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Standard descriptions of thermodynamically reversible processes attribute 

contradictory properties to them: they are in equilibrium yet still change their 

state. Or they are comprised of non-equilibrium states that are so close to 

equilibrium that the difference does not matter. One cannot have states that both 

change and no not change at the same time. In place of this internally 

contradictory characterization, the term “thermodynamically reversible process” 

is here construed as a label for a set of real processes of change involving only 

non-equilibrium states. The properties usually attributed to a thermodynamically 

reversible process are recovered as the limiting properties of this set. No single 

process, that is, no system undergoing change, equilibrium or otherwise, carries 

those limiting properties. The paper concludes with an historical survey of 

characterizations of thermodynamically reversible processes and a critical 

analysis of their shortcomings.  

                                                
1 My special thanks to Giovanni Valente. His critical analysis of Norton (2014), both in 

discussion and in an unpublished manuscript, occasioned this paper. I also thank Wayne 

Myrvold, Jos Uffink and an anonymous referee for extensive, productive discussion. Philip 

Ehrlich helped with non-standard analysis. 
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1.	Introduction	
 In studies of the conceptual foundations of thermodynamics, the perpetually troublesome 

notion of entropy attracts almost all the attention. There is a second notion that is just as essential 

to thermodynamics and just as troublesome, yet it is largely overlooked. This is the notion of 

thermodynamically reversible or quasi-static processes. They are used in the definition of 

entropy and are distinguished as the least dissipative of processes. They are, loosely speaking, 

processes whose driving forces—temperature differences, pressure differences and the like—are 

balanced so delicately that they could proceed equally easily in either direction, reversing the 

quantities of heat and work exchanged. The core difficulty is immediately visible. The processes 

are supposed to conform to two contradictory requirements, which are encapsulated in a paradox. 

Paradox of Thermodynamically Reversible Processes 

1. They are processes with a non-equilibrium imbalance of driving forces, such as 

non-zero temperature differences or unbalanced mechanical forces; for this 

imbalance is needed to move the system from one state to another. 

2. At the same time they are sets of equilibrium states in which, by definition, there 

is no imbalance of forces; for then the forward and the reverse processes pass 

through the same set of equilibrium states and both can be represented by the 

same curve in equilibrium state space. 

A system cannot both be out of equilibrium and in equilibrium at the same time. 

The difficulty has been recognized since the beginning of thermodynamics. Yet virtually all 

efforts to deal with it involve inadequate deflections that merely give the appearance of a 

solution. An “infinitely slow” process is supposed to be one that changes, while its states always 

remain in equilibrium. Yet a process that is infinitely slowed in all its stages is one that never 

progresses past any stage. An “insensible” or “infinitesimally small” disequilibrium is supposed 

to bring us a non-zero driving force, so that the state of the system is out of equilibrium and 

changes in time, while also remaining in equilibrium. The minuscule departure from equilibrium 

is supposed too small to matter. Yet, no matter how small, it does matter, since this departure is 

essential to secure a process that changes in time. 

 It is to no avail. Incantations of “infinitely slow,” “insensible” and “infinitesimal” have 

no magical powers that overturn the law of the excluded middle. Either a system is in 
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equilibrium or it is not; it cannot both be both. Either a system undergoes change or it does not; it 

cannot do both.2 

 Almost all developments of thermodynamics address the problem. But, as we shall see at 

some length, they do so in haste, on the way to more important matters. The secondary literature 

has rarely objected. Rechel (1947) is an exception that identifies forcefully just the sort of 

contradictions to be discussed here. More recently, Uffink (2001) provides a sustained critique 

that reveals many of the tensions in the literature. As an illustration of a more general account of 

idealizations and approximations, Norton (2014) has sought to resolve the problem by denying 

that thermodynamically reversible processes are idealized processes at all. Hence there is no 

process, fictional or otherwise, that is posited to bear contradictory properties. Rather all we have 

are approximations, that is, descriptions of the limiting behavior of a set of many, real, non-

equilibrium processes. 

What	is	to	Come	

 Part I of this paper, following Norton (2014), develops a positive account of 

thermodynamically reversible processes that is designed to resolve the above paradox. It is 

developed in Section 2. Its founding idea is that there is no single process that can be identified 

as a thermodynamically reversible process. A set of equilibrium states is no process at all, since 

the states do not change in time. A process constituted of near equilibrium states is more 

promising, since these states do change in time. The difficulty is to know just how close to 

equilibrium its states must come. 

 This last difficulty is resolved in the proposal by representing a reversible process not by 

a single process “close enough” to equilibrium, but by continuous sets of irreversible processes, 

whose non-equilibrium states come arbitrarily close to equilibrium states, while never actually 

becoming equilibrium states. This limiting set of equilibrium states is just a curve in equilibrium 

                                                
2 Alternatively, one can simply dispense with one disjunct and consider what I call below the 

“bare” form of “quasi-static processes.” They are by definition merely sets of unchanging 

equilibrium states. The problem returns, however, when one has to connect results about this set 

with dynamical processes of change in non-equilibrium thermal systems. 
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state space. It forms the unrealized boundary of the non-equilibrium states in the set of processes 

that do evolve in time, in both forward and reversed directions. 

 The properties normally associated with a reversible process are recovered from the set of 

irreversible processes through limit operations. These limits return vanishing driving forces and 

the requisite quantities of heat and work. Crucially, the limit operations generate limit properties 

only. They do not generate a single process that carries these properties, for these properties are 

mutually incompatible: if the driving forces vanish, there can be no heat transferred or work 

done. By this means, the account avoids the paradoxical fiction that the thermodynamics 

literature has tried so hard to realize: a single process, evolving in time yet comprised of 

unchanging equilibrium states. 

 Section 3 will connect this last analysis with general ideas concerning idealizations and 

approximations. Drawing on an account given elsewhere of idealizations produced by limits, I 

argue that, in this case, there is no well-behaved limit process produced when we let 

thermodynamic driving forces go to zero. Rather we should conceive the notion of a reversible 

process as an approximation, according to a specific use of the term “approximation.” 

 Section 4 will seek to demonstrate that this new characterization of thermodynamically 

reversible processes is adequate for thermodynamic theorizing. In the existing literature, it is 

standard to derive results by means of the fiction of a reversible process of equilibrium states that 

are supposed to evolve in time, even though equilibrium states are unchanging. The new 

derivations will use only irreversible processes constituted of non-equilibrium states, drawn from 

the set specified in the definition of Section 2. 

 Whether there exist sets of irreversible processes conforming with the definition of 

Section 2, depends upon the background dynamical theory in which the processes occur. They do 

not exist in one important case, recounted in Section 5. For molecular systems on molecular 

scales, thermal fluctuations preclude the existence of irreversible process that can be completed 

and, at the same time, have states that can be brought arbitrarily close to equilibrium states. 

  Part II of this paper seeks to rectify an imbalance in the present literature. Considerable 

efforts have been spent on understanding the sometimes elusive notion of entropy. The notion of 

a thermodynamically reversible process is just as important to thermodynamics and the second 

law. Thermodynamics flourished for decades without the notion of entropy. It did so, first in the 

work on Carnot of 1824, and then in the founding of the modern theory in the work of Clausius 
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and Thomson in the early 1850s. It was only a decade later that the notion of entropy was 

introduced by Clausius in 1865. Yet, compared to entropy, the notion of thermodynamically 

reversible processes receives scant attention in the critical and historical literature. 

 Section 6 of Part II will sketch a striking analogy to the notion of a reversible process in 

the work of Sadi Carnot’s father, Lazare Carnot, on the efficiency of ordinary machines. Section 

7 will them provide a survey of characterizations of thermodynamically reversible processes in 

the literature. One goal of the survey is to document the range of proposals. A second goal is 

critical.  I will argue that none of proposals is entirely adequate. All of them,3 even the most 

cautious, are subject to one or other form of the above paradox. My conclusion is not that that the 

problems are irresolvable. I offer the analysis of Section 2 as a serviceable resolution. Rather it is 

that there is a near universal practice in the present literature of defining thermodynamically 

reversible processes in haste, so that something like what is proposed seems credible, while what 

is actually said is not. The concluding Section 8 reviews briefly how the proposal of Section 2 

escapes the problems troubling characterizations of reversible processes presently in the 

literature. 

Part	I.	What	Thermodynamically	Reversible	Processes	Really	Are	

2.	Thermodynamically	Reversible	Processes	as	Sets	of	Irreversible	

Processes	

2.1	Properties	Required	

 The following are the properties normally associated with a thermodynamically 

reversible process. They will form the basis of a characterization free of manifest paradox: 

They are processes that can proceed in either the forward or reverse direction, since their 

thermodynamic forces are in near perfect balance. 

                                                
3 I exclude an account by Duhem in Section 2.3. 
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If heat Qf is gained by the system and work Wf is done by the system in the forward 

process, then heat Qr = –Qf is gained by the system and work Wr = –Wf is done by the 

system in the reverse process. 

If a space of equilibrium states is available, then the process can be represented by a 

continuous curve in the space. 

The rate at which work is done is given by 

dW = Σi Xi dxi                                                             (1) 

This expression (1) is derived from a standard statement of the first law of thermodynamics 

dU = dQ - dW = dQ - Σi Xi dxi                                                 (2) 

U is the system internal energy and the paired variables X1 and x1, X2 and x2, etc. are pairs of 

generalized force (Xi) and displacement (xi) variables. Common pairings are pressure P and 

volume V, surface tension γ and surface area A, as well as magnetic and electric quantities such 

as magnetic field and magnetic moment; and electric field strength and dipole moment. (See 

Pippard, 1966. pp. 23-28.) The operator d is usually represented as marking a small or even 

infinitesimal difference in the quantity on which it acts. A mathematically cleaner reading is to 

assign a path parameter λ to the process and identify the operator as d = d/dλ. 

 Here the term “driving force” denotes temperature differences and these generalized 

forces. They are well-defined in non-equilibrium systems. Fourier’s equation for the dynamics of 

heat transport employs temperature gradients as a force that drives heat flow. The Navier Stokes 

equation employs pressure gradients as a force that drives momentum in fluids. More generally, 

external to thermodynamics, pressure and surface tension are well-defined in theories of the 

mechanics of fluids; and electric and magnetic field are well-defined in electrodynamics. 

2.2	The	Characterization	

 These properties are all captured by the following: 

Definition 

The label “thermodynamically reversible process” denotes a set of irreversible processes in 

a thermal system, delimited by the set of equilibrium states in (d) such that: 
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(a) Each process may exchange heat or work with its surroundings, because of imbalanced 

driving forces (temperature differences, generalized forces). 

 (b) The processes can be divided into a “forward” and a “reverse” set such that the total 

heat gained and the total work done have opposite signs in the two sets. 

(c) In each set, there are processes in which the net driving forces are arbitrarily small. In 

the case of generalized forces, the net driving force is the difference between the 

generalized force and the force in the surrounding system that counteracts it.4 

 (d) Under the limit5 of these net driving forces going to zero, the states of both forward 

and reverse processes approach the same set of equilibrium states and these states form 

a curve in equilibrium state space. 

(e) The limiting values of heat gained and work done by the forward process are Qf and 

Wf; and by the reverse process Qr and Wr; and they satisfy 

Qf = -Qr and Wf = -Wr 

(f) These limiting quantities of heat and work, computed at any stage of the process, 

correspond to those computed by integration of the relations (1) and (2) along the curve 

of the equilibrium states in equilibrium state space.  

While they may come arbitrarily close, none of the states of the irreversible processes are exactly 

equilibrium states. For otherwise the processes cannot complete in any finite time. The set is 

represented in Figure 1. 

 

                                                
4 For example, the generalized driving force in an expanding gas is its pressure and the 

counteracting force is the weight against which the gas pressure acts. The net driving force for 

heat transfer is just the temperature difference. 
5 To define the sequence of processes of successively smaller driving forces used in the limit, we 

say that process A has smaller driving forces than process B if the greatest temperature 

difference and generalized thermodynamic force in A is less than the corresponding maxima of 

B. The driving forces go to zero if these maxima go to zero. 
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Figure 1. Set of Processes Forming a Reversible Process 

 

 The definition requires an additional assumption if it is to be used in thermodynamics: 

Existence6 

There is a thermodynamically reversible process for any curve in equilibrium state 

space. 

