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Abstract

This paper analyzes correspondence between Reichenbach and Einstein from the spring of
1926, concerning what it means to ‘geometrize’ a physical field. The content of a typewritten
note that Reichenbach sent to Einstein on that occasion is reconstructed, showing that it was
an early version of §49 of the untranslated Appendix to his Philosophie der Raum-Zeit-Lehre, on
which Reichenbach was working at the time. This paper claims that the toy-geometrization of the
electromagnetic field that Reichenbach presented in his note should not be regarded as merely a
virtuoso mathematical exercise, but as an additional argument supporting the core philosophical
message of his 1928 monograph. This paper concludes by suggesting that Reichenbach’s infamous
‘relativization of geometry’ was only a stepping stone on the way to his main concern—the
question of the ‘geometrization of gravitation’.

Aber ich kann auch da das Gefiihl
des Kiinstlichen nicht los werden

Reichenbach to Einstein, March
16, 1926

Introduction

In the late 1950s, Hans Reichenbach’s second wife Maria Reichenbach edited an English
translation (Reichenbach, 1958) of his Philosophie der Raum-Zeit-Lehre (Reichenbach, 1928).
This edition was missing a long Appendix entitled ‘Die Weylsche Erweiterung des Riemannschen
Raumbegriffs und die geometrische Deutung der Elektrizitat’ (‘Weyl’s Extension of Riemann’s
Concept of Space and the Geometrical Interpretation of Electromagnetism’). A translation of
the Appendix was prepared in a nearly publishable form (including a transcription of the quite
heavy mathematical apparatus), and the typescript is preserved in the Reichenbach Archives
in Pittsburgh (HR, 041-2101). However, the publication must have been withdrawn eventually.
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Except for a ‘dead link’ to a no-longer-existing §46 on page 17, even today many readers of The
Philosophy of Space and Time might be unaware that such an Appendix ever existed.

The decision not to publish the Appendix is understandable. The text is quite demanding
for readers unaccustomed to the formalism, and struggling through it may not have been worth
the effort. After Einstein’s death in 1955, the very project of a unified theory of gravitation and
electromagnetism, which Reichenbach discusses with a plethora of technical details, was nearly
unanimously regarded as a relic of the past (but see Tonnelat, 1955)—mot least of which by
Hermann Weyl, one of the project’s initiators (Weyl, 1956). In the same spirit, in an English
translation of a selection of Reichenbach’s writings from the late 1970s (Reichenbach, 1978), the
pages dealing with “Weyl’s generalization of Riemannian space” were omitted because, as the
editors write, they had “no historical significance” (Reichenbach, 1978, 2:3).

Only a year later, however, a pathbreaking paper by Alberto Coffa (1979) proved that this
judgment was hasty. Rediscovering Weyl and Reichenbach’s ‘elective affinities’, Coffa began (with
a nice pun) a fertile line of research which, much later, would bear fruit in the work of Thomas
Ryckman (1995, 1996, 2005), Robert Rynasiewicz (2005) and others (see also Giovanelli, 2013b).
It was in this context that Coffa provided perhaps the first and only detailed analysis of the
untranslated Appendix to the Philosophie der Raum-Zeit-Lehre. In fact, Coffa read the Appendix
as single-mindedly trying to “exhibit the vacuity of Weyl’s enterprise” (Coffa, 1979, 295). Here,
however, Coffa’s major achievement becomes a hindrance. Despite the Appendix’s somewhat
misleading title, by interpreting it exclusively in terms of the Weyl-Reichenbach debate, we do
not fully grasp its meaning.

Letters between Reichenbach and Einstein, preserved in the Einstein Archives in Jerusalem
(AEA)! suggest that the Appendix should be read more broadly. In the spring of 1926, Reichen-
bach, after making some remarks on Einstein’s newly published metric-affine theory (Einstein,
1925b)), sent him a note offering what looks like his own attempt at a unified field theory. Re-
ichenbach’s note turns out to have been an early draft of §49 of the Appendix, on which he
was working at the time. Einstein’s objections and Reichenbach’s replies reveal that criticism of
Weyl’s theory was only part of the story. Reichenbach was mainly interested in the very idea
of the ‘geometrization’ of a physical field. At the time, many believed that if general relativity
geometrized the gravitational field, then it was also plausible to geometrize the other known
field—the electromagnetic field. To challenge this view, Reichenbach conducted what might be
called an ‘epistemological experiment’.

