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Abstract

In this brief note I show how to model conceptual change, logical learning, and revision
of one’s beliefs in response to conditional information such as indicative conditionals that do
not express propositions.
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1 Introduction

Stanford (2006) illustrates the importance of the capacity to learn new concepts with case
studies from the history of science. Hintikka (1970: 135) calls formal philosophy’s inabil-
ity to model logical learning “a scandal of deduction”. Van Fraassen’s ’Judy Benjamin
problem’ highlights how difficult it is to model the learning of conditional information
such as indicative conditionals that, unlike material conditionals, do not express proposi-
tions (van Fraassen 1981). This brief note shows that these three problems are easily dealt
with in Spohn’s theory of ranking functions (1988; 2012). I will sketch the latter theory in
section 2, deal with conceptual change and logical learning in section 3, and conditional
information in section 4.

2 Ranking functions

Ranking functions have been introduced by Spohn (1988; 2012) in order to model quali-
tative conditional belief. The theory is quantitative or numerical in the sense that ranking
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functions assign numbers to propositions, which are the objects of belief in this theory.
These numbers are needed for the definition of conditional ranking functions represent-
ing conditional beliefs. As we will see, though, once conditional ranking functions are
defined we can interpret everything in purely qualitative, but conditional terms.

Consider a set of possible worlds W and an algebra of propositions A over W. A
function % : A ! N [ {1} from A into the set of natural numbers N extended by 1,
N[ {1}, is a finitely / countably / completely minimitive ranking function onA just in case for
all finite / countable / arbitrary sets of propositions B ✓ A:

% (W) = 0 (1)
% (;) = 1 (2)

%
⇣

[

B
⌘

= min
�

% (A) : A 2 B 

(3)

For a non-empty or consistent proposition A , ; fromA the conditional ranking function
% (· | A) : A\{;}!N[{1} based on the unconditional ranking function % (·) : A!N[{1}
is defined as

% (· | A) =
(

% (· \ A) � % (A) , if % (A) < 1,
1 or 0, if % (A) = 1.

Goldszmidt & Pearl (1996: 63) suggest 1. Huber (2006: 464) suggests 0 and stipulates
% (; | A) = 1 to ensure that every conditional ranking function is a ranking function on
A.

A ranking function % is regular if and only if

% (A) < % (;) (4)

for all non-empty or consistent propositions A fromA. In contrast to probability theory it
is always possible to define a regular ranking function, no matter how rich or fine-grained
the underlying algebra of propositions.

Doxastically ranks are interpreted as grades of disbelief. A proposition A is disbelieved
just in case A is assigned a positive rank, % (A) > 0. A is believed just in case its negation is
disbelieved, %

⇣

A
⌘

> 0.
A proposition A is disbelieved conditional on a proposition C just in case A is assigned a

positive rank conditional on C, % (A | C) > 0. A is believed conditional on C just in case its
negation is disbelieved conditional on C, %

⇣

A | C
⌘

> 0.
It takes getting used to reading positive numbers in this ’negative’ way, but mathe-

matically this is the simplest formulation of ranking theory. Note that a proposition A is
believed just in case A is believed conditional on the tautological proposition W. This is
so, because %

⇣

A
⌘

= %
⇣

A |W
⌘

.
It follows from the definition of conditional ranks that the ideal doxastic agent should

not disbelieve a non-empty or consistent proposition A conditional on itself: % (A | A) =
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% (A \ A)� % (A) = 0. I’ll refer to this consequence below. In doxastic terms the first axiom
says that the ideal doxastic agent should not disbelieve the tautological proposition W.
The second axiom says that she should disbelieve the empty or contradictory proposition
;with maximal strength1.

Given the definition of conditional ranks, the second axiom can be read in purely
qualitative, but conditional terms. Read this way it says that the ideal doxastic agent
should disbelieve the empty or contradictory proposition conditional on any proposition
with a finite rank. This implies that she should believe the tautological proposition with
maximal strength, or conditional on any proposition with a finite rank.

Finite minimitivity is the weakest version of the third axiom. It states that % (A [ B) =
min

�

% (A) , % (B)
 

for any two propositions A and B. Part of what finite minimitivity says
is that the ideal doxastic agent should disbelieve a disjunction A[B just in case she disbe-
lieves both its disjuncts A and B. Given the definition of conditional ranks, finite minim-
itivity extends this requirement to conditional beliefs. As noted above the definition of
conditional ranks implies that the ideal doxastic agent should not disbelieve a proposition
conditional on itself. Given this consequence, finite minimitivity says –in purely qualita-
tive, but conditional terms– the following: the ideal doxastic agent should conditionally
disbelieve a disjunction A [ B just in case she conditionally disbelieves both its disjuncts
A and B. Countable and complete minimitivity extend this requirement to disjunctions of
countably and arbitrarily many disjuncts, respectively.