Whether the existence assumption is true depends upon the particular dynamical theory that 

governs changes in the thermal systems. It can fail. We shall see below in Section 5 that real 

processes at molecular scales cannot be brought arbitrarily close to sequences of equilibrium 

states. At these scales, there are no thermodynamically reversible processes. 

 Finally, this analysis can be applied to heat engines, since they consist of a sequence of 

thermal processes. A reversible heat engine is constructed from the corresponding sequence of 

thermodynamically reversible processes. 

                                                
6 This existence postulate does not contradict Carathéodory’s inaccessibility postulate since the 

latter is restricted to adiabatic processes. 
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2.3	Duhem’s	Analysis	

 This last analysis seems both natural and obvious, so it was puzzling that it is not present 

in the literature. After a first draft of this paper was completed, it was with some relief that I 

found essentially this account had been developed quite carefully by Duhem (1903, pp. 59-74). 

He emphasized that the equilibrium states associated with a reversible process are merely an 

unrealized common boundary of the states passed by the real, non-equilibrium, forward and 

reverse processes. Duhem first gives his characterization in an analysis of Atwood’s machine, in 

which a weight is slowly raised and lowered by a counterweight (p. 70, emphasis in original): 

This series of equilibrium states α, β, γ, δ, . . .  which is passed over by no 

modification of the system is, in some sort[7], the common boundary of the real 

transformations that bring the system from the state 1 to the state 2 and of the real 

transformations that bring the system from state 2 to state 1; … this series of 

equilibrium states is called a reversible transformation. 

 Thus the reversible transformation is a continuous series of equilibrium states; it 

is essentially unrealizable; but we may give our attention to these equilibrium states 

successively either in the order from state 1 to state 2, or in the reverse order; this 

purely intellectual operation is denoted by these words: to cause a system to 

undergo the reversible transformation considered, either in the direction 1-2, or in 

the reverse direction. 

Duhem then illustrates carefully his central claim that the reversible process consists merely of 

common boundary states of real processes in three examples: vaporization of a liquid, 

dissociation of cupric oxide and dissociation of water vapor. Trevor (1927, pp. 16-19) appears to 

give essentially the same account and even uses the (unnamed) Atwood machine to illustrate it. 

That suggests he drew the account from Duhem, although Duhem is not cited. Trevor had earlier 

translated Duhem (1898) into English. 

 Duhem’s (1903, pp. 59-74) account is a simplified and expanded development of his 

earlier writings on reversible processes. Needham (2011, pp. vi-vii) provides a brief overview of 

                                                
7 JDN: “en quelque sorte” is better translated here as “as it were.” 
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this work in his editor’s introduction to a volume that translates many of Duhem’s papers. See 

also Needham (2013, pp. 406-407). 

3.	Idealizations	created	by	Limits	
 That such an account of reversible processes is possible is foreshadowed by common 

remarks in the literature. It is accepted that thermodynamically reversible processes involve 

physical impossibilities. The awkwardness is then excused by calling them idealizations. 

Goodenough (1911, p. 49) writes 

Strictly speaking, there are no reversible changes in nature. We must consider 

reversibility as an ideal limiting condition that may be approached but not actually 

attained when the processes are conducted very slowly. 

Zemansky (1968, p. 196) is more explicit: 

Since it is impossible to satisfy these two conditions [of reversibility] perfectly, it is 

obvious that a reversible process is purely an ideal abstraction, extremely useful for 

theoretical calculations (as we shall see) but quite devoid of reality. In this sense, 

the assumption of a reversible process in thermodynamics resembles the 

assumptions made so often in mechanics, such as those which refer to weightless 

strings, frictionless pulleys, and point masses. 

The idea is initially appealing. As Zemansky points out, it is quite standard to introduce 

idealizations in physics by taking limits. We take the limit of ever lighter strings until they are 

weightless; of pulleys with diminishing friction until they are frictionless; and of masses of 

diminishing size until they are mere points. We proceed to theorize with these structures even 

though we know there are no weightless strings, frictionless pulleys and point masses. 

 Commonly these limiting procedures do not produce foundational problems. But merely 

declaring something an idealization produced by taking a limit is no guarantee that the result is 

well-behaved. The result need not be. A point charge, even in ordinary electrostatics, carries an 

infinite field energy that may, in some circumstances, call for renormalization. 

 Thermodynamically reversible processes turn out to be just such a troublesome case in 

which the uncritical taking of limits brings disaster. To see why, we need to look more closely at 

how taking limits, if done unreflectively, can lead to trouble. 
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3.1	A	Limit	System	May	Not	Carry	the	Limit	Property	

 When we pursue a sequence of systems to a limit, we have the following structure. First 

there is a sequence of systems that approaches some limit system: 

system1, system2, system3, … → limit system 

Then there is a corresponding sequence of properties of the systems that approached some limit 

property: 

property1, property 2, property 3, …  → limit property 

Generally the two match up well: the limit system carries the limit property. When this matching 

fails, different sorts of pathologies arise. Sometimes there is no limit system at all. Such is the 

case as we take the limit of ever larger spheres in ordinary space. Loosely speaking, the limit is 

an infinite sphere. That is nonsense, of course. There is no “infinite sphere” in ordinary 

Euclidean space. 

 The anomaly that is most prone to mislead arises when the limit property fails to match 

the properties of the limit system and we overlook the mismatch. Norton (2012) has cataloged 

examples. The most important pertains to the various “thermodynamic limits” employed in 

statistical physics. In them, one considers systems of components, such as molecules, of ever 

greater number. As the component number grows without limit, the thermal properties of the 

systems stabilize to well-behaved limiting values. It is tempting to presume that these same 

properties are carried by the infinite limit system that consists of infinitely components. However 

that is generally not so. Infinite systems of molecules are generically indeterministic and their 

behavior is, as a result, not assured to resemble that of thermal systems with very many, but still 

finitely many components. 

 Precisely this pathology arises in the case of thermodynamically reversible processes. We 

have a sequence of irreversible processes, each of which is slowed by diminishing the driving 

forces. Each process carries the property of completing a change, while requiring ever more time 

to do it. The limit of this property is the property of completing a change. The limit approached 

by the processes themselves, however, is no process at all. It is merely a static set of states in 

equilibrium that no longer carry the limit property of completing the change. 

 There is a mismatch of the limit of the properties of the irreversible processes and the 

properties of limit of the irreversible process. The repeated error of the literature described in 
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Part II below is to try to argue away that mismatch and to pretend that the property of completing 

the change can still somehow be attributed to the limit of the processes that consists of an 

unchanging set of equilibrium states. 

3.2	Limits	are	not	Properties	of	the	Limit	System	but	of	a	Set	of	Systems	

 If the key property of completing a change does not belong to the limit approached of 

unchanging equilibrium states, to what does it belong? The property of completion is borne by 

the set of irreversible processes used in taking the limit, but not by the limit system itself, which 

is just a set of unchanging equilibrium states. 

 This last fact directs how thermodynamically reversible processes are to be understood. 

The term does not refer to a single process. The attempts to make it refer to one lead to the 

paradox above. Rather, the term refers to a set of irreversible processes; and the properties 

normally attributed to thermodynamically reversible processes are really borne as limiting 

properties of this set. 

3.3	Approximations,	not	Idealizations	

 In Norton (2014, §3) I described this situation by denying that thermodynamically 

reversible processes are idealizations, but asserting that they are really approximations. 

 That denial depends on the characterization given in Norton (2012) of idealizations. They 

are independently definable but possibly fictitious systems; and an exact description of their 

properties is also an inexact description of the real processes of interest. Since no process, real or 

fictitious, can carry all the properties of thermodynamically reversible processes without 

paradox, these processes cannot be idealizations. They are not consistently definable. 

 Rather, talk of thermodynamically reversible processes provides what are called in 

Norton (2012) approximations: inexact propositional descriptions of the systems of interest. 

Those systems of interest are real, irreversible processes with very small driving forces; and they 

have the property, for example, of passing heat very slowly with a very small temperature 

difference. The limit of this property is the transferring of heat with no temperature difference at 

all. A description of this limit property, the unrealizable 

“…transferring heat … with no temperature difference…” 

 is an inexact description of a real system that is correctly described as 
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“…transferring heat …with very small temperature difference…”. 

The properties recovered from this limiting operation serve only to provide such inexact 

descriptions; and nothing more. They cannot consistently describe any process exactly, for no 

process can conform with them exactly. No process can transfer heat when there is no 

temperature difference. 

4.	What	Thermodynamically	Reversible	Processes	Must	Do	
 We can see that the characterization of thermodynamically processes of Section 2 is 

adequate by showing that its supports rederivation of the results traditionally derived using the 

notion of thermodynamically reversible processes. Sommerfeld’s (1956, p. 19) remark 

foreshadows the character of the rederivations when he wrote: 

In spite of their not being real, reversible processes are most important in 

thermodynamics because definite equations can be obtained only by considering 

reversible changes; irreversible changes can only be described with the aid of 

inequalities when equilibrium thermodynamics is used. 

What Sommerfeld does not mention is that, if one has enough inequalities, they can form 

equalities, as we shall now see. The derivations are essentially the familiar ones, but complicated 

slightly by the use of inequalities. 

4.1	The	Efficiency	of	Heat	Engines	

 The extraordinary innovation of Carnot’s (1824) essay was a means of inferring quite 

general limits on the efficiency of heat engines. He pictured heat engines as deriving mechanical 

effect by passing heat from a hot place to cold place. He was able to show that the greatest 

mechanical effect for any two such places was generated by a heat engine that could be operated 

in reverse and that all such reversible engines performed equally well, independently of their 

construction and whether their working material was steam, air or anything else. Carnot’s 

original analysis was conducted within the caloric theory of heat under the supposition that heat 

is conserved during its passage from hot to cold. Subsequent analysis by Clausius (1851) and 

Thomson (1852) modified Carnot’s analysis by requiring that the work produced by a heat 
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engine resulted from the conversion of some of the heat into work. These papers mark the birth 

of the modern theory of thermodynamics. 

 Carnot’s result is stated in terms of the internally contradictory notion of a reversible heat 

engine that could transfer heat without a temperature difference. We will change that. A heat 

engine is a sequence of thermodynamically reversible processes that draws and discharges heat 

from and to a hot place and cold place, while converting some of the heat energy into work. 

Combining them, this engine is just a single, lengthy thermodynamically reversible process. 

Below we will treat this reversible engine as the corresponding set of irreversible process, as 

specified in Section 2 above.  

 The efficiency η of a heat engine is defined in the usual way η = W/ Q, where W is the 

work delivered by the engine and Q the heat drawn from the hot place. A reversible heat engine 

consists of a set of irreversible processes that form a reversible process as defined in Section 2.2. 

Its efficiency ηrev is defined as the ratio of the limiting values Wf and Qf for W and Q as given 

in (e) above. There is no assumption that any individual engine or processes in the set can realize 

this efficiency. 

4.2	Reversible	Engines	are	the	Most	Efficient	

 First we show that no irreversible heat engine working between the same temperatures 

can have a higher efficiency than the efficiency of a reversible engine. To show this, assume for 

purposes of reductio that we have an irreversible engine whose efficiency ηirr = Wirr/ Qirr 

is greater than that of a reversible engine ηrev = Wf/ Qf = Wr/ Qr. That is 

ηirr > ηrev. 

As noted, we do not assume that any real heat engine can operate with the efficiency ηrev. 

However the definition of a reversible process allows that an irreversible heat engine can come 

arbitrarily close in its operation. Moreover, since the process is reversible, these irreversible heat 

engines are found in both the “forward” and “reverse” sets of irreversible processes. That is, 

there is a sequences of processes in the reverse set that delivers heat Q to the hot place and 

consumes work W, such that 

W/Q = ηrev - ε 
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where the non-zero ε can be brought arbitrarily close to zero by suitable selection of processes in 

the set. We can scale the operations of the two engines so that Wirr = W and couple the two 

engines in the usual way: work from the irreversible engine is used to operate the reversed 

engine, as shown in Figure 2.  
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Q

rev
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Figure 2. Coupled Reversible and Irreversible Heat Engines. 

