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Abstract

This paper analyzes correspondence between Reichenbach and Einstein from the spring of
1926, concerning what it means to ‘geometrize’ a physical field. The content of a typewritten
note that Reichenbach sent to Einstein on that occasion is reconstructed, showing that it was
an early version of §49 of the untranslated Appendix to his Philosophie der Raum-Zeit-Lehre, on
which Reichenbach was working at the time. This paper claims that the toy-geometrization of the
electromagnetic field that Reichenbach presented in his note should not be regarded as merely a
virtuoso mathematical exercise, but as an additional argument supporting the core philosophical
message of his 1928 monograph. This paper concludes by suggesting that Reichenbach’s infamous
‘relativization of geometry’ was only a stepping stone on the way to his main concern—the
question of the ‘geometrization of gravitation’.

Aber ich kann auch da das Gefühl
des Künstlichen nicht los werden

Reichenbach to Einstein, March
16, 1926

Introduction

In the late 1950s, Hans Reichenbach’s second wife Maria Reichenbach edited an English
translation (Reichenbach, 1958) of his Philosophie der Raum-Zeit-Lehre (Reichenbach, 1928).
This edition was missing a long Appendix entitled ‘Die Weylsche Erweiterung des Riemannschen
Raumbegriffs und die geometrische Deutung der Elektrizität’ (‘Weyl’s Extension of Riemann’s
Concept of Space and the Geometrical Interpretation of Electromagnetism’). A translation of
the Appendix was prepared in a nearly publishable form (including a transcription of the quite
heavy mathematical apparatus), and the typescript is preserved in the Reichenbach Archives
in Pittsburgh (HR, 041-2101). However, the publication must have been withdrawn eventually.
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Except for a ‘dead link’ to a no-longer-existing §46 on page 17, even today many readers of The
Philosophy of Space and Time might be unaware that such an Appendix ever existed.

The decision not to publish the Appendix is understandable. The text is quite demanding
for readers unaccustomed to the formalism, and struggling through it may not have been worth
the effort. After Einstein’s death in 1955, the very project of a unified theory of gravitation and
electromagnetism, which Reichenbach discusses with a plethora of technical details, was nearly
unanimously regarded as a relic of the past (but see Tonnelat, 1955)—not least of which by
Hermann Weyl, one of the project’s initiators (Weyl, 1956). In the same spirit, in an English
translation of a selection of Reichenbach’s writings from the late 1970s (Reichenbach, 1978), the
pages dealing with “Weyl’s generalization of Riemannian space” were omitted because, as the
editors write, they had “no historical significance” (Reichenbach, 1978, 2:3).

Only a year later, however, a pathbreaking paper by Alberto Coffa (1979) proved that this
judgment was hasty. Rediscovering Weyl and Reichenbach’s ‘elective affinities’, Coffa began (with
a nice pun) a fertile line of research which, much later, would bear fruit in the work of Thomas
Ryckman (1995, 1996, 2005), Robert Rynasiewicz (2005) and others (see also Giovanelli, 2013b).
It was in this context that Coffa provided perhaps the first and only detailed analysis of the
untranslated Appendix to the Philosophie der Raum-Zeit-Lehre. In fact, Coffa read the Appendix
as single-mindedly trying to “exhibit the vacuity of Weyl’s enterprise” (Coffa, 1979, 295). Here,
however, Coffa’s major achievement becomes a hindrance. Despite the Appendix’s somewhat
misleading title, by interpreting it exclusively in terms of the Weyl-Reichenbach debate, we do
not fully grasp its meaning.

Letters between Reichenbach and Einstein, preserved in the Einstein Archives in Jerusalem
(AEA),1 suggest that the Appendix should be read more broadly. In the spring of 1926, Reichen-
bach, after making some remarks on Einstein’s newly published metric-affine theory (Einstein,
1925b), sent him a note offering what looks like his own attempt at a unified field theory. Re-
ichenbach’s note turns out to have been an early draft of §49 of the Appendix, on which he
was working at the time. Einstein’s objections and Reichenbach’s replies reveal that criticism of
Weyl’s theory was only part of the story. Reichenbach was mainly interested in the very idea
of the ‘geometrization’ of a physical field. At the time, many believed that if general relativity
geometrized the gravitational field, then it was also plausible to geometrize the other known
field—the electromagnetic field. To challenge this view, Reichenbach conducted what might be
called an ‘epistemological experiment’.

Reichenbach constructed a toy-theory establishing a connection between electricity and geome-
try which, he argued, was just as good as the one general relativity established between gravitation
and geometry. Reichenbach’s theory, however, was clearly not as successful as general relativity.
Thus, Reichenbach could provide ‘experimental’ evidence that the geometrization of a physical
field cannot be regarded in itself as a physical achievement. As soon as Einstein understood
the ‘ironical’ nature of Reichenbach’s enterprise, he immediately agreed with him. As Dennis
Lehmkuhl (2014) has recently shown, it was in his correspondence with Reichenbach that Einstein
pointed out, for the first time, that general relativity had not geometrized the gravitational field.

As we shall see, Einstein and Reichenbach’s opinions about the geometrization issue were only
superficially similar. However, reading Reichenbach’s 1928 monograph against the background
of this issue reveals a quite different view of his interpretation of general relativity. If general
relativity dressed the gravitational field in a geometrical ‘cloak’, as Reichenbach put it, “one
should not confuse the cloak [Gewand] with the body which it covers” (Reichenbach, 1928, 354;
tr. HR, 041-2101, 493). The Appendix of his book was meant to show that one can, with some

1The correspondence will appear in the forthcoming 15th volume of CPAE.
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sartorial skill, always dress a physical field in a geometrical disguise. To understand why general
relativity is a successful physical theory we have to look beyond the geometrical clothing to the
body it hides. In general relativity the connection turned out to be heuristically powerful; it led
to new testable predictions. In contrast, the link between electricity and geometry established by
Reichenbach’s theory simply recast what was already known in geometrical terms.

This paper suggests that the geometrization issue was not just a spin-off of Reichenbach’s 1928
monograph, but possibly the core message of the book. To support this claim the paper proceeds
as follows. Section 1 describes the context in which Reichenbach decided to send Einstein a note on
the geometrization of the electromagnetic field. Section 2 offers a reconstruction of Reichenbach’s
note. Section 3 describes Einstein’s initially skeptical, then approving, reaction to the note.
Section 4 shows what Reichenbach’s Philosophie der Raum-Zeit-Lehre looks like if read from the
perspective of the Appendix. Finally, analyzing Reichenbach’s attitude towards Einstein’s distant
parallelism field theory, section 5 emphasizes the differences that existed behind Reichenbach and
Einstein’s apparent agreement on the issue of geometrization. This paper concludes by suggesting
that Reichenbach’s well-known ‘relativization of geometry’ was only a stepping stone on the way
to his main concern—the question of the ‘geometrization of gravitation’.

1. Reichenbach’s Γ-Critique and His Note on the Unified Field Theories

On June 5, 1925 Einstein, who had just returned from a long trip to South America (see his
travel diary, CPAE, Vol. 14, Doc. 455, Mar. 5–May 11, 1925), wrote to Michele Besso about the
state of his research on a unified theory of the gravitational and electromagnetic fields (Goenner,
2004; Sauer, 2014; Vizgin, 1994). He revealed to Besso that he had become disillusioned with
the whole “Weyl-Eddington-Schouten line of thinking,” the framework in which he had been
working in the previous years,2 and that he was already “on another track, that is physically
more grounded” (Einstein to Besso, Jun. 5, 1925; Speziali, 1972, 240). The paper Einstein was
referring to—the first in which the term ‘unified field theory’ appears in the title—was presented
at the Prussian Academy during its July 9, 1925 session (Einstein, 1925b).

Einstein described “the egg” he “recently laid” to Besso some weeks later (Einstein to Besso,
Jul. 28, 1925; Speziali, 1972, 209–210). The theory introduced an affine connection (Γτµν) (from
which the Riemann and Ricci tensor Rµν are derived), and independently the metric tensor
gµν (and its correspondent contravariant tensor gµν and tensor density gµν). Einstein then built
the scalar density H = gµνRµν and postulated the independent variation δ

∫
Hdt = 0, with

respect to the gµν and Γτµν (Ferraris, Francaviglia, and Reina, 1982). After some manipulation
he obtained, at first approximation, the already-known laws of gravitation and electromagnetism.
The symmetric part of the gµν represents the ‘gravitational potentials’, and the antisymmetric
part the ‘electromagnetic field strength’ (Einstein to Besso, Jul. 28, 1925; Speziali, 1972, 209–210).

2Very roughly this line of thought can be described as follows. Around 1918, in order to eliminate the last
‘distant geometrical’ remnants of Riemannian geometry, Weyl introduced what he called the ‘length connection’
ϕi. It determines the change of the length of a vector on parallel transport just as the ‘affine connection’ Γikl in
Riemannian geometry determines the change of its direction (Weyl, 1918a,c, 1919a). ϕi could be identified with the
electromagnetic four-potential. Eddington (1921) radicalized Weyl’s approach, using only the affine connection as
the fundamental quantity. A generally non-symmetric Ricci tensor (Rik 6= Rki) can be derived from it and split into
an antisymmetric part Fµν identified with the electromagnetic tensor and a symmetric part Rµν corresponding to
the gravitational potentials (by introducing the ‘natural gauge’ Rµν = λgµν where λ is the cosmological constant).
Einstein tried to specify the equations that govern the affine connection in Eddington’s approach in three brief
notes (Einstein, 1923d,e,f). In the latter theory, the electromagnetic field cannot exist in a place with vanishing
current density. Schouten (1924) showed that this problem disappears if one assumes that the displacement is not
symmetrical. For more details see the classical literature on the history of the unified field theory (Goenner, 2004;
Vizgin, 1994). An excellent non-technical presentation is provided by Sauer, 2014.
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Einstein’s enthusiasm for this approach was again a flash in the pan. The paper was published
in September, but by Christmas of 1925 Einstein confessed his skepticism to Besso, revealing
that he had returned to a set of field equations he had presented in 1919 (Einstein, 1919), with
the electromagnetic stress-energy tensor serving as the source (Einstein to Besso, Dec. 25, 1925;
Speziali, 1972, 215–217; see also Einstein, 1927a3; cf. Vizgin, 1994, 225f. Goenner, 2004, 61f.).
During those same months, Reichenbach, despite the support of Max Planck, was struggling
to obtain his Umhabilitation4 from Stuttgart to Berlin in order to be appointed to a chair of
natural philosophy that had been created there (Hecht and Hoffmann, 1982). On March 16, 1926,
Reichenbach sent a letter to Einstein in which, after discussing his academic misadventures, he
remarked on the new ‘metric-affine’ theory (Einstein, 1925b):

I have read your last work on the extended Rel. Th5 more closely, but I still can’t get rid of a
sense of artificiality which characterizes all these attempts since Weyl. The idea, in itself very
deep, to ground the affine connection independently of the metric on the Γikl alone, serves
only as a calculation crutch here in order to obtain differential equations for the gik and the
ϕik and the modifications of the Maxwell equations which allow the electron as a solution.
If it worked, it would of course be a great success; have you achieved something along these
lines with Grommer? However, the whole thing does not have the beautiful convincing power
[Ueberzeugungskraft] of the connection between gravitation and the metric based on the
equivalence principle of the previous theory (Reichenbach to Einstein, Mar. 16, 1926; AEA,
20-83).