Interpreted doxastically these axioms are synchronic norms for organizing the ideal
doxastic agent’s beliefs and conditional beliefs at a given moment in time. They are sup-
plemented by diachronic norms for updating her beliefs over time if new information of
various formats is received. The first update rule is defined for the case where the new
information comes in form a ’certainty’, a proposition that the ideal doxastic agent comes
to believe with maximal strength.

Update Rule 1 (Plain Conditionalization, Spohn 1988) If % (·) : A ! N [ {1} is the ideal
doxastic agent’s ranking function at time t, and between t and t0 she becomes certain of E 2 A and
no logically stronger proposition (in the sense that E is the logically strongest proposition whose
negation is assigned1 as new rank at t0), and her ranks are not directly affected in any other way
such as forgetting etc., then her ranking function at time t0 should be %E (·) : A ! N [ {1},
%E (·) = % (· | E), where for all non-empty or consistent A 2 A:

%E (A) = % (A \ E) � % (E) and % (; | E) = 1.

Plain conditionalization mirrors the update rule of strict conditionalization from proba-
bility theory (Vineberg 2000). The second update rule is defined for the case where the
new information comes in form of new ranks for the elements of an ’evidential partition’.
It mirrors the update rule of Jeffrey conditionalization from probability theory (Jeffrey
1983).
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Update Rule 2 (Spohn Conditionalization, Spohn 1988) If % (·) : A!N[ {1} is the ideal
doxastic agent’s ranking function at time t, and between t and t0 her ranks on the evidential parti-
tion {Ei 2 A : i 2 I} change to ni 2 N [ {1} with min {ni : i 2 I} = 0, and ni = 1 if % (Ei) = 1,
and her finite ranks change on no finer partition, and her ranks are not directly affected in any other
way such as forgetting etc., then her ranking function at time t0 should be %Ei!ni (·) : A!N[{1},

%Ei!ni (·) = min
�

% (· | Ei) + ni : i 2 I
 

.

Here and below I is an arbitrary index set. The third update rule is defined for the case
where the new information reports the differences between the old and the new ranks for
the elements of an evidential partition. It mirrors the update rule of Field conditionaliza-
tion from probability theory (Field 1978).

Update Rule 3 (Shenoy Conditionalization, Shenoy 1991) If % (·) : A ! N [ {1} is the
ideal doxastic agent’s ranking function at time t, and between t and t0 her ranks on the evidential
partition {Ei 2 A : i 2 I} change by zi 2N, where min {zi : i 2 I} = 0, and her finite ranks change
on no finer partition, and her ranks are not directly affected in any other way such as forgetting
etc., then her ranking function at time t0 should be %Ei"zi (·) : A!N [ {1},

%Ei"zi (·) = min
�

% (· \ Ei) + zi �m : i 2 I
 

, m = min
�

zi + % (Ei) : i 2 I
 

.

Spohn conditionalizing E and E to 0 and n, respectively, keeps the relative positions of
all possible worlds in E and all possible worlds in E fixed. It improves the rank of E to 0
(remember that low numbers represent low grades of disbelief), and it changes the rank of
E to n. Shenoy conditionalizing E and E by 0 and n, respectively, improves the possibilities
within E by n, as compared to the possibilities in E. m is a normalization parameter. It
ensures that at least one possible world is assigned rank 0 so that the result is a ranking
function.