 

That is, we have W = Q ( ηrev – ε) = Qirr ηirr = Wirr, so that 

€ 

Q
Qirr

=
ηirr

ηrev −ε
>1 

The second inequality arises since we can make ε arbitrarily small and we have assumed that 

ηirr > ηrev. The net effect of the combined operation of the two engines is merely to take heat Q - 

Qirr from the cold place and deliver it to the hot place. If Q/Qirr > 1, then this quantity of heat Q - 

Qirr is a positive quantity. This is a violation of the Clausius form of the second law of 

thermodynamics, for we have a process whose sole effect is to move heat from cold to hot 

without the net consumption of work. 

 This contradiction completes the reductio. No irreversible heat engine can be more 

efficient than the efficiency assigned to a reversible engine. 

4.3	All	Reversible	Engines	Have	the	Same	Efficiency	

 Similar inferences allow us to show that all reversible heat engines operating between the 

same temperatures have the same efficiency. As before, a reversible heat engine is a set of 

processes as defined in Section 2.2. There is no assumption that any process realizes the 

reversible efficiency ηrev. 



 16 

 Assume for purposes of reductio that we have two such reversible engines, A and B, that 

operate at different efficiencies, with the first more efficient than the second. That is, 

ηA = WA,f/ QA,f  > WB,f/ QB,f = ηB. 

Hence we can find real engines that operate at efficiencies within arbitrarily small, non-zero εA 

and εB of these unrealizable efficiencies, with quantities of work and heat: 

WA / QA = ηA – εA                WB / QB = ηB – εB 

We scale the operations of the two engines so that W = WA = WB. They can now be coupled so 

that work from engine A is used to drive the second less efficient engine B in reverse, as shown 

in Figure 3. Engine A draws heat QA from the hot place and engine B returns heat QB to it. 

There is a net transport of heat QB - QA from the cold place to the hot place, with no net work 

exchanged with the surroundings. 
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Figure 3. Coupled Reversible Heat Engines 

 

The equalities W = WA = WB allows us to recover 

W = WA = (ηA  – εA) QA = (ηB  – εB) QB = WB 

so that 

€ 

QB

QA

=
(ηA −εA )
(ηB −εB )

>1 

The second inequality arises since we can make εA and εB as small as we like, while ηA and ηB 

are fixed in value with ηA > ηB. It follows that QB- QA > 0. The net effect of the cycle is to 

transfer heat from hot to cold without any net consumption of work. The Clausius form of the 

second law of thermodynamics is violated and the reductio is complete. 
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 Analogous arguments gives the same results for refrigerators or heat pumps. They are 

heat engines that operate in the reverse direction, using work to move heat from a cold place to a 

hot place. Instead of efficiency, we have the coefficient of performance, which is the ratio of 

work consumed to heat drawn from the cold place. No irreversible heat pump outperforms a 

reversible heat pump; and all heat pumps operating between the same temperatures have the 

same coefficient of performance. 

4.4	Absolute	Temperature	

 The results of the last section lead to the existence of the absolute temperature scale. To 

recover it, we consider two reversible heat engines chained together as shown in Figure 4, where 

as before the quantities of heat and work mentioned are limiting values, unrealized by any heat 

engine. 
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Figure 4. Composition of Heat Engines in the Derivation of Absolute Temperature 

 

The first draws heat Q1 from the highest temperature θ1 and discharges heat Q2 to the 

intermediate temperature θ2 while creating work W1-2. Temperature is written here as θ to 
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indicate that a definite scale for temperature is not yet assumed. The efficiency η = W1-2/ Q1 of 

this engine is a function of the temperatures θ1 and θ2 only. It follows that Q2/ Q1 = 

(Q1-W1-2)/ Q1is also a function of θ1 and θ2 only. Write this function as   

f(θ1, θ2) =  Q2 / Q1                                                         (3) 

The second heat engine draws heat Q2 from the intermediate temperature θ2 and discharges heat 

Q3 to the lowest temperature θ3. We have analogously for it 

f(θ2, θ3) =  Q3 / Q2 

The two cycles combined, as shown in Figure 4, form a single larger heat engine operating 

between temperatures θ1 and θ3 with heats Q1 and Q3. We have 

f(θ1, θ3) =  Q3 / Q1 

Combining these last three equations we have 

f(θ1, θ3) =  Q3 / Q1 = (Q3 / Q2). (Q2 / Q1) = f(θ1, θ2). f(θ2, θ3) 

It now follows that we can write 

€ 

f (θ1,θ2 ) =
f (θ1,θ3 )
f (θ2,θ3 )

=
1/T1
1/T2

                                             (4) 

where we introduce the absolute temperature T by definition as8 

T(θ) =  1/f(θ, θ3) 

Finally, combining equations (3) and (4), we have Q2 / Q1 = T2 / T1 so that  

Q1 / T1= Q2 / T2                                                           (5) 

4.5	The	Clausius	Inequality	

 This inequality is an important consequence of the second law of thermodynamics. It 

asserts that, for any cyclic process, that is any process that returns to its initial state, we have the 

cyclic intergral 

€ 

dQ
T∫ ≤ 0                                                                      (6) 

                                                
8 The arbitrary choice of temperature θ3 in the definition affects T only up a multiplicative 

constant. We can replace it by θ4 to recover 

T’(θ) = 1/f(θ, θ4) = 1/f(θ, θ3).1/ f(θ3, θ4) = 1/f(θ3, θ4) . T(θ). 
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Here I will adapt the compact analysis of Fermi (1937, Ch.4) and Pippard (1966, Ch. 4) to the 

new characterization of thermodynamically reversible processes. 

 Consider an irreversible cyclic process undergone by some system σ. The analysis makes 

the standard assumption that the process can be approximated arbitrarily well by a sequence of 

very small isothermal and adiabatic processes. This assumption is not benign. For a process to be 

isothermal requires that a definite temperature be assigned to the system. If the system is out of 

equilibrium while partaking in an irreversible process, it is not so clear how this should be done. 

If the system gains or loses heat, one candidate is the temperature of a large heat reservoir that 

supplies or accepts the heat. We will not pursue these difficulties here since they are common 

both to the standard analysis and the variant developed here. The Clausius equality is 

meaningfully, however, only in so far as this temperature is defined. 

 The isothermal processes gain or lose heat. We shall assume that this heat is exchanged 

with a single source system σ0 that is maintained at a constant temperature T0. For each 

isothermal process in σ, the exchange of heat is mediated by a heat engine or heat pump 

according to whether T0 is greater or lesser than T. 

 In the standard analysis, this heat engine or heat pump is assumed to be a process that 

operates reversibly. Hence if an isothermal process gains heat ΔQ at temperature T, we have 

from (5) that these quantities relate to the heat ΔQ0 drawn from σ0 at T0 by 

€ 

ΔQ0 =T0
ΔQ
T

 

Here, the heat engine or heat pump will be represented by a set of irreversible processes with the 

limiting, but unrealized behavior of this last relation. That is, we can find an irreversible process 

that brings the heat drawn from σ0 to within an arbitrarily small but non-zero Δε of ΔQ0: 

€ 

ΔQ0 =T0
ΔQ
T

+Δε  

The value of Δε in this last expression will always be negative.9 For the adiabatic steps, we will 

have ΔQ0 = 0. 
                                                
9 It is simple but tedious to see this negativity. There are six cases overall: the two cases of ΔQ>0 

or ΔQ<0 paired with the three cases T>T0, T<T0 and T=T0. For example, take T>T0 and ΔQ<0, 

so that σ loses heat. The heat passes to σ0 through a heat engine that is slightly less efficient than 
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 Summing all these quantities of heat ΔQ0 for the complete cycle in σ and taking the limit 

of arbitrarily small steps in the usual way, we find that the total heat Q0 drawn from the source 

σ0 is given by 

€ 

Q0 =T0
dQ
T∫ +δ    where    

€ 

δ = dε∫  

The term δ is negative, but can be brought arbitrarily close to zero by suitable selection of the 

engines coupling σ and σ0. 

 Since the system σ is returned to its original state, the sole effect of the cycle is to draw 

heat Q0 from the source σ0. By conservation of energy, this heat drawn must go somewhere. The 

only possibility is that it is transformed into work. Hence, if Q0 > 0, we have a full conversion of 

heat into work, in violation of the Thomson form of the second law of thermodynamics. Hence 

the cycle either must have no net effect or must degrade work into heat that is passed to σ0. That 

is,  Q0 ≤ 0, so that 

€ 

T0
dQ
T∫ ≤ −δ  

Since 

€ 

dQ
T∫  is a fixed magnitude specified by the particular process in σ, but the positive -δ can 

be made arbitrarily small, we must have the Clausius inequality (6)10 

€ 

dQ
T∫ ≤ 0 

4.6	The	Path	Independence	of	Thermodynamic	Entropy	

 Clausius (1865) introduced thermodynamic entropy S by means of the definition:  

€ 

ΔS = S2 − S1 =
dQrev

T1

2
∫                                                   (7) 

                                                

the reversible efficiency. As a result slightly more heat will pass to σ0 than reversible efficiency 

indicates. Since this heat passed ΔQ0 is negative, it will be more negative by an added amount Δε 

that is also negative. 
10 For irreversible processes, this should be a strict inequality, but I do not see how to recover it 

from the analysis given here. 
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where ΔS is the change of entropy between two states 1 and 2 and Qrev is the heat passed to the 

system while at temperature T in the course of a thermodynamically reversible process that 

connects the two states. 

 For entropy to be a function of the equilibrium state of the system, it is essential that the 

entropy difference ΔS be the same no matter which reversible process is used to compute the 

integral. The inferences that establish this path independence are common in thermodynamics 

texts and can be found in various forms in Clausius (1879, Ch. IV), Poynting and Thomson 

(1920, Ch. XVII), Fermi (1937, Ch.4) and Pippard (1966, Ch. 4). 

 Employing the conception of Section 2.2, consider a cyclic reversible process; that is, one 

whose set of equilibrium states form a closed curve in the equilibrium state space as shown in 

Figure 5. We apply the Clausius inequality (6) to the forward and to the reversed set of 

irreversible processes that comprise the reversible processes. As the driving forces go to zero, the 

limiting values of the two resulting cyclic intergrals are indicated by subscripts f and r and must 

satisfy relations: 

€ 

dQf

T∫ ≤ 0                

€ 

dQr

T∫ ≤ 0            

€ 

dQf

T
= −∫ dQr

T∫          

The first two inequalities result from the Clausius inequality and the third equality from 

conditions (e) and (f) Section 2.2. These relations can only be satisfied if: 

€ 

dQf

T
=∫ dQr

T∫ =
dQrev

T∫ = 0  

where Qrev is the heat associated with a reversible process. 
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state 1

path A
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h B

state 2

 
Figure 5. Closed curve in equilibrium state space. 

 

 Standard arguments now establish that entropy, as defined by the Clausius formula (7), is 

a state function. Choose any two states 1 and 2 through which a closed curve in equilibrium state 

space passes. The two states can be connected by either path A or path B of Figure 5. For the 

complete cycle we have  

€ 

0 =
dQrev

T
=∫ dQrev

T1
path  A

2
∫ +

dQrev

T2
path  B

1
∫ =

dQrev

T1
path  A

2
∫ −

dQrev

T1
path  B

2
∫  

The last equality follows since the quantities of heat change sign on reversal of the path 

direction. It now follows that 

€ 

dQrev

T1
path  A

2
∫ =

dQrev

T1
path  B

2
∫  

so that the quantity ΔS computed in formula (7) is independent of the path taken from state 1 to 

state 2. 

 Since dQrev = dU – dW by the first law (2) and dW = Σi Xi dxi by (1), the magnitudes of 

entropy changes ΔS are determinable from the state variables by means of Clausius’ formula (7). 

Hence the entropy S2  = S1  +  ΔS of any state is now fixed up to the selection of the state 1 as a 

universal reference state. 

