (2001). Entanglement Capabilities of Nonlocal 

Hamiltonians. Physical Review Letters, 87, 137901. 

Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891–921. 

Einstein, A. (1909). Entwicklung unserer Anschauungen über das Wesen und die Konstitution der 

Strahlung. Physikalische Zeitschrift, 10, 817–825. 

Einstein, A. (1922). Sidelights on Relativity. (G. B. Jeffery & W. Perrett, Trans.). New York: E. P. Dutton 

(Dover Reprint). 

Einstein, A. (1927). Bestimmt Schrödinger’s Wellenmechanik die Bewegung eines Systems vollständig 

oder nur im Sinne der Statistik? Presented at the Prussian Academy of Sciences. 

Einstein, A. (1945). A Testimonial from Professor Einstein. In J. Hadamard, The Mathematician’s Mind:  

The Psychology of Invention in the Mathematical Field (pp. 142–143). Princeton, NJ: Princeton 

University Press. 

Einstein, A. (1948). Quanten-Mechanik und Wirklichkeit. Dialectica, 2(3–4), 320–324. 

Einstein, A. (1951). Autobiographical Notes. In P. A. Schilpp (Ed.), Albert Einstein:  Philosopher-

Scientist (pp. 2–95). New York: Tudor. 



Happiest Thoughts  Page 31 of 34 

Einstein, A. (1961). Relativity:  The Special and the General Theory. (R. W. Lawson, Trans.). New York: 

Crown. 

Einstein, A. (1969). Remarks to the Essays Appearing in this Collective Volume. In P. A. Schilpp (Ed.), 

Albert Einstein:  Philosopher-Scientist (pp. 663–688). La Salle, IL: Open Court. 

Einstein, A., Podolsky, B., & Rosen, N. (1935). Can Quantum-Mechanical Description of Physical 

Reality be Considered Complete? Physical Review, 47, 777–780. 

Feshbach, H., & Weisskopf, V. F. (1988). Ask a Foolish Question... Physics Today, (October), 9, 11. 

Feynman, R. P., Leighton, R. B., & Sands, M. (1965). The Feynman Lectures on Physics Vol. III:  

Quantum Mechanics. Reading, MA: Addison-Wesley. 

Fine, A. (1986). The Shaky Game:  Einstein, Realism, and the Quantum Theory. Chicago and London: 

University of Chicago Press. 

Fölsing, A. (1997). Albert Einstein:  A Biography. (E. Osers, Trans.). New York: Viking. 

Galison, P. (2003). Einstein’s Clocks, Poincaré’s Maps:  Empires of Time. New York & London: W. W. 

Norton. 

Gardner, M. (1978). Aha! Aha! insight. New York: Scientific American. 

Ghirardi, G. C., Rimini, A., & Weber, T. (1980). A general argument against superluminal transmission 

through the quantum mechanical measurement process. Lettere Al Nuovo Cimento, 27(10), 293–

298. 

Gutfreund, H., & Renn, J. (2015). The Road to Relativity:  The History and Meaning of Einstein’s “The 

Foundation of General Relativity.” Princeton and Oxford: Princeton University Press. 

Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematik und 

Mechanik. Zeitschrift für Physik, 43, 172–198. 

Heisenberg, W. (1930). The Physical Principles of the Quantum Theory. Chicago: University of Chicago 

Press. 

Holland, P. (2005). What’s wrong with Einstein’s 1927 hidden-variable interpretation of quantum 

mechanics? Foundations of Physics, 35, 177–196. 

Howard, D. (2006). Early History of Quantum Entanglement. Retrieved May 9, 2016, from 

http://www3.nd.edu/~dhoward1/Early%20History%20of%20Entanglement/sld001.html 

Howard, D. (2007). Revisiting the Einstein-Bohr Dialogue. Iyyun:  The Jerusalem Philosophical 

Quarterly, 56(January), 57–90. 

Janssen, M. (2014). “No Success Like Failure...”:  Einstein’s Quest for General Relativity, 1907-1920. In 

M. Janssen & C. Lehner (Eds.), The Cambridge Companion to Einstein. New York: Cambridge 

University Press. 

Kennedy, J. B. (1995). On the Empirical Foundations of the Quantum No-signalling Proofs. Philosophy 

of Science, 62, 543–560. 

Keynes, J. M. (1978). Newton the Man. In The Collected Writings of John Maynard Keynes (pp. 363–

374). Royal Economic Society. 

Kirshner, R. P. (2002). The Extravagant Universe:  Exploding Stars, Dark Energy and the Accelerating 

Cosmos. Princeton and Oxford: Princeton University Press. 