In the case of Spohn and Shenoy conditionalization the new information consists of a
partition of ’evidential propositions’ together with a list of numbers for these evidential
propositions. The evidential propositions are those which are directly affected by expe-
rience. They are paired with numbers, which reflects the fact that the quality of new
information varies with the reliability of its source: it makes a difference if the weather
forecast predicts that it will rain, if a friend the ideal doxastic agent trusts tells her so, or if
she sees herself that it is raining. In each case the evidential proposition the ideal doxastic
agent learns is that it is raining, and its negation is the only other cell or element of the
evidential partition. However, the effect the new information should have on her beliefs
will be a different one in each case. The difference in the reliability of the sources of the
new information –the weather forecast, a friend, her vision– is reflected in the numbers
that are paired with the evidential propositions. The effect the new information should
have on the ideal doxastic agent’s beliefs depends on these numbers.
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The package consisting of the synchronic norms (1-3) and the diachronic norms (Up-
date Rules 1-3) can be justified by the consistency argument (Huber 2007) in much the
same way that probability theory can be justified by the Dutch book argument. The con-
sistency argument shows that obeying the synchronic and diachronic rules of ranking
theory is a necessary and sufficient means to attaining the cognitive end of always hold-
ing beliefs that are jointly consistent and deductively closed. To the extent that the ideal
doxastic agent has this goal, she should obey the norms of ranking theory. It is not that
we are telling her what and how to believe. She is the one who has this goal. We merely
point out the objectively obtaining means-end relationships. Of course, if the ideal doxas-
tic agent does not aim at always holding beliefs that are jointly consistent and deductively
closed, our response will cut no ice. But that is beside the point: it is mistaking a hypothet-
ical imperative for a categorical imperative. Alternatively one may use the representation
result by Hild & Spohn (2008), or the rank-theoretic decision theory by Giang & Shenoy
(2000), to obtain a justification of ranking theory that is deontological in spirit.

3 Conceptual change and logical learning

Plain, Spohn, and Shenoy conditionalization handle belief revision when the new infor-
mation the ideal doxastic agent receives takes the form of propositions together with
numbers. In the case of plain conditionalization this number is 1, indicating that the
proposition is learned with certainty. In the case of Spohn conditionalization the new
information comes in the form of new grades of disbelief for the propositions in the evi-
dential partition. In the case of Shenoy conditionalization the new information comes in
the form of differences between the old and new grades of disbelief for the propositions
in the evidential partition.

In addition there are at least three other forms in which an ideal doxastic agent can
receive new information: she can learn a new concept without learning any factual in-
formation; she can learn about the logical relations between various concepts, and I will
treat such logical learning as a special case of conceptual learning; and she can learn an
indicative conditional that, unlike a material conditional, does not express a (conditional
or other) proposition.

In the case of a conceptual change the ideal doxastic agent learns that her language
or algebra was too poor or coarse-grained. For instance, Sophia may start out with a lan-
guage that allows her to distinguish between red wine and white wine, and then may
acquire the concept of rosé. Or she may learn that among these wines one can distinguish
between barriques and non-barriques. When the ideal doxastic agent receives such con-
ceptual information she should perform a conceptual change. As we will see below, logical
learning can be viewed as a prominent special case of a conceptual change.
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In many instances when we ordinary doxastic agents learn a new concept, we do
not merely learn the concept without any factual information, but we learn the concept
together with a host of other things that are not purely conceptual. For instance, someone
who learns that one can distinguish between barriques and non-barriques usually also
learns that barriques tend to be red wines. The update rule I will propose below only
deals with the clinically clean case where the new information is purely conceptual. This
is no restriction, though, as the additional factual information that often accompanies
a conceptual change can be dealt with in a separate step by plain, Spohn, or Shenoy
conditionalization. Phenomenologically the two changes may appear to be one, but for
the purpose of constructive theorizing it is best to separate them.

As a preparatory step, note that in probability theory there is no such thing as an
unbiased assignment of probabilities, an ur- or tabula rasa prior, as we may call it. This is
so even if we consider just a finite set of (more than two) possibilities.

For instance, it is sometimes said that assigning a probability of 1/6 to each of the
six outcomes of a throw of a die is such an unbiased assignment. To see that this is
not so it suffices to note that it follows from this assignment that the proposition that
the number of spots the die will show after being thrown is greater than one, is five
times the probability of its negation. More generally, for every probability measure Pr
on the power-set of {1, . . . , 6} there exists a contingent proposition A such that Pr (A) >
Pr

⇣

A
⌘

, where a proposition is contingent just in case both it and its complement are non-
empty. This is the sense in which there is no genuinely unbiased ur- or tabula rasa prior
probability measure. It highlights the fact that, in probability theory, the tendency that
is represented by a probability measure is inseparably tied to the underlying space of
possibilities, a fact employed by Betrand (1889) in his famous paradoxes. The meaning of
probability depends on what the other options are, so to speak. To speak of the probability
of something without relativizing, or contrasting, it to all the other options is, strictly
speaking, meaningless.