Reichenbach constructed a toy-theory establishing a connection between electricity and geome-
try which, he argued, was just as good as the one general relativity established between gravitation
and geometry. Reichenbach’s theory, however, was clearly not as successful as general relativity.
Thus, Reichenbach could provide ‘experimental’” evidence that the geometrization of a physical
field cannot be regarded in itself as a physical achievement. As soon as Einstein understood
the ‘ironical’ nature of Reichenbach’s enterprise, he immediately agreed with him. As Dennis
Lehmkuhl (2014)) has recently shown, it was in his correspondence with Reichenbach that Einstein
pointed out, for the first time, that general relativity had not geometrized the gravitational field.

As we shall see, Einstein and Reichenbach’s opinions about the geometrization issue were only
superficially similar. However, reading Reichenbach’s 1928 monograph against the background
of this issue reveals a quite different view of his interpretation of general relativity. If general
relativity dressed the gravitational field in a geometrical ‘cloak’, as Reichenbach put it, “one
should not confuse the cloak [Gewand] with the body which it covers” (Reichenbach, 1928, 354;
tr. HR, 041-2101, 493). The Appendix of his book was meant to show that one can, with some

1The correspondence will appear in the forthcoming 15th volume of CPAE.



sartorial skill, always dress a physical field in a geometrical disguise. To understand why general
relativity is a successful physical theory we have to look beyond the geometrical clothing to the
body it hides. In general relativity the connection turned out to be heuristically powerful; it led
to new testable predictions. In contrast, the link between electricity and geometry established by
Reichenbach’s theory simply recast what was already known in geometrical terms.

This paper suggests that the geometrization issue was not just a spin-off of Reichenbach’s 1928
monograph, but possibly the core message of the book. To support this claim the paper proceeds
as follows. Section 1 describes the context in which Reichenbach decided to send Einstein a note on
the geometrization of the electromagnetic field. Section 2 offers a reconstruction of Reichenbach’s
note. Section 3| describes Einstein’s initially skeptical, then approving, reaction to the note.
Section 4 shows what Reichenbach’s Philosophie der Raum-Zeit-Lehre looks like if read from the
perspective of the Appendix. Finally, analyzing Reichenbach’s attitude towards Einstein’s distant
parallelism field theory, section |5 emphasizes the differences that existed behind Reichenbach and
Finstein’s apparent agreement on the issue of geometrization. This paper concludes by suggesting
that Reichenbach’s well-known ‘relativization of geometry’ was only a stepping stone on the way
to his main concern—the question of the ‘geometrization of gravitation’

1. Reichenbach’s I'-Critique and His Note on the Unified Field Theories

On June 5, 1925 Einstein, who had just returned from a long trip to South America (see his
travel diary, CPAE, Vol. 14, Doc. 455, Mar. 5-May 11, 1925), wrote to Michele Besso about the
state of his research on a unified theory of the gravitational and electromagnetic fields (Goenner,
2004; Sauer, 2014; Vizgin, 1994). He revealed to Besso that he had become disillusioned with
the whole “Weyl-Eddington-Schouten line of thinking,” the framework in which he had been
working in the previous years? and that he was already “on another track, that is physically
more grounded” (Einstein to Besso, Jun. 5, 1925; Speziali, 1972, 240). The paper Einstein was
referring to—the first in which the term ‘unified field theory’ appears in the title—was presented
at the Prussian Academy during its July 9, 1925 session (Einstein, 1925b).

Einstein described “the egg” he “recently laid” to Besso some weeks later (Einstein to Besso,
Jul. 28, 1925; Speziali, 1972, 209-210). The theory introduced an affine connection (I'},,) (from
which the Riemann and Ricci tensor R, are derived), and independently the metric tensor
9w (and its correspondent contravariant tensor g"” and tensor density g). Einstein then built
the scalar density $ = g"“ R, and postulated the independent variation § [ $dt = 0, with
respect to the g and I}, (Ferraris, Francaviglia, and Reina, 1982). After some manipulation
he obtained, at first approximation, the already-known laws of gravitation and electromagnetism.
The symmetric part of the g'” represents the ‘gravitational potentials’, and the antisymmetric
part the ‘electromagnetic field strength’ (Einstein to Besso, Jul. 28, 1925; Speziali, 1972, 209-210).