 The Clausius inequality now enables us to interpret the significance of entropy for 

irreversible processes. Consider an irreversible process that initiates arbitrarily close to state 1 
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and passes in any way to a state arbitrarily close to state 2; and then returns to state 1, with a 

process whose driving forces approach zero such that its states everywhere come arbitrarily close 

to path B of Figure 5. We have from the Clausius inequality that11 

€ 

0 ≥ dQ
T∫ =

dQ
T1, any  path

2
∫ +

dQ
T2,path  B

1
∫  

The second integral is equal to –(S2 – S1). That is, we have  

€ 

S2 − S1 ≥
dQ
T1, any  path

2
∫                                                       (8) 

The system in which states 1 and 2 arise may be of arbitrary complexity and may exchange heat 

and work between its parts in many ways. If we now suppose, however, that the system 

exchanges no heat with its environment, this last inequality reduces to  

S2  ≥ S1                                                              (9) 

We now have a major result: the entropy of an isolated system can never decease. 

 Another consequence of comparable importance applies to the case of a system 

undergoing any isothermal process at temperature T, while exchanging heat but not work with its 

surroundings. For such a process, inequality (8) becomes ΔS = (S2 - S1) ≥ Q/T. Since no work is 

exchanged with the surroundings the heat gained Q equals the change of internal energy ΔU. 

Rearranging, we have  

ΔF = Δ(U-TS) ≤ 0                                                          (10) 

That is, the free energy F = U - TS of such a system cannot increase. The results of (6), (9) and 

(10) are not the strongest, since the equality in each cannot be realized by any real, that is, 

irreversible process.  

 We have now rederived some of the principal results of thermodynamics using a 

characterization of thermodynamically reversible processes free of overt internal contradictions. 

The exercise could continue, but the results are a foregone conclusion.  It turns out that axiomatic 

developments of thermodynamics in the tradition of Carathéodory do not require the attribution 

of further or different properties to thermodynamically reversible processes. Zemansky (1996; 

                                                
11 The exact expressions result here from exercising the freedom to bring the process states 

arbitrarily close to states 1, 2 and those along path B. 
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1968, §§8-7 to 8-10, 9-1) has shown that Carathéodory’s analysis can be embedded within a 

traditional analysis similar to the one just given, but perhaps without the mathematical erudition. 

5.	Molecular	Scale	Systems:	When	the	Difference	Matters	
 The account of thermodynamically reversible processes of Section 2.2 includes an 

existence assumption. Whether it obtains depends on the physics governing the dynamical 

processes. It most likely does not fail as long as we neglect the molecular constitution of matter. 

More precisely, it will hold most likely in a fictitious world in which ordinary thermodynamics 

holds exactly at all scales. In this fictitious world, temperature and heat are not explicated 

statistically, but are primitive properties of matter. 

 The existence assumption will fail, however, once we allow that real matter has a 

molecular character and we consider molecular scale systems in which thermal fluctuations play 

a prominent role. Completion of any process at molecular scales requires that these fluctuations 

can be overcome. They are overcome by net driving forces that cannot be made arbitrarily small, 

in contradiction with condition (c). Even with imbalanced driving forces, no process is assured 

completion. We can at best have some definite probability of completion. If, for example, a 

temperature difference drives heat from one body to a second, there is always a small probability 

that a thermal fluctuation will return the heat and undo the process. 

 In work elsewhere (Norton, 2013, Part 2; 2013a; forthcoming), I have derived the general 

results governing this effect. Consider an isolated process. If its initial and final states have 

entropies S1 and S2, then the system will fluctuate between the two states with probabilities p1 

and p2, where 

€ 

p2
p1

= exp S2 − S1
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

for k Boltzmann’s constant. There is an analogous result for an isothermal process that 

exchanges heat but not work with its environment—this is the type of process considered 

routinely in the thermodynamics of computation. If the initial and final states have free energies 

F1 and F2, then the system will fluctuate between the states with probabilities p1 and p2, where 

€ 

p2
p1

= exp − F2 −F1
kT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  
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Thus probabilistic completion of the processes can only be assured if they are both dissipative. 

The probability ratio p2/p1 = 0.95 assures only a modest chance of completion, but it requires 

entropy creation of ΔS = S2 – S1 = 3k in the first case and a correspondingly dissipative 

reduction in free energy ΔF = F2 – F1 = -3kT. 

 In sum, on molecular scales, thermodynamically reversible processes cannot be realized 

in the sense that no completing process can be brought arbitrarily close to a sequence of 

equilibrium states. Thermodynamic reasoning is still possible for systems at molecular scales. 

However an uncritical supposition of thermodynamically reversible processes at this scale can 

lead to quite unfounded results. In a series of papers developed and summarized in Norton 

(2013), I have sought to demonstrate that just this uncritical supposition is part of the 

accumulation of theoretical failures comprising what is called the “thermodynamics of 

computation.” 

PART	II.	A	Critical	Historical	Survey	of	Accounts	of	Thermodynamically	

Reversible	Processes	

6.	A	Mechanical	Analog	
 One would not expect that the mechanics of ordinary machines could provide a model of 

thermodynamically reversible processes. For in mechanics, the least dissipative processes are 

those governed by a conservative Hamiltonian. No matter how violent or rapid its motion, a 

bouncing ball dissipates no energy as long as its bounce is fully elastic. In thermodynamics, 

however, the least dissipative processes are thermodynamically reversible and they proceed 

arbitrarily slowly without the violence of greatly imbalanced forces. 

 This difference would not have been so apparent in Carnot’s time. For the less refined 

machines of his time operated dissipatively, far from this elastic ideal. Their parts collided 

inelastically and converted work to heat. Efforts to improve their efficiency faced problems 

similar to those faced by heat engines. Just as in the thermodynamic case, such machines are 

made more efficient by minimizing all imbalances of forces and thereby slowing them down to 

an arbitrarily great extent. 
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  Sadi Carnot’s father Lazare Carnot (1786, 1808) developed a lengthy account of the 

efficiency of these machines. Lazare (1808, 30, pp. 11-12) concluded for them: 

…in order to make them produce the greatest possible effect, it must necessarily 

happen that there be no percussion, i.e. the movement should always change by 

imperceptible degrees;… 

The percussions are dissipative, inelastic collisions. The greatest effect is produced by 

minimizing the imbalance of forces that produces them. This is the analog of the condition that 

leads to thermodynamically reversible processes. 

  Lazare’s analysis included (1808, 31, pp. 300-301) “hydraulic machines moved by a 

current of water”--that is, water wheels. Once optimized according to two conditions he 

specified, Lazare concluded that  

… the form of the machine would be of little consequence; for a hydraulic machine 

which will fulfil these two conditions will always produce the greatest possible 

effect … 

The parallel to the son’s, Sadi Carnot’s (1824), results in unmistakable. He concluded that a 

reversible heat engine is the most efficient. It delivers that efficiency independently of the details 

of its construction, including notably whether the working fluid is steam or air.  

 In his memoir, Sadi Carnot (1824, pp. 60-61) compared the fall of water in a water wheel 

to the passage of caloric from hot to cold. The analogy to the least percussive processes of 

Lazare Carnot is as important and possibly more so, since those processes are the analogs of 

thermodynamically reversible process, which are the core of Carnot’s and later thermodynamic 

theory.  

7.	What	Thermodynamically	Reversible	Processes	are	Said	to	Be	(and	

why	they	are	not	quite	so)	
 My goal in this section is to inventory the characterizations of thermodynamically 

reversible processes given in the literature. What will result is not a catalog of mutually 

incompatible definitions or characterizations. For the characterizations are mostly mutually 

interdependent and that fact is widely recognized. If one decides, for example, that a 

thermodynamically reversible process is one that is very slightly removed from equilibrium, it 
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will follow that it is a process that can be reversed with slight changes of the driving forces; and 

the converse also follows. Rather the inventory merely seeks to individuate the characterizations 

with some indication of who in the literature uses each to introduce or even define 

thermodynamically reversible processes. 

 Since the notion of thermodynamic reversibility has been present since the beginning of 

thermodynamics nearly 200 years ago in Carnot (1824), the pertinent literature is enormous and 

this inventory must be quite far from exhaustive.12 I apologize to readers whose favorite 

characterization has been omitted.13  

 The inventory, however, is sufficient to establish that all is not well in the literature. With 

the sole exception of Duhem’s account discussed in Section 2.3, all of the characterizations I 

survey are inadequate. Either they are incomplete or they include provisions that contradict one 

another, so that the characterization overall is a contradiction when read literally. 

 This last assertion is my summary conclusion. I do not conclude that the notion of a 

thermodynamically reversible process is unsalvageable. That salvage was the work of Section 2. 

I do conclude that, in their eagerness to keep things simple, authors writing on 

thermodynamically reversible processes go too far in the simplifications and commonly end up 

with literal nonsense. That is, they give descriptions that are internally contradiction and thus 

cannot have a proper meaning or sense. 

 For further details on different senses of reversibility, how they connect and enter into 

thermodynamic theorizing, see Uffink (2001, 2006). One result of his investigation is that is that 

the German language literature uses two words for reversible—umkehbar and reversibel—where 

English writers use one. Taking Planck’s (1897) treatise as authoritative and highly influential in 

spite of its weaknesses on the subject, Uffink (2001, §7) finds Planck to use umkehbar to mean 

quasi-static and reversibel to mean recoverable. 
                                                
12 A Google search in June 2015 identified over 15,000 books with the word “thermodynamics” 

in the title. 
13 One familiar characterization, such as Landau and Lifshitz (1970, p.32), is that 

thermodynamically reversible processes are ones in which the total entropy of the system and 

surroundings remain unchanged. I exclude it since the standard Clausius definition of entropy 

itself requires the prior notion of thermodynamically reversible processes. 



 28 

7.1	Existential	Supposition	

 The simplest way that thermodynamically reversible processes enter is by supposition. A 

process is described and, in passing, it is declared that the process could have happened in the 

reverse direction, with all quantities of heat transferred and work done reversing their signs. This 

is how the notion enters in Carnot’s original memoire. After describing a heat engine that 

operates on what we now call a Carnot steam cycle, he declares (1824, p. 54) “The operations 

which we have just described might be have been performed in an inverse direction.” 

Carnot recognized that a process admitting such reverses might be troublesome, but the worry is 

confined to various remarks in passing, as will be discussed in Sections 7.2 and 7.4 below. 

 Subsequent authors in this early period give readers no explicit indication of the 

complications of realizing a thermodynamically reversible process. Clapeyron’s (1837) revival 

of Carnot’s dormant memoire merely notes for a Carnot cycle: “The inverse operation is equally 

possible…” (p. 351). Clausius and Thomson, in their writings from around 1850 that lay the 

foundations of the modern theory, proceed likewise. Clausius (1851, p. 103) simply describes the 

reversal of a cyclic process. Thomson (1849, p.139) alerts the reader to the importance of a 

reversible heat engine with an italicized definition, but gives no indication of the difficulties in 

realizing one: 

A perfect thermodynamic engine is such that, whatever amount of mechanical 

effect it can derive from a certain thermal agency, if an equal amount be spent in 

working backwards, an equal reverse thermal effect will be produced. 

Thomson (1852, p. 12) introduces reversible heat engines as a supposition within a consequence 

of the second law of thermodynamics: 

Prop. II (Carnot and Clausius)—If an engine be such that, when it is worked 

backwards, the physical and mechanical agencies in every part of its motions are all 

reversed, it produces as much mechanical effect as can be produced by any 

thermodynamic engine, with the same temperatures of source and refrigerator, from 

a given quantity of heat. 

Similarly Tait (1877, p. 44) and Roengten (1880, Ch. VI) declare the reversibility of a cycle 

without apology. This tradition of existential supposition persisted. Goodenough (1911, p. 47) 

asserts: 
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35. Reversibility. — The processes described in thermodynamics are either 

reversible or irreversible. A process is said to be reversible when the following 

conditions are fulfilled :  

1. When the direction of the process is reversed, the system taking part in the 

process can assume in inverse order the states traversed in the direct process.  

2. The external actions are the same for the direct and reversed processes or differ 

by an infinitesimal amount only.  

3. Not only the system undergoing the change but all connected systems can be 

restored to initial conditions.  

