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Abstract	
In	this	paper	I	begin	with	a	recent	challenge	to	the	semantic	approach	and	
identify	an	underlying	assumption,	namely	that	identity	conditions	for	theories	
should	be	provided.	I	suggest	that	this	demand	should	be	resisted	and	that	the	
semantic	approach	should	be	seen	as	a	philosophical	device	that	we	may	use	to	
represent	certain	features	of	scientific	practice.	Focussing	on	the	partial	
structures	variant	of	that	approach,	I	then	consider	a	further	challenge	that	
arises	from	a	concern	with	the	role	of	idealisations	in	that	practice.	I	argue	that	
the	partial	structures	approach	is	capable	of	meeting	this	challenge	and	I	
conclude	with	some	broader	observations	about	the	role	of	such	formal	accounts	
within	the	philosophy	of	science.



	
Introduction	
Echoing	Suppe	before	him,	Halvorson	has	recently	claimed	that, 	‘[w]ithin	a	few	
short	decades,	the	semantic	approach	has	established	itself	as	the	new	
orthodoxy’	(Halvorson,	2012)1,	before	challenging	that	orthodoxy.	In	what	
follows,	I	shall	begin	by	outlining	what	I	see	as	the	basis	for	that	challenge,	which	
lies	in	the	demand	that	identity	conditions	for	theories	be	provided,	before	
responding	to	it	in	terms	of	the	partial	structures	variant	of	the	semantic	
approach.	I	will	then	consider	a	further	challenge	to	this	approach	that	arises	
from	a	concern	with	idealisations	and	will	indicate	how	this	can	also	be	dealt	
with.	I	shall	conclude	with	some	broader	observations	about	the	role	of	such	
formal	accounts	within	the	philosophy	of	science.	
	
Identity	Conditions	and	the	Challenge	to	the	Semantic	Approach	
In	challenging	the	orthodoxy,	Halvorson	repeatedly	insists	that	what	is	at	issue	
here	is	the	identity	of	theories	(indeed,	the	whole	thrust	of	his	paper	is	
encapsulated	in	section	4,	which	is	entitled	‘Identity	Crisis	for	Theories’).	Thus	he	
writes,	‘[a]ccording	to	the	semantic	view,	a	theory	is	[my	emphasis]	a	class	of	
models’	(2012	p.	190;	later	on	he	talks	of	the	semantic	view	‘reducing’	theories	
to	sets	of	models;	ibid.,	p.	192)	and	his	aim	is	explicit,	namely	that	‘…	it	will	
become	clear	that	it	is	impossible	to	formulate	good	identity	criteria	for	theories	
when	they	are	considered	as	classes	of	models.	’	(ibid.	p.	190;	see	also	p.	201)2	
Indeed,	the	discussion	throughout	is	presented	in	terms	of	individuating	theories	
but	of	course,	framing	the	debate	over	the	viability	of	the	semantic	approach	in	
this	way	leads	to	the	possibility	of	question	begging	over	what	counts	as	‘the	
same’	theory	to	begin	with.	Thus,	to	demonstrate	that	the	semantic	approach	
identifies	theories	that	should	be	regarded	as	distinct,	Halvorson’s	strategy	is	to	
syntactically	formulate	a	couple	of	theories,	show	that	they	are	inequivalent	by	
the	standard	criterion	of	definitional	equivalence	and	then	point	out	that	the	
relevant	sets	of	models	are	isomorphic	and	hence	the	theories	must	be	counted	
as	the	same	according	to	the	approach	and	contrary	to	how	they	should	be	
understood.		
	 As	Glymour	has	noted,	one	could	respond	by	insisting	that	this	is	question	
begging	in	the	following	sense:	the	question	of	what	‘is’	the	theory	is	precisely	
what	is	in	dispute,	so	to	maintain	that	a	theory	‘is’	its	syntactic	formulation	in	
terms	of	which	it	can	be	shown	to	be	inequivalent	to	another,	which	the	semantic	
approach	renders	as	equivalent,	is	precisely	to	beg	the	question	against	the	latter	
view	(Glymour	2013,	p.	287).	Glymour	himself	thinks	this	objection	doesn’t	go	
through	because	of	the	role	of	language	within	the	semantic	approach	itself:	to	
present	a	theory	as	a	class	of	relational	structures	is	to	describe	that	class	in	
some	language	(ibid.).	But	that	misses	the	point.		The	advocate	of	the	semantic	
approach	could	acknowledge	the	need	for	some	such	description	but	maintain	
that	the	role	of	language	is	trivial	or,	at	the	very	least,	should	be	downplayed	and	
that	if	we	are	to	seek	identity	criteria	for	theories	it	should	be	in	model-theoretic	

                                                             
1	cf.	also	Frigg	(2006,	p.	51)	and	LeBihan	(2012)	who	also	refer	to	the	Semantc	approach	as	the	
orthodox	view	of	theories	and	models.	And	here	is	Suppe	from	the	late	1980s:	"The	Semantic	
Conception	of	Theories	today	probably	is	the	philosophical	analysis	of	the	nature	of	theories	
most	widely	held	among	philosophers	of	science"	(Suppe,	1989,	p.	3).		
2	Basically,	by	demonstrating	how	certain	proposals	for	defining	an	isomorphism	fail.	



terms	(cf.	van	Fraassen	1989,	p.	222).	On	that	basis,	the	demonstration	of	
interdefinability	between	two	syntactically	formulated	objects	would	indeed	be	
irrelevant	(Glymour	op.	cit.).		
	 Furthermore,	and	in	similar	vein,	the	examples	of	‘theories’	presented	in	
this	exchange	between	Halvorson	and	Glymour	are	either	‘toy’	logic	cases	or	
taken	from	mathematics	where,	in	both	cases,	clearly	articulated	formulations	
can	be	given	in	terms	of	which	equivalence,	or	not,	can	be	explicitly	
demonstrated	via	some	standard	technical	device	and	then	contrasted	with	the	
relevant	relationship	obtained	via	the	relevant	such	device	at	the	level	of	classes	
of	relational	structures.	In	such	cases,	and	leaving	aside	the	above	issue	of	
question	begging,	the	identity	criteria	of	the	theories	can	be	made	clear,	at	one	
level	or	another.	But	this	is	typically	not	the	case	when	it	comes	to	examples	of	
scientific	theories.	Should	Newton’s	theory	of	mechanics	or	Maxwell’s	theory	of	
electrodynamics	or	Einstein’s	General	Relativity	be	identified	with	certain	
syntactic	formulations?	To	do	so	would	clearly	beg	the	question	against	the	
semantic	approach	and	in	these	cases	we	don’t	have	the	clearly	articulated	
formulations	that	Halvorson	presents.	Instead	we	have	…	well,	that’s	a	good	
question	actually	and	one	that	deserves	a	more	developed	answer	than	I	can	give	
here	but	for	now	lets	say	that	we	have	some	equations,	interpreted	of	course,	
written	down	in	various	texts,	in	various	languages,	sometimes	‘expressed’	or	
presented	in	quite	different	ways.	We	could,	of	course,	attempt	to	construct	a	
syntactic	formulation	of	any	or	all	of	these	theories,	along	the	lines	of	the	so-
called	Received	View	of	theories	but	to	again,	to	insist	that	that	formulation	is	the	
theory	and	that	in	such	terms	the	semantic	approach	misidentifies	it,	is	of	course,	
and	precisely,	to	beg	the	question.	(And	equally,	the	proponent	of	the	Received	
View	can	say	the	same	if	we	were	to	articulate	the	criteria	of	theory	
identification	in	model-theoretic	terms!)		
	 The	point	is	that	we	don’t	have	the	nice	clear	and	clean	examples	that	the	
above	debate	focuses	on.	What	we	have	is	something	a	lot	more	complex	and	a	
lot	messier,	in	the	context	of	which	the	articulation	of	criteria	of	theory	
identification	is	a	much	less	straightforward	and	much	more	contentious	
business.	As	a	result,	we,	as	philosophers	of	science,	then	have	to	decide	on	what	
basis	we	are	going	to	select	those	features	of	this	messy	collection	of	statements	
and	diagrams,	supposed	axioms	that	don’t	look	like	anything	you	were	taught	in	
logic	class,	equations	and	claims,	that	we	then	take	to	be	‘the’	theory	in	question.	
One	answer	–	drawn	from	the	recent	developments	of	the	semantic	approach–	is	
to	focus	on	the	representational	role	of	these	scientific	models.		
	 Thus,	van	Fraassen	,	in	also	responding	to	Halvorson	and	also	dragging	
the	debate	back	into	the	context	in	which	the	semantic	approach	was	originally	
proposed,	namely	that	of	scientific	theories,	writes	that	when	a	scientist	presents	
a	theory	‘…	she	provides	a	class	of	models	for	the	representation	of	those	
phenomena	’		(2014,	p.	277).	Of	course,	that	immediately	raises	the	further	issue	
of	determining	the	characteristics	of	representation	by	which	we	may	pick	out	
scientific	representations	from	the	melee	that	is	scientific	practice	in	any	field.	
Again,	there	is	more	to	say	(see	French	forthcoming)	but	here	van	Fraassen	
draws	the	time	honoured	comparison	with	representation	in	art:	‘…	we	properly	



speak	of	a	model	of	combustion	or	of	the	San	Francisco	Bay	in	the	way	we	speak	
of	a	painting	of	fire	or	of	the	Giaconda.	’	(2014,	p.	277)3	
	 Given,	then,	that	scientific	models	are,	primarily,	representations,	in	what	
sense	may	they	also	be	mathematical	structures	in	the	way	that	the	semantic	
approach	proposes?	The	answer	is	straightforward:	‘A	model	is	a	mathematical	
structure	in	the	same	sense	that	the	Mona	Lisa	is	a	painted	piece	of	wood.’	(ibid.).	
In	other	words,	both	the	representational	content	of	the	painting	and	the	actual	
painted	piece	of	wood	are	what	make	the	Mona	Lisa	the	artefact	that	it	is,	and	
similarly,	there	is	more	to	a	model,	as	a	scientific	artefact,	than	the	relational	
structure	in	terms	of	which	we	can	define	embeddability,	isomorphism	and	so	
on.	In	particular,	if	we	restrict	our	considerations	to	the	former,	and	take	a	model	
to	be	a	structure	plus	an	interpretation	which	maps	expressions	in	some	
language	to	elements	of	that	structure,	so	that	sentences	may	come	out	true	
under	such	an	interpretation,	we	stand	to	overlook	the	representational	aspect	
that	is	so	crucial	in	the	scientific	context.	
	 Indeed,	Thomson-Jones	argues	that	that	not	only	should	we	keep	these	
two	roles	–		the	truth-making	and	the	representational	–	distinct,	we	should	drop	
the	former	from	our	characterisation	of	the	semantic	approach	entirely	(2006)4.	
His	principal	motivation	for	this	view	is	that,	
	
‘When	it	comes	to	showing	the	naturalness	and	plausibility	with	which	theories	
in	the	empirical	sciences	can	be	viewed	as	collections	of	models	…	it	is	quite	
unclear	that	the	models	in	question	are,	as	constituents	of	those	theories,	
functioning	as	truth-making	structures	in	any	substantial	way.’	(ibid.,	p.	530).		
	