2Very roughly this line of thought can be described as follows. Around 1918, in order to eliminate the last
‘distant geometrical’ remnants of Riemannian geometry, Weyl introduced what he called the ‘length connection’
;. It determines the change of the length of a vector on parallel transport just as the ‘affine connection’ F};l in
Riemannian geometry determines the change of its direction (Weyl, 1918a.c, 1919a). ¢; could be identified with the
electromagnetic four-potential. Eddington (1921) radicalized Weyl’s approach, using only the affine connection as
the fundamental quantity. A generally non-symmetric Ricci tensor (R;x 7# Rp;i) can be derived from it and split into
an antisymmetric part F},, identified with the electromagnetic tensor and a symmetric part Ry, corresponding to
the gravitational potentials (by introducing the ‘natural gauge’ R, = Agu, where X is the cosmological constant).
Einstein tried to specify the equations that govern the affine connection in Eddington’s approach in three brief
notes (Einstein, 1923d.e.f). In the latter theory, the electromagnetic field cannot exist in a place with vanishing
current density. Schouten (1924) showed that this problem disappears if one assumes that the displacement is not
symmetrical. For more details see the classical literature on the history of the unified field theory (Goenner, 2004;
Vizgin, 1994). An excellent non-technical presentation is provided by Sauer, 2014.



Einstein’s enthusiasm for this approach was again a flash in the pan. The paper was published
in September, but by Christmas of 1925 Einstein confessed his skepticism to Besso, revealing
that he had returned to a set of field equations he had presented in 1919 (Einstein, 1919), with
the electromagnetic stress-energy tensor serving as the source (Einstein to Besso, Dec. 25, 1925;
Speziali, 1972, 215-217; see also Einstein, 1927a°; cf. Vizgin, 1994, 225f. Goenner, 2004, 61f.).
During those same months, Reichenbach, despite the support of Max Planck, was struggling
to obtain his Umhabilitation® from Stuttgart to Berlin in order to be appointed to a chair of
natural philosophy that had been created there (Hecht and Hoffmann, 1982). On March 16, 1926,
Reichenbach sent a letter to Einstein in which, after discussing his academic misadventures, he
remarked on the new ‘metric-affine’ theory (Einstein, 1925b):

I have read your last work on the extended Rel. Th® more closely, but I still can’t get rid of a
sense of artificiality which characterizes all these attempts since Weyl. The idea, in itself very
deep, to ground the affine connection independently of the metric on the T'%; alone, serves
only as a calculation crutch here in order to obtain differential equations for the g;r and the
it and the modifications of the Maxwell equations which allow the electron as a solution.
If it worked, it would of course be a great success; have you achieved something along these
lines with Grommer? However, the whole thing does not have the beautiful convincing power
[Ueberzeugungskraft] of the connection between gravitation and the metric based on the
equivalence principle of the previous theory (Reichenbach to Einstein, Mar. 16, 1926; AEA,
20-83).

Reichenbach expressed skepticism early on towards Weyl’s theory (Reichenbach, 1920, 73).
Even if he partly retracted some of his concerns (Reichenbach, 1922, 367-368), he still felt that
the theory did not have the same ‘convincing power’ (Uberzeugungskraft) of general relativity
(Reichenbach, 1922, 367), in which the identification of the g;; with the gravitational potentials
was solidly anchored in the principle of equivalence.

3Einstein, 1927a was finished in January 1926. Einstein insists there that he had returned to the trace-free field
equations as “a consequence of numerous failures” to pursue the “the approach proposed by Weyl and Eddington or
something analogous” (Einstein, 1927a, 100). Einstein also derived the trace-free field equations using an approach
suggested by Yuri Rainich (1925). In Rainich’s view, in the case where the whole non-gravitational energy is
electromagnetic, Einstein’s field equations are already unified with Maxwell equations in empty space, because of
certain algebraic property of the Riemann tensor (cf. Einstein to Rainich, Dec. 8, 1925; AEA, 20-003 and Einstein
to Rainich, Mar. 8, 1926; |AEA, 79-686). This ‘already unified field theory’ will play an important role in the
history of ‘geometrization’ program of physics when it was rediscovered by Charles Misner and Archibald Wheeler
in the late fifties (Misner and Wheeler, 1957); see also below on fn. 43.

4The process of obtaining the venia legendi at another university.

SEinstein, 1925b.