Reichenbach expressed skepticism early on towards Weyl’s theory (Reichenbach, 1920, 73).
Even if he partly retracted some of his concerns (Reichenbach, 1922, 367–368), he still felt that
the theory did not have the same ‘convincing power’ (Überzeugungskraft) of general relativity
(Reichenbach, 1922, 367), in which the identification of the gik with the gravitational potentials
was solidly anchored in the principle of equivalence.6

3Einstein, 1927a was finished in January 1926. Einstein insists there that he had returned to the trace-free field
equations as “a consequence of numerous failures” to pursue the “the approach proposed by Weyl and Eddington or
something analogous” (Einstein, 1927a, 100). Einstein also derived the trace-free field equations using an approach
suggested by Yuri Rainich (1925). In Rainich’s view, in the case where the whole non-gravitational energy is
electromagnetic, Einstein’s field equations are already unified with Maxwell equations in empty space, because of
certain algebraic property of the Riemann tensor (cf. Einstein to Rainich, Dec. 8, 1925; AEA, 20-003 and Einstein
to Rainich, Mar. 8, 1926; AEA, 79-686). This ‘already unified field theory’ will play an important role in the
history of ‘geometrization’ program of physics when it was rediscovered by Charles Misner and Archibald Wheeler
in the late fifties (Misner and Wheeler, 1957); see also below on fn. 43.

4The process of obtaining the venia legendi at another university.
5Einstein, 1925b.
6Reichenbach already expressed reservations about Weyl’s approach in his 1920 monograph on relativity, in

which he accused Weyl of attempting to deduce physics from geometry (Reichenbach, 1920, 73). In early 1921,
Weyl explained to Reichenbach in private correspondence that his theory was less ambitious: “I have claimed only
that the concepts in geometry and field physics have come to coincide” (Weyl to Reichenbach, Feb. 2, 1921; HR,
015-68-04; tr. Rynasiewicz, 2005, 153, note 17). Briefly thereafter Weyl replied publicly to Reichenbach (Weyl, 1921,
475), who retracted his criticisms (Reichenbach, 1922, 367–368). However, Reichenbach still expressed concerns
about the formalistic nature of the ‘second version’ of the theory. In order to circumvent Einstein’s objection
(1918a) that the theory was contradicted by the actual behavior of atomic clocks, Weyl (1920) abandoned the
interpretation of the ‘ideal’ process of length-transfer in terms of the ‘real’ behavior of rods and clocks. According
to Reichenbach, in this way the theory loses its “convincing character” and becomes “dangerously close to a
mathematical formalism” (Reichenbach, 1922, 367); Reichenbach’s wording is very similar to that of Wolfgang
Pauli (1921, 763). Weyl’s identification of the four-vector ϕν with the electromagnetic four-potential appears to
only be motivated by the goal of constructing a suitable ‘action’ from which he hoped to recover “the natural
forms of the most general physical equations” via the ‘action principle’ (‘Wirkungsprinzip’) (Reichenbach, 1922,
367), that is, by requiring that the action-quantity assumes a stationary value. Moreover, Reichenbach criticizes
Weyl’s appeal to the epistemological superiority of his ‘purely infinitesimal geometry’, by referring to the work of
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Perhaps it is not a coincidence that Reichenbach uses the very same turn of phrase in this
letter. Einstein’s theory introduces the affine connection independently of the metric. However,
it does not attribute any physical meaning to the former; the separate variation of the metric
and connection was nothing more than a ‘calculation device’ to find the desired field equations.
Reichenbach, however, was ready to revise his negative judgment if Einstein’s theory delivered
the ‘electron’. At the end of the paper (Einstein, 1925b), Einstein had in fact claimed that he was
working with his assistant Jakob Grommer on the problem of establishing whether the theory
allows for “the existence of singularity-free, centrally symmetric electric masses” (Einstein, 1925b,
419). For Einstein this was a fundamental criterion for the viability of a unified field theory
(cf. e.g., Einstein, 1923a).

On March 20, 1926 Einstein replied that he warm-heartedly agreed with Reichenbach’s ‘Γ-
Kritik’: “I have absolutely lost hope of going any further using these formal ways”; “without
some real new thought,” he continued, “it simply does not work” (Einstein to Reichenbach, Mar.
20, 1926; AEA, 20-115). Einstein’s reaction reflects his disillusion with the attempts to achieve
the sought-for unification of gravitational and electromagnetic field via some generalization of
Riemannian geometry. He would have probably been less ready to embrace Reichenbach’s critique
if he had knew what the latter exactly had in mind (see next section). However, Reichenbach was
of course pleased by Einstein’s endorsement. On March 31, 1926 he revealed that his remarks
were not extemporary, but were the fruit of a more thorough consideration of the topic that he
had jotted down at the time:

I’m of course very glad that you agree with my Γ-critique. I have now made a few reflections on
the topic, which seem to me to prove that the Weylean thought, although goodmathematically,
does not bring about anything new physically. The geometrical interpretation of electricity
is only a visualization, which in itself still does not say anything, and can also be realized
in the original relativity theory. I have attached the note and would be grateful if you could
give it a look (Reichenbach to Einstein, Mar. 24, 26; AEA, 20-085).

Reichenbach attached to this letter a typewritten note. As we shall see, far more was at
stake in it than a critique of Weyl’s theory (which was generally considered a dead horse at the
time). Reichenbach intended to call into question the very idea that, since general relativity has
‘geometrized’ the gravitational field, the obvious next move should be to try to ‘geometrize’ the
electromagnetic field.

2. Intermezzo: Reichenbach’s Note

In the following I will present the content Reichenbach’s note, operating under the assump-
tion that it corresponds to a part of a ten-page typescript bearing the title “Zur einheitlichen
Feldtheorie von Gravitation und Elektrizität” (‘On the unified field theory of gravitation and
electricity’). The document is preserved at the Reichenbach Archives in Pittsburgh (HR, 025-
05-10).7 On the basis of the correspondence with Einstein that ensued (see next section) and of
Reichenbach’s handwritten corrections to the text, I conjecture that only pp. 1–7, that is, parts I
and II of the typescript, were sent to Einstein; the bottom of p. 7 was probably added later and
then included in a new part III,8 which extended through pp. 8–10. Even though, for the sake
of brevity and clarity, I will not painstakingly follow the order of Reichenbach’s presentation, I

Eddington (1921) and Schouten (1922b): Weyl’s geometry is only a special case of Eddington’s, which in turn is
only a special case of Schouten’s general linear connection (Reichenbach, 1922, 367).

7HR, 025-05-11 is a copy of the last four pages of HR, 025-05-10.
8See also below in section 4.2 for more details on this hypothesis.
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will adhere to his terminology and notation, which in turn seems to closely follow the German
translation (Eddington, 1925a) of Eddington’s textbook on relativity (Eddington, 1923).

2.1. The Physical Realization of the Operation of Displacement
Reichenbach attributes to Weyl the merit of having defined the operation of displacement

(or parallel transport of vectors) given by the Γτµν independently of the metric gµν . Reichenbach
considered this result a “milestone” (HR, 025-05-10, 2) in the history of the mathematical problem
of space. However, in Reichenbach’s view, Weyl’s “physical interpretation was not so fortunate”
(HR, 025-05-10, 2). To explain the limits of Weyl’s approach, Reichenbach refers to his distinction
between Einstellung (adjustment)—the behavior of the physical systems that realize the compar-
ison of length defined by gµν—and Beharrung (preservation)— the behavior of physical systems
that correspond to the operation of the comparison of direction defined by the Γτµν .9 Whereas the
systems of the first type really exist in nature (i.e., rods and clocks), in Weyl’s theory there are
no such systems corresponding to the operation of displacement. Thus, according to Reichenbach,
the separation of the operation of displacement from the metric is nothing but a “calculation aid”
(HR, 025-05-10, 3) for finding the correct field equations. Reichenbach immediately extends the
objection to Eddington’s theory (Eddington, 1921) and to Einstein’s version of the latter (Einstein,
1923e,f, 1925a), which radicalized Weyl’s fundamental separation of metric and displacement.

As we have just seen, this is precisely the Γ-critique, which Einstein—who had already aban-
doned this operationalist point of view (Giovanelli, 2014)—had too hastily endorsed in the corre-
spondence with Reichenbach. In fact Reichenbach intended to show that in the “original general
relativity” (HR, 025-05-10, 3)—that is, in the Maxwell-Einstein theory describing gravity together
with electromagnetism—it is already possible to find a realization for both fundamental operations,
the metric and displacement, and thus to present the gravitational and electromagnetic fields in
a common geometrical setting. In this way, the Maxwell-Einstein theory can be reformulated in
a geometrical form “without any change to its physical content” (HR, 025-05-10, 1). This also
means that the opposite is true: “In itself, this geometrical framework does not bring any physical
innovation” (HR, 025-05-10, 1).

The gµν are already identified with the gravitational potentials, and measured with rods and
clocks. Thus, in order to ‘geometrize’ the electromagnetic field, Reichenbach has to rely on the
operation of displacement Γτµν , and select suitable indicators for it. Physical theories provide no
help in this respect, and thus Reichenbach tentatively searched among the physical phenomena
that react to both the gravitational and electromagnetic fields, and at the same time happen to
behave in the sense of the displacement Γτµν . Gravitational and electromagnetic forces together
determine the motion of particles. Thus a natural choice, though still arbitrary one, was to choose
the motion of electrically charged mass points as indicators of the displacement-field.

In general relativity, the motion of such particles is subject to the already-known equations of
the motion of charged particles of mass 1, which is therefore the starting point of Reichenbach’s

9Weyl (1920) introduced the distinction between Einstellung and Beharrung to explain away the discrepancy
between the non-Riemannian behavior of the ‘ideal’ time-like vectors implied by his theory and the Riemannian
behavior of the ‘real’ clocks that are actually observed (Einstein’s measuring rods objection, Einstein, 1918b). He
suggested that atomic clocks might not preserve their Bohr radius if transported, but adjust it every time to some
constant field quantity. See Ryckman, 2005, secc. 4.2.4; 6.4.2.2 for more details. Reichenbach (1922) complained
that this sounds more like a restatement of the problem than a solution to it. Moreover, the adaptation has nothing
to do with the parallel transport of vectors, so the latter remains physically empty (Reichenbach, 1922, 368, n.
1). However, Reichenbach made ‘metaphorical’ use of Weyl’s ‘Einstellung’ in Reichenbach, 1924, 71, and again in
Reichenbach, 1925, 47. See also below footnote 37.
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investigation:

duτ

ds
= Γτµνuµuν − fτν iν where Γτµν = −

{
µν
τ

}
(i)

On the left-hand side of the equation is the acceleration of a particle, the rate of change of
its velocity four-vector uν = dxν/s (where xν is the four-position of a particle) with respect to
a parameter s, identified with the particle’s proper time. On the right-hand side the geodesic
equation is supplemented by the term −fτν iν responsible for the effect of the electromagnetic field
on charged particles. Notice that mass m does not appear in the force term, and thus the equation
is valid only for unit masses. As is well known, this equation states that uncharged bodies free
falling in a gravitational field follow geodesic paths, that is, lines of extremal length in a generally
curved Riemannian space-time (particle four-acceleration vanishes identically and free-falling
motion is indistinguishable from inertial motion). Charged bodies deviate from geodesic paths
under the influence of an electromagnetic field, according to the Lorentz force law Kτ = −fτν iν .
The gµνfτν = fµν are the electromagnetic field strengths and iν = ρuν is the four-current, where
ρ is the charge density and uν is four-velocity.10

Reichenbach aimed to rewrite these equations of motion so that charged particles under the
influence of an electromagnetic field follow their ‘natural path’ defined by the displacement. To
this end he stipulates that the physical behavior of mass points provides the ‘physical realization’
(or ‘coordinative definition’) of the geometrical operation of parallel displacement of their velocity
four-vector uτ . In general relativity, when an uncharged particle moves freely, its velocity-vector
is carried along by parallel displacement along a geodesic line in Riemannian space. One can
imagine a more comprehensive geometrical framework in which the displacement of the velocity
four-vector of a charged body along its own direction also defines a ‘privileged’ path. For this
reason one has to find a suitable geometrical setting.