Even	if	we	eschew	the	kinds	of	toy	examples	that	Halvorson	favours,	and	
consider,	for	example,	Suppes’	presentation	of	Newtonian	mechanics	via	the	
appropriate	set-theoretical	predicate,	a	model	taken	from	the	collection	picked	
out	by	this	predicate	is	a	truth-making	structure	for	the	relevant	statements	only	
in	the	‘thin’	sense	that	it	provides	a	domain	of	discourse	for	the	quantifiers	
featuring	in	these	sentences.	And	this	is	because	the	latter	are	not,	of	course,	
uninterpreted	and	requiring	interpretation	in	the	way	that	a	Tarski-type	model	
provides	an	interpretation	for	some	sentence	of	a	first-order	language.	On	the	
contrary,	they	are	already	interpreted	sentences	of	‘mathematical	English.	So,	the	
model	picked	out	by	the	set-theoretic	predicate	is	not	a	‘serious	interpreter’	of	
these	sentences	but	only	a	‘description	fitter’	(ibid.,	p.	531).		
	 What	the	set-theoretic	predicate	provides	us	with,	then,	is	‘…	a	perfectly	
good	tool	for	picking	out	a	collection	of	mathematical	models’	(ibid.,	p.	532).	And	
the	representational	character	of	the	latter	is	precisely	what	the	advocates	of	the	
Semantic	Approach	need	to	focus	on	if	they	are	to	maintain	the	aversion	to	all	the	
linguistic	issues	besetting	the	Received	View	and	stay	close	to	scientific	practice	
(ibid.,	pp.	533-534).	Indeed,	Thomson-Jones	argues,	shifting	this	focus	yields	a	
much	more	flexible	form	of	Semantic	Approach	since	the	many	kinds	of	
mathematical	structures	and	concomitant	different	ways	they	can	serve	

                                                             
3	For	further	on	modelling	San	Francisco	bay,	see	Weisberg	2013.	
4	Again,	he	frames	the	debate	in	terms	of	identifying	scientific	theories	with	objects	of	a	certain	
sort,	namely	models	and	distinguishes	two	broad	versions	of	the	Semantic	Approach:	the	
stronger	which	takes	a	scientific	theory	to	be	a	collection	of	models	and	a	weaker	form	that	takes	
it	as	‘best	thought	of’	as	such	a	collection	(2006,	p.	529).		



representational	ends,	puts	a	‘rich	palette	at	our	disposal’	when	it	comes	to	
understanding	scientific	practice.(ibid.,	p.	534).		
	 Likewise,	van	Fraassen	observes	that	we	could,	rather	perversely	
perhaps,	adopt	a	kind	of	Received	View	stance	towards	the	philosophy	of	art	and	
rationally	reconstruct	the	Mona	Lisa	in	terms	of	a	mapping	from	certain	natural	
language	expressions	to	features	of	the	painted	piece	of	wood,	such	that	certain	
statements	made	in	artbooks,	say,	come	out	true	under	that	interpretation,	but	
this	is	just	as	un-illuminating	when	it	comes	to	artistic	practice	as	adopting	the	
above	stance	towards	scientific	representations	(op.	cit.,	p.	278).	In	both	cases,	it	
is	more	natural	to	point	to	the	painting	or	the	scientific	representation	and	say	
‘that	is	the	Mona	Lisa/Newtonian	mechanics	(respectively)’.5	
	 The	upshot	then,	is	that	given	that	a	scientific	model	is	a	representation,	
‘…it	does	not	follow	that	the	identity	of	a	theory	can	be	defined	in	terms	of	the	
corresponding	set	of	mathematical	structures	without	reference	to	their	
representational	function.	’	(ibid.,	p.	278).	And	if	we	focus	only	on	such	structures	
while	ignoring	the	representational	function	then	of	course	we	will	identify	
putative	theories	that	are	distinct	–	but	we	always	knew	that,	as	the	well-known	
examples	of	the	equations	describing	gas	diffusion	and	temperature	
distributions	over	time	demonstrate	(ibid.,	p.	279).	It	is	only	by	appreciating	
their	distinct	representational	functions	that	we	can	see	that	they	are	not	the	
same,	even	if	the	relevant	mathematical	structures	are.	
	 Here	we	might	recall	Halvorson’s	suggestion	that,	‘…		the	semantic	view	
was	not	wrong	to	treat	theories	as	collections	of	models;	rather,	it	was	wrong	to	
treat	theories	as	nothing	more	than	collections	of	models.’	(2012,	p.	204).	
However,	the	point	is	that	it	is	Halvorson’s	conception	that	is	wrong.	As	French	
and	Saatsi	noted	some	years	ago,	‘[i]t	seems	to	be	a	popular	misconception	of	the	
semantic	view	that	it	says	nothing	but	the	following	about	theories:	theories	are	
(with	‘is’	of	identity)	just	structures	(models).’	(2006,	p.	552).	Dropping	that	
misconception	would	go	a	long	way	towards	helping	to	develop	a	more	nuanced	
approach	to	how	we,	philosophers	of	science,	should	represent,	for	our	own	
purposes,	the	elements	of	practice	that	we	are	concerned	with.	
	 	
Isomorphisms:	Partial	and	Otherwise	
Such	an	approach	can	be	articulated	within	the	framework	of	the	partial	
structures	variant	of	the	Semantic	Approach,	or	so	it	has	long	been	maintained	
(da	Costa	and	French	2003).	The	formal	details	have	been	given	many	times	
elsewhere	(ibid.),	but	in	summary	are	as	follows6:		

A	partial	structure	is	a	set-theoretic	construct	A	=	<D,	Ri>i∈I,	where	D	is	a	
non-empty	set	and	each	Ri	is	a	partial	relation.	A	partial	relation	Ri	over	D	is	a	
relation	that	is	not	necessarily	defined	for	all	n-tuples	of	elements	of	D	(see	da	
Costa	and	French	1990,	p.	255).	Each	partial	relation	R	can	be	viewed	as	an	
ordered	triple	<R1,	R2,	R3>,	where	R1,	R2,	and	R3	are	mutually	disjoint	sets,	with	R1	
∪	R2	∪	R3	=	Dn,	and	such	that:	R1	is	the	set	of	n-tuples	that	(we	take	to)	belong	to	

                                                             
5 Of course, things are not quite that simple; see French forthcoming. 
6	It	is	assume	that	we	are	working	in	Zermelo-Fraenkel	set	theory	(with	the	axiom	of	choice),	
with	its	familiar	first-order	language	(see,	e.g.,	Jech	2006).	



R;	R2	is	the	set	of	n-tuples	that	(we	take)	do	not	belong	to	R,	and	R3	is	the	set	of	n-
tuples	for	which	it	is	not	defined	whether	they	belong	or	not	to	R.7	

If	we	have	two	partial	structures,	A	=	<D,	Rk>k∈K	and	Aʹ	=	<Dʹ,	Rʹk>k∈K	
(where	Rk	and	Rʹk	are	partial	relations	as	above,	so	that	Rk	=	<Rk1,	Rk2,	Rk3>	and	Rʹk	
=	<Rʹk1,	Rʹk2,	Rʹk3>),	then	a	(partial)	function	f	from	D	to	D'	is	a	partial	
isomorphism	between	A	and	A'	if	(a)	f	is	bijective,	and	(b)	for	all	x	and	y	in	D,	
Rk1xy	↔	Rʹk1f(x)f(y)	and	Rk2xy	↔	Rʹk2f(x)f(y)	(French	and	Ladyman	1999;	Bueno	
1997).8	Of	course,	if	Rk3	=	Rʹk3	=	∅,	so	that	we	no	longer	have	partial	structures	
but	'total'	ones,	then	we	recover	the	standard	notion	of	isomorphism	(see	Bueno	
1997).	

Furthermore,	we	say	that	a	(partial)	function	f:	D	→	Dʹ	is	a	partial	
homomorphism	from	A	to	Aʹ	if	for	every	x	and	every	y	in	D,	Rk1xy	→	Rʹk1f(x)f(y)	
and	Rk2xy	→	Rʹk2f(x)f(y)	(Bueno,	French,	and	Ladyman	2002).	Again,	if	Rk3	and	
Rkʹ3	are	empty,	we	obtain	the	standard	notion	of	homomorphism	as	a	particular	
case.	

Using	this	formalism,	we	can	also	represent	the	hierarchy	of	models—	
what	Suppes	called	models	of	data,	of	instrumentation,	of	experiment	(Suppes	
1962),	as	well	as	various	kinds	of	‘intermediate’	models—that	take	us	from	the	
phenomena	to	the	theoretical	level	(Bueno1997,	600–6021):	

Let	S	=	〈D,	Ri〉i∈I	and	Sʹ	=	〈Dʹ,	Rʹi〉i∈I	be	partial	structures.	So,	each	Ri	is	of	the	
form	〈R1,R2,R3〉,	and	each	R’i	of	the	form	〈Rʹ1,Rʹ2,Rʹ3〉.	

