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Thought Experiments and Simulation Experiments:  

Exploring Hypothetical Worlds 

J. Lenhard, Bielefeld University 

1. Introduction 

Both thought experiments and simulation experiments apparently belong to the family of 

experiments, though they are somewhat special members because they work without intervention 

into the natural world. Instead they explore hypothetical worlds. For this reason many have 

wondered whether referring to them as “experiments” is justified at all. While most authors are 

concerned with only one type of “imagined” experiment – either simulation or thought 

experiment – the present chapter hopes to gain new insight by considering what the two types of 

experiment share, and what they do not. A close look reveals at least one fundamental 

methodological difference between thought and simulation experiments: while thought 

experiments are a cognitive process that employs intuition, simulation experiments rest on 

automated iterations of formal algorithms. It will be argued that this difference has important 

epistemological ramifications. 

 

Section two will review positions in the literature that are concerned with the relationship 

between these types of experiment. The relatively few contributions vary greatly, and the matter 

is complicated by the fact that neither thought experiments nor simulation experiments have 

agreed upon definitions. This results in contributions that highlight different similarities and 

dissimilarities. After this overview, section three will undertake to combine the various insights 

about similarities and dissimilarities between the two types of experiment. Both thought and 

simulation experiments explore hypothetical worlds, but via different means – and the main 

claim is that this matters for epistemology. While thought experiments are – in a sense to be 

explained later – “epistemically transparent,” simulation experiments can be called 

“epistemically opaque.” Consequently, surprises play a more significant role in the latter. If this 

claim is correct, an immediate question arises: in what sense do simulation experiments create 

opacity, and how they deal with it? This question will be addressed in section four, where a 

number of examples are analyzed from the perspective of this question. The concluding fifth 
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section puts forward a consideration about the common ancestral line of thought experiments and 

simulation experiments, and considers what this says about scientific rationality. 

 

2. Debates about Taxonomy 

In this section we will try to gain some insight by comparing thought experiments and simulation 

experiments. This task is complicated by the fact that the status (and closeness) of both as family 

members is controversial. Let us start therefore with a brief consideration of thought 

experiments, the older sibling, not with a general discussion, but one oriented at facilitating a 

comparison to simulation experiments. 

 

2.1 Thought Experiments 

Obviously thought experiments are extremely economical experiments – intricate conditions can 

be represented cheaply in thought. It is controversial, however, whether this is an 

epistemological advantage or disadvantage. Do they play a merely heuristic role, or do they 

generate trustworthy knowledge? Empirical experiments bring scientific hypotheses and the 

natural world into contact, which is to say, they integrate them as independent witnesses. Isn’t 

this contact an essential part of the notion of experiment? If so it would be highly problematic to 

speak of thought “experimentation.”1 

 

Ian Hacking (1983) is responsible for a famous argument according to which experimental 

interventions justify a realistic conception of scientific objects. Experiments lead an incorruptible 

                                                
1 The experimental character of thought experiments is treated in a separate chapter of this 

volume. Since the literature on thought experiments is also extensively discussed, I will only 

reference the contributions on this issue by Jim Brown, David Gooding, John Norton, Nancy 

Nersessian, and Ian Hacking (all 1993) to a symposium at PSA 1992. These provide a good entry 

point into the recent discussions in philosophy of science. Hacking as well as Paul Humphreys 

(1993) favor a more critical outlook on the epistemic virtues of thought experiments. 
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“life of their own.” This is what Hacking denies for thought experiments (Hacking 1993). What 

then characterizes thought experiments in a positive way?  

 

One important facet is that they make certain intuitions accessible. Thought experiments have to 

meet high standards of intelligibility, because the whole process takes place in cognition. If it is 

ever unclear what happens next, that is, if one cannot comprehend why a certain outcome should 

happen, the thought experiment fails. It does not fail because of an unwanted outcome, but 

because it does not work as a thought experiment. In this sense, the perceived transparency is a 

precondition for the feasibility of experimenting in thought. 

 

Is this precondition a strength or a weakness? Jim Brown, among others, advocates the former 

(see e.g. 1992) and takes intuitive accessibility as indicating credibility, or truth. Brown favours a 

Platonic account according to which thought experiments allow humans to peek into Plato’s 

heaven. He focuses on the methods and results of mathematics which are arguably a special case 

of thought experimentation because of its completely hypothetical form. The context in this case 

is fixed by definition. Take as an example the often cited checker board problem: First cut out 

two squares from diagonal corners of a checkerboard. Is it still possible to arrange the board into 

rectangular pieces, each consisting of one white and one black square? Here, the question defines 

the problem so that asking whether the problem is adequately posed is missing the point. 