The square of the length l of the velocity four-vector is per definition equal to c2, and can be
calculated from its components uν according to the formula:

l2 = gµνu
µuν = 1 (by a suitable choice of units) (ii)

Because the length of the velocity four-vector is fixed (up to a constant), this imposes con-
straints on the geometrical setting one can use (HR, 025-05-10, 9)11:

• The length of this velocity l vector must remain unchanged under parallel transport, that is,
d(l2) = 0. This imposes a restriction on the ‘displacement space’ Γτµν . It can be shown that
such a condition is satisfied if a tensor of third order Kµν,σ = 0, where Kµν,σ

12 is defined
as follows (cf. Eddington, 1921, 109):

2Kµν,σ = gνσ
xµ
− Γµν,σ − Γµσ,ν

One thus obtains a ‘metrical space’, that is, in Reichenbach’s parlance, a space where
the comparison of lengths at distance is path-independent. Weyl space differs from such a
metrical space becauseKµν,σ = gµνκσ (Weyl famously identified κσ with the electromagnetic

10The mixed-variant form fτν of the electromagnetic tensor fµν appears because of the contra-variant four-velocity
uν in the definition of the four-current iν (cf. Eddington, 1925a, 273).

11See the cross-out paragraph on p. 5, which was later moved to pp. 8–9 in the longer version of the Note.
12The so-called non-metricity tensor.
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four-potential).13 In a metrical space, it is possible to define the shortest lines between two
points; but in general, they are not identical with the straightest lines, defined by auto-
parallel displacing of vectors.

• To assure that the straightest lines coincide with the shortest lines, one has to impose a
further condition, that the connection Γτµν is symmetric in the lower indices µ and ν, that
is:

Γτµν = −
{
µν
τ

}
(iii)

where the three-index symbol on the right-hand side is the negative of the Christoffel
symbols of the second kind. This specialization leads to the so-called ‘Riemannian space’,
in which there are therefore geodesics; i.e., lines that are straightest and shortest at the
same time.14

If one does not require the connection to be symmetric (by simply permuting the lower
indices, one obtains a different connection; Schouten, 1922a,b),15 then one can work in a metrical
space that is not identical to the Riemannian space. In this space the straightest lines are not
identical to the shortest ones.16 Reichenbach intends to exploit this additional ‘degree of freedom’
to define an operation of displacement that expresses the effect of both the gravitational and
electromagnetic fields. Charged mass points of unit mass move (or their velocity four-vector is
parallel-transported) along the straightest lines, and uncharged particles move on the straightest
lines that are at the same time the shortest ones (or rather, the line of extremal length). Let’s
see how Reichenbach proceeded in more detail.

2.2. An Outline of Reichenbach’s Theory
Reichenbach’s presentation (see HR, 025-05-10, 3–4) can be summarized in three stages:

1. Mimicking Eddington’s 1921 theory (cf. section 1), Reichenbach introduced the fundamental
tensor Gµν which combines the electrical and gravitational fields:

Gµν = gµν + fµν (iv)

According to the usual procedure, this tensor can be decomposed into a symmetric part
gµν and an anti-symmetric part fµν which, as one might expect, can be identified with
gravitational/metrical field and the electromagnetic field:

gµν = 1/2(Gµν +Gνµ) fµν = 1/2(Gµν −Gνµ) (v)

The metric can be defined ds2 = Gµνdxµdxν = gµνdxµdxν , which is measured by using
rods and clocks in absence of the electromagnetic field (fµν = 0), that is, the more nearly
the Gµν approximate to gµν . Thus, rods and clocks are not indicators of the fµν and a
suitable indicator will be introduced later.

13cf. footnote 2.
14Reichenbach restricts the use of the term ‘geodesic’ to Riemannian geodesics.
15The asymmetry tensor Sµν,τ = 1

2 Γτµν − Γτνµ 6= 0. The term ‘torsion’ had been introduced already by Élie
Cartan (1922) but it was still not in usage.

16Cf. Misner, Thorne, and Wheeler, 1973, 248–251 for an intuitive explanation.
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• The gµν are governed by Einstein’s field equations rµν − 1
2gµν r = −κTµν where r is

written in lowercase to indicate that it depends on the first and second derivatives of
the gµν alone (not on the whole Gµν).

• The fµν are governed by the Maxwell equations, which in four-tensor notation can be
written: ∂fµν∂xρ

+ ∂fνρ
∂xµ

+ ∂fρµ
∂xν

= 0 and ∂fσρ

∂xρ
= iσ.

2. A displacement Γτµν is introduced and decomposed into two parts (cf. Schouten, 1924, 851):

Γτµν = γτµν + ϕτµν (vi)

γτµν = −
{
µν
τ

}
ϕτµν = −gµσfτν

∂fσρ

∂xρ
(vii)

• The first γτµν are defined as the negative of the Christoffel symbols of the second kind,
which are functions of the gµν and their first-order partial derivatives.
• The definition of the ϕτµν (which Reichenbach does not explain further) seems to be
obtained from the right side of four-dimensional Lorentz force law Kτ = −fτν iν , in
which Maxwell equations with sources (∂f

σρ

∂xρ
= iσ) substitute the four-current. The

term gµσ is added to lower the indices gµσiσ = iµ. The direct product of two tensors
(multiplying components from the two tensors together, pair by pair) increases the
rank of the tensor by the sum of the ranks of each tensor,17 keeping the character of the
indices. Thus Reichenbach obtains ϕτµν = −fτν iµ, that is, a skew-symmetric three-rank
tensor with which to lower the indices.

Without pointing it out explicitly, Reichenbach exploits the fact that the difference of two
displacements transforms like a mixed tensor of third rank (Eddington, 1921, 109; eq. 4.6).
In particular a non-symmetric displacement is always the sum of a symmetric displacement
and a skew symmetric tensor. Thus, Reichenbach seems to have obtained the hoped-for
result in a formally correct way: Γτµν is the sum of the usual Christoffel symbols, which
in turn depend on the gravitational field gµν , and a tensorial part, which depends on the
electromagnetic field fµν .

3. The reason for the definitions (vii) immediately becomes apparent (HR, 025-05-10, 6–7).
Using (vii), Reichenbach can rewrite (i) so that the force term is, so to speak, absorbed
into a suitably defined Γτµν :

duτ

ds
= Γτµνuµuν (viii)

According to (vi), this equation is equivalent to the following:

duτ

ds
= γτµνu

µuν + ϕτµνu
µuν (ix)

Because of (vii), the three-index symbol γτµν is defined as the Christoffel symbols of the second
kind; thus the first summand of (ix) is simply the right-hand side of the general relativistic

17A vector is of course a tensor of first rank.

9



geodesic equation. To see the trick behind Reichenbach’s less than obvious definition of the
tensor ϕτµν , a little more effort is needed. Plugging this definition into eq. (ix), the second
summand becomes −gµσfτν

∂fσρ

∂xρ
uµuν . Keeping in mind Maxwell’s equations with sources

(where iσ = ρuσ), one obtains −gµσfτν ρuσuµuν . According to (ii), gµσuµuσ = 1, thus the
expression reduces to −fτν iν . The final result is the following:

duτ

ds
= −

{
µν
τ

}
uµuν − fτν iν (x)

This is of course nothing but eq. (i), from which we started. By defining the displacement
space Γτµν in a suitable way (via (vi) and (vii)), Reichenbach was able to dress this well-
known equation’s physical content in the more appealing geometrical garb of eq. (viii).

Just like eq. (i) in general relativity, eq. (viii) in Reichenbach’s theory describes the motion
of test particles under the influence of the combined gravitational and electromagnetic fields.
However, now the difference in the behavior of charged and uncharged particles can be expressed
in terms of geometrical differences within Reichenbach’s non-Riemannian space-time. The velocity-
vectors of charged particles of unit mass are parallel transported along the straightest lines defined
by Γτµν . When the charge of these particles is zero (i.e., when the tensorial component of ϕτµν
vanishes) the straightest lines coincide with the shortest one.

In this way Reichenbach believed himself to have achieved the sought-for geometrization of
the Einstein-Maxwell theory. Gravitation gµν and the electromagnetic field fµν are components
of the geometrical field Gµν . Physically, the metric gµν is defined via the behavior of rods and
clocks in which the gravitational field manifests itself. The displacement space Γτµν , which has
been defined as a function of gµν and fµν , finds its physical counterparts in the velocity vectors
of particles of unit mass and arbitrary charge, which are indicators of the electromagnetic field.

3. Einstein’s Comments on Reichenbach’s Note

Einstein must have immediately read or at least glanced at Reichenbach’s attempt at providing
a unified field theory, and he replied a few days later on March 31, 26. His initial reaction to the
theory was not very encouraging:

You’ve run over to the theoretical physicists and moreover at a bad spot. Of course I
immediately found some flies in the ointment. First of all, your approach ϕτµν = −gµσfτν ∂f

σρ

∂xρ

is really arbitrary. Second, no metric should belong to your Γτµν . It is unnatural to ascribe
a metric to the summand γ of Γ. Your equations of motion do not have any physical
meaning, since they describe the behavior of matter only for a value of the relationships
between electrical and ponderable density. Finally, your theory does not connect electricity
and gravitation, since there are no mathematically unified field equations that provide the
field law for gravitation and electromagnetism simultaneously; it does not even provide a
connection between electricity and gravitation in the sense that one could infer from the
theory which electromagnetic quantities produce the gravitational field. I would not publish
it; otherwise, what happened to me will happen to you: you’ll have to disown your children
(Einstein to Reichenbach, Mar. 31, 1926; AEA, 20-116).

Einstein deconstructs Reichenbach’s theory piece by piece. (1) The definition (vii) of the ϕτµν
does not seem to have any physical motivation. (2) A Riemannian metric determines an affine
connection; however, in general this is not true the other way around (cf. e.g., Einstein, 1923c, 9).
If Reichenbach started from a general displacement space Γτµν and defined it via parallel transport
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independently from the metric gµν , then he should not have reintroduced the gµν surreptitiously
by defining the γτµν as the negative of the Christoffel symbols of the second kind (which are
expressed in terms of the gµν) (see eq. iii).18 (3) Reichenbach’s equations of motion can be valid
only for a certain charge-density-to-mass-density ratio ρ/µ (or, in the case of particles, a certain
charge-to-mass ratio e/m). In a given displacement, there is only one straightest line passing
through a point in a given direction, but different test particles with different charge-to-mass ratios
accelerate differently in the same electric field. Thus they cannot all travel on the same straightest
line (see below in section 4.2). After all, this is the precise difference between gravitational and
non-gravitational forces. Finally, (4) in the note, the gµν and fµν are governed respectively by
the well-known Einstein and Maxwell equations; thus the theory not only fails to yield a single
set of field equations governing both the gravitational and electromagnetic fields, but it does not
even bother to supplement the gravitational field equations with electromagnetic terms so that
they contain the gravitational effect of the electromagnetic field. That is, the theory does not
even yield a geometrization of the Einstein-Maxwell theory.

Reichenbach replied by return post on April 4, 1926. There are two aspects to his response,
which we will deal with separately for the sake of clarity. First, Reichenbach replied to Einstein’s
technical objections:

1) The approach for the ϕτµν is not only arbitrary (willkürlich), but even artificial (künstlich);
but why is one not allowed [to do something like this]? Here, from a purely logical point
of view, one can define what one wants; one can define the [ϕτµν ] in such a way that [the
definition] agrees with already known law of motion of charged particles 2) you say that no
metric should pertain to my Γτµν ; however, it is exactly the opposite. Eddington assumes the
field Γτµν as primary and deduces from it the field Gµν , which he splits into a symmetrical
and antisymmetrical part. One can also assume a field Gµν as primary and derive from it a
field Γτµν ; this is logically equivalent 3) My law of motion is not valid only for a certain ratio
of charge and mass, but for arbitrary charge and mass = 1. However from the point of view
of the geometrical visualization this disadvantage is no worse than the fact that not every
measuring rod defines the ds, but only the one of length 1 (Reichenbach to Einstein, Apr. 4,
1926; AEA, 20-086).