We	say	that	a	partial	function	f:	D	→	Dʹ	is	a	partial	isomorphism	between	S	
and	Sʹ	if	(i)	f	is	bijective,	and	(ii)	for	every	x	and	y	∈	D,	R1xy	↔	Rʹ1f(x)f(y)	and	R2xy	
↔	Rʹ2f(x)f(y).	So,	when	R3	and	Rʹ3	are	empty	(that	 is,	when	we	are	considering	
total	structures),	we	have	the	standard	notion	of	isomorphism.	

In	terms	of	this	framework,	we	can	also	represent	the	hierarchy	of	models	
(Suppes	1962)—models	of	data,	of	instrumentation,	of	experiment—that	take	us	
from	the	phenomena	to	the	theoretical	level	(Bueno	1997,	593-607):	
	

Ak	=	〈Dk,	Rk1,	Rk2,	Rk3,...,	Rkn〉	
Ak-1	=	〈Dk-1,	R(k-1)1,	R(k-1)2,	R(k-1)3,...,	R(k-1)n〉	
...	
A3	=	〈D3,	R31,	R32,	R33,...,	R3n〉	
A2	=	〈D2,	R21,	R22,	R23,...,	R2n〉	
A1	=	〈D1,	R11,	R12,	R13,...,	R1n〉	

	
where	each	Rij	is	a	partial	relation	of	the	form	〈Rij1,	Rij2,	Rij3〉⎯with	Rij1	
representing	the	n-tuples	that	belong	to	Rij,	Rij2,	the	ones	that	do	not	belong	to	Rij,	
and	Rij3,	those	for	which	it	is	not	defined	whether	they	belong	or	not⎯such	that,	
for	every	i,	1	≤	i	≤	k,	card(Rij3)	>	card(R(i+1)j3)	(Bueno	ibid.,	600-603).	The	partial	
relations	are	extended	as	one	goes	up	the	hierarchy,	in	the	sense	that	at	each	

                                                             
7	To	avoid	a	possible	confusion	between	R1,	R2,	and	R3	and	particular	occurrences	of	a	partial	
relation	Ri,	we	will	always	refer	to	the	former	as	R1-,	R2-	and	R3-components	of	the	partial	relation	
Ri.	
8	For	simplicity,	we	are	considering	here	only	two-place	relations.	But	the	definition	can,	of	
course,	be	easily	extended	to	n-place	relations.	



level,	partial	relations	which	were	not	defined	at	a	lower	level	come	to	be	
defined,	with	their	elements	belonging	to	either	R1	or	R2.9	

Using	this	framework,	a	notion	of	partial	or	quasi-truth	(see,	e.g.,	da	Costa	
and	French	2003)	can	be	defined	as	follows:	If	B	is	a	total	structure,	whose	
relations	of	arity	n	are	defined	for	all	n-tuples	of	elements	of	its	universe,	and	if	P	
is	a	set	of	accepted	sentences,10	then	B	is	said	to	be	A-normal	if:	

(i)		 the	universe	of	B	is	A;	
(ii)	 the	relations	of	B	extend	the	corresponding	partial	relations	of	A;	
(iii)	 if	c	is	an	individual	constant,	then	c	is	interpreted	by	the	same	
element	in	both	A	and	B;	
(iv)	 if	s	∈	P,	then	B	|=	s	(where	‘|=’	stands	for	the	logical	consequence	
relation	in	the	Tarskian	sense).	

That	is,	loosely	speaking,	a	total	structure	B	is	called	A-normal	if	it	has	the	same	
similarity	type	as	A,	its	relations	extend	the	corresponding	partial	relations	of	A,	
and	the	sentences	of	P	are	true,	in	the	Tarskian	sense,	in	B.	Then	a	sentence	s	is	
said	to	be	quasi-true	in	a	partial	structure	A,	or	in	the	domain	D	that	A	partially	
reflects,	if	there	is	an	A-normal	structure	B	and	s	is	true	in	the	Tarskian	sense	in	
B.	Clearly,	A	is	not	conceived	of	as	reflecting	the	(total)	structure	of	D,	but	as	
only	partially	mirroring	this	domain.	Thus	the	partial	structure	A	has	to	capture	
some	fundamental	aspects	of	D,	or	some	‘elements	of	truth’,	although	it	does	not	
mirror	D	perfectly.	For	simplicity,	one	can	say	that	a	sentence	s	is	quasi-true	if	
there	is	a	partial	structure	A	and	a	corresponding	A-normal	structure	B	in	which	
s	is	true	(in	the	Tarskian	sense).	If	s	is	not	quasi-true	(in	a	partial	structure	A	
according	to	an	A-normal	structure	B),	then	s	is	said	to	be	quasi-false	(in	A	
according	to	B).	
	 The	claim	that	has	been	made	is	that	this	formalism	offers	a	useful	
framework	for	capturing	and	thereby	representing,	at	the	level	of	the	philosophy	
of	science,	scientific	practice.	Note,	however,	that	I	am	not	claiming	that	theories	
are	partial	structures,	or	at	least,	not	in	any	meaningful	–that	is,	ontological	–	
sense.	If	we	accept	that	models	and	theories	are	not	the	kinds	of	‘things’	that	
have	identity	conditions	then	the	‘syntactic’	approach,	the	‘semantic’	approach	
and	other	such	approaches	can	be	seen	to	be	meta-level	devices	that	we,	as	
philosophers	of	science,	can	deploy	in	order	to	represent	those	aspects	of	
scientific	practice	that	we	are	interested	in	(see	also	French	2014	Ch.	5	and	
forthcoming).	Of	course,	some	of	those	aspects	or	features	are	referred	to	as	
theories	and	models	by	scientists	themselves	but	we	should	be	careful	not	to	
take	that	as	indicative	of	some	clearly	delineated	‘thing’	whose	identity	we	can	
definitively	pin	down.	Take	Maxwell’s	electrodynamics	for	example	–	as	Vickers	
has	persuasively	argued,	the	debate	over	whether	it	is	formally	inconsistent	or	
not	turns	precisely	on	the	issue	of	what	the	theory	is	taken	to	be	(Vickers	2013).	
Even	classical	mechanics	in	general	is	problematic,	as	the	debate	regarding	the	
priority	of	Hamiltonian	over	Lagrangian	formulations	(or	vice	versa)	reveals	
(North	2009;	Curiel	2014).	Indeed,	the	question	‘what	is	classical	physics?’,	

                                                             
9	 For	 an	 additional	 application	 of	 this	 framework	 to	 the	 idea	 of	 partial	 conceptual	 spaces,	 see	
Bueno	2016.		
10	This	set	of	accepted	sentences	P	represents	the	accepted	information	about	the	structure’s	
domain.	Depending	on	the	interpretation	of	science	that	is	adopted,	different	kinds	of	sentences	
are	to	be	introduced	in	P:	realists	will	typically	include	laws	and	theories,	whereas	empiricists	
will	add	mainly	certain	regularities	and	observational	statements	about	the	domain	in	question.	



forms	the	jumping	off	point	for	a	recent	historical	analysis	of	the	distinction	
between	‘classical’	and	‘modern’	physics	(Gooday	and	Mitchell	2013)	that	
concludes	that	in	fact	the	distinction	emerged	over	a	long	period	of	time,	
extending	into	the	1930s,	and	is	dependent	on	the	geographical	location	
considered.		And	of	course,	classical	continuum	mechanics	is	famously	
inhomogeneous,	presenting	a	complex	patchwork	of	models,	principles,	
approximations	and	so	forth	(Wilson	2014).	Things	get	even	worse	when	we	
move	to	the	quantum	context:	which	version	of	quantum	field	theory	should	we	
take	as	canonical,	the	rigorously	axiomatised	one	that	doesn’t	apply	to	any	actual	
system,	or	the	one	that	does	but	is	likewise	a	hodge-podge	of	models	and	
techniques	at	best,	inconsistent	at	worst	(see	the	debate	between	Fraser	(2011)	
and	Wallace	(2011)).	There	is	more	to	say	about	this,	of	course	but	any	
insistence	that	science	itself	presents	clearly	identifiable	and	delineable	theories	
breaks	down	once	close	attention	is	paid	to	the	history	and	the	practice.	
	 My	suggestion,	then,	is	that	the	partial	structures	approach	offers	a	useful		
-	and	I	would	argue,	the	best!	–	(meta-level)	representation	of	the	relevant	
features	of	those	scientific	practices.		precisely	because	of	the	way	it	can	formally	
accommodate	the	open	ended	nature	of	those	features	of	such	practices	that	we	
call	theories	and	models.	One	of	the	problems	with	specifying	identity	conditions	
is	that	the	relevant	features	are	typically	not	static	–	‘theories’	not	only	change	
and	develop	over	time	but	also	‘draw’	on	further	features	from	both	other	such	
‘theories’	or	features	of	other	practices,		as	well	as	from	mathematics	of	course	
(da	Costa	and	French	2003;	see	also	Bueno	and	French	forthcoming).11	
Furthermore,	once	we,	as	philosophers	of	science	have	determined	what	we	are	
taking	to	be	a	given	a	theory	or	set	of	models	(perhaps	drawing	on	the	views	of	
the	science	communities	involved),	with	partial	isomorphisms	understood	as	
holding	both	‘horizontally’	and	‘vertically’		between	such	features	as	for	example,	
data	models	and	theoretical	models,	it	can	also	capture	the	multitude	of	
relationships	that	constitute	scientific	progammes	in	general	(Bueno	1997	and	
2000;	da	Costa	and	French	op	cit.).	Further	extended	again	to	include	partial	
homomorphisms,	it	can	also	accommodate	the	relationships	between	such	
features	and	the	mathematics	in	which	they	are	‘framed’,	thus	capturing	the	
apploicability	of	mathematics	to	science	(Bueno,	French	and	Ladyman	2002;	see	
also	Bueno	and	French	2012);	in	particular,	this	approach	can	capture	the	
‘surplus	structure’	of	mathematics,	which	of	course	plays	an	important	heuristic	
role	in	scientific	developments	(Bueno	and	French	forthcoming).	