In ranking theory the tabula rasa prior is that function R : A ! N [ {1} such that
R (A) = 0 for all non-empty propositions A in A, no matter how rich the field or algebra
of propositions A. R suspends judgment with respect to every contingent proposition
and only believes the tautology, and disbelieves the contradiction. This tabula rasa prior
ranking function turns out to be very useful.

In probability theory we cannot adequately model conceptual changes, especially
those that are due to the ideal doxastic agent’s not being logically omniscient. Prior to
learning a new concept Sophia’s friend Bay is equipped with a probability measure Pr
on some algebra of propositions A over some set of possibilities W. When Bay learns
a new concept, the possibilities w in W become more fine grained. For instance, Bay’s
set of oenological possibilities with regard to a particular bottle of wine prior to learning
the concept of barrique may be W1 = {red, white}. After learning this concept her set
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of possibilities could1 be W2 = {red & barr., red &¬ barr., white & barr., white &¬ barr.}.
To model this conceptual change adequately, the new algebra of propositions over W2

will contain a unique counterpart-proposition for each proposition in the old algebra
of propositions over W1. In our example the algebras are the power-sets. The unique
counterpart-proposition of the old proposition that the bottle of wine is red, {red} ✓ W1,
is {red & barr., red &¬ barr.} ✓W2.

The important feature of the purely conceptual part of this learning episode is that
Bay does not learn anything about which of the possibilities is the actual one. If Sophia
is the one who undergoes this conceptual change, and R1 is her ranking function on the
power-set of W1, we want her R2 to be such that R1 (A) = R2 (A0) for each old proposition
A in the power-set of W1 and its counterpart proposition A0 in the power-set of W2. We
also want her R2 to be such that R2 (B) = R2

⇣

B
⌘

for each contingent new proposition B.
This is easily achieved by letting R2 copy R1 on the counterpart-propositions of the old
propositions, and by letting it copy the tabula rasa prior on all new propositions. For Bay
there is no way to obtain probability measures Pr1 on the old algebra and Pr2 on the new
algebra that are related in this way.

The same is true for the different conceptual change that occurs when Sophia learns
the concept of rosé, and thus that her old set of possibilities was not exhaustive. If R1

is Sophia’s ranking function on the power-set of W1, her R3 on the power-set of W3 =
{red, rosé, white} is that function R3 such that R1 ({w}) = R3 ({w}) for each old singleton-
proposition {w}, and R3 ({w0}) = 0 for each new singleton-proposition {w0}. For Sophia’s
friend Bay there is no way to undergo this conceptual change, since the only new proba-
bility measure that, in this sense, conservatively extends the old one assigns 0 to the union
of all new possibilities.2 Arntzenius (2003) relies on just this inability of Bay to cope with
changes of the underlying set of possibilities when he uses ’spreading’ to argue against
strict conditionalization and van Fraassen’s principle of ’reflection’ (1984; 1995).

Before turning to the special case of logical learning let me officially state3

Update Rule 4 (Conceptual Conditionalization) Suppose % (·) : } (W) ! N [ {1} is the
ideal doxastic agent’s ranking function at time t, and between t and t0 her algebra of propositions
} (W) over W explodes in the sense that W expands to W⇤, where for each w 2 W there is at least

1Here I assume Bay to be logically omniscient. Suppose she is not, and is unaware that barr. &¬ barr.
is inconsistent. Then her set of possibilities may include red & barr. &¬ barr. Her new doxastic attitude
towards the latter will be her old doxastic attitude towards red.

2Readers will have noticed that one sentence may pick out different propositions with respect to the two
sets of possibilities. For instance, with respect to W1 the sentence ‘It is not a bottle of red wine’ picks out
the proposition that it is a bottle of white wine, {white}, while with respect to W2 this sentence picks out the
proposition that it is a bottle of rosé or white wine, {rosé, white}.

3To avoid complications discussed in Huber (2006) I assume the algebra of propositions to be the power-
set } (W) over the set of possibilities W so that % ({w}) is defined for each w 2W.
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one w⇤ 2W⇤ such that w⇤ is at least as specific as w. Each such w⇤ 2W⇤ is called a refinement of
w 2W. This includes explosions where W expands to some superset W⇤.

Suppose further that the ideal doxastic agent’s set of possibilities W and her ranks on the
algebra of propositions } (W) over W are not directly affected in any other way such as forgetting
etc.