 

In contrast to logico-mathematical puzzle solving, the question of adequate formulation matters 

in cases that are related to applications. The wonderful thought experiment with a light-clock in a 

space ship might serve as an example. This clock consists of two perfect mirrors between which 

a light pulse “ticks.” The space ship starts from the earth, perpendicular to the clock’s light pulse, 

and the clock is viewed from two different perspectives: an observer on earth and an astronaut in 

the ship. Because of the constancy of the speed of light, the clock ticks with the same speed for 

both observers. Seen from the earthling’s perspective, however, the ship moves, hence the light 

pulse has to travel a slightly longer way from one mirror to the other. Since it has the same speed 

but a longer way to travel, time itself has to be stretched accordingly. Now, the formula for time 
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dilatation follows elegantly from the theorem of Pythagoras.2 The full derivation does not matter 

here, because my point is a different one. 

 

The thought experiment happens in a setting or scenario that might be misleading. There is no 

guarantee that this experiment, as elegant as it might be, will lead to the correct formula for time 

dilatation. Perhaps it is not that the result is justified by the premises, but the other way around. 

The somewhat exotic setting of the experiment is first accepted, because it gives the right 

(already known) formula. Afterwards, the argument has sedimented and became a thought 

experiment. The result of relativity theory, time-dilatation, is not questioned at any time, rather it 

is ennobled when we show that it is accessible even from a thought experiment.  

 

This role for thought experiments (to only seem to establish) is well-known in the literature. For 

instance, Humphreys assumes it when he highlights the exploratory function of thought 

experiments that makes clear which assumptions are necessary to obtain a given conclusion 

(Humphreys 1993, 218). Once an experiment has been worked out – like in the example above – 

it changes into a rhetorical instrument, targeted rather at an already known formula than 

establishing something unknown. Ian Hacking also directs attention to the state when a thought 

experiment has been worked out. At this point, outcome is no longer at stake. For this reason 

Hacking describes such experiments as “fixed, rather immutable” (Hacking 1993, 307). Finally, 

Ulrich Kühne, in his monograph on thought experiments (2005), sees their main function in 

cementing knowledge rather than creating it. However, he urges us to consider more carefully 

the evolution of thought experiments. Only by analyzing the development from exploration 

toward an accepted, fixed form can we understand their main characteristics.  

 

There is a reason why the activity of performing a thought experiment might lead to further 

development of the same experiment, and also to its eventual convergence to an “immutable” 

state. Thought experiments, whatever their aim or function, explore imaginary scenarios that 

provide a certain setting or context. During the exploratory phase, such a context might be 
                                                
2 See Schwinger 1987, chapter 2, for a detailed version of this experiment. 
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useful, especially in cases when that context is not fully explicated and contains a surplus of 

possibly relevant material that can be exploited for creating and framing the thought experiment. 

In situations where complex actions are modeled, such a context might include a rich but implicit 

reservoir of additional aspects and facts that are also relevant. Nancy Nersessian (1993) stresses 

this potential when she counts thought experiments as a class of model-based reasoning. 

Experimenters take the model for granted and let it lead the way. 

 

Certainly the course of the experiment has to fulfill high standards of transparency. Gaps in the 

argumentation like “the reader might calculate easily” have to be ruled out. Instead, all phases of 

the experiment have to flow more or less continuously and without creating any gap in the mind. 

Of course, this need not happen on the first attempt; it might require a couple of iterations. Such 

iterations, if successful, efface any initial opacity and hopefully make possible free access to a 

clear intuitive judgement. 

 

It might require some effort to satisfy this condition. Galileo, for example, reckoned it necessary 

to spend 20 pages in the Discorsi for making plausible what happens in the famous thought 

experiment with two falling and (un-)connected bodies (for more on this thought experiment, see 

Chapter 5). There is regular dispute about whether certain thought experiments are indeed 

feasible or have gaps. Bohr and Einstein are a case in point for duels of this kind (see Bishop 

1999). Hence thought experiments, or proposals for thought experiments, might be changed or 

even overthrown during the exploratory phase. Initial opacity about what follows in a given 

model or scenario requires iteration and critical discussion. One condition, again, is crucial: If 

the proposal shall eventually be accepted as a thought experiment, iteration has to efface opacity. 