It is only two pages later that Goodenough (p. 49) admits in passing that such a process would 

require temperature differences that are “indefinitely small” so that 

Strictly speaking, there are no reversible changes in nature. We must consider 

reversibility as an ideal limiting condition that may be approached but not actually 

attained when the processes are conducted very slowly. 

 

The problem 

 Mere supposition of the existence of a process is inadequate if the process supposed 

contradicts other suppositions of the theory. Other than for purposes of reductio, we would not 

allow constructions in thermodynamics that depend upon the existence of a perpetual motion 

machine. Since thermodynamically reversible processes contradict the requirement that change 

needs unbalanced driving forces, why should we treat them differently? 

7.2	Driving	Forces	Differ	Insensibly	from	Zero	

 These early writers did sometimes introduce remarks later to soften their impossible 

demand for a system to be both to be in equilibrium and out of equilibrium at the same time. 

They concern the driving forces that move a system away from equilibrium, such as non-zero 

temperature differences and imbalances of mechanical forces. These differences are required to 

be close enough to zero for the difference not to matter. Here is Carnot’s (1824, p. 58) version 

In reality the operation cannot proceed exactly as we have assumed. To determine 

the passage of caloric from one body to another, it is necessary that there should be 

an excess of temperature in the first, but this excess may be supposed as slight as 
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we please. We can regard it as insensible in theory, without thereby destroying the 

exactness of the arguments. 

Clausius writing later in the 1865 paper that introduced the notion of entropy addressed the 

concern that no work can be done in a reversible process in which force and counterforce balance 

exactly (p. 357): 

However, since the difference between them can be made arbitrarily small, one can 

consider the case in which there is absolute equality as the boundary case that, even 

if it is never attainable in reality, is still to be considered as possible theoretically. 

In his later Mechanical Theory of Heat, Clausius (1879) makes similar remarks concerning 

reversible heat transfers, which can only occur between bodies at the same temperature (p. 106): 

This condition cannot indeed be exactly fulfilled, since between equal temperatures 

there can in general be no passage of heat whatever; but we may at least assume it 

to be nearly so fulfilled that the small remaining differences of temperature may be 

neglected. 

Eventually, however, it became clear that the delicate statement of the delicate conditions needed 

for reversibility required more explicit treatment. Poynting and Thomson’s (“J. J.”, not William) 

(1920) ubiquitous textbook Heat devoted nearly a full page to specifying these conditions for the 

operation of a Carnot cycle. Under the heading “Conditions for Reversible Working,” the 

conditions include (p. 264): 

…the working substance shall never differ sensibly in temperature from the bodies 

to which it is giving or from which it is receiving heat… 

… the pressure exerted by the working substance on the piston shall be sensibly 

equal to the load… 

…the machinery moves without friction… 

We shall see below in Section  2.8 that Carathéodory’s (1909, p. 366) initial introduction of his 

notion of quasi-static process also called upon differences that fall “beneath the limit of 

observation.” 
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The Problem14 

 If the deviation from equilibrium is so unimportant, it should be dropped. Of course it 

cannot, for then there would be no change in time. It is a difference that makes a difference. This 

characterization tries to have two propositions true at the same time: The states of the process are 

in equilibrium; and the states are not in equilibrium. The problem is the law of the excluded 

middle of logic. Either a proposition is true; or its negation is true; but not both. There is no third 

option.  

 This is an unforgiving assessment. No doubt these authors did not really intend to assign 

contradictory properties to reversible processes. Presumably they expected that a more explicit 

analysis, paying due attention to notions like approximation and idealization, would eliminate the 

appearance of a contradiction. Perhaps they would even assent to the account of Sections 2, 3 

and 4 above. My point, however, is that they did not give this account. They leave a central term 

in their expositions poorly defined. 

7.3	Processes	Reversed	by	Very	Small	Changes	of	Driving	Force	

 These early writers agreed that thermodynamically reversible processes must have net 

driving forces that are little different from zero and imperceptibly, insensibly and extremely so. 

However, while they surely knew, they do not make explicit what this condition has to do with 

reversibility. That connection produced a variant form of the characterization that is, I believe, 

close to the right way to conceive of thermodynamically reversible processes. 

 Loosely, the idea is that a thermodynamically reversible process is everywhere so close to 

a perfect balance of driving forces, that a slight disturbance to them can reverse the direction of 

the process. That is the origin of the reversibility. 

 Maxwell, in his Theory of Heat, gives an early example. In describing the operation of a 

Carnot cycle engine, he notes (pp. 149-50) that the engine working substance exchanges heat 

with a body that differs from it “extremely little” in temperature and, by slowing the operation, it 

can be made “as small as we please.” Then, to sustain the reversed motion, “… an exceedingly 

small alteration of the temperature will be sufficient to reverse the flow of heat, if the motion is 

                                                
14 Full disclosure: Norton (1998, p. 6-22-23) writes “An individual process is reversible if it is 

only minutely away from equilibrium.” 
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slow enough.” His analysis employs everywhere very small deviations from equilibrium, quite in 

the manner of the analysis of Section 4 above. However eventually Maxwell cannot resist taking 

the paradoxical limit (p. 150): 

But by working the engine sufficiently slowly these differences may be reduced 

within any limits we please to assign, so that for theoretical purposes we may regard 

Carnot’s engine as strictly reversible. 

 This has become the standard characterization of reversibility in some 20th century texts. 

Pippard’s (1966) widely read Elements of Classical Thermodynamics makes it the definition (p. 

22, emphasis in original): 

A reversible process is defined as one which may be exactly reversed by an 

infinitesimal change in the external conditions. 

This characterization then leads to the conclusion that a reversibly expanding fluid may 

be treated as if in equilibrium, for Pippard  concludes (p. 23): 

To sum up, if a fluid be caused to undergo an infinitesimal change 

reversibly, it is legitimate to apply the first law to the change in the form 

(3.3) 

dU = dQ – P dV 

Pippard had argued earlier (p. 21) that the work term PdV of the first law only has 

meaning if the expansion is such that the fluid “pass[es] through all intermediate states of 

equilibrium.” 

 Van Ness (1969) describes how a gas can be expanded reversibly by counterbalancing 

the gas pressure with the constantly adjusted weight of a pile of sand (p. 22, emphasis in 

original): 

This imaginary process is called reversible because at any point it could be turned 

around and made to go the other way simply by replacing the infinitesimal grains of 

sand on the piston. Only one additional infinitesimal grain of sand would be needed 

to start the reverse process. 

… 

Thus the states through which the system passes during a reversible process are for 

all practical purposes equilibrium states, or more precisely are never removed more 

than differentially from equilibrium states. 
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One also finds the characterization in the journal literature. MacDonald (1995) offers this 

summary definition (p. 1122, emphasis in original): 

In a quasistatic process, the thermodynamic system moves through a linear 

continuum of equilibrium states… A quasistatic process is carried out reversibly if a 

slight change in the forces (thermal and mechanical) driving the process can reverse 

it. (Slow heating of water by a resistor is an example of a quasistatic irreversible 

process.)  

Finally this is the account offered by Lieb and Yngvason (1998). Writing of an adiabatic 

expansion of a gas from state X to state Y, they note (p. 573): 

On the other hand, we could let the piston expand very, very slowly by letting it 

raise a carefully calibrated weight. No other machinery is involved. In this case, we 

can reverse the process (to within an arbitrarily good accuracy) by adding a tiny bit 

to the weight, which will then slowly push the piston back. Thus, we could have (in 

principle, at least) both[15] X ≺ Y and Y ≺ X, and we would call such a process a 

reversible adiabatic process. 

The delicacy of the “in principle” qualification is made clearer in Lieb and Yngvason (1999, p. 

17): 

When X ≺ Y and also Y ≺ X, then the state change can only be realized in an 

idealized sense, for it will take infinitely long time to achieve it in the manner 

described. 

 

The problem 

 In practice, this alternative characterization of reversal by imperceptibly small changes in 

driving forces reduces to the earlier characterization of Section 7.2 where deviations from 

equilibrium are deemed too small to matter. Thus it faces the same problems mentioned above. 

We cannot have states X and Y intertransformable according to both X ≺ Y and Y ≺ X, for 

example, for that would violate the principle that bodies only move when there is a net, non-zero 

force applied to them. 
                                                

15 For “X ≺ Y” read “there is an adiabatic process that transforms X into Y.” 
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7.4	Processes	that	are	Infinitesimally	Removed	from	Equilibrium	

 The last two characterizations depend upon driving forces being so small that their 

difference from zero is too small to matter. This behavior is reminiscent of the use of 

infinitesimals in the calculus and many (including Pippard above) have adopted that language in 

their characterization of thermodynamically reversible processes. Here, for example, is Fermi’s 

(1937) version: (p. 4, emphasis in original) 

A transformation is said to be reversible when the successive states of the 

transformation differ by infinitesimals from equilibrium states. 

Earlier, Lewis and Randall (1923) had combined this condition with several others, strictly 

incompatible with it. The “ideal or reversible process” they say (p. 112) is one in which 

…all sources of dissipation are eliminated. It is to be regarded as a limit of actually 

realizable processes. 

 Let us imagine a process so conducted that at every state an infinitesimal change 

in the external conditions would cause a reversal in the direction of the process; or, 

in other words, that every step is characterized by a state of balance. Evidently a 

system which has undergone such a process can be restored to its initial state 

without more than infinitesimal changes in external systems. It is in this sense that 

such an imaginary process is called reversible. 

Porter (1931), in describing Carnot’s innovations, also employs the notion of an infinitesimal 

change: (p. 14, emphasis in original) 

 …the cycle of change to be a reversible one; by which is meant that by making 

only an infinitesimal change in the temperatures and pressures of the surroundings 

the cycle may be traversed either in a clockwise or an anticlockwise sense: in other 

words, at each instant the substance must be indefinitely near to an equilibrium state 

both as regards pressure and of heat flow. This, of course, describes an unattainable 

limit, because it would require an infinite time to effect any change. 

Porter later (p. 20) indicates the changes are of the same type as “virtual displacements made in 

mechanics in the calculation of virtual work.” 

 The appeal of the connection is easy to see. Infinitesimals in the calculus are, loosely 

speaking, differences that are smaller than any ordinary magnitude, but nonetheless not zero. So 
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they do bear some resemblance to what is needed in characterizing thermodynamically reversible 

processes. They commonly arise in the taking of derivatives. A small, finite change Δx in the 

argument of the function sin(x) yields a small change in the function Δsin(x) that satisfies the 

equality only approximately 

Δsin(x) ≈ cos(x) Δx 

It is standard to replace this approximate equality by an exact equality by replacing the small 

differences with the infinitesimals d sin(x) and dx: 

d sin(x) = cos(x) dx 

Division by dx, which would be impossible if dx were strictly zero, then gives us the exact 

derivative 

€ 

d sin(x)
dx

= cos(x) 

It is customary to treat the infinitesimals as quantities greater than zero but smaller than any 

positive real since that makes the manipulations the same as those of ordinary algebra. However 

that treatment is, strictly speaking, nonsense since there are no real numbers meeting this 

description.16 

 What makes these manipulations legitimate is that there is a second reading for these 

equations. In it, the symbol “d” no longer represents an infinitesimal difference. Rather it is the 

derivative operator d/dx, defined by the usual limiting procedure 

€ 

df (x)
dx

= Lim
Δx→0

f (x+Δx)− f (x)
(x+Δx)− x

 

 If precision and meaning becomes the issue, we simply revert to this precise interpretation. 

 This analogy to the differential calculus extends back to the beginning of 

thermodynamics. Carnot (1824, p. 53) is clearly alluding to it when he writes: 

                                                
16 Atkins (2010, p. 27, emphasis in original) defines a reversible process as “one that is reversed 

by an infinitesimal modification of the conditions in the surroundings” and adds “The key word 

is infinitesimal.” An infinitesimal is treated as the smallest non-zero displacement. For (p. 28) a 

reversible expansion is reversed “…if at any stage the external pressure is increased even 

infinitesimally, then the piston will move in rather than out.” 
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We may perhaps wonder here that the body B being at the same temperature as the 

steam is able to condense it. Doubtless this is not strictly possible, but the slightest 

difference of temperature will determine the condensation, which suffices to 

establish the justice of our reasoning. It is thus that, in the differential calculus, it is 

sufficient that we can conceive the neglected quantities indefinitely reducible in 

proportion to the quantities retained in the equations, to make certain of the exact 

result. 