	However,	it	has	been	argued	that	the	partial	structures	framework	cannot	
capture	a	crucial	feature	of	these	scientific	practices,	namely	idealisations.	The	
rest	of	this	paper	will	be	taken	up	with	a	consideration	of	and	response	to	this	
criticism.	
	
Idealisations	and	Partial	Structures	
	 	
Here	I	shall	begin	by	focussing	on	Weisberg’s	recent	analysis	of	modelling	and	
simulations	in	science,	not	least	because	he	offers	a	more	exact	set	of	criteria,	
which	he	feels	any	account	of	scientific	modelling	must	meet,	than	is	usually	

                                                             
11 And of course it is precisely such considerations that motivate a shift from theories to ‘research 
programmes’.  



found	in	the	literature.	In	that	context	he	argues	that	the	partial	structures	
approach	fails	to	satisfy	these	criteria12.	In	particular,	he	insists,	since	models	
typically	involve	idealizations	of	various	kinds,	any	account	of	the	model-world	
relationship	should	be	able	to	‘…	distinguish	more	successful	instances	of	
representation	from	less	successful	ones.’	(Weisberg	2013,	p.	136)	–	this	is	the	
‘idealization’	criterion.	Furthermore,	the	model-world	relationship	should	be	
‘scalar’,	in	the	sense	that	the	relationship	should	be	regarded	as	coming	in	
degrees	and	should	be	representable	on	a	scale	since	‘…	models	can	tell	us	a	
greater	or	lesser	number	of	true	things	depending	on	their	degree	of	idealization	
…’	(ibid.).	It	should	also	allow	for	‘qualitative’	as	well	as	quantitative	comparisons	
and	also	for	the	model-world	relationship	to	depend	on	‘context’	and	in	case	
where	contexts	of	use	differ,	for	example,	it	should	also	accommodate	the	
‘adjudication’	of	extra-empirical	disagreements	regarding	how	good	the	model	
is13.		
	 Now,	although	Weisberg	acknowledges	that	the	partial	structures	
approach	represents	a	step	in	the	right	direction,	he	insists	that	it	fails	to	meet	
these	‘idealization’,	‘scalar’,	‘qualitativeness’	and	‘context	dependence’	criteria.	
So,	let’s	begin	with	the	first	and	consider	what	it	would	mean	for	a	model,	
characterised	set-theoretically	as	above,	to	be	idealised	or	to	contain	
idealisations.	Pincock	(2005)	suggests	two	conditions	that	must	be	met:	(i)	there	
is	no	isomorphism	relating	it	to	the	situation	that	it	purportedly	represents	and	
(ii)	the	relevant	agents	are	aware	of	this	(ibid.,	p.	1253).	Thus,	as	Weisberg	spells	
out,	isomorphism	based	accounts	straightforwardly	fail	to	meet	this	desideratum	
(op.	cit.	pp.	137-138)	because	they	require	all	the	elements	of	the	model	to	
correspond	to	elements	of	the	relevant	system.	But	consider	the	ubiquitous	
example	of	the	simple	pendulum	modelled	as	a	simple	harmonic	oscillator:	the	
model	incorporates	a	number	of	idealisations,	such	as	the	lack	of	air	resistance	
(encountered	by	the	bob),	the	lack	of	friction	(between	the	string	and	that	to	
which	it	is	affixed),	and	of	course	the	‘small	oscillation	assumption’	which	
requires	the	angle	of	swing	to	be	small	(so	that	we	can	set	sinθ	=	θ).	In	this	case	
there	obviously	is	no	isomorphism	between	the	model	and	the	target	system	
(described	appropriately).	
	 However,	with	partial	isomorphisms	holding	between	partial	structures	
we	do	not,	of	course,	require	complete	structural	identity	between	the	model	and	
the	system.	We	recall	that	with	a	partial	isomorphism,	only	certain	of	the	Ri	of	
one	partial	structure	stand	in	a	one-to-one	correspondence	to	certain	of	the	R’I	of	
the	other	(da	Costa	and	French	2003,	p.49).	Thus	in	the	case	of	the	simple	
pendulum,	the	idealised	model	can	be	said	to	represent	the	actual	pendulum	
because	only	a	partial	isomorphism	holds	(in	a	sense	to	be	clarified	very	shortly)	
between	the	model	and	the	system	(da	Costa	and	French	2003,	p.	102;	see	also	
Pincock	2005,	p.	1254).	This	all	sounds	straightforward,	with,	of	course,	the	

                                                             
12	Weisberg	himself	also	prefers	a	similarity	based	approach	but	defends	one	based	on	Tversky’s	
contrast	account	(Weisberg	2013,	pp.	143-155).		
13	The	other	three	desiderata	are	that	on	any	such	account	a	model	must	be	maximally	similar	to	
itself	and	to	any	target	that	shares	all	of	its	properties;	that	the	model-world	relationship	should	
accommodate	‘rich’	structures	in	terms	of	the	kinds	of	properties	involved	and	that	the	models	
should	be	tractable,	in	the	sense	that	similarity	judgments	should	be	open	to	comparison	and	not	
dependent	on	any	hidden	or	inaccessible	features	of	the	models	concerned.	All	of	which	seem	to	
be	uncontentious	requirements.		



caveat	that	the	system	itself	–	in	this	case	the	actual	pendulum	–	is	not	a	partial	
structure,	so	that	the	partial	isomorphism	holds	not	between	the	model	and	the	
actual	system	itself	but	between	the	former	and	the	relevant	data	model	or	
model	of	the	phenomena	(which	would	then	incorporate	the	R’i	mentioned	
above)	as	captured	via	the	hierarchy	indicated	previously	(see	French	and	
Ladyman	1999).		
	 However	the	following	worry	then	arises:	how	are	the	idealisations	
captured	by	the	partial	structure14?	
	 Let’s	begin	with	the	small	oscillation	assumption.	As	every	student	of	
physics	knows,	when	testing	the	formula	for	simple	harmonic	oscillation	as	
applied	to	a	simple	pendulum,	you	have	to	restrict	the	angle	of	swing.	Have	it	too	
high	and	the	bob	may	even	‘bounce’	on	the	end	of	the	string!	So	this	will	be	a	
feature	of	the	experimental	set	up	and	thus	of	the	phenomenon	to	be	accounted	
for.	Thus,	it	will	be	captured	by	the	R1	of	the	partial	structure;	that	is,	those	
relations	that	we	know	to	hold	in	the	system	or	phenomenon	concerned.	In	that	
sense	what	we	have	in	this	case	is	not	an	idealisation	per	se,	or	at	least	not	of	the	
system	being	considered,	although	it	might	be	regarded	as	such	if	we	try	to	
extend	the	application	of	our	model	outside	of	those	situations	where	the	
assumptions	hold	(in	which	case	the	formula	will	fail!).	
	 The	air	resistance	and	friction	on	the	other	hand	will	feature	in	the	R2,	
since	they	are	being	taken	not	to	hold.	In	effect	the	model	is	being	regarded	in	‘as	
if’	terms:	it	is	representing	the	pendulum	as	if	there	were	no	air	resistance	or	
friction.	And	as	noted	some	years	ago	(da	Costa	and	French	2003),	the	formalism	
of	quasi-	or	partial	truth,	based	on	the	partial	structures	framework,	can	then	be	
used	to	underpin	this	claim	that	idealised	models	should	be	regarded	as	if	they	
were	true.	Furthermore,	as	also	noted	(see	also	French	and	Ladyman	1998),	it	
can	be	extended	to	cover	not	just	this	sort	of	case,	but	also	that	of	idealisation	
terms,	where	these	are	thought	of	as	idealising	descriptions	laid	down	within	a	
theoretical	context.	To	describe	an	electron	as	if	it	were	a	point	particle	is	to	
describe	it	in	terms	of	a	bundle	of	properties	which	only	have	meaning	within	a	
model;	thus	the	'as	if'	character	of	such	idealisation	terms	gets	shifted	to	that	of	
the	embedding	context.	Our	epistemic	attitude	to	the	latter	can	then	be	grounded	
in	the	notion	of	quasi-truth	as	well.	
	 However,	this	is	where	Weisberg’s	worry	comes	in.	Thus	he	notes	that	in	
many	cases,	‘…	it	is	the	idealized	features	themselves	that	are	supposed	to	be	
representations	of	the	target’s	features	and	hence	part	of	the	explanation	of	the	
behaviour	of	such	targets.’	(op.	cit.	p.	141)	But	if,	he	continues,	these	features	fall	
outwith	that	part	of	the	partial	structure	that	is	connected	via	the	given	partial	
isomorphism	to	the	other	partial	structure	(Weisberg	talks	of	‘non-isomorphic	
substructures	in	this	regard)	then	in	the	terms	of	the	partial	structures	
programme,	they	cannot	act	as	representations	nor	do	any	explanatory	work.	
	 Now,	we	have	to	be	a	little	careful	here.	Consider	again	the	simple	
pendulum:	although	the	air	resistance	and	friction	are	placed	in	the	R2,	as	
features	that,	for	the	purposes	of	the	model,	are	taken	not	to	hold	of	the	system,	

                                                             
14	Here	we	are	talking	about	models	that	can	be	‘de-idealised’.	It	has	been	argued	that	there	are	
certain	idealisations	–	the	‘thermodynamic	limit’	in	statistical	mechanics,	for	example	–	that	
cannot	be	dispensed	with	in	this	way	and	thus	that	play	an	essential	explanatory	role.	However	
the	nature	of	this	role	remains,	at	best,	unclear	with	nothing	to	indicate	how	it	can	be	situated	in	
standard	accounts	of	explanation	(see	Bueno	and	French	2012).	