Only an epistemically transparent process is able to sediment into a thought experiment – maybe 

with the qualification that a consensus among a group of educated people (and educated 

intuitions) is sufficient. 

 

2.2 Simulation experiments 
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Simulation experiments are a newborn sibling in the family of experiments. Their epistemic 

status is arguably the most debated topic in the growing literature on computer simulation. The 

general strategy is to discuss the status of simulation experiments by locating them in an 

established coordinate system, i.e., by stressing certain similarities and dissimilarities to other 

methods. A most striking feature is that these experiments do not intervene in the natural world. 

This makes them similar to thought experiments, and inspires the hope that a comparative 

epistemological study will bear fruit. 

 

Simulation experiments seem to be a special kind of experiment. They investigate the behaviour 

of simulation models by computer methods and have been analyzed as experiments with models, 

virtual experiments, or experiments without materiality (respectively by Deborah Dowling 1999, 

Eric Winsberg 2003, and Mary Morgan 2003, to name just a small sample of the growing 

philosophical literature). Although simulation experiments appear to be at least partially 

experimental, it is controversial in the philosophical literature whether this justifies speaking of 

them as experiments. Depending on what we take to be essential for being an “experiment,” 

simulation experiments are advocated as a new kind of experiment, or not as experiments at all. 

To different degrees, Francesco Guala (2002), Morgan (2003, 2005), and Anouk Barberousse et 

al. (2009) argue for the latter standpoint, while Winsberg (2003, 2009) and Wendy Parker (2009) 

want to include simulation experiments into the esteemed family of experiments. However, I do 

not intend to enter the taxonomical debate on the status of simulations, rather I will focus on the 

comparison between simulation experiments and thought experiments. 

 

Only a relatively small number of contributions exist that tackle the relationship between these 

two types of experiments. Some of them come from researchers working with simulation 

experiments, notably in the field of social simulations. While many or most scientific fields with 

well-established experimental traditions, like physics or mechanical engineering, have added 

simulation experiments to their repertoires, the problem of categorizing the experimental 

practices comes up in social simulation in a particular way. The whole field came into existence 

with simulation methods, so there is no methodological tradition of manipulating models or 

doing experiments apart from simulation. Thus it seems plausible that the question for scientists 
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who reflect about their own practice is especially pressing. It seems, at least, that there is no 

direct interrelationship possible between simulation experiments and experiments that would 

intervene into the natural world to check whether the former got it right. Hence scientists like di 

Paolo et al. (2000) take thought experiments as point of comparison, exactly because thought 

experiments have an independent history as method and also do not intervene.3  

 

Di Paolo et al. (2000) categorize simulation experiments as “opaque thought experiments,” 

meaning that they explore the interplay of hypothetical assumptions, but in a computational way 

that human beings could not follow. Di Paolo and his colleagues touch upon a most important 

point when they bring opacity into play. This notion will play a major role in the following 

discussion. However, from a logical point of view, it seems a bit misleading to subsume 

simulation experiments under thought experiments. It has been argued above that epistemic 

transparency is an essential precondition for thought experiments; hence, speaking of opaque 

thought experiments seems questionable or even inconsistent. 

 

Aside from social scientists, there are also philosophers of science who have asked whether 

simulation experiments should be counted as a sort of thought experiment. The fact that 

interventions are missing from both is the genus proximum, but then opinions diverge. Claus 

Beisbart and John D. Norton (2012) argue that thought and simulation experiments only logically 

analyze some set of starting assumptions. Hence they both do not belong to the family of 

experiments, but to that of arguments – a position that Norton has earlier advocated with regard 

to thought experiments.  

 

Sanjay Chandrasekharan et al. (2012) also analyze the way both experiment types deal with their 

assumptions, but arrive at a different conclusion. They stress that a thought experiment starts 
                                                
3 In general, it is a widely distributed opinion in the field of social simulation and artificial 

societies that thought experiments are the adequate benchmark for simulation experiments. 

Michael Weisberg (2013) analyzes how thought experiments and simulations both represent 

target systems, though he admittedly does not discuss further aspects of their relationship. 
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rather with a mental model than with a set of logical assumptions, and proceeds by analyzing this 

model in intuition – also a standpoint earlier advocated by the co-authoring Nersessian (see 

Chapter 18). Simulation experiments are similar to thought experiments, since both are a sort of 

model-based reasoning. However, simulation experiments, unlike thought experiments, are not 

tied to intuition, but can utilize a range of algorithmic procedures. Therefore, Chandrasekharan et 

al. conclude that simulations will likely outpace (and eventually replace) thought experiments. 