 

The problem 

 Infinitesimals can be used in ordinary differential calculus in spite of their internal 

contradictions, since they are surrogates for differential operators free of manifest contradiction. 

We are, it seems, supposed to presume that since infinitesimals can be used in the calculus, they 

are also licit in the new setting. These authors in thermodynamics, however, provide no account 

of unproblematic surrogates for their infinitesimals. Without such an account, the contradictions 

internal to the account remain.17 

7.5	Infinitely	Slow	Processes	

 The complement to the infinitesimally small driving force is the infinitely slow process 

that takes infinitely long to complete. This is a standard characterization. Perhaps the best known 

is Planck’s (1887, pp. 49-50): 

Special theoretical importance must be attached to those thermodynamical 

processes which progress infinitely slowly, and which, therefore, consist of a 

succession of states of equilibrium. Strictly speaking, this expression is vague, since 

a process presupposes changes, and, therefore, disturbances of equilibrium. But 

where the time taken is immaterial, and the result of the process alone of 

                                                
17 An interesting possibility is that non-standard analysis might provide an account of these 

infinitesmals free of manifest contradiction. I have found no such account in the literature and 

expect the reconstruction would be quite complicated. It would include various hyperreal 

infinities for the times of the processes and a means of assigning thermodynamic quantities to 

states infinitesimally removed from equilibrium. 
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consequence, these disturbances may be made as small as we please, certainly very 

small in comparison with the other quantities which characterize the state of the 

system under observation. 

Planck continues to describe how infinite slowness is achieved in processes. They have external 

pressures that are, for example, “just a trifle” greater than the system gas pressure and heat 

reservoirs with temperatures “of slightly higher or lower temperature.” Then a limit to infinite 

slowness is taken. 

 These infinitely slow processes are connected with reversible processes by a familiar 

argument (p. 51, emphasis in original) 

The value of this method of viewing the process lies in the fact that we may 

imagine each infinitely slow process to be carried out also in the opposite direction. 

If a process consist of a succession of states of equilibrium with the exception of 

very small changes, then evidently a suitable change, quite as small, is sufficient to 

reverse the process. This small change will vanish when we pass over to the 

limiting case of the infinitely slow process, for a definite result always contains a 

quite definite error, and if this error be smaller than any quantity, however small, it 

must be zero. 

Unfortunately, this characterization can be quite misleading, unless one is paying attention to the 

details. Mere infinite slowness is not enough to deliver a thermodynamically reversible process. 

Counterexamples appear repeatedly in the literature. 

 The simplest is just a vessel containing a gas under pressure that leaks extremely slowly 

in a larger, evacuated chamber through a tiny hole. The process can be made arbitrarily slow by 

making the hole arbitrarily small. Then, during the process, the states of the gas in the vessel and 

in the larger chamber can be brought as close to equilibrium as we like. A gas expanding while 

doing no work, no matter how slowly, is a paradigm example of an irreversible process. 

 A variant consists of a gas contained within a succession of very many, closely spaced 

barriers or membranes. They are slid away or punctured one by one from the inside, allowing the 

gas to expand slightly each time, while doing no work, to achieve a new equilibrium at each 

stage. In such a process, an ideal gas will trace out the curve (12) below of equilibrium states, 

while once again undergoing an irreversible expansion. See Kestin (1979, pp. 130-31); Uffink, 

(2001, p. 344). 
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 Many variants are possible. Sommerfeld, (1962, p. 17) describes an electrically charged 

capacitor whose stored energy is converted irreversibly to heat by discharge through a resistor. 

The process can be slowed arbitrarily by employing an arbitrarily large resistance, yet the 

process remains irreversible. 

 The requirement of infiniteness slowness must be supplemented by a second condition 

already implicit in Planck’s examples: the infinite slowness arises because the forces driving the 

process forward are brought arbitrarily close to perfect balance. As a result, the capacity of gas 

pressure or higher temperature to do work is not lost. This condition fails in the irreversible 

processes just considered. 

  A more careful characterization will include this further condition. For example, 

Sommerfeld (1956, p. 19) writes: 

Reversible processes are not, in fact, processes at all, they are sequences of states of 

equilibrium. The processes which we encounter in real life are always irreversible 

processes, processes during which disturbed equilibria are being equalized. Instead 

of using the term “reversible process” we can also speak of infinitely slow, quasi-

static processes during which the system’s capacity for performing work is fully 

utilized and no energy is dissipated. 

 

The problem 

 In thermodynamics, an infinitely slow process is a process that is slowed arbitrarily in all 

its stages. Considering seriously the completion of such processes invites trouble. How are we to 

chain two such processes together, so that the second begins when the first completes? The first 

never completes, so the second never begins. Similarly, how are we to understand that the first 

process can complete, when that completion cannot happen until an initial proper part of process 

has completed. Yet completing that proper part will also require an infinity of time first to elapse. 

 Fortunately, we need not linger over such puzzles. These infinitely slow processes are 

just process in which no changes at all occur. They are frozen for all time in their initial states. 

To imagine otherwise is to imagine that there is some moment in time, infinitely far in the future, 

at which the process is completed. There is no such moment of time. Every moment of future 

time comes immediately after some finite time has elapsed and, by supposition, no change has 

occurred after each finite time. Since there is no moment of time infinitely in the future, talk of 
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completion of an infinitely slowed process is literally nonsense: speech whose words do not refer 

to anything. 

 It is remarkable that authors who pride themselves on precision of analysis are willing to 

recognize these elementary facts but dismiss them with inadequate deflections. Buchdahl (1966, 

p. 11) writes: 

The requirement that any finite quasi-static transition will require an infinite 

interval of time must not be taken too seriously. What effectively constitutes a 

quasi-static transition in practice can ultimately be decided only by an appeal to 

relaxation times … Here, as in any theory involving the consideration of conditions 

unrealizable in practice, one just has to be ‘reasonable’ in the interpretation of 

idealizations which have been introduced: granted that such idealizations do not 

come into conflict with some basic natural law. 

Presumably being “reasonable” is an invitation to drop strict standards of rigor. The 

encouragements to drop the standards are inadequate. A study of relaxation times will only tell 

us how long a process requires to slow to some nominated degree, while never actually stopping. 

(See equations (15) and (16) below.) Moreover the idealization of infinite slowness does conflict 

with basic natural laws: in thermal physics, heat cannot be transferred without a non-zero 

temperature difference; in dynamics, a body cannot be moved without a non-zero force; in 

spacetime geometry, there is no real event at temporal infinity where these processes are 

completed. 

 Even authors of axiomatic systems dismiss the problems. As we saw, Lieb and Yngvason 

(1999, p.17) develop a precise axiom system in which two thermal states can be accessed from 

each other in what would be a reversible process, even though “it can only be realized in an 

idealized sense, for it will take infinitely long time to achieve it…” 

7.6	Process	in	which	the	Initial	State	can	be	Restored	

 In a thermodynamically reversible process, a certain quantity of heat is gained by the 

system and a certain amount of work is done by it. This heat is transferred from some system of 

heat reservoirs; and the work is captured by mechanical devices, typically idealized as the raising 

of weights. When the reversed process is carried out, the same magnitude of heat and work are 

exchanged, but they pass in the opposite direction. If heat is gained in the forward direction, it is 
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lost in the reversed direction. If the system does net work on the surroundings in the forward 

direction, net work is done on it in the reverse direction. As a result, if a thermodynamically 

reversible process is then immediately followed by its reversal, the heat reservoirs and 

mechanical devices with which it interacted can be restored to their original states, as will the 

system itself. 

 This property of full restoration has been used as a distinctive characteristic of 

thermodynamic processes. Mcaulay (1913, p. 16) expresses it as: 

A reversible process is one which can be retraced, so that the substance passes 

through the same states as in the direct process, but in the reverse order; the 

amounts of heat received and of work done in each step being the same as in the 

direct process, but with opposite signs; heat being parted with where in the direct 

process it was received, and work being done upon the substance by some external 

agency where in the direct process it did work. 

Zemansky (1968, pp. 191-92, emphasis in original) gives a quite thorough statement of this 

characterization of a thermodynamically reversible process. 

Now suppose that a process occurs in which (1) the system proceeds from an initial 

state i to a final state f; (2) the suspended object is lowered to an extent that W units 

of work are performed; and (3) a transfer of heat Q takes place from the system to 

the series of reservoirs. If, at the conclusion of this process, the system may be 

restored to its initial state i, the object lifted to its former level, and the reservoirs 

caused to part with the same amount of heat Q, without producing any changes in 

any other mechanical device or reservoir in the universe, the original process is said 

to be reversible. In other words, a reversible process is one that is performed in 

such a way that, at the conclusion of the process, both the system and the local 

surroundings may be restored to their initial states, without producing any changes 

in the rest of the universe. A process that does not fulfill these stringent 

requirements is said to be irreversible. 

Henderson (2014, p. 92) gives a similar definition. 

 Planck (1897, pp. 82-83, emphasis in original) has a more general version that proceeds 

indirectly by first defining irreversible processes: 
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A process which can in no way be completely reversed is termed irreversible, all 

other processes reversible. That a process may be irreversible, it is not sufficient 

that it cannot be directly reversed. This is the case with many mechanical processes 

which are not irreversible … The full requirement is, that it be impossible, even 

with the assistance of all agents in nature, to restore everywhere the exact initial 

state when the process has once taken place. 

 

The problem 

 The difficulty with this characterization is the same as with existential supposition in 

Section 2.1. One can introduce processes by supposition as a matter of definition. That falls short 

of showing that they are processes admissible in the theory and that we can infer general results 

from supposing them, unless they are introduced for purposes of reductio. 

 The difficulty is sharpened in Zemansky’s exposition. Having introduced the above 

definition, he continued to assert: (p. 192) “We shall show that it is a consequence of the second 

law of thermodynamics that all natural processes are irreversible.” I add the obvious: the laws of 

thermodynamics also have as consequences that certain perpetual motion machines are 

impossible. That immediately precludes their supposition, other than for purposes of reductio. 

Why should thermodynamically reversible processes escape preclusion for the same reason? 

7.7	Processes	that	are	Mechanically	Reversible	

 As long as we deal only with ordinary thermodynamics, there is little danger that we 

confuse thermodynamically reversible processes with mechanically reversible processes. These 

latter are processes whose time reversal is permitted by the governing dynamical laws. The 

familiar examples are of systems in ordinary mechanics governed by time reversible, 

conservative Hamiltonians, such as the fully elastic collisions of billiard balls. 

 Where confusion can arise is when we recall that ordinary thermal systems are composed 

of many components whose microphysics is mechanically reversible. A gas is not a continuous 

fluid but many molecules, moving rapidly, undergoing fully elastic collisions, quite like the 

billiard balls. 

 That fact invites a conflation of thermodynamic reversibility and mechanical 

reversibility. The conflation should be avoided. They are quite distinct senses of reversibility.  
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• Mechanical reversibility applies to isolated processes that evolve independently of their 

environment. The mechanical process of elastic billiard ball collisions is reversed merely 

by momentarily reversing all the velocities of the balls. The process will then proceed to 

undo itself without further intervention. 

• Thermodynamic reversibility applies to processes that evolve in continuous engagement 

with their environments; and to reverse a thermodynamic process, one must change the 

entire environment in which the process happens. For example, to reverse an isothermal 

expansion of a gas in which a weight is raised, one must reconfigure the coupling to the 

weight so it now overpowers the gas pressure and recompresses the gas. Similar 

adjustments are needed for the temperatures of the heat reservoirs. 

There are other obvious differences. In ordinary mechanical processes, any conversion of work 

to heat is a dissipative loss. Heat engines, running in reverse, however, can convert work to heat 

while operating with minimal dissipation in the thermodynamic sense, that is, coming arbitrarily 

close to a constant entropy process. 

 We would hope that no one would encourage the conflation of the two senses of 

reversibility. Unfortunately Planck (1897) does just this. Immediately following his discussion of 

reversibility as restoration of the initial state, he offers a series of illustrations of mechanical 

reversibility (p. 83): 

… all perfectly periodic processes, e.g. an ideal pendulum or planetary motion, are 

reversible, for, at the end of every period, the initial state is completely restored. 