6Reichenbach already expressed reservations about Weyl’s approach in his 1920 monograph on relativity, in
which he accused Weyl of attempting to deduce physics from geometry (Reichenbach, 1920, 73). In early 1921,
Weyl explained to Reichenbach in private correspondence that his theory was less ambitious: “I have claimed only
that the concepts in geometry and field physics have come to coincide” (Weyl to Reichenbach, Feb. 2, 1921; HR,
015-68-04; tr. Rynasiewicz, 2005, 153, note 17). Briefly thereafter Weyl replied publicly to Reichenbach (Weyl, 1921,
475), who retracted his criticisms (Reichenbach, 1922, 367-368). However, Reichenbach still expressed concerns
about the formalistic nature of the ‘second version’ of the theory. In order to circumvent Einstein’s objection
(1918a) that the theory was contradicted by the actual behavior of atomic clocks, Weyl (1920) abandoned the
interpretation of the ‘ideal’ process of length-transfer in terms of the ‘real’ behavior of rods and clocks. According
to Reichenbach, in this way the theory loses its “convincing character” and becomes “dangerously close to a
mathematical formalism” (Reichenbach, 1922, 367); Reichenbach’s wording is very similar to that of Wolfgang
Pauli (1921, 763). Weyl’s identification of the four-vector ¢, with the electromagnetic four-potential appears to
only be motivated by the goal of constructing a suitable ‘action’ from which he hoped to recover “the natural
forms of the most general physical equations” via the ‘action principle’ (‘Wirkungsprinzip’) (Reichenbach, 1922,
367), that is, by requiring that the action-quantity assumes a stationary value. Moreover, Reichenbach criticizes
Weyl’s appeal to the epistemological superiority of his ‘purely infinitesimal geometry’, by referring to the work of



Perhaps it is not a coincidence that Reichenbach uses the very same turn of phrase in this
letter. Einstein’s theory introduces the affine connection independently of the metric. However,
it does not attribute any physical meaning to the former; the separate variation of the metric
and connection was nothing more than a ‘calculation device’ to find the desired field equations.
Reichenbach, however, was ready to revise his negative judgment if Einstein’s theory delivered
the ‘electron’. At the end of the paper (Einstein, 1925b), Einstein had in fact claimed that he was
working with his assistant Jakob Grommer on the problem of establishing whether the theory
allows for “the existence of singularity-free, centrally symmetric electric masses” (Einstein, 1925b,
419). For Einstein this was a fundamental criterion for the viability of a unified field theory
(cf. e.g., Einstein, 1923a).

On March 20, 1926 Einstein replied that he warm-heartedly agreed with Reichenbach’s ‘T'-
Kritik’: “I have absolutely lost hope of going any further using these formal ways”; “without
some real new thought,” he continued, “it simply does not work” (Einstein to Reichenbach, Mar.
20, 1926; AEA, 20-115). Einstein’s reaction reflects his disillusion with the attempts to achieve
the sought-for unification of gravitational and electromagnetic field via some generalization of
Riemannian geometry. He would have probably been less ready to embrace Reichenbach’s critique
if he had knew what the latter exactly had in mind (see next section). However, Reichenbach was
of course pleased by Einstein’s endorsement. On March 31, 1926 he revealed that his remarks
were not extemporary, but were the fruit of a more thorough consideration of the topic that he
had jotted down at the time:

I'm of course very glad that you agree with my I'-critique. I have now made a few reflections on
the topic, which seem to me to prove that the Weylean thought, although good mathematically,
does not bring about anything new physically. The geometrical interpretation of electricity
is only a visualization, which in itself still does not say anything, and can also be realized
in the original relativity theory. I have attached the note and would be grateful if you could
give it a look (Reichenbach to Einstein, Mar. 24, 26; AEA, 20-085).

Reichenbach attached to this letter a typewritten note. As we shall see, far more was at
stake in it than a critique of Weyl’s theory (which was generally considered a dead horse at the
time). Reichenbach intended to call into question the very idea that, since general relativity has
‘geometrized’ the gravitational field, the obvious next move should be to try to ‘geometrize’ the
electromagnetic field.

2. Intermezzo: Reichenbach’s Note

In the following I will present the content Reichenbach’s note, operating under the assump-
tion that it corresponds to a part of a ten-page typescript bearing the title “Zur einheitlichen
Feldtheorie von Gravitation und Elektrizitdt” (‘On the unified field theory of gravitation and
electricity’). The document is preserved at the Reichenbach Archives in Pittsburgh (HR, 025-
05-10).” On the basis of the correspondence with Einstein that ensued (see next section) and of
Reichenbach’s handwritten corrections to the text, I conjecture that only pp. 1-7, that is, parts I
and IT of the typescript, were sent to Einstein; the bottom of p. 7 was probably added later and
then included in a new part II1.8 which extended through pp. 8-10. Even though, for the sake
of brevity and clarity, I will not painstakingly follow the order of Reichenbach’s presentation, I

Eddington (1921) and Schouten (1922b): Weyl’s geometry is only a special case of Eddington’s, which in turn is
only a special case of Schouten’s general linear connection (Reichenbach, 1922, 367).