 

Finally, Rawad El Skaf and Cyrille Imbert (2013) take an ecumenic stance and re-conceptualize 

the genus proximum. They underline that thought experiments as well as simulation experiments 

proceed by allowing us to see how a scenario unfolds. According to this view, the initial 

assumptions or hypotheses from which one starts somehow entail what will happen in the 

experiment and hence determine its outcome. The outcome is not initially known. Instead, it 

takes the unfolding as part of an experimental process that brings to light what was actually 

included already in the hypotheses. This viewpoint seems to be compatible with Nersessian’s as 

well as with Norton’s, at the cost of accepting a broad spectrum of what “unfolding a scenario” 

means. 

 

There is of course a counterpart in the literature that also stresses the dissimilarities between 

thought and simulation experiments, especially with respect to their “unfolding” processes. 

Humphreys (1993), for instance, rightly points out that algorithmic processes are very different 

from the processes of intuition. From this perspective, thought and simulation experiments take 

place in very different realms. Let us turn therefore to the compatibility of the two kinds of 

experiment in more detail. 

 

3. Experimenting, Iteration, and Opacity 

A most important difference between thought and simulation experiments is that normally, 

simulations are epistemically opaque. This opacity deserves further attention. At first sight, it 

appears paradoxical since compiled computer programs are arguably the most explicit of all 

descriptions in scientific use. Executable software cannot tolerate any vagueness because at each 
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step of the program the next step has to be specified precisely, else the compiler would not 

accept it. However, this condition does not guarantee transparency. Simulations are not opaque 

because it would be unclear how one step follows from its predecessors. On the contrary, it is the 

multitude of interrelated steps that can render the overall process opaque. Humphreys 

characterizes this problem in the following way: 

 

This opacity can result in a loss of understanding because in most traditional static 

models our understanding is based upon the ability to decompose the process between 

model inputs and outputs into modular steps, each of which is methodologically 

acceptable both individually and in combination with the others. (2004, 148) 

 

Of course, there can be simulation models that are not opaque at all. Opacity is a feature of 

complex models, though the use of such models is widespread. Even if interactions in a simple 

target system were modeled in a simple way, a great number of them could lead to very complex 

model dynamics; especially when the simple events of the target system are highly related. The 

analysis of such real-world systems is therefore too complicated for analytical mathematical 

treatment and so testing the dynamics of the system has to proceed via simulation experiments. 

In brief, algorithmic transparency is a condition for executable programs, which however is 

consistent with the creation of epistemic opacity. 

 

Despite the important separation in terms of epistemic transparency and opacity, there is an 

important methodological similarity: the use of iteration. It will be useful to discern two types of 

iteration for the following discussion. Iteration is not a standard topic in philosophy and there are 

only few recent attempts to give iteration a standing in the epistemology of science (see Hasok 

Chang 2007, who examines “epistemic iteration” in the development of scientific concepts).  

 

I would like to discern two types of iterations pragmatically, namely the “convergence” and the 

“atlas” type. The first is involved in cases like exploring a new pathway that eventually becomes 

your routine way. At the beginning, there is much uncertainty and back-and-forth, but after a 
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couple of repetitions the pathway begins to stabilize. After many iterations, it sediments to 

become a routine path that you inattentively take. Repeating exercises in music or sports is often 

of this kind. A violinist uses his bow intuitively, as does a bowman. In this way, iterations create 

‘convergence,’ which can influence and educate intuition. Such iteration can generate high levels 

of certainty, but is usually bound to a fixed context. If the violinist plays a piano, or the bowman 

uses a  pistol, the question of how to maintain intuitive mastership becomes legitimate. 

 

The second type of iteration works rather by exhausting the possibilities and thereby creating a 

compendium, or atlas. It functions on a more abstract level. Iteration here is used for exploring a 

set of options under controlled variations, gathering the results and thus obtaining an overview. 

Such iterations, again, are very common in science as well as in everyday life. My children, for 

instance, are quick in scanning each piece of a cake to find out which one is the biggest (and 

most attractive) one. If the number of possibilities is high, however, one will have to resort to 

automated iterations, which is exactly what computers are good at. 

 

Thought experiments are tied to the convergence-type of iteration. When you perform a thought 

experiment, repeated execution eliminates initial intransparency or ambiguity. Simulation 

experiments, on the other hand, involve the atlas type of iteration. Repeated, and slightly varied, 

model runs do not eliminate opacity, but rather explore the space of possible model behaviour. 