so	the	latter	is	being	modelled	as	if	it	were	resistance-free	and	frictionless,	the	
bob	itself,	for	example,	is	still	included	in	the	model	(in	the	A)	and	of	course,	
within	the	scope,	as	it	were,	of	the	partial	isomorphism.	It	is	the	bob	that	is	the	
idealized	‘feature’	within	the	model	(by	being	taken	to	suffer	no	air	resistance)	
and	this	still	both	represents	the	actual	bob	and	explains	(within	the	limits	of	the	
idealisation)	its	behaviour.	Thus	the	partial	isomorphism	still	captures	the	
representational	relationship	and	thereby	tracks	the	explanatory	work	being	
done.	
	 This	is	a	case	of	‘Aristotelian’	idealization,	where	we	‘remove’	certain	
properties	and	consider	what	remains	in	isolation	(Frigg	and	Hartmann	2012).	
What	about	Galilean	idealization,	where	we	keep	the	relevant	properties	but	
distort	them?	Weisberg	gives	the	famous	example	of	Schelling’s	model	of	racial	
segregation,	which	involves	both	forms	of	idealization;	let	us	consider	this	in	
some	detail:		
	 Schelling	constructed	a	simple	yet	elegant	model	to	explain	segregation	
whereby	each	agent	prefers	only	that	at	least	30%	of	its	neighbours	be	of	the	
same	kind	(however	defined)	and	said	agent	can	move	(even	if	only	in	a	limited	
way	–	as	in	the	squares	on	a	chessboard).	Schelling	showed	that	even	with	such	a	
weak	preference,	dramatic	segregation	will	occur	and	this	has	been	taken	to	
imply	that	racial	segregation	need	not	be	the	result	of	racial	prejudice.	As	
Weisberg	notes,	the	result	is	robust	across	various	changes	to	the	model,	
including,	especially,	changes	to	the	preference	and	the	spatial	configuration	
(Weisberg	op.	cit.,	pp.	13-14)15.	Here	it	is	the	idealized	preferences	(represented	
by	utility	functions)	and	spatial	configuration	that	both	represent	the	properties	
of	actual	people	and	do	the	explanatory	work.	Yet,	he	argues,	if	they	are	shunted	
away	into	the	R2,	these	representational	and	explanatory	capacities	cannot	be	
captured	by	the	partial	structures	approach.		
	 The	Schelling	model	is	an	example	of	what	Gibbard	and	Varian	call	a	
‘caricature’	model,	where	the	assumptions	of	the	model	are	chosen	in	order	to	
isolate	and	exaggerate	some	feature	of	reality	(Gibbard	and	Varian	1978).	
Paraphrasing	their	analysis16,	some	feature	of	social	life	is	noted	–	in	this	case	the	
tendency	of	neighbourhoods	to	become	segregated.	The	scientist	‘sets	out’	to	
construct	an	explanatory	model	but	as	the	reality	of	racial	segregation	is	
complex,	instead	of	trying	to	obtain	the	closest	tractable	approximation	to	the	
situation,	she	tries	to	tell	a	simple	‘story’	that	captures	the	most	salient	features.	
The	model	then	allows	us	to	pose	the	question,	what	would	happen	if	this	story	
were	true?	(ibid.,	p.	674).	In	effect,	Schelling	constructed	a	model	in	which	racial	
prejudice	(apparently)	played	no	role	in	segregation	and	in	which	the	primary	
driving	force	is	a	mild	preference.	And	he	did	this	not	because	he	thought	it	
might	be	true	or	even	approximately	so	but	because	he	thought	he	could	then	
isolate	the	effects	he	wanted	to	model	(cf.	ibid.	fn	10).	

                                                             
15	Thus	Pancs	and	Vrend	(2007)	show	that	even	with	a	strict	preference	for	perfect	integration,	
segregation	may	result.	Also,	see	Muldoon,	Smith	and	Weisberg	2012.		
16	I	am	not	suggesting	that	this	was	the	heuristic	route	that	Schelling	actually	took!	However,	the	
preface	to	(Schelling	2006/1978)	does	suggest	that	in	much	of	his	work	(of	which	the	Schelling	
model	is	only	a	small	part)	was	inspired	by	striking	examples	or	significant	social	phenomena	of	
one	kind	or	another.		



	 Thus,	caricature	models	–	as	the	name	suggests17	–	involve	deliberate	
distortions	of	reality,	and	this	is	why	they	differ	from	idealizations	like	that	of	the	
simple	harmonic	oscillator.	In	the	latter	case,	the	aim	is	to	distort	as	little	as	
possible	while	achieving	a	degree	of	simplicity	and	tractability.	Of	course,	
excluding	air	resistance	or	friction	is	a	distortion	in	a	sense		-	after	all,	eventually,	
a	real	simple	pendulum	will	stop	swinging!	-	but	we	know	from	experimental	
practice	that	the	latter	can	be	considerably	reduced	and	the	former	ignored	for	
all	relevant	purposes.	But	in	the	case	of	caricature	models,	the	distortion	is	
central	with	the	aim	of	isolating	a	certain	factor,	or	ruling	out	others18.		
	 What	then	is	the	value	of	such	models?	One	answer	has	to	do	with	their	
robustness,	in	the	sense	that	their	conclusions	do	not	depend	on	the	details	of	
the	core	assumptions.	Thus	in	the	case	of	the	Schelling	model,	as	Weisberg	has	
noted,	we	can	change	the	preferences,	even	quite	dramatically,	or	the	spatial	
configuration	and	the	result	still	obtains.	The	model	appears	to	be	robust	–	
indeed,	claims	that	the	model	has	a	physical	analogue	have	been	dismissed	as	not	
advancing	our	understanding	of	the	social	dynamics	of	segregation	on	the	
grounds	that	the	mathematical	basis	of	the	model	and	simulations	based	on	it	
have	already	done	the	job	(Clark	and	Fossett	2008)	–	and	has	become	one	of	the	
most	widely	cited	and	highly	regarded	models	in	the	social	sciences	in	general19.		
	 Now,	what	about	Weisberg’s	worry?	Let	me	reiterate	that	the	Schelling	
model	is	not	a	straightforward	idealisation,	akin	to	the	simple	pendulum,	but	a	
‘caricature’	model	in	which	an	‘impression’	is	given	of	racial	segregation,	not	by	
modelling	it	and	its	underlying	causes	directly,	but	by	showing	how	it	may	be	the	
unintended	‘macro-behavioural’	consequence	of	‘micro-motivations’,	in	this	case	
–	fairly	mild	preferences.	Thus	although	the	explanandum	might	well	be	
characterised	as	a	social	phenomenon	as	given	in	this	context,	it	is	entirely	
impressionistic	in	that	it	is	not	presented	as	racial	segregation	in	a	certain	city,	
or	district	or	even	across	the	US	but	simply	as	unspecified	segregation,	abstractly	
understood	(indeed,	as	Schelling	himself	emphasises	(in	2006/1978	and	
elsewhere)	he	was	interested	in	segregation	as	a	quite	general	phenomenon,	
whether	in	terms	of	race,	gender	or	even	between	officers	and	enlisted	men	(and	
now,	presumably,	women)	in	the	armed	forces).		
	 Furthermore,	the	explanans	–	the	model	itself	–	is	quite	simple	in	terms	of	
what	is	assumed.	Weisberg	suggests	these	assumptions	must	be	regarded	as	part	
of	the	‘non-isomorphic	substructure’	and	hence,	on	the	partial	structures	view,	
cannot	be	seen	as	doing	any	explanatory	work.	In	contrast,	I	would	argue	that	we	
should	not	assign	them	to	the	R2,	as	that	would	indicate	that	we	know	that	they	

                                                             
17	Interestingly,	Gibbard	and	Varian	explicitly	compare	models	to	pictorial	representations:	
econometric	models	–	of	the	kind	that	run	of	computers	and	are	used	to	make	economic	forecasts	
are	likened	to	photographs	(perhaps,	given	recent	events,	really	bad,	out	of	focus	photographs	…	
of	the	economist’s	thumb);	what	they	call	‘approximations’,	which	we	might	term	idealised	
models,	are	akin	to	pencil	drawings	and	caricature	models	are	like,	well,	caricatures	(1978,	p.	
665).	And	as	they	note,	a	given	model	may	evolve	from	a	caricature	to	an	approximation	or	even	
to	an	econometric	model.	
18	Thus	–	following	on	from	the	previous	footnote	–	the	distortion	illuminates	a	certain	feature	of	
reality,	just	as	a	pictorial	caricature	does	(ibid.,	p.	676).	
19	Frigg	and	Hartmann	(2012)	suggest	that	it	is	controversial	whether	such	caricature	models	can	
be	regarded	as	informative	representations	of	their	target	systems,	citing	(Reiss	2006)	However,	
Reiss	only	briefly	mentions	these	models	in	the	context	of	arguing	that	they	cannot	be	used	to	
establish	the	existence	of	Cartwrightian	capacities	in	the	domain	of	social	science.		