Then her algebra of propositions at time t0 should be } (W⇤), and her ranking function at time
t0 should be %0 ({w⇤}) = % ({w}) for each refinement w⇤ 2 W⇤ of some w 2 W, and %0 ({w⇤}) = 0 for
each w⇤ 2W⇤ that is not a refinement of some w 2W.

If the ideal doxastic agent’s algebra of propositions } (W) over W implodes in the sense that W
shrinks to some subset W�, then her algebra of propositions at time t0 should be } (W), and her
ranking function at time t0 should be %0 ({w}) = % ({w}) for each w 2 W� and %0 ({w�}) = 1 for
each w� 2W \W�.

Implosions are dealt with in the same way as factual information is handled by the update
rules from the previous section. In particular, implosions do not have to come in the form
of certainties, where the possibilities w� 2 W \ W� are sent to 1, but can come in the
gradual form that Spohn and Shenoy conditionalization deal with. In this case they are
sent to some finite rank n 2N.

One form of logical learning is to learn that, contrary to what the ideal doxastic agent
had thought initially, some hypothesis H logically implies some evidence E. This amounts
to learning that H^¬E is not logically possible after all, and can be thought of as learning
with certainty that ¬H _ E. Logical learning of this sort corresponds to an implosion
of the ideal doxastic agent’s algebra of propositions. Another form of logical learning
is to learn that, contrary to what she had thought initially, H does not logically imply
E. This amounts to learning that H ^ ¬E is logically possible after all. It corresponds
to an explosion of the ideal doxastic agent’s algebra of propositions. Mixed changes of
explosions and implosions can be dealt with in a stepwise fashion, as the order does not
matter.

So far I have assumed the sets of possible worlds W to be given, and the notion of
refinement, or specificity, to be a primitive4. To deal with logical learning in a bit more
detail I will now present one way to think of them. A formal language is generally defined
recursively as follows. We start with a set of propositional letters

�

p, q, r, . . .
 

and say that
each of them is a sentence. Then we say that ¬A, A ^ B, A _ B, and A � B are sentences,
if A and B are. Finally we add that nothing else is a sentence. This is how we obtain a
formal language or set of sentencesL. In the case of a predicate or modal language things
are slightly more complicated, but otherwise proceed in the same way.

The powerset of such a formal language, } (L), is one way to generate a set of possible
worlds. A sentence A from L is said to be true in a possible world w 2 } (L) just in case

4The latter can take several forms, e.g. by using Cartesian products of sets of possibilities.
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A 2 w. One possible world w is a refinement of another possible world w0 just in case
w ✓ w0. Among these possible worlds there are, of course, many that are contradictory in
the sense that the rules of inference for the language L –classical, as I will assume below,
or non-classical– disprove them. But this is logical knowledge the ideal doxastic agent
may not yet possess. All possible worlds w that have non-contradictory refinements other
than themselves are redundant or non-maximal, but this is again logical knowledge the
ideal doxastic agent may not yet possess. An ideal doxastic agent is logically omniscient
only if she has eliminated all possible worlds except those that are maximal and non-
contradictory. If the ideal doxastic agent comes across a new word, she just throws it into
her bag of propositional letters or predicates and lets the recursive machinery sketched
above generate a new language containing the old one. Conceptual conditionalization
does the rest.

To illustrate, suppose the set of propositional variables is
�

p, q
 

which generates the
formal language L, and Sophia initially has no logical knowledge. Then her set of possi-
ble worlds is } (L). Sophia takes a course in propositional logic and learns with certainty
that p logically implies p _ q. Then Sophia eliminates all sets of sentences w 2 } (L) that
contain p, but that do not contain p _ q. Next Sophia learns with certainty that the rules
of inference for L disprove the schema A ^ ¬A. Then she eliminates all sets of sentences
that contain any sentence of the form A^¬A. In the third weak Sophia learns, again with
certainty, that the set of sentences

�

p, q
 

disproves ¬ �

p ^ q
�

. How she learns this piece of
logical knowledge depends on the way her instructor sets things up: one way of disprov-
ing works by showing that

�

p, q
 [ �¬ �

p ^ q
� 

proves p ^ ¬p, which Sophia already knows
to be disprovable (from the empty set). Another way of disproving works by showing
that

�

p, q
 

logically implies p ^ q. In this latter case Sophia does not only learn that all sets
of sentences including both p and q, but excluding p ^ q, are redundant or inconsistent,
but also that all sets of sentences including p and q and ¬ �

p ^ q
�

are inconsistent. All
these changes correspond to implosions. If Sophia does not learn with certainty, then the
parameter1 has to be lowered to some finite number.