Thus the dynamics can be understood like an atlas that compiles many single maps. In sum, 

thought experiments have to conform to a condition of epistemic transparency, which accords to 

the convergence-type of iteration. Simulation experiments, in contrast, are part of simulation 

modeling because epistemic transparency about model behaviour is not attainable. The computer 

as an instrument, in particular one with an ability to automate iterations, offers an instrumental 

compensation for lack of transparency. The set of gathered results then substitutes for intuitive 

certainty. 

 

While thought experiments and simulation experiments are similar in that they exploit the facts 

contained in assumptions or modeled situations, they are dissimilar regarding the types of 
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methods they use. Processing in intuition requires transparency, which computer-automated 

iterations often cannot provide. However the insights simulations gain from collecting many 

results is something thought experiments do not provide. 

 

4. Dealing with Opacity 

How can one work with epistemically opaque systems? And how can epistemically opaque 

models play an epistemically fruitful role? This section will briefly discuss a number of typical 

examples with increasing degrees of complication that illustrate how simulation experiments 

deal with opacity. 

 

4.1 Social Segregation 

The first example is the well-known model for urban social segregation introduced by economist 

Thomas Schelling (1978). An idealized simple town map is represented by a grid of 

neighbouring cells, like a checkerboard. Each cell has inhabitants of a certain type (like skin 

color) and with certain preferences, for instance, not having a majority of neighbours of type 

different from their own. Inhabitants will move to an available cell so that their preference is 

respected. 

 

It is obvious that such preference, if strong enough, will lead to segregation. In the extreme case, 

when everybody would insist on a homogeneous neighbourhood, segregation would happen 

immediately. The model gets interesting with weaker preferences. The surprising result of 

Schelling’s is that even under conditions of great tolerance, i.e., when inhabitants welcome a 

mixed neighbourhood, but not one too dominated by the other type, complete segregation 

obtains. What does “too dominated” mean? Reasoning does not help here, one needs to try out 

and actually perform a great number of iterations. In the model, one cell is inspected after the 

other and it is determined whether inhabitants want to move. After all cells have been checked, 

the process starts over. After many iterations, an equilibrium will occur and then one can see 

whether segregation has happened or not. The intriguing question is how weak preferences have 
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to be to prevent segregation. This question can be answered only by exploratory trials with 

varying parameter values. 

 

The simulation looks like a thought experiment, but the role of iteration is importantly different. 

There is no way to determine the segregating behaviour of the simulated inhabitants under 

varying parameter values, except by iterated trials. Schelling started with a checkerboard and 

some coins and attempted to find a feasible specification of the model. The decisive point is how 

robust the phenomenon of segregation is. That segregation can occur in particular models is 

trivial. A model that shows how weak assumptions can be that nevertheless lead to segregation is 

an interesting model since it indicates how generic the phenomenon is. Therefore, everything 

depends on the actual range of parameters that generate segregation. This range can be 

determined only by a great number of iterations. Consequently, Schelling had to give up the 

checkerboard and employ a computer, i.e., run a simulation experiment, to process a sufficient 

number of iterations. This experiment produced a great number of single results that allowed him 

to compile a sort of atlas of model behaviour. If instead he had dispensed with simulation 

experiments he could not have gained insight about the likelihood of segregation via various 

degrees of bias; no thought experiment could possibly sediment from the simulation runs to 

produce an epistemically transparent intuition of comparable import. 

 

4.2 Phase Transition 

The next example, the Ising-model of physics, predates the computer and its architecture which 

served as the blueprint for Schelling’s model. It works again on a regular grid. Each grid point 

(or cell) can take on one of two states (spin up – spin down) and neighbouring cells influence 

each other, for example by the tendency to take on the state of their neighbour. There is also a 

thermic parameter that controls the strength of influence. The higher the temperature, the higher 

the tendency to flip to an arbitrary state, i.e., the lower the influence of neighboring-states. The 

Ising-model is famous because it can exhibit phase transitions. In other words, there is a critical 

value of the thermic parameter above which sudden dramatic fluctuations occur, and below 

which widely mixed states grow into homogeneous clusters. This behaviour makes it a model for 

magnetization, a similar phenomenon. 
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Today one can conveniently simulate and experiment with the Ising-model on a computer screen, 

and again, this model presents great difficulties for a mathematical-analytical treatment. By 

analytical I mean that one can hardly show more than the existence of phase transitions, i.e., the 

critical parameters. This has made the model famous among philosophers for combining 

conceptual simplicity with computational complexity. The latter arises from the high level of 

interdependence, i.e., from the fact that the state at one grid point depends on that of its 

neighbours, which in turn depend on others, etc. 