Kochen, S., & Specker, E. P. (1967). The Problem of Hidden Variables in Quantum Mechanics. Journal 

of Mathematics and Mechanics, 17, 59–87. 

Kuhn, T. S. (1970). The structure of scientific revolutions ([2nd ed., ). Chicago: University of Chicago 

Press. 



Happiest Thoughts  Page 32 of 34 

Lakatos, I. (1976). Proofs and Refutations:  The Logic of Mathematical Discovery. Cambridge: 

Cambridge University Press. 

Lee, K. C., Sprague, M. R., Sussman, B. J., Nunn, J., Langford, N. K., Jin, X.-M., … Walmsley, I. A. 

(2011). Entangling Macroscopic Diamonds at Room Temperature. Science, 334, 1253–1256. 

http://doi.org/10.1126/science.1211914 

Mann, C., & Crease, R. (1988). Interview with J. S. Bell. Omni, (May), 84+. 

Maroney, O. (2009). Information Processing and Thermodynamic Entropy. Stanford Encyclopedia of 

Philosophy. Retrieved from http://plato.stanford.edu/entries/information-entropy/#MaxDem 

Martin, R. M. (1997). Scientific Thinking. Peterborough, ON: Broadview Press. 

Maudlin, T. (2002). Quantum Non-Locality and Relativity (Second Edition). Oxford: Blackwell. 

Mehra, J., & Rechenberg, H. (1982). The Historical Development of Quantum Theory (Vols. 1–6). New 

York: Springer-Verlag. 

Miller, J. L. (2016). Three groups close the loopholes in tests of Bell’s theorem. Physics Today, 69(1). 

http://doi.org/10.1063/PT.3.3039 

Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973). Gravitation. San Francisco: W. H. Freeman & Co. 

Mittelstaedt, P. (1998). Can EPR-correlations be used for the transmission of superluminal signals? 

Annalen Der Physik, 7(7–8), 710–715. 

Moran, D., Softley, R., & Warrant, E. J. (2014). Eyeless Mexican Cavefish Save Energy by Eliminating 

the Circadian Rhythm in Metabolism. PLOS ONE, 9(9), e107877. 

http://doi.org/10.1371/journal.pone.0107877 

Newton, I. (1692). Original letter from Isaac Newton to Richard Bentley. Retrieved March 26, 2016, from 

http://www.newtonproject.sussex.ac.uk/view/texts/normalized/THEM00258 

Newton, S. I. (1888). A Catalogue of the Portsmouth Collection of Books and Papers Written by Or 

Belonging to Sir Isaac Newton: The Scientific Portion of which Has Been Presented by the Earl 

of Portsmouth to the University of Cambridge. University Press. 

Nielsen, M. A., & Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge: 

Cambridge University Press. 

Norsen, T. (2005). Einstein’s Boxes. American Journal of Physics, 73(2), 164–176. 

Norton, J. D. (Forthcoming). Maxwell’s Demon Does Not Compute. In M. E. Cuffaro & S. C. Fletcher 

(Eds.), Physical Perspectives on Computation, Computational Perspectives on Physics. 

Cambridge: Cambridge University Press. 

Norton, J. D. (1986). What Was Einstein’s Principle of Equivalence? Studies in History and Philosophy 

of Science, 16, 203–246. 

Norton, J. D. (2013a). All Shook Up: Fluctuations, Maxwell’s Demon and the Thermodynamics of 

Computation. Entropy, 15, 4432–4483. http://doi.org/10.3390/e15104432 

Norton, J. D. (2013b). Chasing the Light:  Einstein’s Most Famous Thought Experiment. In M. Frappier, 

L. Meynell, & J. R. Brown (Eds.), Thought Experiments in Philosophy, Science, and the Arts (pp. 

123–140). New York & London: Routledge. 

Norton, J. D. (2015a). General Relativity. Retrieved August 6, 2016, from 

http://www.pitt.edu/~jdnorton/teaching/HPS_0410/chapters/general_relativity/index.html 

Norton, J. D. (2015b). The Hole Argument. In E. N. Zalta (Ed.), The Stanford Encyclopedia of 

Philosophy (Fall 2015). Retrieved from 

http://plato.stanford.edu/archives/fall2015/entries/spacetime-holearg/ 



Happiest Thoughts  Page 33 of 34 

Pais, A. (1982). “Subtle is the Lord...”:  The Science and the Life of Albert Einstein. Oxford: Oxford 

University Press. 

Pauli, W. (1933). Die allgemeinen Principien der Wellenmechanik. (H. Geiger & K. Scheel, Eds.) (2nd 

ed., Vol. 24). Berlin: Julius Springer. 