Finally, if Sophia initially thinks that q and p � q logically implies p, then her set
of possibilities W excludes all sets of sentences containing both q and p � q, but not p.
If Sophia then learns that she was mistaken about this alleged logical implication, she
expands W by adding all these sets of sentences. Some of these newly added ones will be
refinements of sets of sentences Sophia already deemed possible initially. Sophia’s ranks
for the latter determine her ranks for the former. All the others of these newly added sets
of sentences receive rank 0.
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4 Conditional information

It’s Sophia’s birthday and her friend Bay treats Sophia to a nice bottle of red or white wine.
The bottle of wine is wrapped in paper, and Sophia is curious to learn if it is a bottle of
barrique or not. Bay tells Sophia: it is a barrique, given that it is a bottle of red wine.
Sophia deems Bay reliable to a very high, but finite, grade n. How should Sophia revise
her beliefs and conditional beliefs in response to this piece of conditional information?
The answer is given by

Update Rule 5 (Conditional Conditionalization) If % (·) : A ! N [ {1} is the ideal dox-
astic agent’s ranking function at time t, and between t and t0 her conditional rank for A given C
improves by n 2 N, and her ranks are not directly affected in any other way such as forgetting
etc., then her ranking function at time t0 should be %(A|C)"n (·) : A!N [ {1}, which results from
% by n consecutive Shenoy shifts on the evidential partition

n

A \ C, A \ C, A \ C, A \ C
o

with input parameters
zA\C = 0, zA\C = x, zA\C = 1, zA\C = x,

where x = 1 if % (A \ C) > %
⇣

A \ C
⌘

, and x = 0 otherwise.

This looks awfully complicated, but that is because of a technical detail. The idea itself is
very simple: we improve the rank of A\C compared to the rank of A\C. This can happen
in more than one way, though: by decreasing the rank of A \ C and by holding fixed the
rank of the other three cells of the partition, or by increasing the rank of A \ C and by
holding fixed the rank of the other three cells of the partition. Which of these two ways of
improving should happen, depends on the ideal doxastic agent’s initial beliefs. In many
cases one first has to start improving in the first manner and then, mid-way, switch to the
second manner of improving. This is why I have chosen to formulate the update rule in
terms of n consecutive Shenoy shifts, which makes it look complicated. I will present a
different, and perhaps more perspicuous, formulation below.

A is a proposition in Sophia’s algebra, and so is the condition C. However, the con-
ditional information A given C is not itself a proposition. If it were, we would use plain,
Spohn, or Shenoy conditionalization. To stress that we are dealing with a conditional
belief in A given C rather than the belief in a conditional proposition ’If A, then C’ I con-
tinue to use ‘A’ for the target proposition, and I use ‘C’ for the condition (and not for the
antecedent and consequent of a conditional proposition).

Receiving the conditional information that it is a barrique given that it is red wine from
her friend Bay, who Sophia deems reliable to grade n, tells Sophia to improve her rank for
the proposition that it is a red barrique compared to her rank for the proposition that it
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is a red non-barrique by n ranks. Everything else depends on Sophia’s initial grading of
disbelief R.

Suppose Sophia initially has no clue about what wine Bay will bring, except that it is
red wine or white wine and that it might be a barrique or not:

R
��

red & barrique
 �

= 0
R

��

red &¬ barrique
 �

= 0
R

��

white & barrique
 �

= 0
R

��

white &¬ barrique
 �

= 0

Then Sophia’s new grading of disbelief R⇤ is such that she holds the conditional belief
that it is a barrique given that it is red wine, but she continues to suspend judgment with
respect to whether it is red wine or white wine, and whether it is a barrique or not. The
only contingent belief Sophia holds is that it is not a red non-barrique:

R⇤
��

red & barrique
 �

= 0
R⇤

��

red &¬ barrique
 �

= n
R⇤

��

white & barrique
 �

= 0
R⇤

��

white &¬ barrique
 �

= 0

Suppose next that Sophia initially believes that Bay will bring red wine, but she suspends
judgment with respect to whether it is a barrique or not. She also believes that it is a
barrique given that it is white wine.

R
��

red & barrique
 �

= 0
R

��

red &¬ barrique
 �

= 0
R

��

white & barrique
 �

= 7
R

��

white &¬ barrique
 �

= 11

Then Sophia’s new grading of disbelief R⇤ is such that she holds the conditional belief that
it is a barrique given that it is red wine. In addition Sophia continues to believe that it is
red wine, but now also believes that it is a barrique. Sophia also continues to believe that
it is a barrique given that it is white wine.