 

An iterative algorithm can simulate the model in a straightforward way, much like in the first 

example. Then, in a second layer of iterations, the temperature can be varied to sound out what 

the critical value is and how clusters form near this value. These iterations are not compressible, 

i.e., they have to be actually performed – which is feasible only by using a machine. However, 

this strategy brings even modern computers quickly to their limits. The number of necessary 

computational steps increases exponentially with the number of cells, and in cases of 

computational complexity like this, brute force strategies regularly fail. 

 

At this point the Ising-model ceases to be parallel to the social segregation model. Only a second 

layer of simulation experiments has led to a methodological breakthrough, namely the use of so-

called Monte-Carlo Marko-chains. The trick is to replace the unfeasibly large iteration problem 

by iterations on a different layer, namely by iterations of a random process.4 This process is 

                                                
4 This does not seem to be an advantage, because the random process takes place in a logical 

space that is too big to analyze. The advantage lies in the mathematical fact that Markov 

processes converge surprisingly quickly. A Markov process in stationary distribution indicates 

the typical territory, so the reasoning goes, even if much is left out. In this way, the complexity 

barrier is circumvented by the random process approach – with the caveat that there are no 

results concerning the actual speed of convergence of the Markov-process. The high speed of 

convergence, though often observed, remains a kind of mystery, hence the adequate number of 

iterations depends on the feeling of the simulation modelers. R.I.G. Hughes (1999) discusses 
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locally defined, i.e., for each state of the process the transition probabilities to other states are 

given. Iteration of this random process approximates the long-term behaviour of the process. In a 

sense, the simulated Markov-chain explores the territory that is otherwise unknown. By 

compiling the results of the much-iterated simulation experiments (runs of the random process) 

one eventually gets the desired atlas of the space that was originally “too big.” 

 

4.3 Chaos 

The third example is iconic of complexity theory, as it connects to computational models. It 

illustrates how simulation experiments are employed to circumvent opacity. A famous instance 

of a complex system was identified early on by the meteorologist Edward Lorenz. Using partial 

differential equations, he investigated a dynamic meteorological system, and found it to display 

some alarming behaviour. A marginal change in the initial conditions could lead to a severe 

alteration of the overall behaviour. This system property has been aptly named “deterministic 

chaos” (cf. Lorenz 1967, 1993). In deterministic systems, the initial conditions completely 

determine the future development. At the same time, this system is unpredictable in the sense 

that even the slightest uncertainty about initial conditions, which is unavoidable in any practical 

application, could potentially change the long-term behaviour entirely. Such systems are called 

“chaotic.” The term “nonlinear behaviour” refers to more or less the same thing: the long-term 

behaviour of the model does not depend in any linear way on the initial conditions, in other 

words, closely neighboured initial conditions can lead to widely differing final states. 

 

Lorenz’s example is famous, and has become a paradigm of chaos theory, or the theory of 

complex dynamical systems. His model, however, was not deliberately constructed for its 

mathematical properties, but emerged from his work in meteorology. And the results were 

relevant for that subject. The so-called “butterfly-effect” conceptualizes nonlinearity in a picture: 

Even small events can have great effects; a butterfly can change the weather – at least in 

principle. All these considerations concern dynamical systems theory, a field expressed in the 

                                                                                                                                                       
Ising model simulations, and the mathematician Persi Diaconis (2008) appreciates the 

revolutionary character of Markov-chain Monte-Carlo methods.  
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mathematical language of differential equations. The point is that analytical methods could 

discover how strange the behaviour can be, but they are not sufficient to give insight into what 

happens in these systems. How should one conceptualize a system that would be attracted to very 

different states depending on an initial waggle? 

 

The mysteriousness vanished only when the computer-generated image of the Lorenz attractor 

displayed the intricate trajectories of the system, making sense of their strange behaviour. Such 

visualizations were based on simulation experiments that were iterated many times. For each grid 

point (or pixel), the system’s behaviour is computed. In a way, the computer scans or sounds out 

the system for systematically varying initial conditions, and afterwards the isolated results are 

put together into one image. Only then a picture of the overall dynamics emerges that suggests 

continuity and gives a vivid impression, though it is based on a great number of single results, 

comparable to pointillism in art. In this way, visualizations can provide insights into complex 

dynamics, although it is often not well understood how the assumptions that are used interact 

with each other in detail while bringing about the dynamics. The enormous computational 

capacity of computers renders possible the exploration of phase space and, inversely, 

visualizations render complex behaviour cognitively graspable. In this way, the epistemic 

opacity due to computational and target system complexity gets circumvented. 