Concerning 1), the awkward definition of one of the summands of the ϕτµν in eq. (vii), Re-
ichenbach did not hide that his theory was an operation of ‘reverse engineering’; and for this
reason anything goes, even a cheap trick like the one he used in the note. Objection 2), for
Reichenbach, was the consequence of Einstein’s hasty reading. Reichenbach did not start from
the displacement and then define the tensor Gµν in terms of the latter, as Eddington did, but the
other way around. Thus the metric was not obtained as a by-product, but was introduced from
the beginning. To make his point, Reichenbach explains to Einstein the geometrical structure he
resorted to, a metrical space, in which the symmetry of the lower indices of the Γτµν is dropped.
In Riemannian space the operation of displacement delivers the same comparison of length as

the metric. From this the “Riemannian values
{
µν
τ

}
of the Γτµν ” follow, if one assumes that the

latter are symmetric in the lower indexes µ and ν. If one drops this assumption, then “one has
at one’s disposal a somewhat more general Γτµν ” (Reichenbach to Einstein, Apr. 4, 1926; AEA,

18Einstein’s insistence on this point probably should be understood against the background of his own recent
attempts at a unified field theory. In his reformulation of Eddington’s theory, Einstein, in contrast to Eddington,
constructed a Lagrangian density H depending only on a connection and its first derivatives, and considered the
variation δ{

∫
H = 0} only with respect to the connection (Einstein, 1923e, 34). As we have seen, in his last theory

he assumed that the variation of the affine connection and the metric are independent of one another (Einstein,
1925b).
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20-086). One can then define the operation of displacement so that charged mass-points move on
auto-parallel lines, which in general do not coincide with lines of extremal length: “in this way
one obtains a full geometrical visualization of the law of motion” (Reichenbach to Einstein, Apr.
4, 1926; AEA, 20-086).19 Thus Reichenbach also makes it clear that he was not concerned with
finding the field equations, as Einstein seems to have implied; he was only trying to reinterpret
the equations of motion geometrically. Replying to objection 3) Reichenbach insists that these
equations are valid for the motion of a body with unit mass and arbitrary charge. If one rewrites
the tensorial part of the displacement as ϕτµν = −ρfτν uµ, one sees that the charge density ρ
(but not the mass density µ) appears as a parameter. Setting µ = 1, Reichenbach argues, is no
worse than setting ds = 1.20 So Reichenbach seems to have interpreted Einstein’s objection as
a misunderstanding. However, the validity of Reichenbach’s equations of motion for arbitrary
charge might have been precisely the severe flaw that Einstein envisaged in his approach, as
Reichenbach himself possibly realized later (see below section 4.1 and section 4.2).21

The second aspect of Reichenbach’s defense is even more important for properly understanding
his philosophical goals. Einstein misunderstood the spirit of the typescript. Reichenbach makes
clear that the physicists should in no way think that he had some “secret physical intention”
(Reichenbach to Einstein, Apr. 4, 1926; AEA, 20-086). Thus, Reichenbach recounted to Einstein
why he decided to write the note. He was working on a philosophical presentation of the problem
of space (see below in section 4.2), and of course he felt compelled to add a chapter about ‘Weyl
space’, or more generally about attempts to ‘geometrize’ the electromagnetic field by using some
generalization of Riemannian geometry: “Thereby I wondered what the geometrical presentation
of electricity actually means” (Reichenbach to Einstein, Apr. 4, 1926; AEA, 20-086).

Reichenbach concluded that such alleged geometrizations were actually only ‘graphical rep-
resentations’ (graphische Darstellungen)—an expression he clearly borrowed from Eddington
(1925a, 294ff.).22 They were comparable to the account of the “Lorentz transformations as rota-
tions in Minkowski space” (Reichenbach to Einstein, Apr. 4, 1926; AEA, 20-086), which is only a
formal analogy. To prove his point, Reichenbach decided to construct an Abbildung or mapping of
the Einstein-Maxwell theory onto a non-Riemannian space, “without any change of its physical
content” (Reichenbach to Einstein, Apr. 4, 1926; AEA, 20-086; my emphasis).

Reichenbach was even more ambitious. He aimed to present a geometrical transcription
(Umschreibung) that was in some respects better than the one provided by Weyl and his successors,
including Einstein. Reichenbach’s geometrical interpretation, he insisted, had “the advantage over
other geometrical representations in that the operation of displacement possesses a physical
realization [Realisierung]” (Reichenbach to Einstein, Apr. 4, 1926; AEA, 20-086; my emphasis),
namely, the velocity-vector of charged mass particles of unit mass. In Eddington’s parlance23 it
is a ‘natural geometry’.

This point is essential to Reichenbach’s argument. It was precisely because his toy-geometrization

19As Dennis Lehmkuhl pointed out to me, it is curious that neither Reichenbach nor Einstein ever mention
Theodor Kaluza’s theory, in which (under certain conditions) such a geometric visualization seems to have been
already achieved: both charged and uncharged particles move on geodesics of R5 (Kaluza, 1921, 970). Einstein
(possibly influenced by Klein, 1926) showed renewed interest in the theory in the following months (Einstein,
1927b,c). Dennis is working on a paper on this topic.

20See below footnote 35.
21I thank Dennis Lehmkuhl for a discussion on this point.
22For Reichenbach’s use of this term see below footnote section 4.2. For Eddington, ‘graphical representations’ are

geometrical visualizations of physical quantities, e.g., pressure-volume diagrams of an ideal gas, which, however, do
not make any hypothesis as to the ultimate nature of the quantities represented. In Eddington’s view, Weyl’s non-
Riemannian geometry is not the real geometry of space-time as Weyl claimed, but merely a ‘graphical representation’.
The ‘natural geometry’ is the geometry of rods and clocks, which is exactly Riemannian (Eddington, 1925a, 296).

23See previous footnote.

12



was not envied by its more titled competitors that Reichenbach believed himself to be in an ex-
cellent position to “attack the view that with a geometrical presentation of electricity, one would
already gain something” (Reichenbach to Einstein, Apr. 4, 1926; AEA, 20-086). For such a geo-
metrical interpretation of electromagnetism to become a physical theory as successful as general
relativity, more was required than a mere geometrization. It called for something new:

If one succeeds in establishing unified field equations that admit the electron as a solution,
this would be something new. To this end one should do something more than establish a
simple formal pooling [Zusammenfassung] of the Maxwell eq. and the gravitational equations;
these eq. should be changed in their content. This is the problem on which you are working
and of course also what Weyl and Eddington meant. But the geometrical representation of
electricity in itself does not lead to this goal. It can at most be an aid [Hilfsmittel] to guessing
the right equations; maybe what looks most simple from the standpoint of Weyl geometry,
also happens to be correct. But this would be only a coincidence. [. . .] Inasmuch, however, as
the present theories do not provide the electron as a solution, they also provide nothing more
than a simple transcription [Umschreibung] of the old Th. of Rel (Reichenbach to Einstein,
Apr. 4, 1926; AEA, 20-086; my emphasis).

Thus, Reichenbach argued that the geometrical interpretation of a physical field can only be
successful if it leads to a ‘change’ in the equations and does not simply rewrite in geometrical terms
the equations that are already known. One could object that Weyl, Eddington and Einstein’s
theories also changed the equations and did not simply rewrite them. However, Reichenbach
seems to consider the derivability of solutions that correspond to the electron as a litmus test
for a real change in the field equations. Maxwell’s field equations are valid in free space and
cannot explain why the separate, equally charged parts do not fly apart without introducing a
non-electromagnetic cohesion force (the so-called Poincaré stress). On the other hand, Einstein’s
field equations, in their original form, do not entail any effect of gravitation on charge and cannot
provide the cohesion force. It is only by changing the currently available field equations that
it would become possible to establish a connection between gµν and fµν , thereby assuring the
equilibrium of the electron.

To fully understand Reichenbach’s stance on this issue, one must keep in mind that in a paper
published in April (Reichenbach, 1926b) he expressed strong skepticism about the possibility of
solving the problem of the ‘grainy’ structure of matter and and most all of the “proper quantum-
riddle” (Reichenbach, 1926b, 424) in a field-theoretical/geometrical context. In Reichenbach’s view,
the “casuality [Zufälligkeit]” (Reichenbach, 1926b, 424) of the ‘quantum jumps’ (the transition
between orbital energy levels in Bohr’s atom) suggests that the problem should be tackled from a
different angle, by considering whether the very notion of causality in physics should be replaced
by that of probability (Reichenbach, 1926b, 424). After all, one should appreciate Reichenbach’s
clairvoyance, considering that Max Born’s paper (Born, 1926) on the statistical interpretation of
the wave function appeared only in June.24

Reichenbach offered to send Einstein the corresponding epistemological sections of the text on
which he was working (possibly §50 of the Appendix). In a letter from April 8, 1926 Einstein did
not comment on this offer, but his reaction to Reichenbach took a different tone. Even if Einstein
did not reply to Reichenbach’s more technical remarks, Reichenbach’s philosophical point clearly
resonated with him:

You are completely right. It is incorrect to believe that ‘geometrization’ means something
essential. It is instead a mnemonic device [Eselsbrücke] to find numerical laws. If one combines

24For Reichenbach’s take on the emerging quantum mechanics at this time, see the posthumously published
manuscript, Reichenbach, 1926a.
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geometrical representations [Vorstellungen] with a theory, it is an inessential, private issue.
What is essential in Weyl is that he subjected the formulas, beyond the invariance with
respect to [coordinate] transformation, to a new condition (‘gauge invariance’).25 However,
this advantage is neutralized again, since one has to go to equations of the 4. order,26which
means a significant increase of arbitrariness (Reichenbach to Einstein, Apr. 8, 1926; AEA,
20-117).

Recently the importance of this letter has been emphasized in Einstein scholarship (Lehmkuhl,
2014). It is the first instance where Einstein explicitly claims that general relativity did not
geometrize gravitation, thus suggesting a very different interpretation of the achievement of
the theory than what we are used to. The geometrization was only a means to the end of
finding the field equations, which are ‘numerical laws’. It is worth noticing that Einstein goes
further in claiming that even Weyl’s theory should not be seen as an attempt to ‘geometrize’
the electromagnetic field. The core of Weyl’s theory consists in the formal requirement of ‘gauge
invariance’, which, however, led to equations where the choice of the Lagrangian becomes non-
unique. For our purposes it is interesting that Einstein not only endorsed Reichenbach’s claim
that a ‘geometrization’ is not an essential achievement of general relativity, but also questioned
the meaning of the notion of ‘geometrization’, and for that matter the very notion of ‘geometry’
(Lehmkuhl, 2014). This latter step was not taken by Reichenbach, who preferred to speak of general
relativity as a ‘geometrical interpretation of the gravitational field’, albeit not a ‘geometrization’
of the latter.

4. From the Unpublished Note to the Appendix of Philosophie der Raum-Zeit-Lehre

4.1. The Stuttgart Talk
Reassured by Einstein’s endorsement, in the ensuing weeks Reichenbach must have continued

to work on the note. Corrections made by hand suggest that he probably added some remarks at
the bottom of p. 7 which later were included in an entirely new part III that extended through
pp. 8–10. Reichenbach apparently believed himself to have refuted most of Einstein’s objections,
since no corrections were made to the first two parts of the note. However, he may have realized
that the claim in his theory that unit mass particles of arbitrary charge travel on the privileged
paths of Γτµν was less straightforward than he initially thought. Reichenbach now acknowledged
that this point “requires a further clarification” (HR, 025-05-10, 7).27

As we have seen, Reichenbach had defined the Γτµν as the sum of the Christoffel symbols
γτµν and the tensorial correction ϕτµν , which depends on the divergence of the electromagnetic
field strengths ∂fρσ

∂xρ
(see def. vii). Reichenbach explains that in a region of space-time free of

charge, where ∂fρσ
∂xρ

vanishes, the tensorial component of the connection vanishes as well ϕτµν = 0.
The displacement becomes identical to the Riemannian displacement Γτµν = γτµν ; the parallel
transport of the velocity-vector of uncharged mass points describes a geodesic, a line that is the
shortest and straightest at the same time. If the divergence ∂fρσ

∂xρ
for the entire electrical field

6= 0 (that is = iν), then the tensorial contribution ϕτµν to the connection appears; and with it

25That is, invariance by the substitution of gik with λgik where λ is an arbitrary smooth function of position
(cf. Weyl, 1918b, 468). Weyl introduced the expression ‘gauge invariance’ (Eichinvarianz) in Weyl, 1919a, 114.