R⇤
��

red & barrique
 �

= 0
R⇤

��

red &¬ barrique
 �

= n
R⇤

��

white & barrique
 �

= 7
R⇤

��

white &¬ barrique
 �

= 11
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Now suppose Sophia initially believes that Bay will bring white wine, but she suspends
judgment with respect to whether it is a barrique or not. Initially Sophia also holds the
conditional belief that it is a non-barrique given that it is red wine.

R
��

red & barrique
 �

= 9
R

��

red &¬ barrique
 �

= 7
R

��

white & barrique
 �

= 0
R

��

white &¬ barrique
 �

= 0

If n > 2 so that Sophia deems Bay more reliable than the strength with which she holds
her conditional belief, then Sophia’s new grading of disbelief R⇤ will be such that she
holds the opposite conditional belief that it is a barrique given that it is red wine. If n � 9
Sophia even gives up her belief that it is white wine, although she won’t believe that it is
red wine. In either case she continues to suspend judgment with respect to whether it is
a barrique or not, unconditionally, i.e. conditional on the tautological proposition W, as
well as conditional on it being white wine as well as conditional on it being white wine.

R⇤
��

red & barrique
 �

= 9 � x where x = min {n, 9}
R⇤

��

red &¬ barrique
 �

= 7 +max {n � x, 0}
R⇤

��

white & barrique
 �

= 0
R⇤

��

white &¬ barrique
 �

= 0

This time suppose Sophia initially already believes that Bay will bring a barrique, uncon-
ditionally and conditional on it being red wine and conditional on it being white wine,
but suspends judgment with respect to whether it is red wine or white wine. In addition
Sophia holds the conditional belief that it is red wine given that it is a non-barrique.

R
��

red & barrique
 �

= 0
R

��

red &¬ barrique
 �

= 5
R

��

white & barrique
 �

= 0
R

��

white &¬ barrique
 �

= 7

Then Sophia’s new grading of disbelief R⇤ is such that she continues to hold the belief that
it is a barrique, and the conditional belief that it is a barrique given that it is red wine, and
the conditional belief that it is a barrique given that it is white wine. In addition she con-
tinues to suspend judgment with respect to whether it is red or white wine. Depending
on how reliable Sophia deems Bay to be she may give up her initial belief that it is red
wine given that it is a non-barrique (n � 2), and she may even adopt the belief that it is
white wine given that it is a non-barrique (n > 2).

R⇤
��

red & barrique
 �

= 0
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R⇤
��

red &¬ barrique
 �

= 5 + n
R⇤

��

white & barrique
 �

= 0
R⇤

��

white &¬ barrique
 �

= 7

Yet another possibility is that Sophia initially believes that Bay will bring a non-barrique,
unconditionally and conditional on it being white wine and conditional on it being red
wine, but she suspends judgment with respect to whether it is red or white wine, uncondi-
tionally and conditional on it being a barrique and conditional on it being a non-barrique.

R
��

red & barrique
 �

= 5
R

��

red &¬ barrique
 �

= 0
R

��

white & barrique
 �

= 5
R

��

white &¬ barrique
 �

= 0

If Sophia deems Bay sufficiently reliable for her to give up the conditional belief that it
is a non-barrique given that it is red wine (n � 5), then Sophia continues to suspend
judgment with respect to whether it is red or white wine. If 0 < n < 5 so that Sophia
holds her initial beliefs more firmly than she deems Bay reliable, but she still deems Bay
reliable to some degree, then she adopts the belief that it is red wine given that it is a
barrique, but continues to suspend judgment with respect to whether it is red or white
wine given that it is a non-barrique. In all these cases Sophia retains her belief that it is a
non-barrique given that it is white wine.

R⇤
��

red & barrique
 �

= 5 � x where x = min {n, 5}
R⇤

��

red &¬ barrique
 �

= 0 +max {n � x, 0}
R⇤

��

white & barrique
 �

= 5
R⇤

��

white &¬ barrique
 �

= 0

We thus see that it is difficult to say what happens to the ideal doxastic agent’s beliefs
and conditional beliefs when she receives conditional information such as an indicative
conditional that does not express a proposition. It is difficult to say in the precise sense
that there is not a single contingent proposition that she is guaranteed to believe after the
update. Nor is there a single contingent proposition that she is guaranteed to condition-
ally believe after the update. This includes the very piece of conditional information that
the ideal doxastic agent learns, as she may deem the source of information somewhat, but
insufficiently reliable.