 

4.4 Electron Density 

The fourth and last example comes from the interface of computational chemistry and 

computational physics. The Schrödinger-equation of quantum theory describes the electronic 

structure of atoms and molecules. This is true only in principle, however, since even the simplest 

cases involving molecules are already at the limit of mathematical tractability. For all 

application-oriented problems, the Schrödinger-equation is too complex to be solvable. Again, 

this complexity arises from interdependence, namely the interdependence of the energy 

potentials of interacting electrons. The so-called “density functional theory” (DFT) offered a 

ground-breaking simplification. It is based on the fact that the many interacting energy potentials 

can be replaced by one single density function. The fundamental work was done by Walter Kohn 

and his co-workers Pierre Hohenberg and Liu Sham in the mid-1960s. This work on DFT won 
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Kohn the Noble Prize in chemistry in 1998. He shared the prize with John Pople who received it 

for his development of computational methods. Today, DFT is widely used in computational 

quantum chemistry, at least partially because it is included in software packages that are 

convenient to use, for instance the package “Gaussian,” that Pople helped to create.5 

 

A Noble Prize for computer methods is remarkable; it makes plain the growing role of 

computational methods in supporting scientific theory. Again, the success of DFT in chemistry 

depended on the availability of the software. From a theoretical perspective, DFT is implemented 

in a computer program. And DFT doesn’t just exist in one program; there are dozens of 

programs and packages, many of them available online, that feature the theory. Typically, such 

software comes with a blurb indicating the sets of situations, materials and mixtures with which 

it performs well. Hence DFT is not simply implemented, but splits into many different variants. 

Why is this a significant observation? 

 

The answer is closely related to the iterative character of simulation modeling. The step from a 

theoretical model to a computer model involves a separate, partly autonomous construction task.  

This task must bridge the gap between the continuous formalism of traditional mathematics in 

which theories are formulated, and the discrete operations digital machines can perform. Of 

course, one can reason with limiting cases, for instance the limit of an infinitely fine-grained 

grid, but one must always compute in finite steps. Therefore, theoretical laws and models, like 

Schrödinger’s wave-equation, have to be fit into a Procrustean bed. Discretization, the name for 

this step, inevitably distorts. Each simulation model therefore requires some way to compensate 

for the distortions in the simulation model so that it remains relevant to the theoretical model or 

target system. Normally it is hard to discern whether such measures really re-establish the quality 

of the original theoretical model, or whether they merely compensate for some of its 

imperfection.  

 

                                                
5 For more details on density functional theory in the context of quantum chemistry and 

computer methods, see Lenhard 2014. 
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These compensation measures are a regular part of simulation models that we expect to increase 

their theoretical impact.  Whether and how they do this can be guided by mathematical 

formalism only to a very rudimentary degree. Therefore simulation experiments are necessary to 

check and balance the compensating measures, and to adapt the simulation model accordingly.6 

 

Given these considerations, the multitude of DFT methods looks less surprising. They differ 

essentially in the compensating strategies they implement. Since these are based on instrumental 

reasons rather than theoretical ones, they have to be judged according to the net-effect they 

produce on the dynamics of the model system. In other words, assessing and modifying DFT 

methods depends heavily on our knowledge of the applications for which they will be used. Over 

the course of such modifications, which take the form of stepwise iterated software 

developments, a particular instantiation of DFT will be formed by the applications for which it 

has been prepared, and in view of which it will be developed. 

 

Experiments therefore take a central position in simulation modeling and help to make usable 

simulations as an instrument, especially at first. Instead of eliminating opacity, however, they 

work around it, replacing epistemic transparency with stepwise exploration. For this, a single 

simulation experiment does not suffice. Rather, one needs a whole series of experiments for 

charting model behaviour. A series of experiments like this utilizes iterations which we have 

called atlas-type. To sum up: simulation modeling regularly resorts to artificial (compensating) 

measures that are motivated by the performance of a simulation model, not by theoretical 

reasoning. Such measures have to be coordinated according to their interactions in the 

embedding model. They have to be tried out in an iterative and exploratory mode; hence the 

atlas-type of iteration is part-and-parcel of simulation modeling. 