26Cf. Weyl, 1918b, 477. Einstein regarded this as one of the major shortcomings of Weyl’s theory; see Einstein
to Besso, Aug. 20, 1918; CPAE, Vol. 8b, Doc. 604, Einstein to Hilbert, Jun. 9, 1919; CPAE, Vol. 9, Doc. 58.

27This reconstruction is merely conjectural. This ‘further clarification’ is strangely never mentioned in the
correspondence with Einstein. Thus I surmise that Reichenbach added it when he realized that his claim that
charge particles of arbitrary charge all travel on privileged paths was problematic as Einstein had pointed out.
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Reichenbach’s non-Riemannian Γτµν ; the velocity-vector of charged unit mass points is parallel
transported along the straightest lines, whereas uncharged mass points move along the shortest
lines (HR, 025-05-10, 7).

Reichenbach must have found it somewhat unsatisfying that the Γτµν-field depends not only
on the electromagnetic field, but also on the charge of the test particles. At the bottom of p. 7
he squeezed in a footnote reassuring his readers that this “is not something like a blemish but
an essential trait” (HR, 025-05-10, 7; footnote) of every theory attempting to ‘geometrize’ the
effect of the electromagnetic field on its probes.28: “[a] charged mass point produces [. . .] its
own transfer geometry [Verpflanzungsgeometrie] depending on the strength of its charge” (HR,
025-05-10, 7–8).

It was probably at a later stage that Reichenbach decided to transform these additional
remarks into a new part III of the note. A loose leaf with the handwritten indication Einlage zu
S. 7 (insertion to p. 7) contains a few introductory lines that were supposed to be inserted before
the passages just mentioned. The reassuring footnote at the bottom of p. 7 was crossed-out and
its content moved into the main text. In the subsequent lines, Reichenbach added some further
remarks to persuade those who still may have been perplexed. There is ultimately nothing wrong
in assuming that, in addition to the ‘space-field’ (Raumfeld) fµν (the geometrized electromagnetic
field as the second components of Gµν), the presence of a charged test particle produces ‘an extra-
field’ Γτµν (Zusatzfeld) which, via the tensorial term ϕτµν = −fτµ iν , also depends on ρ.29 However,
beneath his self-assured facade, Reichenbach might have sensed that the status of this extra
displacement field was rather unclear. Thus, he was keen to let us know that, for test particles,
the contribution of ρ to the tensorial part of the displacement is after all negligible with respect
to the contribution of fτν (HR, 025-05-10, 8).

Despite having to engage in considerable hand waving, Reichenbach did not seem to lose
confidence in his theory. After making some remarks about the geometrical meaning of non-
symmetric displacements30—which took the place of a shorter crossed-out paragraph on p. 5—
he concluded the new part III by proudly proclaiming that his theory had achieved a prototypical
geometrization of the Einstein-Maxwell theory. Other geometrizations, he claimed, can differ “in
their physical content,” but not in their “logical structure” (HR, 025-05-10, 10). To avoid the
misunderstandings that had emerged in his correspondence with Einstein, Reichenbach makes
clear that even by deriving the field equations of the combined gravitational-electromagnetic field
from an action principle, this would only be “progress in the mathematical formulation,” and not
something new physically.

To achieve the latter goal a further step is needed: “The unification of gravitation and electric-
ity,” Reichenbach writes, “can only have a formal character inasmuch as the concept of matter in
the theory of gravitation is conceived only phenomenologically” (HR, 025-05-10, 10). In general
relativity matter is ‘black-boxed’ in the matter tensor and treated as a continuum; matter, how-
ever, is known to be built of electrically charged particles. According to Reichenbach, unification
of the gravitational and electromagnetic fields can have a real physical meaning only if it deliv-
ers “an electrical theory of matter” (HR, 025-05-10, 10), which would account not only for the
existence of elementary particles with a certain mass and charge (electrons and hydrogen nuclei),

28As we shall see, this is indeed an essential trait of all attempts to impose a geodesic equation on electromag-
netism in a four-dimensional setting (see below footnote 44), but it can hardly be said that it is not a blemish.

29Recall that iν = ρuτ .
30A symmetric displacement is characterized by the existence of infinitesimal parallelograms HR, 025-05-10, 9-10:

If four neighboring infinitesimal vectors are parallel in pairs and equally long in the sense of the displacement, they
will form a quadrilateral (cf. note # added to p. 9). This assumption is in general not true for a non-symmetric
displacement.
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but also for their quantum behavior (the electrons’ privileged orbits around the nucleus and the
discontinuous transitions from one state to another).31

On May 26, 1926 Reichenbach might have possibly have presented this improved version of the
note in Stuttgart at the Gauvereinstagung of the Deutsche Physikalische Gesellschaft (the regional
meeting of the German Physical Society). The abstract of this presentation was published under
the title “Die Weylsche Erweiterung des Riemannschen Raumes und die geometrische Deutung
der Elektrizität” (Reichenbach, 1926c). It is worth quoting at length, since it constitutes a good
summary of what Reichenbach’s theory looked like after his correspondence with Einstein:

The meaning of Weyl’s extension of the type of space is formulated such that Weyl recognized
the independence of the operation of displacement and of the metric. The application of the
extended type of space to physics is however characterized by a certain arbitrariness because
it remains open to finding certain objects that behave like the operation of displacement. It
is shown that these objects are the velocity vectors of electrically charged mass points. With
the aid of this coordination, it is possible to interpret gravitational and electrical phenomena
as expressions of the geometry of a Weylean space, so that electricity finds a geometrical
interpretation in the same sense as gravitation. The remarkable thing here, however, is that
this presentation does not change the content of Einstein’s theory of gravitation at all; the
geometrical interpretation is only a different parlance, which does not entail anything new
physically. Of course this geometrical interpretation of electricity cannot solve the problem
of the electron, because it cannot achieve anything more than Einstein’s theory. The goal
of this investigation was only to show the limit of a geometrical interpretation as such. A
detailed publication will appear elsewhere (Reichenbach, 1926c, 25; my emphasis).

However, this abstract registers an aspect not mentioned in either the correspondence with
Einstein or in the note. Reichenbach revealed that what he wanted to achieve was a geometrical
interpretation of a physical field ‘in the same sense as gravitation’ in Einstein’s theory, i.e.,
one that was just as good as that attained by general relativity. The geometrical operation of
displacement has a physical interpretation in Reichenbach’s toy-theory, just like the ds does in
general relativity Thus, Reichenbach claims to have provided not just a successful ‘geometrical
interpretation’ of the electromagnetic field, but an interpretation that was of the same ‘quality’
as the one general relativity provided for the gravitational field. However, this was Reichenbach’s
point: the theory was not a successful physical theory like general relativity. Thus, he concluded,
providing a geometrical interpretation of a physical field is not in itself a physical achievement.

4.2. The Appendix and its §49
At the end of the abstract, Reichenbach mentioned that a more detailed version of his pre-

sentation was in preparation. He was clearly referring to a larger project he was involved with at
that time. In December 1926 Reichenbach wrote to Schlick that he was working on a two-volume
book bearing the title ‘Philosophie der exakten Naturerkenntnis’. “The first volume that deals
with space and time,” he wrote, “is finished” (Reichenbach to Schlick, Dec. 6, 1926; SN). Reichen-
bach wanted to publish it in the forthcoming Springer series, ‘Schriften zur wissenschaftlichen
Weltauffassung’, directed by Schlick and Frank. The next July Reichenbach wrote to Schlick that
he had a publication agreement with De Gruyter (Reichenbach to Schlick, Jul. 2, 1927; SN). The
Vorwort of Philosophie der Raum-Zeit-Lehre is dated October 1927.

The Appendix of the book is long 45 pages. It was constructed around the note that Reichen-
bach sent to Einstein in March 1926 (cf. section 1). In particular, §49 is a redrafted seven-page
long version of the first two parts of the note. As pointed out on p. 358, n. 1, the content of §49

31Cf. Einstein, 1923b for a description of this field-theoretical program.
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was presented as a talk in Stuttgart, together with an abstract summarizing the whole Appendix.
Reichenbach added §§46–48 (27 pages) to describe in detail the geometrical setting of the theory
that he had previously only sketched. §50 (10 pages) draws the epistemological consequences. I
do not want to give a detailed presentation of the Appendix here, which would require a separate
paper (see Coffa, 1979, for more details).32 I will concentrate mainly on the differences between
the note and §49.

At first glance, nothing much seems to have been changed also in this final version. Reichenbach
remained confident that Einstein’s objections had been answered. The definitions of the two
summands of the connection ϕτµν and γτµν are not modified, despite Einstein’s criticisms; no
attempt is made either to derive the field equations governing both fields from a variational
principle, or, more simply, to indicate how the electromagnetic field contributes to the gravitational
field. There is, however, a part of §49 that has been heavily modified with respect to the note.
Interestingly, it again concerns the interpretation of the equations of motion.

Reichenbach possibly came to realize that Einstein had seized on the weak spot of his ge-
ometrization here: since the charge-to-mass ratio e/m varies from particle to particle, the trajec-
tories of charged particles in an electromagnetic field cannot be construed as moving along the
privileged paths of any single connection (cf. Friedman, 1983, 197). Thus, Reichenbach was forced
to paper over the cracks.

(a) As he did in the note, Reichenbach concedes that if his equations of motion are supposed
to be valid for unit mass particles of arbitrary charge, then unit mass particles of the
same charge “will engender [their] own displacement geometry” (Reichenbach, 1928, 362;
tr. HR, 041-2101, 506) (depending on the strength of their charge), and will run along their
‘own’ straightest lines defined by it (cf. Reichenbach, 1928, 363; tr. HR, 041-2101, 508).
However, in §49, the tone is quite different. Reichenbach now recognizes that this solution
is “questionable” (Reichenbach, 1928, 363; tr. HR, 041-2101, 508), since the existence of
a field should not depend on the properties of its probes. Reichenbach is forced to admit
explicitly that, in contrast to the field Gµν (and its two components gµν and fµν), the
displacement space Γτµν does not exist in itself as a property of space-time, but also depends
on the properties of the test particles, that is, on their charge ρ. The tensorial part of the
connection can be rewritten as ϕτµν = −ρfτν uµ to make this more transparent.33 Since the
Γτµν-field does not have independent existence, Reichenbach admits that one can doubt that
a geometrization has been achieved at all. Clutching at straws, Reichenbach tries to suggest
that the ambiguous status of the Γτµν-field should be seen as an argument in favor of “Weyl’s
conception or perseverance,” which would acquire a “deeper significance” (Reichenbach,
1928, 362; tr. HR, 041-2101, 406): the paths of charged particles are a ‘line of preservation’

32I will limit myself to a terminological clarification. As we have seen, Reichenbach attributes to Weyl the merit
of having discovered that the ‘displacement space’ (the affine connection) can be defined (via the operation of the
parallel transport of vectors) independently from the metric. He refers us to “Gravitation und Elektrizität” (Weyl,
1918a) and to § 34 of the third edition of Raum, Zeit, Materie (Weyl, 1919b). Reichenbach, however, adopted
the more general view introduced by Eddington (1921), in which the displacement does not even allow for the
comparison of length at the same place; Eddington restricted his approach to a symmetric displacement in order to
avoid what he called an ‘infinitely crinkled’ world (Eddington, 1921, 107). Reichenbach, however, abandoned this
restriction following Schouten (1922a,b). Thus, what Reichenbach calls ‘Weyl’s extension of Riemann’s Concept of
Space’ should not be confused with what we usually call ‘Weyl geometry’. The latter is only a particular case of a
symmetric displacement where Kµν,σ = κσgµν . Reichenbach’s odd nomenclature, which is reflected in the title
of the Appendix, is probably one of the reasons the latter was read unilaterally in relationship to Weyl’s unified
field theory.

33Note that the charge density ρ (for an incoherent charge fluid or e for particles), but not the mass density µ
(or the mass m) appears as a parameter; hence Reichenbach’s insistence that his equations of motion are valid
only for unit masses.
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Beharrungslinien) and only uncharged particles ‘adapt’ to the Gµν-field.