definitely	do	not	hold	(as	the	colours	of	a	billiard	ball	do	not	hold	for	gas	atoms	
in	the	classic	example	–	see	da	Costa	and	French	2003).	But,	first	of	all,	given	that	
we	are	talking	about	a	caricature	of	a	quite	abstract	phenomenon	rather	than	a	
specific	system,	we	know	no	such	thing.	Secondly,	and	relatedly,	we	simply	do	
not	know	whether	these	assumptions	hold	for	real	‘systems’,	that	is,	actual	
neighbourhoods.	Again,	that’s	not	the	point.		
	 And	that	its	not	the	point	means	that	these	assumptions	should	not	
simply	be	represented	as	part	of	the	R3	–	those	relations	for	which	we	do	not	
know	whether	they	hold	or	not.	Although	that	is	true	of	actual	neighbourhoods	
or	groups	of	people,	it	is	not	the	case	for	the	distorted	feature	of	reality	in	
question.	In	this	case,	we	know	that	the	assumptions	yield	the	segregation	and	
thus	they	hold	in	this	context.	Thus	they	should	be	placed	in	the	R1	–	i.e.	very	
much	not	part	of	the	‘non-isomorphic	substructure’	–	but	the	model,	of	course,	
should	be	viewed	as	offering	an	‘as	if’	story	(see	above)	in	the	sense	of	answering	
the	question,	what	would	happen	if	it	were	true	that	people	preferred	1/3	of	
their	neighbours	to	be	the	same	race?	Answer:	segregation!	As	already	
suggested,	the	theory	of	quasi-truth	can	then	be	used	to	formally	underpin	such	
‘as	if’	claims20.	And	as	Weisberg	himself	notes	(op.	cit.	pp.	118-119),	although	
such	models	might	be	used	in	a	‘target-directed’	manner	–	in	the	sense	of	being	
used	to	explain	the	segregation	in	an	actual	neighbourhood	or	city	–	Schelling	
himself	was	interested	in	how	it	might	be	possible	for	segregation	to	result	
without	collective	preferences	for	it.	What	we	have	here	is	a	‘how-possible’	kind	
of	explanation	(ibid.).	
	 But	of	course	that	is	not	the	whole	story.	The	worry	has	to	do	with	
whether	the	partial	structures	approach	can	adequately	capture	the	‘work’	that	
the	model	is	doing.	Now	if	that	work	were	only	encapsulated	in	the	above,	
Schelling’s	model	would	be	interesting	but	not,	perhaps,	as	impressive	as	it	is.	
However,	as	noted	previously,	the	model	is	robust	under	a	range	of	alternative	
assumptions	and	this	is	where	much	of	its	value	lies	–	one	can	tweak	the	core	
assumptions	in	various	ways	and	weaken	them	quite	considerably,	and	
segregation	still	results.	From	the	perspective	of	the	model	as	offering	an	‘as	if’	
story,	one	can	take	these	alternatives	as	being	‘stored’,	as	it	were,	in	the	R3	–	after	
all,	from	this	perspective,	we	do	not	know	if	they	hold,	not	of	the	actual	social	
‘systems’	but	of	segregation	as	distorted	and	broadly	understood	in	this	manner.	
Thus	we	can	understand	robustness	analyses	as	‘promoting’	various	of	these	
alternatives	from	the	R3	to	the	R1	–	effectively	giving	us	different	variants	of	the	
model,	again,	regarded	as	‘as	if’	(cf.	Weisberg	op.	cit.,	p.	158)	–	and	then	
determining	whether	segregation	still	results.	That	it	does,	under	a	wide	array	of	
alternatives,	has	been	taken	by	many	social	scientists	to	support,	in	some	sense,	

                                                             
20	It	also	helps	respond	to	the	worry	about	how	strictly	false	models,	containing	such	
idealizations,	can	still	explain	–	the	answer	is	that	although	false,	insofar	as	they	work,	whether	in	
an	explanatory	sense	or	otherwise,	they	can	be	regarded	as	partially	or	quasi-true	(da	Costa	and	
French	1990).	Whether	this	corresponds	to	an	appropriate	form	of	approximate	truth	is	another	
matter.	Consider	the	model	of	a	solenoid	in	which	the	magnetic	field	is	taken	to	extend	to	infinity	
–	this	is	not	approximate	to	any	real	life	situation	(thanks	to	James	Fraser	for	this	example).	
However	insofar	as	this	is	so	only	by	virtue	of	the	fact	that	infinity	is	not	approximate	to	any	
finite	quantity,	one	might	respond	either	by	treating	such	as	special	cases,	depending	on	one’s	
view	of	infinity	(i.e.	a	constructivist	would	have	very	definite	views	on	such	examples!)	or	by	
noting	that	just	as	physicists	talk,	perhaps	loosely,	of	bringing	in	a	test	charge	‘from	infinity’	so	
we	can	talk	of	dialling	down	the	field	‘from	infinity’.	



the	model;	or	perhaps	better,	to	support	the	hypothesis	that	segregation	may	
result	via	the	expression	of	quite	mild	preferences	and	is	not	necessarily	due	to	
(overt)	prejudice.	
	 How	should	we	cash	out	this	notion	of	support?	One	option	is	via	some	
notion	of	confirmation.	Many	philosophers	of	science,	however,	have	been	
resistant	to	such	suggestions21.	The	grounds	for	this	scepticism	have	to	do	with	
the	lack	of	further	evidence	involved,	since	it	is	essentially	the	same	result	or	
general	phenomenon	that	is	being	appealed	to	in	each	case,	or	iteration,	
supporting	the	robustness	claim.	Now	one	might	immediately	object	that	in	the	
case	of	the	Schelling	model,	there	is	of	course	no	‘further	evidence’	since	what	we	
have	is	a	caricature	of	social	reality	to	begin	with!	Nevertheless,	we	should	resist	
the	shift	from	that	exclamation	to	the	dismissal	of	the	practice	of	social	scientists	
themselves	in	setting	such	considerable	store	by	these	robustness	results.		
	 Weisberg	himself	suggests	that	robustness	offers	‘…	low-level	
confirmation,	confirmation	of	the	fact	that	certain	mathematical	structures	can	
adequately	represent	properties	of	target	phenomena.’	(2006,	p.	740).	In	the	
Schelling	case,	the	robust	property	or	phenomenon	we	are	concerned	with	is,	
obviously,	segregation.	By	varying	the	assumptions	made	we	obtain	an	array	of	
models,	all	of	which	yield	this	phenomenon	(hence,	its	robustness).	We	then	
extract	the	common	structure	from	that	array	which	we	take	to	be	responsible	
for	this	phenomenon	(Weisberg	2013,	p.	158)	and	form	a	‘robust	theorem’:	
ceteris	paribus,	if	individuals’	decisions	about	where	to	live	are	guided	by	the	
kinds	of	considerations	encapsulated	in	the	models’	assumptions,	then	
segregation	will	result	(see	Weisberg	ibid.,	p.	168,	for	a	more	precise	expression).	
According	to	Weisberg,	robustness	analysis	does	not	confirm	such	robust	
theorems	(so	in	that	sense	he	agrees	with	the	sceptics),	but	what	it	does	is	
identify	hypotheses	‘…	whose	confirmation	derives	from	the	low-level		
confirmation	of	the	mathematical	framework	in	which	they	are	embedded.’	(ibid.	
p.	170).	
	 So,	what	we	have	is	a	general	phenomenon,	segregation,	expressed	quite	
abstractly	and	non-specifically,	that	can	be	accommodated	by	each	of	an	array	of	
models,	each	incorporating	an	alternative	assumption	about,	for	example,	
individuals’	preferences	but	all	manifesting	a	common	structure.	From	the	set-
theoretic	perspective,	a	sub-structure,	expressing,	again	quite	generically,	this	
phenomenon,	can	be	regarded	as	embedded	in	each	of	these	models	and	to	that	
extent	can	be	taken	as	confirming	them,	if	only	weakly.	That	the	phenomenon	is	
adequate,	if	not	empirically	then	in	some	sense,	to	all	the	models	could	be	seen	
as	a	kind	of	underdetermination.	From	this	perspective,	what	robustness	
analysis	rests	on	is	a	kind	of	‘ontological	retreat’	to	the	common	structure,	which	
is	where	we	should	place	our	epistemic	emphasis	in	each	case.	More	importantly,	
there	appears	to	be	nothing	in	Weisberg’s	account	that	falls	outside	the	partial	
structures	approach:	the	models	can	be	regarded	as	of	the		‘as	if’	kind,	
corresponding	to	‘how-possibly	explanations’,	just	as	other	forms	of	idealisation	

                                                             
21	See	Woodward	(2006),	who	also	gives	a	useful	classification	of	different	forms	of	robustness.	
What	we	have	in	the	Schelling	case	would	appear	to	fall	under	what	he	calls	‘derivational	
robustness’,	whereby	‘…an	assumption	is	adopted	about	the	value	of	the	parameter	and	this	is	
used,	in	conjunction	with	other	theoretical	assumptions,	to	derive	some	range	of	observed	
phenomena.	Investigations	are	then	made	whether,	given	other	values	of	the	parameter,	but	the	
same	theoretical	assumptions,	the	same	conclusions	can	be	derived.’	(ibid.,	p.	233)	