"THR), 025-05-11 is a copy of the last four pages of HR) 025-05-10.

8See also below in section 4.2/ for more details on this hypothesis.



will adhere to his terminology and notation, which in turn seems to closely follow the German
translation (Eddington, 1925a) of Eddington’s textbook on relativity (Eddington, |1923).

2.1. The Physical Realization of the Operation of Displacement

Reichenbach attributes to Weyl the merit of having defined the operation of displacement
(or parallel transport of vectors) given by the I'},, independently of the metric g,,,. Reichenbach
considered this result a “milestone” (HR, 025-05-10, 2) in the history of the mathematical problem
of space. However, in Reichenbach’s view, Weyl’s “physical interpretation was not so fortunate”
(HR, 025-05-10, 2). To explain the limits of Weyl’s approach, Reichenbach refers to his distinction
between Einstellung (adjustment)—the behavior of the physical systems that realize the compar-
ison of length defined by g,,—and Beharrung (preservation)— the behavior of physical systems
that correspond to the operation of the comparison of direction defined by the F;V.g Whereas the
systems of the first type really exist in nature (i.e., rods and clocks), in Weyl’s theory there are
no such systems corresponding to the operation of displacement. Thus, according to Reichenbach,
the separation of the operation of displacement from the metric is nothing but a “calculation aid”
(HR) 025-05-10, 3) for finding the correct field equations. Reichenbach immediately extends the
objection to Eddington’s theory (Eddington, 1921) and to Einstein’s version of the latter (Einstein,
1923e.f, |1925a)), which radicalized Weyl’s fundamental separation of metric and displacement.

As we have just seen, this is precisely the I'-critique, which Einstein—who had already aban-
doned this operationalist point of view (Giovanelli, 2014)—had too hastily endorsed in the corre-
spondence with Reichenbach. In fact Reichenbach intended to show that in the “original general
relativity” (HR, 025-05-10, 3)—that is, in the Maxwell-Einstein theory describing gravity together
with electromagnetism—it is already possible to find a realization for both fundamental operations,
the metric and displacement, and thus to present the gravitational and electromagnetic fields in
a common geometrical setting. In this way, the Maxwell-Einstein theory can be reformulated in
a geometrical form “without any change to its physical content” (HR, 025-05-10, 1). This also
means that the opposite is true: “In itself, this geometrical framework does not bring any physical
innovation” (HR, 025-05-10, 1).

The g, are already identified with the gravitational potentials, and measured with rods and
clocks. Thus, in order to ‘geometrize’ the electromagnetic field, Reichenbach has to rely on the
operation of displacement I'},, and select suitable indicators for it. Physical theories provide no
help in this respect, and thus Reichenbach tentatively searched among the physical phenomena
that react to both the gravitational and electromagnetic fields, and at the same time happen to
behave in the sense of the displacement I'],,. Gravitational and electromagnetic forces together
determine the motion of particles. Thus a natural choice, though still arbitrary one, was to choose
the motion of electrically charged mass points as indicators of the displacement-field.

In general relativity, the motion of such particles is subject to the already-known equations of
the motion of charged particles of mass 1, which is therefore the starting point of Reichenbach’s

9Weyl (1920) introduced the distinction between Finstellung and Beharrung to explain away the discrepancy
between the non-Riemannian behavior of the ‘ideal’ time-like vectors implied by his theory and the Riemannian
behavior of the ‘real’ clocks that are actually observed (Einstein’s measuring rods objection, Einstein, 1918b). He
suggested that atomic clocks might not preserve their Bohr radius if transported, but adjust it every time to some
constant field quantity. See Ryckman, 2005, secc. 4.2.4; 6.4.2.2 for more details. Reichenbach (1922) complained
that this sounds more like a restatement of the problem than a solution to it. Moreover, the adaptation has nothing
to do with the parallel transport of vectors, so the latter remains physically empty (Reichenbach, 1922, 368, n.
1). However, Reichenbach made ‘metaphorical’ use of Weyl’s ‘Einstellung’ in Reichenbach, 1924, 71, and again in
Reichenbach, 1925 47. See also below footnote 37.