 

 

                                                
6 For a discussion of particular cases, c.f. Winsberg (2003) about “artificial viscosity,” and 

Lenhard (2007) about the “Arakawa-Operator,” a feat of atmospheric modeling. 
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5. Conclusion: The Common Root of Thought Experiments and Simulation 

Thought experiments and simulation experiments are similar in that both make use of iterations. 

However, they differ fundamentally in the types of iterations they use, and in the functions those 

iterations fulfill. In thought experiments, the iterations of the convergence-type eventually 

produce a cognitive tool that is sufficiently transparent to run in human intuition. Simulation 

experiments, on the other hand, do not remove, but rather circumvent or compensate opacity 

with the help of atlas-type iterations. Iterative algorithms utilize computational power and can 

work where thought experiments cannot. In particular, if iterations are incompressible, there is 

hardly a chance to render the results epistemically transparent. 

 

Thought experiments entail the possibility of an aha-effect that is arguably tied to epistemic 

transparency. Converging iterations then can bring about new aha-effects. In contrast to this, 

simulation experiments result in an instrument-based collection of single calculations. Such 

collection lacks the intimacy of intuition, and therefore creates a certain cognitive distance, even 

if visualizations occasionally help to negate this distance. 

 

Hence the essential difference is: The iterative mode in thought experiments eventually makes 

iterations superfluous by crystalizing the most intuitive approach. In simulation experiments, in 

contrast, the iterations remain structurally necessary. They do not crystalize a cognitive pathway 

to an intuition; instead, the extensive set of iterations are preserved. Of course, there must be 

some way to make the output of the set of iterations comprehensible, as the atlas-type of iteration 

is suitable only under this condition. But this is not at all the same thing. 

 

Let me conclude by presenting a perspective that puts thought and simulation experiments under 

the same historical framework. Here is some uncontroversial common ground shared by the 

different viewpoints discussed in this chapter: The thought-experimenter immerses him or 

herself into a hypothetical world, a world explored in intuition. This exercise of creating and 

exploring hypothetical worlds has been part of the arsenal of modern science since its inception. 

This indicates how closely related the (philosophical) formation of human epistemological 
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subjects and the emergence of modern science are. Kant’s classic formulation of this relationship 

can be found in his Critique of Pure Reason: that human epistemology depends on the 

constructive activity of epistemic subjects. He was motivated by Newton, whose theory of 

gravity can be seen as the paradigm of a mathematized science. From an epistemological 

viewpoint, it intertwined the construction of a mathematical model with scientific – or more 

generally, human – rationality and epistemology. The way simulation experiments differ from 

thought experiments tells us something about the evolution of mathematical modeling, and our 

relationship to it. 

 

Mathematization proved to be an essential element of what are now called the “hard” sciences. 

Ongoing formalization and, in particular, algebraization since the 17th century went hand in 

hand with ever more elaborate algorithms and mathematical constructions. However, human 

tractability has been a limitation that prevented constructions from becoming too complicated or 

lengthy. There were several phases in history at which the development of mathematics was 

thought to be at an end, because it reached the limits of tractability and transparency. 

Generalization proved to be the way forward for mathematization in the attempt to provide or re-

establish epistemic transparency, arguably culminating in 20th century axiomatic thinking. 

 

The pivotal impact of constructive activity for human culture reached a new level with the 

industrial revolution. Automation was an integral part of this revolution, and it has continued to 

gain importance in ever more areas of society and culture. This is the point where we re-enter our 

discussion. Simulation experiments, like thought experiments, are a method of exploring 

hypothetical models. Simulation experiments, however, make this possible using automated 

iterations.7 In this sense, simulation experiments can be seen as transformed thought 

experiments. They present a new and surprising methodological twist to find out or determine 

the conclusions that follow from our assumptions. The surprising fact is that we have to 

encounter our own epistemological inventions as complex and foreign objects and employ 

                                                
7 This perspective is in line with Humphreys’ concluding verdict that humans are driven out of 

the center of epistemology (2004). 
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machines to help us deal with them. This is hardly compatible with the classical paradigm of 

mathematical construction and epistemology. 

 

Thought experiments are meant to help us gain insight into a complicated world. Simulation 

experiments explore new possibilities that automated calculations open up. The intricate 

relationship between thought and simulation experiments is a product of, and perhaps the key to 

understanding, the position of human subjects in a culture increasingly suffused with computer 

models and algorithms. 
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