are	according	to	this	approach	(French	and	Ladyman	1998;	da	Costa	and	French	
2003)	and	the	explanatory	work	that	they	do	can	be	captured	by	initially	placing	
the	relevant	assumptions	in	the	R3	and	then	‘promoting’	each	one	to	the	R1	to	
yield	a	different	‘as	if’	model	in	each	case.	What	this	then	allows	us	to	do	via	the	
robustness	analysis,	as	already	indicated,	is	to	identify	the	common	structure,	
which	can	be	represented	set	theoretically	as	sitting	in	the	R1.	And	what	is	thus	
confirmed	is	the	‘representational	capacity’	of	this	structure	(Weisberg	2013,	p.	
169)22.		
	 There	is	a	further	concern,	however,	that	has	been	expressed	by	Pincock,	
to	the	effect	that	the	partial	structures	approach	must	treat	idealisations	as	
nothing	more	than	a	series	of	approximations,	but	because	the	latter	are	too	
crude	to	discriminate	among	different	idealizations,	the	approach	cannot	rank	or	
evaluate	them	in	a	way	that	meshes	with	scientific	practice	(Pincock	2005).	
Consider	again	the	case	of	the	simple	pendulum,	treated	as	a	simple	harmonic	
oscillator	(that	is,	with	air	resistance	and	frictional	effects	ignored):	as	is	well	
known,	the	motion	of	the	pendulum	can	be	represented	in	the	appropriate	phase	
space	as	an	ellipse,	determined	by	the	length	of	the	pendulum,	the	gravitational	
constant	and	the	initial	state	of	the	pendulum	(ibid.,	pp.	1250-1251).	If	air	
resistance	or	friction	is	included	then	the	phase	space	trajectory	spirals	into	the	
origin,	of	course.	Our	(total	or	complete)	model	will	thus	consist	of	the	domain	of	
possible	states	–	as	represented	in	this	phase	space	–	and	a	family	of	relations	
representing	all	the	‘simple	harmonic’	trajectories	generated	by	all	the	possible	
initial	states	of	the	pendulum.	Given	the	idealizations	(including	the	small	
oscillation	assumption)	these	trajectories	will	not	be	isomorphic	to	actual	
trajectories	but	they	can	be	taken	to	be	partially	isomorphic	(ibid.,	p.	1254).	
	 This	suggests	that	in	the	mathematical	description	of	the	trajectories	a	
further	‘error’	term	needs	to	be	introduced	to	reflect	the	‘looseness’	of	the	
idealization,	yielding	a	series	of	tubes	in	phase	space	(ibid.,	p.	1256).	As	Pincock	
emphasises,	the	assumptions	behind	this	move	(ignoring	air	resistance,	keeping	
the	oscillations	small	etc.)	are	all	well	motivated.	However,	we	can	easily	
generate	the	same	tubes	from	a	different	mathematical	description	via	moves	
that	are	not	so	well	motivated	or	indeed,	not	motivated	at	all	(ibid.).	From	the	
perspective	of	the	partial	structures	approach,	which	looks	only	at	the	end	result	
as	it	were	and	then	insists	that	a	partial	isomorphism	can	be	taken	to	hold	
between	these	tubes	and	the	actual	trajectory,	there	appears	to	be	no	way	to	
discriminate	between	the	well-motivated	idealisations	and	the	poorly	motivated	
ones.	In	particular,	appealing	to	further	model-model	relations	in	the	hierarchy	
outlined	above	will	not	help,	because	the	same	mappings	will	hold	for	both	the	
well	motivated	model	and	the	poorly	motivated	alternative	(ibid.,	p.	1258).		
	 As	a	result,		
	
“…	we	cannot	ignore	how	or	why	a	mathematical	model	is	introduced	if	we	are	to	
give	a	reasonable	account	of	representation	and	accuracy	in	terms	of	partial	
isomorphisms.	In	particular,	our	judgments	about	the	appropriateness	of	an	

                                                             
22	Paternotte		and	Grose	(forthcoming)	argue	that	not	all	cases	of	robustness	can	be	
accommodated	by	Weisberg’s	analysis.	They	use	examples	from	evolutionary	game	theory	to	
show	that	in	such	cases	there	is	no	common	structure,	yet	robustness	may	be	justified	in	cases	of	
phenomena	that	follow	from	multiple	initial	conditions	or	are	multiply	instantiated.	



idealized	model	depend	not	just	on	the	trajectories	that	we	end	up	with,	but	how	
we	cooked	up	these	particular	trajectories	in	the	first	place.”	(ibid.,	p.	1257)	
	
	 Now,	I	would	certainly,	and	obviously,	agree	that	our	judgments	as	to	
which	idealisations	to	incorporate	in	a	model	depend	on	a	variety	of	factors	that	
will	be	external	to	the	model	itself.	Indeed,	how	could	they	be	otherwise?	
Consider,	again,	the	small	oscillation	assumption,	which	is	dependent	on	the	
mathematical	result	that	for	small	θ	sinθ	~θ,	allowing	us	to	more	easily	solve	the	
relevant	differential	equation	and	thus	contributing	to	the	model’s	mathematical	
tractability.	When	it	comes	to	friction	and	air	resistance,	we	know	from	empirical	
studies	that	we	can	ignore	these	for	most	situations	–	of	course,	if	we	were	to	
swing	the	pendulum	in	water	or	add	some	restrictive	material	at	the	point	where	
the	string	is	affixed,	then	we	would	not	get	the	expected	relationship	between	
the	period	and	length	and	our	model	would	fail.	So,	again,	I	agree	that	we	cannot	
ignore	how	or	why	the	model	was	introduced	but	the	factors	laying	behind	that	
introduction	will	typically	be	those	that	fall	outside	of	the	model	itself,	not	least	
because	they	may	include	empirical	features	of	the	situation.	In	other	words,	we	
should	not	have	expected	the	force	of	these	factors	to	have	been	captured	by	the	
partial	structures	formalism	alone,	or	indeed	any	other	such	formal	framework.	
	 The	point	has	been	made	before	with	regard	to	heuristic	factors	involved	
in	theory	or	model	construction	(see	da	Costa	and	French	2003	Ch.	4)23	and	can	
be	extended	here:	we	should	not	expect	formal	representations	of	theories	or	
models	to	incorporate	heuristic	moves,	the	judgments	of	scientists	and	such	like.	
To	insist	that	we	must	and	then	claim	that	attempts	to	do	so	fail	is	to	attempt	a	
knock	down	argument	against	a	self-evidently	absurd	position.	Thus,	our	
judgments	about	the	appropriateness	of	an	idealized	model	such	as	the	simple	
pendulum	should	not,	of	course,	depend	only	on	the	phase	space	trajectories	we	
end	up	but	should	involve	consideration	of	the	factors,	empirical	and	otherwise,	
that	led	to	the	relevant	assumptions	being	made.	Of	course,	insofar	as	these	
assumptions	are	included	in	the	model,	the	factors	concerned	are	also	
manifested	in	that	model,	in	a	sense,	but	in	order	to	rank	it	as	better	or	worse	
than	an	alternative,	we	obviously	need	to	consider	the	factors	themselves	(e.g.	is	
the	lack	of	friction	empirically	well	grounded).	Thus	just	as	we	should	not	expect	
the	formalism	of	the	partial	structures	approach	to	capture	the	confirmation	of	
models	or	theories,	so	we	should	hold	no	similar	expectation	with	regard	to	the	
ranking	of	idealizations	(or	at	least,	not	with	regard	to	that	aspect	of	the	ranking	
that	depends	on	factors	external	to	the	formalism).	
	 With	the	above	to	hand,	we	can	dispense	with	the	other	objections	more	
straightforwardly.	Thus	Weisberg	raises	a	similar	concern	to	Pincock’s	in	
arguing	that	partial	isomorphism	based	accounts	fail	to	account	for	‘context’:	
although	he	acknowledges	that	since	partial	isomorphisms	come	in	degrees,	it	
could	be	argued	that	‘…	contextual	factors	dictate	the	determination	of	when	a	
particular	partial	isomorphism	is	good	enough	for	the	purpose	at	hand’	(2013,	p.	
141),	he	maintains	both	that	this	determination	would	not	be	part	of	the	partial	
structures	account	of	the	model-world	relation	and	that	no	separate	account	of	
how	to	make	such	judgments	has	been	given.	
	 Now	it	could	be	argued	that	context	can	be	brought	into	play	to	determine	

                                                             
23	Indeed,	Pincock	acknowledges	this	point	(op.	cit.,	p.	1253).	



when	a	particular	partial	isomorphism	is	appropriate,	as	indeed	it	has	(da	Costa	
and	French	2003)!	And	it	is	correct,	of	course,	that	this	determination	is	not	
‘internal’	to	the	partial	structures	formalism	–	again,	how	could	it	be?	One	might	
argue	that	an	account	that	can	incorporate	such	factors	would	be	preferable	but	
in	this	specific	case,	if	‘context’	is	internalised,	as	it	were,	one	might	wonder	in	
what	sense	it	can	still	be	regarded	as	contextual.	Of	course,	the	formalism	should	
be	flexible	enough	to	adapt	to	different	contexts,	and	I	believe	that	the	partial	
structures	approach	is,	but	I	also	do	not	think	that	it	should	be	tied	to	a	specific	
account	of	the	impact	of	contextual	factors,	just	as	it	should	not	be	tied	to	specific	
accounts	of	confirmation,	Bayesian	or	otherwise.	Some	indications	of	how	
accounts	of	these	various	judgments	might	mesh	with	the	approach	have	in	fact	
been	presented	(ibid.)	but	given	that	preference	for	one	such	account	over	
another	will	involve	reasons	that	go	beyond	the	approach	itself,	I	would	argue	
that	a	degree	of	distance	or,	better,	flexibility	should	be	maintained.		
	 Relatedly,	Weisberg	also	argues	that	although	the	partial	structures	
approach	could	allow	for	the	construction	of	some	kind	of	metric	that	would	
meet	the	‘scalar’	desideratum,	this	has	not	in	fact	been	attempted.	However,	such	
a	possibility	was	explicitly	mentioned	in	one	of	the	very	first	presentations	of	
this	approach	(da	Costa	and	French	1990),	where	it	was	noted	that	the	degree	to	
which	a	model	might	be	said	to	‘approximate’	a	theory	could	be	measured	by	the	
difference	between	the	relevant	Rk	and	R’k	on	some	scale,	along	the	lines	
previously	indicated	in	(Redhead	1980).	This	can	easily	be	extended	to	
accommodate	the	kinds	of	concerns	that	motivated	this	desideratum.	And	of	
course,	the	terms	in	which	such	differences	are	measured	will	depend	–	once	
again	–	on	factors	outwith	the	partial	structures	approach,	which	is	as	it	should	
be.		Certainly,	insofar	as	these	differences	are	representable	on	some	scale	or	
other,	this	approach	meets	the	requirement.	As	to	why	its	advocates	have	not	
themselves	developed	such	a	metric,	its	simply	because	they	have	not	felt	any	
need	to,	given	the	issues	they	have	been	concerned	with.	But	if	anyone	else	
wants	to	take	this	on,	then	have	at	it!	
	 Finally,	and	perhaps	most	problematically	in	some	senses,	‘[by]	definition,	
no	model-theoretic	accounts	can	meet	the	QUALITATIVE	desideratum’	
(Weisberg	2013,	p.	141).	However,	it	is	not	entirely	clear	why,	‘[b]y	definition’	
such	accounts	cannot	meet	this	requirement.	One	thought	might	be	that	because	
they	are	grounded	in	set	theory,	these	accounts	can	only	make	quantitative	
comparisons	between	models	and	the	world.	If	so,	then	given	that	many	models,	
particularly	outside	of	the	physical	sciences,	involve	only	qualitative	
comparisons	–	the	Schelling	model	being	precisely	one	such	(ibid.,	p.	136)	–	then	
model	theoretic	accounts	would	be	deficient	for	not	being	able	to	accommodate	
such	models.	But	insofar	as	the	Ri	can	capture	qualitative	as	well	as	quantitative	
relations,	this	is	no	problem	at	all	(thus,	the	partial	structures	approach	can	be	
extended	beyond	the	physical	sciences	to,	for	example,	biology	and	economics;	
again	see	da	Costa	and	French	2003	or	French	2014	Ch.	12).	Returning	to	the	
Schelling	model,	as	Weisberg	notes	(op.	cit.,	p.	136),	here	‘one	will	compare	the	
fact	that	the	model	has	racially	segregated	clusters	to	the	fact	that	the	city	has	
racially	segregated	clusters’.	The	relevant	racial	segregation	is	then	
straightforwardly	represented	in	terms	of	the	Ri	and	the	issue	comes	down	to	
comparing	it	with	what	is	observed	in	reality.	One	can	imagine	borderline	cases	
where	it	is	not	immediately	clear	whether	there	is	the	kind	of	segregation	in	the	