Also, all mechanical processes with absolutely rigid bodies and absolutely 

incompressible liquids, as far as friction can be avoided, are reversible. By the 

introduction of suitable machines with absolutely unyielding connecting rods, 

frictionless joints and bearings, inextensible belts, etc., it is always possible to work 

the machines in such a way as to bring the system completely into its initial state 

without leaving any change in the machines, for the machines of themselves do not 

perform work. 

Planck’s text proceeds with a further example of a heavy liquid oscillating without friction under 

gravity in connected tubes. 

 The invitation to confusion seems largely to have been ignored, although at least one 

contemporary writer pursued it. Klein (1910, pp. 31-32) quoted Planck’s text approvingly and 
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then added further examples of his own. They included “Free fall in a vacuum, propagation of 

light and sound waves without absorption and reflection and unchecked electrical oscillations.” 

 Credit for the most egregrious conflation of the two senses goes to Progogine (1961). His 

Chapter III “Entropy Production—the Second Principle of Thermodynamics” begins with a first 

section: (p. 14, emphasis in original) 

1. Reversible and Irreversible Processes 

Let us consider equations which describe some time-dependent physical processes. 

If these equations are invariant with regard to the algebraic sign affixed to the 

variable time, the process is called a reversible process, otherwise it is called 

irreversible. In the equations describing reversible processes, time can appear only 

through its arithmetic value. 

Lest there be any doubt over the conflation committed, Prigogine then displays a wave equation. 

It is judged to describe reversible processes, since it is invariant under the substitution of –t for 

the time variable t. He displays the Fourier equation for temperature changes. It describes an 

irreversible process since it is not invariant under this substitution. The immediately following 

section, “2. Entropy,” then associates a zero change in entropy with reversible processes and an 

increase in entropy with irreversible processes. 

 Prigogine’s definition is ruinous to thermodynamics. According to it, the 

thermodynamically irreversible expansion of heat radiation into empty space is reversible since it 

is governed by a wave equation. However heat transfer, governed by the Fourier equation, can 

never be reversible. 

 There has been a recent literature in philosophy of physics that probes the relation 

between these senses of reversibility, while, I fear, not always recognizing the how completely 

distinct they are. See Brown and Uffink (2001), Henderson (2014), Marsland et al. (2014) and 

Uffink (2001, §11). 

7.8	Quasi-static	Processes:	Possible	Meanings	

 So far, none of the characterizations of thermodynamically reversible processes can be 

literally true. Prospects for a new approach came with Carathéodory’s (1909) axiomatic 

approach to thermodynamics. If physicists cannot provide an unobjectionable characterization, 

perhaps the mathematicians can. Carathéodory (p. 368) remarked that so far the notion of 
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“reversible” had been given only intuitively. He would now offer a precise characterization. The 

core to the new characterization was his notion of “quasi-static process.” His concern was the 

special case of an adiabatic process in a system S for which the work “A” would be determined 

by the initial states and time evolution of the system tracked by time-t indexed, changing 

“deformation coordinates” x1(t), x2(t), … , xn(t) that span the non-equilibrium states of the 

system. He then posited (p. 366): 

… when the velocity with which the system is deformed becomes “infinitely slow,” 

or, more precisely, when the derivatives: 

x1’(t), x2’(t), … , xn’(t) 

converge uniformly to null, the work A shall go to a definite value in the limit. We 

would like to call a ‘quasi-static’ change of state one that proceeds so slowly that 

the difference between the applied external work and this limiting value falls 

beneath the limit of observation. 

This definition is soon explicated by (emphasis in original): 

A quasi-static, adiabatic change of state can thus be interpreted as a sequence of 

equilibrium points, and each quasi-static, adiabatic change of state corresponds to a 

specific curve in the space of xi. 

However careful Carathéodory may have been, his description here proved too terse to fix a 

definite meaning for quasi-static processes in the subsequent literature. What is striking in that 

literature is the proliferation of readings for the notion. As the survey below will show, it proves 

to be a term that should be used with caution. It has no universally agreed upon meaning. We 

shall even see that many authors distinguish quasi-static processes from reversible processes, 

which negates Carathéodory’s original goal. 

 There seem to be at least three readings that have been grafted onto Carathéodory’s idea. 

They will be treated separately below. For reference I name them as follows: 

1. Bare Curve. A quasi-static process is merely a set of equilibrium states forming a curve 

in equilibrium state space. 
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This reading picks up on Carathéodory’s mention of “infinitely slow,” of velocities taking their 

limiting values of zero and the word “curve.”18 A second reading seeks to add a dynamical 

element, perhaps reflecting Carathéodory’s concern with the work term: 

2. Force-Balanced Curve. A quasi-static process is a process in which a (near) perfect 

balance of forces drives the system (near enough) through a continuous set of 

equilibrium states that form a curve in equilibrium state space. 

There are two versions: a strict version without the parenthetic qualifications “near” and “near 

enough”; and a qualified version with them. 

 Finally, there is a reading that interprets Carathéodory’s “sequence of equilibrium points” 

as a discrete set connected by curves in a non-equilibrium space of states spanned by the 

coordinates xi: 

3. Iterated Equilibria. A quasi-static process is a process in which the system passes very 

slowly by means of a non-equilibrium process from one equilibrium state to the next, 

and so on, for a set of equilibrium states, distributed as discrete points along a curve in 

equilibrium state space.  

A helpful image here is of a stone skipping across the water of a pond: it is mostly in the air of 

non-equilibrium states, touching down only momentarily on the equilibrium state, water surface.  

 Which of these Carathéodory intended is not entirely clear. Mention of “infinitely slow” 

and of time derivatives of the coordinates of the non-equilibrium states x1’(t), x2’(t), … , xn’(t) 

converging to zero suggest equilibria. That indicates the bare or force-balanced curve, 

implemented strictly. However the persisting of differences from equilibrium conditions 

“beneath the limit of observation” and a “specific curve in the [nonequilibrium] space of xi” 

suggest the qualified force-balanced curve or the implementation as iterated equilibria.  

                                                
18 It is all too easy to overlook that Carathéodory’s “space of of xi” that hosts the curve is not 

equilibrium state space. Instead, the coordinate x0 is the only equilibrium state coordinate; the 

remaining coordinates span non-equilibrium states. 
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7.9	Quasi-Static	Processes:	The	Bare	Curve	

 This bare reading is common. In a review article “Fundamental Thermodynamics Since 

Carathéodory,” Redlich (1968, p. 558) glosses quasi-static processes briefly as “a sequence of 

equilibrium states.” Pauli (1973, p. 29) gives this definition: 

3. Quasi-static changes of state: These changes of state are very slow, infinitely 

slow in the limiting case, so that the intermediate states form a continuous sequence 

of equilibrium states. 

He makes clear that this notion is to play the role of reversible processes when he remarks (p. 17) 

“A quasi-static process is always reversible.” 

 In spite of the unambiguity of their words, it is hard to believe that accomplished authors 

such as these really intend the bare notion to play the role of reversible processes, for the bare 

notion falls well short of what is needed. We have already seen that mere infinite slowness is not 

enough to bring reversibility. Moreover, a quasi-static process cannot be represented simply by 

the resulting parameterized curve in the state space, if it is to serve the function of 

thermodynamically reversible processes. 

 What is the problem? An elementary example illustrates it. Consider the isothermal 

expansion of an ideal gas of n moles at pressure P, volume V and temperature T. Its equation of 

state is PV = nRT for the R the ideal gas constant. If it expands reversibly following the usual 

prescriptions, then work 

dW = P dV                                                                  (11) 

is done by the gas pressure P during a small expansion dV of the volume. To preclude cooling of 

the gas from this loss of energy, a quantity of heat dQ must be passed to the gas from the 

surroundings. Since the internal energy of an ideal gas is fixed by its temperature and that is 

maintained constant at T, the internal energy will not change and we have dQ = dW. During this 

expansion, the pressure will drop according to  

P = nRT/V                                                                  (12) 

The process will be traced out by the hyperbola in PV space corresponding to this formula. 

 The difficulty is that there is a second fully irreversible process that traces out the same 

curve and can do it as slowly as we like. We once again allow an ideal gas to expand. But this 

time we employ the closely spaced barriers or membranes mentioned in Section 2.5 above. Or 

we can employ a cylinder with a piston whose motion is so impeded by friction that it barely 
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moves. During the expansion no energy is extracted from the piston as work. All that energy is 

lost to friction as heat, which is returned to the gas. Since the internal energy remains constant, 

so does the temperature T of the ideal gas. This irreversible expansion traces the same hyperbola 

(12) in the PV state space and, by suitable increase in the friction, can be made to take an 

arbitrarily long time. 

 Thus, this characterization of quasi-static processes is inadequate if it is also to represent 

thermodynamically reversible processes. 

 The failure of the bare curve is reflected in a continuing literature devoted to correcting 

the misuse. Samiullah (2007, p. 608) reports 

A quasi-static process is a change in the state of a system that is conducted 

infinitesimally slowly such that, at each instant, the system is in thermodynamic 

equilibrium with its environment, and its thermodynamic properties, such as 

volume, pressure, and temperature, remain well-defined throughout the process. 

Quasistatic processes are often misunderstood to be reversible, especially in 

elementary physics texts. 

To illustrate a quasi-static process that is not reversible, Thomsen (1960) explores the above 

example of a gas expanded by a friction-damped piston. 

 Because of these difficulties, there now is a well-established tradition of distinguishing 

quasi-static processes, in the bare sense here, from reversible processes. We saw above in 

Section 7.3 that MacDonald (1995, p. 1122) was able to define “a quasistatic irreversible 

process” and to require further conditions if a quasi-static process is to be reversible. Lebon et al. 

(2008, p. 4) characterize a quasi-static process as “those that may be considered as a sequence of 

neighbouring equilibrium states” and then affirm: “A quasi-static process is either reversible or 

irreversible.” Linder (2004, pp.10-12) briefly surveys reports in the literature that not all quasi-

static processes are thermodynamically reversible, concluding that “the terms quasi-static and 

reversible are not uniquely defined.” He gives two definitions of quasi-static process. The second 

is illustrated by the infinitely slow heating of a system through a poorly conducting metal plate. 

It is not reversible, I presume, since this heating would have a finite temperature difference 

across the metal plate. 
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The problem 

 While a bare curve in equilibrium state space is a well-defined structure, the above 

discussion demonstrates that it cannot serve the function of a thermodynamically reversible 

process. 

7.10	Quasi-Static	Processes:	The	Force-Balanced	Curve	

 The difficulties of the bare curve indicate that the notion of a quasi-static process 

involves more conditions on the system than can be recovered solely from the curve in 

equilibrium state space. That is, the curve must be produced in the right way, which is by 

perfectly balanced or near perfectly balanced forces. 

 This was a central concern of Carathéodory’s original definition. He separated the cases  

of the hyperbola (12) representing a reversible or an irreversible expansion of the gas by 

requiring that a quantity of work corresponding to (11) be associated with the process. For this 

quantity of work is returned by the reversible process, but not the irreversible process. This work 

term, in German Arbeit, A(t), can be expressed solely as a function of the state variables defined 

along the curve, which is parameterized by a variable t:  

€ 

A(t) = DA
t0

t
∫                                                                       (13) 

where the Pfaffian DA is the generalization for many variables of the work term dW of (11) 

DA = p1 dx1 + p2 dx2 + … + pn dxn                                                (14) 

This strict, force-balanced formulation is quite common. Wilson (1957, p. 10) offers it as a 

formal definition: 

A quasi-static change in which a body passes from the equilibrium state 1 to the 

equilibrium state 2 is such that there is a linear continuum of equilibrium states to 

which 1 and 2 belong, and such that the body will successively take the states 

connecting 2 to 1 by a simple reversal of sign of the displacements, of the work 

done and the heat absorbed. 