(b) Reichenbach must have sensed that not everyone would buy into such an argument. Thus, in
order “to avoid this peculiarity of our formulation” (Reichenbach, 1928, 367; tr. HR, 041-2101,
506), he also suggested an alternative version of the theory which was not present in the note.
The tensorial part of the displacement is defined ϕτµν = −fτν uµ and now depends only on
the electromagnetic field (since ρ is set = 1). Reichenbach now sees an additional difficulty;
the displacement depends on the particle four-velocity uµ. Reichenbach, however, does not
realize that this is also true for the previous definition (the only difference is that ρ 6= 1).
Consequently, he treated the problem as a “mathematical complication” (Reichenbach, 1928,
363; tr. HR, 041-2101, 507) of the new definition, which, he claims, fortunately disappears
when the latter is plugged into the equation of motion (viii).34 However, the most worrying
issue was this: now Reichenbach had to swallow Einstein’s objection. The equations of
motion now apply only to unit mass particles of a certain unit charge (Reichenbach, 1928,
363f.; tr. HR, 041-2101, 508ff.). Under the influence of the electromagnetic field, a class of
charged particles with an arbitrarily chosen charge-to-mass ratio move on the straightest
lines and uncharged particles always move on the shortest lines. Since there are two ‘norms’
that one would naturally choose, the e/m of the positive and that of the negative electron,
there would only be two ‘natural’ geometries. Clutching at straws once again, Reichenbach
attempts to convince his readers that, for this reason, this version of the theory provides
an analogon of the equivalence principle. After all, in general relativity the ratio of the
gravitational-charge-to-mass ratio is also arbitrarily set = 1 (cf. Reichenbach, 1928, 366;
tr. HR, 041-2101, 513).

The limits of Reichenbach’s approach coincides with the limits of this latter analogy. The
electric-charge-to-mass ratio is not the same for all particles, as the gravitational-charge-to-mass
ratio is. Despite Reichenbach’s insistence, the theory precisely misses a good analogon of the
equivalence principle. Let’s drop Reichenbach’s curious restriction to unit masses to see this point
more clearly.35 In order to “construct a space which is independent of the indicator” (Reichenbach,
1928, 363; tr. HR, 041-2101, 508), that is, of mass and charge of the test particles, one is forced to
admit that only one class of particles with a certain charge-to-mass ratio (say, electrons) follows
the privileged paths defined by the same displacement. To allow for all charged particles with
whatever mass and charge to move on privileged paths, then a parameter k depending on the
charge-to-mass ratio should appear in the tensorial part of the displacement ϕτµν = −kfτν uµ (as
in Droz-Vincent, 1967). In this way, however, the displacement “does not exist independently”

34Given that duτ = dxτ
ds

, one can write (viii) as duτ = Γτµνuµdxν . Then, since uµuµ = 1, one gets: duτ ={
µν
τ

}
dxν − fτν dxν . The additional term (beyond the one entailing the Christoffel symbols) depends now only

on position and not on the velocity-vector (Cf. Reichenbach, 1928, 362-363; tr. HR, 041-2101, 507-508 for more
details). Actually, one can proceed in the very same way with the previous definition of the tensor ϕτµν , with the
only difference being that the charge density ρ 6= 1. However, in both cases if one switches back to eq. (viii) with
s as a scalar parameter of motion, the velocity vector reappears. Thus, I am not sure why Reichenbach believed
himself to have gotten rid of the velocity-dependent connection with this trick. On velocity-dependent connections,
see Vargas, 1991.

35The reason for this restriction is not completely clear to me. Reichenbach possibly wanted to avoid making
the displacement also depend on the mass of particles (particles with the same charge, but different mass, would
produce their own connection). He insists on several occasions (cf. Reichenbach to Einstein, Apr. 4, 1926; AEA,
20-086, cited above in section 3) that setting m = 1 amounts to nothing but the choice of a norm, which does
not differ with the choice of unit rods and clocks to norm the ds = 1. The analogy seems to me only partially
successful. The choice of the norm is of course arbitrary in both cases; however, in Reichenbach’s theory only
particles with m = 1 travel on geodesics, but of course not only intervals ds = 1 have length.
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(Reichenbach, 1928, 362; tr. HR, 041-2101, 506) from the internal degrees of freedom of the test
particles (cf. Cohn, 1972; Quale, 1972). Test particles with different charge-to-mass ratios would
follow privileged paths defined by different displacements, one for each value of the parameter
k. The situation becomes even more desperate if one keeps in mind that the displacement also
depends on the four-velocity of particles uµ.

Reichenbach’s theory clearly shows that, in a four-dimensional setting, using a geodesic equa-
tion to describe a non-universal force is possible, but the price one has to pay for it is extremely
high. Quite surprisingly,36 Reichenbach decided that the price was worth the message he in-
tended to convey, which evidently was close to his heart. In the last chapter of his Philosophie
der Raum-Zeit-Lehre (the one proceeding the Appendix), Reichenbach concedes that, since the
gravitational field is measured by the same measuring instruments as those used for geometry
(light rays, rods and clocks) general relativity has established a peculiar and previously unknown
connection between geometry and gravitation. However, Reichenbach says loud and clear how this
should be interpreted: “it is not the theory of gravitation that becomes geometry, but it is geometry
which becomes an expression of the gravitational field” (Reichenbach, 1928, 294; Reichenbach’s
emphasis; tr. 1958, 256).37 The long Appendix that follows was meant to add a powerful argument
to support this claim. The geometrical interpretation of gravitation is merely “the visual cloak”
(Reichenbach, 1928, 353f.; tr. HR, 041-2101, 493) in which the gravitational field can be dressed.
However, it would be a mistake to confuse “the cloak with the body it covers” (Reichenbach,
1928, 354; tr. HR, 041-2101, 493). The electromagnetic field can be dressed in an equally nice
geometrical cloak without reaching any significant result from a physical point of view.

The fact that the Appendix was not included in the widely-read English translation of Philoso-
phie der Raum-Zeit-Lehre is probably the main reason so little attention has been paid to this
issue. The Appendix is much more ‘technical’ than the rest of the book, which has a somewhat
semi-popular tone. However, Reichenbach reassures readers unable to manage the formal lan-
guage that the section “presents nothing new, philosophically speaking, but merely constitutes an

36The surprise derives from the fact that this attitude seems to be in open conflict with Reichenbach’s well-
known definition of gravitation as a ‘universal force’. As is pointed out in the first part of Reichenbach’s book,
one ‘geometrizes’ the gravitational field but not, say, the temperature field, because in the latter case we would
have different geometries for materials with different coefficients of heat expansion (see §6). Notice that when
Reichenbach claims that, in the second version of his theory, there are only two ‘natural geometries’, he explicitly
remarks that the situation is nevertheless better than the case of a temperature field (Reichenbach, 1928, 364;
tr. 1958, 513). However, he should have then concluded that, in the first version of his theory, there is a different
‘natural geometry’ for every charge-to-mass ratio. As we have seen, Reichenbach attempts to avoid this conclusion
by claiming that the displacement Γτµν , since it depends on the properties of test particles, does not really exist as
an independent geometrical field, and the real field is represented by the Gµν . As Reichenbach sensed, however,
one can hardly speak of a ‘geometrization’. Reichenbach, as we have seen, could avoid this conclusion only through
some philosophical hand-waving.

37To fully understand this point one must keep in mind that according to Reichenbach, in addition to the problem
of the measurement of physical geometry, which was introduced by Riemann, Helmholtz and Poincaré, Einstein
introduced the problem of a scientific explanation of physical geometry. Since the gravitational field affects all
measuring instruments in the same way, one may regard them as ‘free from deforming forces’; nevertheless one may
still consider the gravitational field as the cause of the fact that all measuring instruments happen to agree on the
same geometry. Reichenbach borrowed from Weyl the concept of ‘adjustment’ (Einstellung) (Reichenbach, 1928,
294; tr. 1958, 257), to emphasize that ‘causation’ here does not mean deviation from an alleged correct behavior
(e.g., the Euclidean one), but the surprising convergence toward a non-trivial one (which in the general case is
non-Euclidean). What is important in this context is the fact that in Reichenbach’s view, since the gravitational
field is the cause of the behavior of our geometrical measuring instruments, it exists independently from its
peculiar geometrical manifestation and cannot be reduced to it (cf. Reichenbach, 1928, 357; tr. HR, 041-2101, 491).
However one might judge Reichenbach’s notion of causation in this context, it must be emphasized that it does
not represent a minor aspect of his philosophy. Reichenbach uses the same Weylian term ‘adjustment’ to also refer
to special relativity (Reichenbach, 1924, 70–71). The whole issue would merit a separate paper.
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application of the epistemological principles developed earlier in this book” (Reichenbach, 1928,
331; tr. HR, 041-2101, 461). If one takes Reichenbach’s claim at face value, then the reading of
Philosophie der Raum-Zeit-Lehre with the inclusion of the Appendix is a valuable tool for under-
standing one of the main messages of the book, if not the main one. Reichenbach’s monograph
was not a plea for the ‘relativization of geometry’ induced by the gravitational field, but rather a
j’accuse against the rhetoric of the ‘geometrizaton’ of gravitation, which, in the 1920s, had spread
through popular and technical readings of the theory of general relativity (Reichenbach, 1928,
294; tr. 1958, 256). If there is something we can learn from general relativity, Reichenbach argues,
it is that abstract geometry has been lowered to physics, and certainly not that physics has been
absorbed into geometry.

Weyl, Eddington and Einstein had provided ‘graphical representations’38 of the electromag-
netic field in which they had intentionally forgone providing “‘tangible’ realizations” (Reichenbach,
1928, 371; tr. HR, 041-2101, 519) of the operation of displacement; the tacit assumption is that,
once the field has been cast in geometrical form, what looks “simple and natural” (Reichenbach,
1928, 370; tr. HR, 041-2101, 518) would lead to the correct field equations. This, however, would
be nothing more than a fortunate coincidence. In Reichenbach’s view the Appendix shows that,
with some effort, one can do better; one can construct a ‘proper geometrical interpretation’ of the
combined gravitational/electromagnetic field, providing a concrete interpretation of the operation
of displacement which allows a comparison of the theory with experience. Going even further,
by suggesting an analogon of the equivalence principle, Reichenbach believed himself to have
achieved a ‘geometrization’ of the electromagnetic field that was “no ‘worse’” (Reichenbach, 1928,
366; tr. HR, 041-2101, 512) than the one provided by general relativity. Nevertheless, in contrast
to general relativity, Reichenbach’s theory “tells us nothing about reality that we did not know
before” (Reichenbach, 1928, 368; tr. HR, 041-2101, 516). Thus ‘geometrizing’ a physical field does
not give us any privileged access to the physical world. Reichenbach does not hide his hopes
that this result would contribute to freeing physicists from the “Sirens’ song [Sirenenzauber] of
a unified field theory” (Reichenbach, 1928, 373; tr. HR, 041-2101, 521). The “many ruins along
this road,” Reichenbach argued, “urgently suggest that solutions should be sought in an entirely
different direction” (Reichenbach, 1928, 373; tr. HR, 041-2101, 521).