city	that	is	presented	by	the	model,	and	one	might	then	impose	some	kind	of	
metric	on	one’s	observations	and	move	to	a	model	of	the	phenomena,	but	even	in	
straightforward	cases	there	is	no	requirement	that	the	relations	manifested	by	
segregation	in	the	city	have	to	be	quantitatively	represented	to	be	comparable	
with	those	in	the	model.	
	 This	brings	us	to	the	issue	of	the	model-world	relationship	and	the	
second,	alternative	reason	why	model-theoretic	accounts	cannot	meet	this	
desideratum.	Thus	Weisberg	insists	that	it	is	because	‘[s]uch	accounts	can	only	
compare	structure	to	structure’	(ibid.,	p.	141).	Now,	let	me	say	first	of	all	that	
there	is	a	sense	in	which	this	is	correct:	strictly	speaking	partial	isomorphisms	
can	only	be	defined	between	and	thus	can	only	be	taken	to	hold	between	set	
theoretic	structures.	But	this	is	an	old	concern	that	has	since	been	addressed	
(French	and	Ladyman	1999)	–	how	any	of	our	representations,	linguistic,	model-
theoretic,	artistic	or	otherwise,	relate	to	the	world	is	of	course	a	fundamental	
philosophical	problem	but	in	this	context,	we	can	either	acknowledge	that	in	
most	scientific	cases	what	we’re	talking	about	is	the	relationship	between	
theoretical	models,	empirical	substructures	and	models	of	the	phenomena	etc.,	
which	of	course	can	all	be	represented	set-theoretically	(but	which	just	pushes	
the	issue	back	to	that	of	the	relationship	between	the	model	of	the	phenomena	
and	the	phenomena	itself)	or	accept	that	talk	of	a	partial	isomorphism	holding	
between	a	model	and	the	world	is	a	façon	de	parler	that	allows	us	to	capture	the	
assertion	of	a	primitive	or	intuitive	similarity	between	the	Schelling	model,	say,	
and	racial	segregation	in	some	city	of	other.	Of	course,	even	in	this	case,	its	not	as	
if	we	have	that	racial	segregation	to	hand,	as	it	were,	or	can	observe	it	in	such	a	
way	that	we	can	relate	it	to	the	model,	even	qualitiatively	–	what	we	would	have	
is	the	graphical	representation	of	the	outcome	of	the	Schelling	model	and	a	
similarly	graphical	representation	of	the	racial	segregation	in	some	city	and	
whether	we	say	they	are	similar	by	just	eyeballing	the	two	or	via	some	more	
precise	technique,	there	is	nothing	here	that	can’t	be	capture	set-theoretically.	
	 Finally,	however,	Weisberg	seems	to	place	further	weight	on	this	claim	
that	the	model-theoretic	approach	only	relates	structures	to	structures	by	
suggesting	that	qualitative	properties	cannot	be	structural	and	this	is	why	the	
desideratum	cannot	be	met	(ibid.	p.	141).	Here	the	idea	is	that	qualitative	
properties	may	be	monadic	and	not	relational	and	hence	can’t	be	captured	via	
the	model	theoretic	approach.	But	that’s	simply	not	the	case	–	the	Ri	are	perfectly	
general	and	may	include	monadic	features	possessed	by	each	element	in	the	
relevant	A24.		
	 Thus	I	would	argue	that	all	of	Weisberg’s	(and	Pincock’s)	concerns	can	be	
met,	either	by	paying	due	attention	to	the	relevant	features	of	the	partial	
structures	framework	or	by	acknowledging	the	role	of	factors	external	to	that	
framework.	This	aspect	of	scientific	practice,	then,	presents	no	obstacles	to	the	
semantic	approach.		
	 	
	 	

                                                             
24	Weisberg	suggests	that	many	proponents	of	the	partial	structure	approach	are	structural	
realists	who	would	deny	that	qualitative	features	are	relevant	to	scientific	enquiry	(ibid.,	p.	141).	
But	of	course	one	could	be	a	structural	realist	with	regard	to	the	most	fundamental	properties,	in	
physics	say,	and	still	accept	that	features	of	systems	at	‘higher’	levels	or	in	different	domains	
might	best	be	described	in	non-relational	terms.		



Conclusion	
	
I	began	this	paper	by	noting	how	recent	criticisms	of	the	semantic	approach	have	
been	framed	by	a	concern	regarding	the	identity	conditions	of	scientific	theories	
that	has	fed	into	the	underlying	assumption	that	according	to	this	approach	
theories	should	be	identified	with	families	of	models.	I	have	tried	to	suggest	that	
this	assumption	should	be	abandoned,	that	we	should	give	up	on	trying	to	
specify	such	identity	conditions	and	that	we	should	regard	the	semantic	
approach	instrumentally	as	a	useful	set	of	devices	that	philosophers	of	science	
can	deploy	to	further	our	aims.	Such	aims	will	include,	of	course,	that	of	
appropriately	representing	those	features	of	scientific	practice	that	we	are	
interested	in.	Some	of	those	features	might	be	labelled	‘theories’	or	‘models’	or	
‘research	programmes’	but,	again,	we	should	be	wary	of	taking	them	to	be	
delineated	too	tightly.	In	particular,	they	will	typically	be	open-ended	and	inter-
related	in	often	complex	ways.	Given	this,	I	have	pressed,	the	partial	structures	
variant	of	the	semantic	approach	offers	the	best	meta-level	representation	of	
these	features.		
	 A	possible	obstacle	to	this	insistence	is	the	role	of	idealisations	in	science,	
which,	Weisberg	and	Pincock	have	strongly	argued,	cannot	be	accommodated	in	
this	framework.	I	have	tried	to	respond	that	they	can	but	this	will	involve	paying	
attention	to	certain	factors	laying	beyond	that	framework.	In	a	sense,	‘’twas	ever	
thus’	but	it	is	important	to	acknowledge	the	limitations	of	formal	approaches	–	
they	cannot	capture,	for	example,	the	nature	and	role	of	heuristic	motivations,	
although	they	can	certainly	be	made	compatible	with	them	(again,	see	da	Costa	
and	French	2003	Ch.	4).		
	 Such	motivations	lie,	of	course,	within	scientific	practice	itself	and	
although	one	can	conceive	of	ways	in	which	they	might	be	(non-formally)	
captured	at	the	meta-representational	level,	that	acknowledgment	further	
suggests	that	accommodating	that	practice	within	one’s	philosophy	of	science	is	
going	to	involve	a	complicated	to-and-fro	dance	between	the	particular	
instrumental	device	that	one	has	pragmatically	chosen	and	those	factors	within	
the	practice	that	will	lie	beyond	its	formal	grasp.	And	of	course,	in	so	moving	
back	and	forth,	the	formal	structures	one	constructs	may	in	turn	inform	the	
features	of	practice	one	started	out	by	representing.	Consider	Suppes’	work	in	
the	foundations	of	psychology	for	example,	particularly	with	regard	to	learning	
theory	and	cognitive	psychology.	There	his	axiomatizations	in	terms	of	certain	
primitive	concepts	drawn	from	psychological	practice	can	be	seen	as	helping	to	
shape	or	even	crystallize	the	relevant	theories	(Batchelder	and	Wexler	1979).	
Such	examples	may	be	few	and	far	between	(others	may	be	drawn	from	the	
collaboration	between	physicists	and	philosophers	on	Bohm	theory	or	at	the	
‘coalface’	of	the	development	of	forms	of	quantum	gravity)	but	they	suggest	
interesting	ways	in	which	philosophy	may	interact	with	or	even	impact	upon	
science.		
	 Less	contentiously	perhaps,	this	general	stance	towards	object-level	
scientific	practice	on	the	one	hand	and	meta-level	philosophy	of	science,	might	
offer	new	avenues	for	thinking	about	the	relationship	between	science,	and	its	
history,	and	philosophy	of	science.	At	the	very	least	what	we	seem	to	have	is	less	
a	case	of	the	former	acting	as	evidence,	whether	confirmatory	or	falsificatory,	for	
the	latter,	and	more	that	of	an	iterative	process,	hopping	between	levels,	in	



which	what	we	take	to	be	the	relevant	features	to	be	accommodated	is	itself	
shaped	by	the	approaches	and	consequent	devices	we	adopt	as	philosophers.	
Dropping	the	assumption	that	there	are	definite	things	called	theories	and	
adopting	an	instrumental	stance	towards	the	semantic	approach	(and	others)	
may	thus	lead	to	a	more	integrated	approach	to	science,	the	history	of	science	
and	the	philosophy	of	science	more	generally.		
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