Pauli, W. (1980). General Principles of Quantum Mechanics. (P. Achuthan & K. Venkatesan, Trans.). 

Berlin: Springer-Verlag. 

Peacock, K. A. (1992). Comment on “Tests of Signal Locality and Einstein-Bell Locality for 

Multiparticle Systems.” Physical Review Letters, 69(18), 2733. 

Peacock, K. A. (2008). The Quantum Revolution:  A Historical Perspective. Westport, CN: Greenwood 

Press. 

Peat, D. (1997). Infinite Potential:  The Life and Times of David Bohm. Reading, MA: Addison-Wesley. 

Pössel, M. (2009). The elevator, the rocket, and gravity: the equivalence principle. Retrieved March 26, 

2016, from http://www.einstein-online.info/spotlights/equivalence_principle 

Redhead, M. (1987). Incompleteness, Nonlocality, and Realism:  A Prolegomenon to the Philosophy of 

Quantum Mechanics. Oxford: Oxford University Press. 

Robertson, R. N. (1983). The Lively Membranes. Cambridge: Cambridge University Press. 

Rose, P. L. (1998). Heisenberg and the Nazi atomic bomb project: a study in German culture. Berkeley, 

Calif: University of California Press. 

Rovelli, C. (2004). Quantum Gravity. Cambridge: Cambridge University Press. 

Sauer, T. (2014). Einstein’s Unified Field Theory Program. In M. Janssen & C. Lehner (Eds.), The 

Cambridge Companion to Einstein (pp. 281–305). New York: Cambridge University Press. 

Schrödinger, E. (1935a). Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23, 

807–12–28–49. 

Schrödinger, E. (1935b). Discussion of Probability Relations Between Separated Systems. Proceedings of 

the Cambridge Philosophical Society, 31, 555–563. 

Schrödinger, E. (1983). The Present Situation in Quantum Mechanics. In J. A. Wheeler & W. H. Zurek 

(Eds.), J. D. Trimmer (Trans.), Quantum Theory and Measurement (pp. 152–167). Princeton, NJ: 

Princeton University Press. 

Shimony, A. (1983). Controllable and Uncontrollable Nonlocality. In S. Kamefuchi (Ed.), Foundations of 

Quantum Mechanics in the Light of New Techology (pp. 225–230). Tokyo: Physical Society of 

Japan. 

Smoot, G., & Davidson, K. (1993). Wrinkles in Time:  Witness to the Birth of the Universe. New York: 

William Morrow and Co. 

Stachel, J. (Ed.). (2005). Einstein’s Miraculous Year:  Five Papers that Changed the Face of Physics. 

Princeton and Oxford: Princeton University Press. 

Stachel, J. (2014). The Hole Argument and Some Physical and Philosophical Implications. Living 

Reviews in Relativity, 17(1). http://doi.org/10.12942/lrr-2014-1 

Stapp, H. P. (1975). Bell’s Theorem and World Process. Il Nuovo Cimento B, 29 B(2), 270–276. 

Stone, A. D. (2013). Einstein and the Quantum:  The Quest of the Valiant Swabian. Princeton and 

Oxford: Princeton University Press. 

Szilard, L. (1972). On the decrease of entropy in a thermodynamic system by the intervention of 

intelligent beings. In The Collected Works of Leo Szilard: Scientific Papers. Cambridge, MA: 

MIT Press. 

Taylor, E. F., & Wheeler, J. A. (1966). Spacetime Physics. San Francisco: W. H. Freeman & Co. 



Happiest Thoughts  Page 34 of 34 

Von Neumann, J. (1955). Mathematical foundations of quantum mechanics. Princeton, N.J: Princeton 

University Press. 

Wheeler, J. A. (1983). Law Without Law. In J. A. Wheeler & W. H. Zurek (Eds.), Quantum Theory and 

Measurement (pp. 182–213). Princeton, N.J: Princeton University Press. 

Wheeler, J. A., & Zurek, W. H. (Eds.). (1983). Quantum Theory and Measurement. Princeton, NJ: 

Princeton University Press. 

Wilczek, F. (2008). The Lightness of Being:  Mass, Ether, and the Unification of Forces. New York: 

Basic Books. 

Woods, J. (2003). Paradox and Paraconsistency:  Conflict Resolution in the Abstract Sciences. 

Cambridge: Cambridge University Press. 

Yam, P. (2012, October 9). Bringing Schrödinger’s Cat to Life. Retrieved May 9, 2016, from 

http://www.scientificamerican.com/article/bringing-schrodingers-quantum-cat-to-life/ 

 