38As we have mentioned, Reichenbach borrowed the expression from Eddington (1925b, 312). Cf. Reichenbach,
1928, 365; tr. HR, 041-2101, 510. However, in § 15 of Philosophie der Raum-Zeit-Lehre, he attempts a more general
and formal definition: ‘graphical representations’ are structural analogies between different physical systems (e.g.,
compressed gases, electrical phenomena, mechanical forces, rigid bodies and light rays etc.) which are realizations
of the same conceptual system (e.g., the axioms of Euclidean geometry). In this context this means roughly the
following. In Weyl’s theory the vector field ϕi determines the change of length of vectors; the curl of ϕi is the
length-curvature tensor fik (Weyl tensor). The fik satisfy the identity ∂fkl

∂xi
+ ∂fli

∂xk
+ ∂fik

∂xl
= 0. This formula

looks a lot like Maxwell-Minkowski equations in empty space. Thus it was very suggestive to interpret ϕi as the
electromagnetic four-potential and its curl fik as the electromagnetic tensor. This conclusion is based only on
a structural analogy, that is, it is only a ‘graphical representation’. When Weyl attempted to give a concrete
physical meaning to ϕi in terms of the behavior of clocks which measure the length of a time-like vector ds, the
theory turned out to be empirically inadequate: atomic clocks do not change their periods as a function of their
space-time path (cf. Einstein, 1918a). On the contrary, in Reichenbach’s view, general relativity is not simply a
graphical representation, but a natural geometry, or ‘proper geometrical interpretation’ in Reichenbach’s parlance;
it contains assertions about the system of rods and clocks themselves—measuring the line element ds (and thus
the gik)—and not about its structural equivalence with other physical systems (Reichenbach, 1928, 365f.; tr. HR,
041-2101, 511). At that time there was confidence that the prediction of the theory concerning atomic clocks would
turn out to be correct.
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5. Reichenbach and Einstein’s Distant Parallelism Field Theory

It is of course highly significant that the critique of the geometrization program—which has
been neglected by most recent readers of Reichenbach’s monograph—is precisely the one that
attracted Einstein’s attention. On December 1, 1927 Reichenbach wrote to Einstein that he knew
from Paul Hinneberg, the editor of the Deutsche Literaturzeitung, that Einstein intended to write
a review of his forthcoming book. Reichenbach sent him the drafts of the book and also added
that he would send the Appendix some days later, since it was still being typeset (Einstein to
Reichenbach, Dec. 1, 1927; AEA, 20-090). Einstein’s review appeared in the first 1928 issue of
Hinneberg’s weekly magazine (Einstein, 1928c). It is interesting to note that the only point where
Einstein expressed agreement with Reichenbach’s approach concerned the Appendix: “In the
Appendix the foundation of the Weyl-Eddington theory is treated in a clear way and in particular
the delicate question of the coordination of these theories to reality” (Einstein, 1928c, 20; my
emphasis). He then went further: “In this chapter just like in the preceding—in my opinion quite
rightly—it is argued that the claim that general relativity is an attempt to reduce physics to
geometry is unfounded” (Einstein, 1928c, 20; my emphasis). Einstein mentions Reichenbach’s
treatment of the ‘delicate question’ of the ‘coordination’ (Zurodnung) of the theory to reality;
however he only explicitly agrees with Reichenbach’s stance on the problem of ‘geometrization’.

Indeed, one can find this attitude mirrored in the review of Émile Meyerson’s book on relativity
(Meyerson, 1925), which Einstein published in the same year (Einstein, 1928a). Meyerson regarded
relativity as a stage in a long process of the progressive geometrization of physics, which had
started with Descartes. Einstein of course disagreed; he regarded the ‘unification’ of inertia and
gravity as the major achievements of general relativity; a unified field theory should further
unify gravitational and electromagnetic fields rather than ‘geometrize’ the latter (Lehmkuhl,
2014). According to Einstein, “the term ‘geometrical’ used in this context is entirely devoid
of meaning” (Einstein, 1928a, 165; my emphasis): we do not regard the Hertz-Heaviside field
equations as a ‘geometrization’ of the electromagnetic field because of the geometrical concept
of vector that occurs in these equations. On the contrary, Einstein fully endorsed Meyerson’s
rationalist epistemology, that is, Meyerson’s attitude about how the theory is “coordinated with
[zugeordnet] the objects of experience” (Einstein, 1928a, 162). Einstein found in Meyerson’s work
an emphasis on ‘the deductive-constructive character’ of relativity theory, which fit his pursuit
for a unified field theory.

Thus the apparent agreement between Reichenbach and Einstein on the geometrization issue
actually hides a somewhat complicated dialectic. For Einstein, the very idea of a geometrical
interpretation of a physical field was meaningless, and what he wanted to achieve was a unification
of two different fields. On the contrary, Reichenbach regarded the geometrical interpretation of
a physical field as a meaningful enterprise, which, however, offered no guarantee of physical
unification. Moreover according to Reichenbach a good geometrical interpretation implies a
‘Zurordnung’ between the fundamental geometrical structures of the theory and the behavior
of suitably chosen probes; on the contrary Einstein had come to realize that this operationalist
approach was not only unnecessary, but a detriment to very project of a unified field theory. This
dialectic emerges more clearly in Reichenbach’s discussion of Einstein’s new attempt to develop
a unified field theory.

In spring 1928, during a period of rest after a circulatory collapse, Einstein, as he wrote to
Besso, “laid a wonderful egg in the area of general relativity” (AEA, 40-69). On June 7, 1928 he
presented a note to the Prussian Academy on a ‘Riemannian Geometry, Maintaining the Concept
of Distant Parallelism’ (Einstein, 1928d), a flat space-time that is nonetheless non-Euclidean since
the connection is non-symmetrical. On June 14, 1928 he submitted a second paper in which the
field equations are derived from a variational principle (Einstein, 1928b). Reichenbach wrote to
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Einstein with some comments on the theory on October 17, 1928:

Dear Herr Einstein,
I did some serious thinking on your work on the field theory and I found that the geomet-
rical construction can be presented better in a different form. I send you the ms. enclosed.
Concerning the physical application of your work, frankly speaking, it did not convince me
much. If geometrical interpretation must be, then I found my approach simply more beautiful,
in which the straightest line at least means something. Or do you have further expectations
for your new work? (Reichenbach to Einstein, Oct. 17, 1928; AEA, 20-92; my emphasis).

There are two aspects of this passage that should be considered separately.
The first part refers to the mathematical-geometrical aspect of Einstein’s papers. The manuscript

to which Reichenbach refers seems to have been lost. However, from Einstein’s reply on October
19, 1928 one can easily infer that Reichenbach must have sent him the classification of geometries
which would appear in an article Reichenbach submitted in February 1929 (Reichenbach, 1929c,
see below in this section). Einstein agreed that in principle it was possible to proceed as Re-
ichenbach suggested, “starting with displacement law, and to specialize it on the one hand with
the introduction of a metric on the other side with the introduction of integrability properties”
(Einstein to Reichenbach, Oct. 19, 28; AEA, 20-094). Reichenbach in fact defines a metrical
space by imposing the condition d(l2) = 0 to the displacement space Γτµν , which in general is
non-symmetrical; he then obtains Einstein space by requiring that the Riemann tensor Rτµνσ(Γ)
vanishes.39 Einstein, in contrast, preferred the classification he had given in his paper: Weyl’s
geometry allows for the comparison over finite distances neither of lengths nor of directions; Rie-
mannian geometry allows the comparison of lengths, but not directions; and Einstein’s geometry
directions but not lengths (Sauer, 2006).

This, however, was only a minor point. Reichenbach’s further remark concerning the physical
application of Einstein’s geometrical setting is, from a philosophical standpoint, more interesting,
even if Einstein did not comment on it. Reichenbach claims that, if one really wants to provide a
geometrical interpretation of gravitation and electricity, then his own approach was better after
all. Reichenbach uses his own toy-theory as a benchmark for a good ‘geometrical interpretation’
(but of course not for a good physical theory). Reichenbach’s theory provides a physical meaning
to the displacement operation and thus a physical definition of a straightest line. On the contrary,
Einstein’s theory did not attempt to provide a physical interpretation of the notion of displacement,
nor even the field quantities; if the theory has nothing more to offer, Reichenbach claims, (i.e., if
the theory does not solve the problem of the electron) it is merely a ‘graphical representation’
(cf. also Eddington, 1929 for a similar judgment).

In a note added by hand at the bottom of the typewritten letter, Einstein invited Reichen-
bach and his first wife Elisabeth for a cup of tea on November 5, 1928, mentioning that Erwin
Schrödinger40 would also be present (Reichenbach to Einstein, Oct. 17, 1928; AEA, 20-92). It
was probably on that occasion that Einstein told Reichenbach about the physical consequences
of the theory he was working on. In the meantime, on November 4, 1928, an article by Paul
Miller appeared in The New York Times with the sensational title “Einstein on Verge of Great
Discovery; Resents Intrusion”. The paper triggered the curiosity of the press. In the late 1920s
Reichenbach was a regular contributor to the Vossische Zeitung, at that time Germany’s most
prestigious newspaper; not surprisingly he was asked for a comment on Einstein’s theory. With

39The Γ alludes to the fact that this condition can be defined without reference to the gµν .
40Schrödinger succeeded Max Planck at the Friedrich Wilhelm University in Berlin in 1927. He held his inaugural

lecture on July 4, 1929 (Schrödinger, 1929).
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the advantage of having personally discussed the topic with Einstein, Reichenbach published a
brief didactic paper on Einstein’s theory on January 25, 1929 (Reichenbach, 1929b).

Reichenbach conceded that Einstein’s theory provided a unification of gravitation and elec-
tricity which had more than just formal significance, since it made “new assertions concerning
the relation between gravitation and electricity in relatively complicated fields” (Reichenbach,
1929b). However, he maintained his skepticism by claiming that the theory was “only a first draft,
lacking the persuasive powers of the original relativity theory because of the very formal method
by which it is established” (Reichenbach, 1929b, ; my emphasis). Reichenbach was clearly not the
only one to write about Einstein’s new theory in the press. On January 12, 1929—one day after
Einstein submitted a third paper on distant parallelism (Einstein, 1929b) to the Academy—The
New York Times published an article entitled ‘Einstein Extends Relativity Theory’.

It was amid this atmosphere that, at the end of January, Einstein wrote an angry letter to
the Vossische Zeitung lamenting Reichenbach’s “tactless behavior” in violating the academic
code (Einstein to the Vossische Zeitung, Jan. 25, 1925; AEA, 73-229). On January 26, 1929, the
curator of the literary section, Monty Jakobs (cf. Badenhausen, 1974), defended the behavior of
the newspaper and forwarded Einstein’s letter to Reichenbach (Jakobs to Einstein, Jan. 26, 1925;
AEA, 73-230). Reichenbach wrote to Einstein the next day with feelings ranging from surprise to
anger; he complained that Einstein did not write directly to him after all he had done to defend
relativity theory (Hentschel, 1982), and he denied any wrongdoing (Reichenbach to Einstein, Jan.
27, 1925; AEA, 20-096). On January 30, 1928 Einstein replied that he was somewhat pleased
by Reichenbach’s annoyance, which was the “fair equivalent” of the annoyance he had caused
by feeding the press private information (Einstein to Reichenbach, Jan. 30, 1920; AEA, 20-099).
However, Einstein quickly settled the dispute to Reichenbach’s relief (Reichenbach to Einstein,
Jan. 31, 1920; AEA, 20-101).

On January 30, 1929 Einstein’s paper was finally published in the proceedings of the Academy
with the vague title ‘On the Unified Field Theory’ (Einstein, 1929b). On February 2, 1929 another
semi-popular paper by Reichenbach was published in the Zeitschrift für Angewandte Chemie
(Reichenbach, 1929a) without any reaction from Einstein. Einstein’s anger at Reichenbach (which
might at first seem rather exaggerated) is understandable if one keeps in mind the attention that
the theory was attracting among the public; Einstein might have been upset that a colleague and
friend would also contribute to the craze. At the beginning of February the New York Herald
Tribune (February 1) printed a translation of the entire paper. Several days later The New York
Times (February 3) and the London Times (February 4) published Einstein’s own popular account.
The ‘irrational exuberance’ towards the theory is well attested to by a letter Eddington sent to
Einstein a few days later, recounting that Selfridges—a British chain of high-end department
stores—had pasted all six pages of Einstein’s papers in its window (Eddington to Einstein, Feb.
11, 1929; AEA, 9-292).