The balance of forces is reflected in the requirement that the process reverses with the given sign 

reversals. This version is the strict one without the parenthetic “near enough” qualification. As a 

result, Wilson must allow (p. 9) that such a process “cannot be realized in practice, though we 

may approximate to it in favorable circumstances.” Comparable versions can be found in 
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Buchdahl (1966, p. 11), Linder (2004, p. 11), Pippard (166, p. 21) and in Reiss (1965, p. 9), who 

takes this sense of quasi-static to be synonymous with reversible. 

 The qualified force-balanced formulation is rarer. Here is a version in Zemansky (1968, 

p. 53; his emphasis): 

We are led, therefore, to conceive of an ideal situation in which the external forces 

acting on a system are varied only slightly so that the unbalanced force is 

infinitesimal. A process performed in this ideal way is said to be quasi-static. 

During a quasi-static process, the system is at all times infinitesimally near a state 

of thermodynamic equilibrium, and all states through which the system passes can 

be described by means of thermodynamic coordinates referring to the system as a 

whole. 

Zemansky continues to note that such process cannot be realized in the laboratory but can be 

approximated arbitrarily well. 

 

The problem 

 The difficulty for the strict version is that the process has become a purely mathematical 

construction. It is not a real physical process in which a system changes its state through time, no 

matter how earnestly we name it so. Callen (1985, p. 96, emphasis in original) makes the point 

with clarity: 

A quasi-static process is thus defined in terms of a dense succession of equilibrium 

states. It is to be stressed that a quasi-static process therefore is an idealized 

concept, quite distinct from a real physical process, for a real process always 

involves nonequilibrium intermediate states having no representation in the 

thermodynamic configuration space. Furthermore, a quasi-static process, in contrast 

to a real process, does not involve considerations of rates, velocities, or time. The 

quasi-static process simply is an ordered succession of equilibrium states, whereas a 

real process is a temporal succession of equilibrium and nonequilibrium states. 

There is a similar problem, I add, with the assignment of the work term (13) in the strict version. 

It is a purely abstract attachment. There is no transfer of work energy. For a force only does work 

when the force moves through a distance and there is no such motion. One can integrate 
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Carathéodory’s generalized forces pn of (14) in (13). But since nothing is moving or changing 

state in time, there is no work associated with it. There is just an integrand. 

 The qualified version escapes these difficulties. It allows imbalances of forces that can 

drive a real process. However it faces the familiar difficulty developed in Sections 7.2, 7.3 and 

7.4 that the states are not equilibrium states, even if “infinitesimally” close to them. This concern 

is presumably the import of Truesdell’s (1969, p. 22) riposte “…whatever it is that the 

thermodynamicists mean by ‘quasi-static’”. To it he adds, in an ironic footnote, the unsourced 

quote “ ’A change so small that the system may be considered in equilibrium at all times’ (sic).” 

7.11	Quasi-static	processes:	Iterated	Equilibria	

 A sustained attempt to clarify Carathéodory’s notion of quasi-static process was made by 

Tatiana Ehrenfest-Afanassjewa (1956).19 In her earlier analysis (1925, p. 934), she had used a 

bare characterization: “We call--following Caratheodory--a continuous sequence of pure 

equilibrium states a ‘quasi-static” change of state.” This reflects the difficulties even careful 

writers have had in interpreting Carathéodory’s work. By the time of her later work, this bare 

characterization was replaced by a carefully made distinction between quasi-processes and quasi-

static processes.  

 A “quasi-process” coincides with the bare curve: it is just a continuous set of equilibrium 

states forming a curve in the equilibrium state space. She writes (1956, p. 13): 

We will very much concern ourselves further with continuous sequences of 

equilibrium states that connect two given equilibrium states. They will be 

represented graphically by curves in Rn [equilibrium state space]. They have 

so far always had the name of “processes” and indeed of “reversible” 

processes. We will prefer to call them “quasi-processes,” for—obviously—

one can realize them through no real process; however in this regard, we 

want to discard emphatically the epithet “reversible”(see §10).20 

                                                
19 I thank Jos Uffink for drawing this important, less known work to my attention. 
20 In §10, she explains further: “…quasi-processes just aren’t processes. There is, therefore, 

nothing there that could be reversed…” 
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Since a quasi-process is no process at all, Ehrenfest-Afanassjewa introduced the distinct notion 

of a quasi-static process to connect quasi-processes with real processes. Their importance is most 

fully explained later in the text (p. 56): 

In order to make a quasi-process open to experimental investigation or just to 

connect it with experiments in thought, one has to conceive it as approximated by 

quasi-static processes. These are in turn real processes, if also idealized. 

What are quasi-static processes? Some preparatory work had already been done in the section 

preceding the introduction of this second notion of process. There she (pp. 12-13) defined an 

“elementary quasi-static process.” This process is a “forced change of state” that results from the 

disturbance from equilibrium in some system by a coupling with the environment. Its properties 

included the following: 

the differences between the initial and final parameters of the given system are 

arbitrarily small; the state of the system during the entire process is as good as an 

equilibrium state… 

as well as further conditions that limit the speed with which the parameters characterizing the 

system can change. 

 A quasi-static process is then introduced as a compounding of a sequence of elementary 

quasi-static processes (p. 13): 

Although a quasi-process, strictly speaking, is therefore not realizable, one can at 

least posit an arbitrarily dense, discrete sequence of equilibrium states that belong to 

the system, and indeed such, that also during the process that connects two 

consecutive equilibrium states, the state of the system is well-nigh an equilibrium 

state. That is to say, one allows the system to pass through a sequence of elementary 

quasi-static processes. We call such a sequence a “quasi-static process.” (compare 

C. Caratheodory, Untersuchung über die Grundlagen der Thermodynamik (Math. 

Ann. 67[1909], 355)). 

In brief, in a quasi-static process, a system passes through a dense, discrete set of equilibrium 

states with processes whose states are well-nigh (German: beinah) equilibrium states. It is the 

iterated equilibria conception. 

 Ehrenfest-Afanassjewa proceeds to note that these processes are “infinitely slow.” She 

had earlier introduced the notion of an infinitely slow process with necessary caution: (p.11) 
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Of course an exact, infinitely slow process does not exist. Hence one cannot say 

that the just described arbitrarily slow process has an infinitely slow process as a 

limiting case. … If we still apply the name “infinitely slow” to the just described 

process, then we mean to say thereby that the process at issue is sufficiently slow 

that we may neglect thereby certain deviations in each of its states from equilibrium 

states. 

 This conception can be found elsewhere in the literature. Callen (1985, pp. 96-97) gives a 

careful exposition of the process of iterated equilibria, complete with a diagram in which the 

equilibrium states of the process are represented as points on a surface in equilibrium state space. 

Callen, however, does not call the process of iterated equilibria a quasi-static process. That term 

is reserved for the curve drawn through the points in equilibrium state space. His sense 

corresponds with the force-balanced curve. Landsberg (1978, p. 5) has the same formulation. 

Having introduced thermodynamic state variables, he continues: 

By changing the variables and after each change allowing the system to return to 

equilibrium before one is estimating the values of the variables, one can plot 

various states characteristic of the systems in the thermodynamic phase spaces. 

Curves drawn through these points are such that each point represents an 

equilibrium state. One can imagine a system being taken slowly through all the 

states represented on such a curve. This process is called a quasi-static process. 

O’Connell and Haile (2005, p. 21) describe the same processes and structures, but label them 

differently. They define a quasi-static process as one with non-equilibrium jumps between 

equilibrium states. They do not, however, identify their quasi-static processes with reversible 

processes. The latter are produced by taking a limit in which all imbalanced driving forces are set 

to zero. “Hence,” they conclude, “a reversible change can be represented by a continuous line on 

a state diagram.” 

 

The problem 

 Quasi-static processes as iterated equilibria are real processes unfolding in time. They 

 depend on just the troublesome notions we have seen in other treatments. The states through 

which the process passes are not equilibrium states, but they are so close that they are “as good 

as” or “well-nigh.” The processes are said to proceed infinitely slowly. Fortunately Ehrenfest-
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Afanassjewa allows that there is no cogent notion of infinitely slow process as a limit. Rather 

they are processes that are so slow that we may neglect deviations of equilibrium. 

 There is a further problem arising from the requirement that the processes jump 

successively from equilibrium state to nearby equilibrium state. In generic systems, no single 

jump can complete, if it is to terminate in an equilibrium state. Informally speaking, as the 

process approaches its equilibrium end state, the driving forces drop to zero. The result, at least 

in the generic case, is that the approach is asymptotic, coming arbitrarily close to completion, but 

never arriving there in any finite time. 

 For example, consider a body with heat capacity C at temperature T cooling to 

equilibrium at temperature Te by losing heat to a heat bath at Te. The rate of heat transfer is 

k(T -Te), for heat transfer coefficient k. Combining, the process is governed by the differential 

equation 

€ 

d
dt
C(T −Te ) = −k(T −Te )                                                  (15) 

The solution is an asymptotic approach to the equilibrium temperature Te:  

€ 

T (t) =Te + (T (0)−Te )exp −
k
C
t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                                        (16) 

where T(0) is the body’s temperature at t=0. 

 For moving bodies, such as pistons, a comparably simple case is a body brought to rest 

by velocity dependent friction forces. Generically, such a motion is governed in its final stages 

close to equilibrium by the linearized differential equation

€ 

d
dt
mv = −µv, where the body has mass 

m, speed v and coefficient of friction µ. The solution is an exponential decay of the same form 

that allows only an asymptotic approach to rest at v = 0. 

€ 

v(t) = v(0)exp − µ
m
t

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

8.	Conclusion	
 The principal claim of this paper is that the difficulties of thermodynamically reversible 

processes lie purely in the definitions used. There is no irreparable failure of thermodynamic 

theory. There is a failure only of our descriptions of one of its central notions. Section 7 above 
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gives an inventory of the problems of standard definitions, most of which derive from the 

tensions between the two parts of the paradox outlined in Section 1. 

 In so far as a thermodynamically reversible process is constituted of equilibrium states, it 

is no real process of change, even as an invention in imagination of a highly idealized fiction. 

For such a process would contradict basic facts of ordinary mechanics and of thermal physics. It 

would transfer heat without a temperature difference and move bodies mechanically without a 

net, non-zero force. 

 In so far as thermodynamically reversible process is constituted of non-equilibrium states, 

it cannot have the properties of equilibrium systems. There is no remedy in stipulations that the 

states of the process are so close to equilibrium, even infinitesimally close, that the difference 

does not matter. For the difference does matter: it is what enables the system to change in time. 

Otherwise the difference could be eliminated. 

 The proposal of Section 2 is designed specifically to resolve the paradox and to avoid the 

problems listed in Section 7 above. Key elements in the proposal are: 

• The term “thermodynamically reversible process” does not designate a process 

constituted by equilibrium states, but a set of irreversible processes, all constituted of 

non-equilibrium states. 

This eliminates the difficulty that equilibrium states do not change with time and thus cannot 

partake in a process of change. 

• The irreversible processes form a set whose states come arbitrarily close to equilibrium 

states. 

Characterizing a reversible process as a single process leads to the difficulty of determining just 

how close the states of the single process should come to equilibrium to be close enough for the 

driving forces to vanish near enough and for quantities of heat and work to adopt reversible 

values. Employing a set rather than a single process eliminates the difficulty: these properties are 

recovered as limit properties of the set, without the need for qualifications like “near enough.” 

The limit operation generates properties only. It does not generate a single process with the 

internally contradictory properties of being at equilibrium yet still changing. 

• The notion of reversibility is implemented by the existence of both “forward” and 

“reverse” processes in the set. 



 55 

Otherwise reversibility is represented inadequately in the fact that a continuous set of 

unchanging equilibrium states can be reparameterized in the reversed direction; or in the vague 

locution that a single irreversible process that is “near enough” to equilibrium states can be 

reversed by suitably small change in driving forces. 

 Finally, thermodynamically reversible processes have always functioned to demarcate an 

unrealizable boundary of our real interest: the least dissipative processes of change. The proposal 

of Section 2 employs these least dissipative processes directly. Using them, Section 4 shows how 

we can recover standard results concerning the boundaries of these processes by reasoning 

directly with the irreversible processes of the set, without any need to talk of processes that, 

paradoxically, are both in and not in equilibrium at the same time. 
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