If R disbelieves A given C, then the rank of A \ C is lowered and the remaining three
cells are held fixed until R does not disbelieve A given C anymore. At this point the
parameter x in conditional conditionalization changes from x = 1 to x = 0. If R does not
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disbelieve A given C, then the cell A\ C is moved upwards and the remaining three cells
are held fixed. If R initially disbelieves the condition C, then she gives up her disbelief
in C only if she gives up her disbelief in what the source claims was the wrong thing to
disbelieve: A\C. If R initially does not disbelieve the condition C, then R continues to do
so. However, the reason for doing so may change. Initially it may be because R assigns
rank 0 to what the source claims is the wrong thing to not disbelieve: A \ C. In the new
grading of disbelief R⇤ it may be because A \ C, but not A \ C, receives rank 0.

What can be said in general is relative to the ideal doxastic agent’s initial grading
of disbelief R. Receiving the conditional information that A given C from a source she
deems reliable to grade n improves the rank of A by n compared to the rank of A within
the condition C, but not within the condition C. Within the latter condition everything is
kept as it was initially. In other words, conditional conditionalization transforms a given
grading of disbelief R into a new grading of disbelief R⇤ such that: R⇤

⇣

A | C
⌘

�R⇤ (A | C) =

R
⇣

A | C
⌘

�R (A | C)+n. Furthermore, conditional conditionalization is purely conditional

in the sense that R⇤
⇣

· | C
⌘

= R
⇣

· | C
⌘

and R⇤
⇣

C
⌘

= R
⇣

C
⌘

. The latter feature uniquely charac-
terizes conditional conditionalization among all consecutive Shenoy-shifts on the eviden-
tial partition

n

A \ C, A \ C, A \ C, A \ C
o

that possess the former feature. It is important
to note that the rank of the condition C may increase or decrease, whereas the rank of
the proposition A can decrease, but cannot increase, and the rank of its negation A can
increase, but cannot decrease.

The feature that the rank of the condition C may increase or decrease distinguishes
conditional conditionalization from Bradley’s ’Adams conditionalization’ (2005). The lat-
ter transforms a given probability measure Pr into a new probability measure Pr⇤ in re-
sponse to input of the form Pr⇤ (A | C) = p such that:

P1 Pr⇤ (· | A \ C) = Pr (· | A \ C)

P2 Pr⇤
⇣

· | A \ C
⌘

= Pr
⇣

· | A \ C
⌘

P3 Pr⇤
⇣

· | C
⌘

= Pr
⇣

· | C
⌘

P4 Pr⇤
⇣

C
⌘

= Pr
⇣

C
⌘

Bradley (2005) shows that these four conditions and input of the form Pr⇤ (A | C) = p
transform a given old Pr into a unique new Pr⇤. In the exact same way R(A|C)"n = R⇤ is
determined uniquely by input of the form R⇤

⇣

A | C
⌘

� R⇤ (A | C) = n and the following
four conditions:

R1 R⇤ (· | A \ C) = R (· | A \ C)

R2 R⇤
⇣

· | A \ C
⌘

= R
⇣

· | A \ C
⌘
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R3 R⇤
⇣

· | C
⌘

= R
⇣

· | C
⌘

R4 R⇤
⇣

C
⌘

= R
⇣

C
⌘

However, in the probabilistic case the condition P4 implies that Pr⇤ (C) = Pr (C), and hence
that Adams conditionalization can never change the probability of the condition C. Dou-
ven & Romeijn (2011) conclude that this very feature prevents Adams conditioning from
being an adequate rule to respond to new information of conditional form. Douven (2012)
and Hartmann & Rad (ms) then propose to remedy this situation by making external in-
formation available to the ideal doxastic agent –such as information about explanatory
relationships (Douven 2012), or information about independence relationships that are
suggested by some causal structure (Hartmann & Rad ms). In doing so these authors
go beyond the resources provided by the probability calculus, and thus abandon the
Bayesian idea that the probability calculus is all there is to scientific reasoning. In the
present framework of ranking functions no such maneuvers are necessary: the rank of
the condition C is not determined by the rank of its complement C, and can go up or
down or stay the same, depending on the conditional information received and the initial
grading of disbelief.
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