investigation:

ds T

On the left-hand side of the equation is the acceleration of a particle, the rate of change of
its velocity four-vector u” = dz” /s (where z¥ is the four-position of a particle) with respect to
a parameter s, identified with the particle’s proper time. On the right-hand side the geodesic
equation is supplemented by the term — f7 " responsible for the effect of the electromagnetic field
on charged particles. Notice that mass m does not appear in the force term, and thus the equation
is valid only for unit masses. As is well known, this equation states that uncharged bodies free
falling in a gravitational field follow geodesic paths, that is, lines of extremal length in a generally
curved Riemannian space-time (particle four-acceleration vanishes identically and free-falling
motion is indistinguishable from inertial motion). Charged bodies deviate from geodesic paths
under the influence of an electromagnetic field, according to the Lorentz force law K7 = — f]i".
The g"" f] = f,u are the electromagnetic field strengths and ¥ = pu" is the four-current, where
p is the charge density and u” is four-velocity /'’

Reichenbach aimed to rewrite these equations of motion so that charged particles under the
influence of an electromagnetic field follow their ‘natural path’ defined by the displacement. To
this end he stipulates that the physical behavior of mass points provides the ‘physical realization’
(or ‘coordinative definition’) of the geometrical operation of parallel displacement of their velocity
four-vector u”. In general relativity, when an uncharged particle moves freely, its velocity-vector
is carried along by parallel displacement along a geodesic line in Riemannian space. One can
imagine a more comprehensive geometrical framework in which the displacement of the velocity
four-vector of a charged body along its own direction also defines a ‘privileged’ path. For this
reason one has to find a suitable geometrical setting.

The square of the length I of the velocity four-vector is per definition equal to ¢2, and can be
calculated from its components u” according to the formula:

duT T v T,V T NV 1
—— =1, u'u” — f7i¥ where '], = —{ } (i)

I? = gutu” =1 (by a suitable choice of units) (ii)

Because the length of the velocity four-vector is fixed (up to a constant), this imposes con-
straints on the geometrical setting one can use (HR, 025-05-10, 9)!!:

e The length of this velocity I vector must remain unchanged under parallel transport, that is,
d(I?) = 0. This imposes a restriction on the ‘displacement space’ I'},,- It can be shown that
such a condition is satisfied if a tensor of third order K, , = 0, where KW’(,12 is defined
as follows (cf. Eddington, 1921, 109):

g
QK;LV,U == — F,ul/,cr - F/,La,u
Ty
One thus obtains a ‘metrical space’, that is, in Reichenbach’s parlance, a space where
the comparison of lengths at distance is path-independent. Weyl space differs from such a
metrical space because K, » = guvke (Weyl famously identified x, with the electromagnetic

10The mixed-variant form f of the electromagnetic tensor fuv appears because of the contra-variant four-velocity
u” in the definition of the four-current ¥ (cf. Eddington, 1925a, 273).

11See the cross-out paragraph on p. 5, which was later moved to pp. 8-9 in the longer version of the Note.

12The so-called non-metricity tensor.



four-potential).!? In a metrical space, it is possible to define the shortest lines between two
points; but in general, they are not identical with the straightest lines, defined by auto-
parallel displacing of vectors.

e To assure that the straightest lines coincide with the shortest lines, one has to impose a

further condition, that the connection I'},,, is symmetric in the lower indices p and v, that
is:

L, =- {“TV} (iif)

where the three-index symbol on the right-hand side is the negative of the Christoffel
symbols of the second kind. This specialization leads to the so-called ‘Riemannian space’,
in which there are therefore geodesics; i.e., lines that are straightest and shortest at the
same time.'*

If one does not require the connection to be symmetric (by simply permuting the lower
indices, one obtains a different connection; Schouten, 1922a,b).'® then one can work in a metrical
space that is not identical to the Riemannian space. In this space the straightest lines are not
identical to the shortest ones.'® Reichenbach intends to exploit this additional ‘degree of freedom’
to define an operation of displacement that expresses the effect of both the gravitational and
electromagnetic fields. Charged mass points of unit mass move (or their velocity four-vector is
parallel-transported) along the straightest lines, and uncharged particles move on the straightest
lines that are at the same time the shortest ones (or rather, the line of extremal length). Let’s
see how Reichenbach proceeded in more detail.

2.2. An Outline of Reichenbach’s Theory

Reichenbach’s presentation (see HR) 025-05-10, 3-4) can be summarized in three stages:

1. Mimicking Eddington’s 1921 theory (cf. section 1), Reichenbach introduced the fundamental
tensor G, which combines the electrical and gravitational fields:

G,uu = 9uv + f,uz/ (iV)

According to the usual procedure, this tensor can be decomposed into a symmetric part
guv and an anti-symmetric part f,, which, as one might expect, can be identified with
gravitational /metrical field and the electromagnetic field:

Juv =1/2(Gw + Gup) S =1/2(Gy — Guy) (v)

The metric can be defined ds? = G dx,dx, = gu.dr,dz,, which is measured by using
rods and clocks in absence of the electromagnetic field (f,,, = 0), that is, the more nearly
the G, approximate to g,,. Thus, rods and clocks are not indicators of the f,, and a
suitable indicator will be introduced later.

L3¢f. footnote 2.

MReichenbach restricts the use of the term ‘geodesic’ to Riemannian geodesics.

15The asymmetry tensor Sy, r = %FZ’W —I'}, # 0. The term ‘torsion’ had been introduced already by Elie
Cartan (1922) but it was still not in usage.

16Cf. Misner, Thorne, and Wheeler, 1973, 248251 for an intuitive explanation.



e The g, are governed by Einstein’s field equations 7,, — %gw r = —xT), where r is
written in lowercase to indicate that it depends on the first and second derivatives of
the g,, alone (not on the whole G ).

e The f,, are governed by the Maxwell equations, which in four-tensor notation can be

; . Ofuw | Ofvp | Ofpu _ of°* _ o
written: o= + G5 + 5o =0 and oz, — L

-
pv

2. A displacement I'7, is introduced and decomposed into two parts (cf. Schouten, 1924, 851):

Ul = Vi + ¢l (vi)
T 1224 T Tafap s
PY,U,I/ - { T } goluy - g,uafy 8$p (Vll)

e The first v, are defined as the negative of the Christoffel symbols of the second kind,
which are functions of the g, and their first-order partial derivatives.

e The definition of the ¢, (which Reichenbach does not explain further) seems to be
obtained from the right side of four-dimensional Lorentz force law K™ = —f7i", in
which Maxwell equations with sources (%f—: = 17) substitute the four-current. The
term g, is added to lower the indices gwig = 1,. The direct product of two tensors
(multiplying components from the two tensors together, pair by pair) increases the
rank of the tensor by the sum of the ranks of each tensor '” keeping the character of the
indices. Thus Reichenbach obtains ¢, = —fJi,, that is, a skew-symmetric three-rank
tensor with which to lower the indices.

Without pointing it out explicitly, Reichenbach exploits the fact that the difference of two
displacements transforms like a mixed tensor of third rank (Eddington, 1921, 109; eq. 4.6).
In particular a non-symmetric displacement is always the sum of a symmetric displacement
and a skew symmetric tensor. Thus, Reichenbach seems to have obtained the hoped-for
result in a formally correct way: I'},, is the sum of the usual Christoffel symbols, which
in turn depend on the gravitational field g,,, and a tensorial part, which depends on the
electromagnetic field f,,.

3. The reason for the definitions (vii) immediately becomes apparent (HR, 025-05-10, 6-7).
Using (vii), Reichenbach can rewrite (i) so that the force term is, so to speak, absorbed
into a suitably defined I}

du”
ds

= I}, u"u” (viii)
According to (vi), this equation is equivalent to the following:

du’™ v v .
T = Vi utu” + o, utu (ix)

Because of (vii), the three-index symbol 77, is defined as the Christoffel symbols of the second
kind; thus the first summand of (ix) is simply the right-hand side of the general relativistic

17 A vector is of course a tensor of first rank.



geodesic equation. To see the trick behind Reichenbach’s less than obvious definition of the

tensor ¢y, a little more effort is needed. Plugging this definition into eq. (ix), the second
ap

fr of

v Ox,
(where i = pu?), one obtains —g,. f] pu®utu”. According to (ii), gu-utu’ = 1, thus the
expression reduces to — f¢”. The final result is the following:

e g )

ds T

summand becomes —g,,« utu”. Keeping in mind Maxwell’s equations with sources

This is of course nothing but eq. (i), from which we started. By defining the displacement
space I'],, in a suitable way (via (vi) and (vii)), Reichenbach was able to dress this well-
known equation’s physical content in the more appealing geometrical garb of eq. (viii).

Just like eq. (i) in general relativity, eq. (viii) in Reichenbach’s theory describes the motion
of test particles under the influence of the combined gravitational and electromagnetic fields.
However, now the difference in the behavior of charged and uncharged particles can be expressed
in terms of geometrical differences within Reichenbach’s non-Riemannian space-time. The velocity-
vectors of charged particles of unit mass are parallel transported along the straightest lines defined
by I'],,. When the charge of these particles is zero (i.e., when the tensorial component of O
vanishes) the straightest lines coincide with the shortest one.

In this way Reichenbach believed himself to have achieved the sought-for geometrization of
the Einstein-Maxwell theory. Gravitation g,,,, and the electromagnetic field f,, are components
of the geometrical field G,,,. Physically, the metric g,,,, is defined via the behavior of rods and
clocks in which the gravitational field manifests itself. The displacement space I'},,,, which has
been defined as a function of g,, and f,,, finds its physical counterparts in the velocity vectors
of particles of unit mass and arbitrary charge, which are indicators of the electromagnetic field.

3. Einstein’s Comments on Reichenbach’s Note

Einstein must have immediately read or at least glanced at Reichenbach’s attempt at providing
a unified field theory, and he replied a few days later on March 31, 26. His initial reaction to the
theory was not very encouraging:

You’ve run over to the theoretical physicists and moreover at a bad spot. Of course I
immediately found some flies in the ointment. First of all, your approach ¢;,, = —gus fo aaf;p/’
is really arbitrary. Second, no metric should belong to your I'},,. It is unnatural to ascribe
a metric to the summand v of I". Your equations of motion do not have any physical
meaning, since they describe the behavior of matter only for a value of the relationships
between electrical and ponderable density. Finally, your theory does not connect electricity
and gravitation, since there are no mathematically unified field equations that provide the
field law for gravitation and electromagnetism simultaneously; it does not even provide a
connection between electricity and gravitation in the sense that one could infer from the
theory which electromagnetic quantities produce the gravitational field. I would not publish
it; otherwise, what happened to me will happen to you: you’ll have to disown your children
(Einstein to Reichenbach, Mar. 31, 1926; AEA| 20-116).

Einstein deconstructs Reichenbach’s theory piece by piece. (1) The definition (vii) of the O
does not seem to have any physical motivation. (2) A Riemannian metric determines an affine
connection; however, in general this is not true the other way around (cf. e.g., Einstein, 1923c, 9).
If Reichenbach started from a general displacement space I'7, , and defined it via parallel transport
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independently from the metric g,,,,, then he should not have reintroduced the g, surreptitiously
by defining the v/, as the negative of the Christoffel symbols of the second kind (which are
expressed in terms of the g,,) (see eq. iii).'® (3) Reichenbach’s equations of motion can be valid
only for a certain charge-density-to-mass-density ratio p/u (or, in the case of particles, a certain
charge-to-mass ratio e/m). In a given displacement, there is only one straightest line passing
through a point in a given direction, but different test particles with different charge-to-mass ratios
accelerate differently in the same electric field. Thus they cannot all travel on the same straightest
line (see below in section 4.2). After all, this is the precise difference between gravitational and
non-gravitational forces. Finally, (4) in the note, the g, and f,, are governed respectively by
the well-known Einstein and Maxwell equations; thus the theory not only fails to yield a single
set of field equations governing both the gravitational and electromagnetic fields, but it does not
even bother to supplement the gravitational field equations with electromagnetic terms so that
they contain the gravitational effect of the electromagnetic field. That is, the theory does not
even yield a geometrization of the Einstein-Maxwell theory.

Reichenbach replied by return post on April 4, 1926. There are two aspects to his response,
which we will deal with separately for the sake of clarity. First, Reichenbach replied to Einstein’s
technical objections:

1) The approach for the ¢}, is not only arbitrary (willkirlich), but even artificial (kinstlich);
but why is one not allowed [to do something like this|? Here, from a purely logical point
of view, one can define what one wants; one can define the [¢],,] in such a way that [the
definition] agrees with already known law of motion of charged particles 2) you say that no
metric should pertain to my I'},,; however, it is exactly the opposite. Eddington assumes the
field I'},, as primary and deduces from it the field G, which he splits into a symmetrical
and antisymmetrical part. One can also assume a field G, as primary and derive from it a
field I'},,,; this is logically equivalent 3) My law of motion is not valid only for a certain ratio
of charge and mass, but for arbitrary charge and mass = 1. However from the point of view
of the geometrical visualization this disadvantage is no worse than the fact that not every
measuring rod defines the ds, but only the one of length 1 (Reichenbach to Einstein, Apr. 4,

1926; AEA, 20-086).

Concerning 1), the awkward definition of one of the summands of the ¥ 0 eq. (vii), Re-
ichenbach did not hide that his theory was an operation of ‘reverse engineering’; and for this
reason anything goes, even a cheap trick like the one he used in the note. Objection 2), for
Reichenbach, was the consequence of Einstein’s hasty reading. Reichenbach did not start from
the displacement and then define the tensor G, in terms of the latter, as Eddington did, but the
other way around. Thus the metric was not obtained as a by-product, but was introduced from
the beginning. To make his point, Reichenbac