In the meantime, on January 22, 1929, Reichenbach had already submitted a second and more
technical paper, which only appeared in the Zeitschrift für Physik in September (Reichenbach,
1929c). The paper offers a readable presentation of Einstein’s new theory; Reichenbach again
presented his own take on the relationship between displacement and metrical space, and located
Einstein space as an alternative to Riemannian space, rather than a generalization of it (Re-
ichenbach, 1929c, 684–687). He then showed how in Einstein’s theory the Γτµν and the gµν are
considered as functions of a parameter hνα (the ν projections on the α orthogonal unit vectors
forming the so-called n-bein)41:

41In contrast to Reichenbach, Einstein assigned Greek letters to the Koordinaten-Indizes and Latin ones to the
Bein-Indizes or tetrads indices: haν .
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gµν = hµαhνα Γτµν = −hτα
∂hµα
∂xν

The n2 = 16 quantities hνα—enough to include both the gravitational and electromagnetic
field—play the role of the field potentials defined at every point (Reichenbach, 1929c, 687). The
goal is to construct a suitable Lagrangian H from which the 16 field equations for the field
variables hνα could be obtained, as usual, from a variational principle δ

∫
H, with variation respect

to the hνα (cf. Sauer, 2006, for more details).
After this semi-popular presentation of Einstein’s geometry and its physical application, Re-

ichenbach added some remarks that are interesting from a philosophical point of view. He pointed
out that there are two ways to unify two different physical theories. The first is a formal unifica-
tion, comparable to the relationship between Lagrangian and Hamiltonian formalism in classical
mechanics (the first can be Legendre transformed into the other without adding any new physical
knowledge); the second is an inductive unification, exemplified by the relationship between Kepler
and Newton’s laws (something new is of course added by moving from Kepler’s laws to Newton’s
theory of gravitation).

The first approach was the one used by Reichenbach himself in his own ‘unified field theory’:

The author [Reichenbach] has shown that the first way can be realized in the sense of a
combination of gravitation and electricity to one field, which determines the geometry of
an extended Riemannian space; it is remarkable that thereby the operation of displacement
receives an immediate geometrical interpretation, via the law of motion of electrically charged
mass-points. The straightest line is identified with the path of electrically charged mass-
points, whereas the shortest line remains that of uncharged mass points. In this way one
achieves a certain parallelism to Einstein’s equivalence principle. By the way [the theory
introduces] a space which is cognate to the one used by Einstein, i.e., a metrical space with
non-symmetrical Γτµν . The aim was to show that the geometrical interpretation of electricity
does not mean a physical value of knowledge per se (Reichenbach, 1929c, 688; my emphasis).

Notice that, according to Reichenbach, the advantage of his own approach consists in the fact
that it provides a physical realization of the displacement operation, and also (Reichenbach insists)
an analogon to the equivalence principle (at least for particles of certain charge-to-mass-ratio).
The disadvantage is that it is only a unification of the representations of two physical fields in a
common geometrical setting. The second approach is the one used by Einstein, and it presented
the opposite characteristics:

On the contrary Einstein’s approach of course uses the second way, since it is a matter
of increasing physical knowledge; it is the goal of Einstein’s new theory to find such a
concatenation of gravitation and electricity, that only in first approximation it is split in
the different equations of the present theory, while is in higher approximation reveals a
reciprocal influence of both fields, which could possibly lead to the understanding of unsolved
questions, like the quantum puzzle. However, it seems that this goal can be achieved only
if one dispences with an immediate interpretation of the displacement, and even of the field
quantities themselves. From a geometrical point of view this approach looks very unsatisfying.
Its justification lies only on the fact that the above mentioned concatenation implies more
physical facts that those that were needed to establish it (Reichenbach, 1929c, 688; my
emphasis).

Einstein’s theory was claimed to be a unification of the dynamics of two physical fields, i.e.,
a unification of the fundamental interactions. However, Reichenbach argues that Einstein could
achieve this result only at the cost of dispensing with a physical interpretation of the fundamental
quantities.
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Thus, according to Reichenbach, his own theory had the ambition of being a ‘proper geometrical
interpretation’ (or, one might say, to provide a ‘natural geometry’), but it was physically sterile;
Einstein’s theory sought to be physically fruitful, but it was merely a ‘graphical representation’
(see also Eddington, 1929). Clearly, for Reichenbach, only general relativity was able to combine
both virtues: it was a proper geometrical interpretation (the ds, and thus the gµν are measured
using rods and clocks) that leads to new physical results. Reichenbach did not seem to realize
(or at least does not explicitly point out) that this epistemological standard had become hard to
comply with in precisely the context of the field-theoretical explanation of the electron that he
was calling for.

In the 1930s the physics community was divided. In July 1929 Cornelius Lanczos, who had
started to work with Einstein in Berlin at the end of 1928, also published a little semi-popular
paper on the Fernparallelismus theory (Lanczos, 1929). In a more extended but also non-technical
account, Lanczos (1931) distinguished two different ways of conceiving of the coordination between
theory and experience: (1) a positivistic-operationalist entrenchment of relativity theory, which
requires a direct definition of the fundamental variables gµν or fµν , in terms of the behavior
of some physical systems used as probes. However, this approach fails in the domain of the
elementary particles, since there are no probes smaller than the electrons. Thus the pursuit of a
field-theoretical interpretation of matter seems to require (2) a metaphysical-realistic perspective,
based on the conviction that the deep structure of nature is understandable only by means of
speculative mathematical constructions. There are few doubts that, around 1930, Einstein was
leaning towards the second way (Dongen, 2010; Norton, 2000). In his Fernparallelismus approach,
e.g., no attempt is made to give a direct physical meaning to the fundamental field variables
hνa (or ahν in the notation suggested by Roland Weitzenböck; Einstein, 1929a,b) considered in
isolation. The justification of the field equations relies on the fact that they are the most simple
and natural laws that the h-field can satisfy (Einstein, 1930, 6; tr. 10).

Conclusion

Einstein soon abandoned the distant parallelism approach, later taking up a five-dimensional
approach again, but this time using the tetrad formalism (Einstein and Mayer, 1931, 1932). While
Einstein was visiting Caltech in 1933, the Nazis came to power. He never returned to Germany
and instead landed at Princeton, where he remained until the end of this life. Reichenbach
moved to Istanbul, attracted, like many other German academics, by Atatürk’s secular Turkey.
The enthusiasm was short-lived. In April 1936 Reichenbach, fearing Weyl’s opposition, wrote to
Einstein asking for his support in obtaining a position at Princeton (Reichenbach to Einstein,
Apr. 12, 1936; AEA, 10-107). Einstein answered that he had heard from Rudolf Carnap that
Princeton did not want to hire more Jews: “also up here not all that glitters is gold,” he remarked
bitterly (Einstein to Reichenbach, May. 2, 1936; AEA, 20-118). Reichenbach obtained a position
at UCLA in 1938, from which he would exert an enormous influence on American philosophy of
science.

The confrontation between Einstein and Reichenbach about the philosophy of space and time
was resurrected only a decade later by Reichenbach’s contribution (Reichenbach, 1949) to the
Schilpp-Volume in Einstein’s honor (Schilpp, 1949). It concerned the very same issue we discussed
at the end of the preceding section. In an unpublished and overall positive commentary on
Reichenbach’s paper, Einstein disagreed in particular with Reichenbach’s claim that ‘the meaning
of a statement is reducible to its verifiability’: “it seems to me doubtful whether one can maintain
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this conception of meaning for the individual statement” (AEA, 2-057).42

As is well known, Einstein raised this precise objection against Reichenbach in the so-called
“Reply to Criticisms” of the Schilpp-Volume (Einstein, 1949b). At the end of a fictional dialogue
between Reichenbach and Poincaré (Einstein, 1949b, 677–678), Einstein entrusted his episte-
mological views to the persona of an ‘anonymous non-positivist’ (or, as he put it elsewhere, a
‘tamed metaphysician’; Einstein, 1950, 3): a theory has a ‘meaning’, a physical content, only
as a whole, even if its parts, in isolation, do not find a direct physical interpretation (Einstein,
1949b, 678). Einstein’s remark, as he confessed to Besso a year later, must be understood against
the background of the “Don Quixotian situation” in which one finds oneself in the search for
a unified, non-dualistic, field theory. The material structures (e.g., rods and clocks), which are
used as probes and give physical content to the field quantities governed by the field equations,
are supposed to be solutions of the field equations themselves. Thus, no real definition of such
quantities seems to be possible: “To really understand my point of view you must read my answer
in the [Schilpp]-volume [Sammelband]” (Einstein to Besso, Apr. 15, 1950; Speziali, 1972, 438–439).

Interestingly, in the Schilpp-Volume, Einstein points out another consequence of this episte-
mological stance. In a context in which the geometrical measuring instruments, rods and clocks,
would be treated as physical systems just like any other (Giovanelli, 2014), the strict opposi-
tion between the ‘interval’, the geometrical variable they measure, and all other non-geometrical
variables, also seems to lose its raison d’être (Einstein, 1949a, 61). Thus the very program of
“reducing physics to geometry” (Einstein, 1949b, 61) becomes meaningless. Although Einstein
made this remark only in passing, as we have seen, his reflections on this topic date back over
twenty years and were occasioned precisely by Reichenbach’s toy-geometrization. Concluding our
reconstruction of this forgotten Reichenbach-Einstein debate, I think that there are two lessons
we can draw from it.

From (a) a historical standpoint, it turns out that the Einstein-Reichenbach correspondence
inaugurated a philosophical reflection about the role played by geometric considerations in phys-
ical theories. This issue, which is rarely addressed today, was not only relevant for Einstein, as
Lehmkuhl (2014) has recently shown, but played an important role in Reichenbach’s philosophy
as well. In particular, Reichenbach’s 1928 monograph should be read as an attempt to present
general relativity as the crowning achievement of a process of ‘the physicalization of geometry’,
against the prevailing opinion that it marked the beginning of the epoch of ‘the geometrization
of physics’. The decision not to include the Appendix in the 1958 translation of Philosophie der
Raum-Zeit-Lehre (Reichenbach, 1928) is probably why this issue has never attracted the atten-
tion of Reichenbach’s interpreters, despite the fact that it is precisely this aspect that Einstein
himself emphasized in his review of the book. Reichenbach’s philosophy of space and time looks
quite different if this issue is taken into account, and, given his enormous influence, may have
contributed in quite different ways to the debate on the foundation of space-time theories.43 The

42The italicized words are in English in the original German text.
43The question of whether the fundamental role of geometrical concepts is only of “historical and traditional”

or rather “logical nature” (Dantzig, 1956, 48) was in fact robustly discussed in the physics community in the
years following the English translation of Philosophie der Raum-Zeit-Lehre. As is well known, beginning at the
end of the 1950s, John Archibald Wheeler had tried to pursue what he called ‘geometrodynamics’; starting from
the successful geometrization of the gravitational field provided by general relativity, Wheeler investigated the
possibility of treating “fields and particles” not as foreign entities immersed in geometry, but as “nothing but
geometry” (Misner and Wheeler, 1957, 526). See above on fn. 3 for the so called ‘already unified field theory’.
However, the hope that “physics could be brought into a geometric formulation,” as Steven Weinberg pointed out
in his celebrated textbook a decade later, “has met with disappointment” (Weinberg, 1972, 147). Thus Weinberg
could defend what even today is a quite heterodox position, that the “geometric interpretation of the theory
of gravitation has dwindled to a mere analogy” (Weinberg, 1972, 147). What is relevant is the ability to make
predictions about images on photographic plates, frequencies of spectral lines, and so on, and it “simply doesn’t
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infamous ‘relativization of geometry’ (cf. Giovanelli, 2013a,c), with which Reichenbach’s reading
of general relativity is usually identified, suddenly recedes into the background and what may
have been his main concern begins to emerge—the ‘geometrization of gravitation’.

Reichenbach’s toy theory might, however, also be interesting from (b) a systematical point
of view, though for reasons Reichenbach would not have appreciated. His theory shows that, in
a four-dimensional setting, “the price for imposing a geodesic equation of motion to describe a
non-universal interaction” (Aldrovandi and Pereira, 2013, 120) is not worth paying. The simple
reason is that a good analogon of the (weak) equivalence principle that Reichenbach repeatedly
brags about is missing. Ironically, Reichenbach’s Appendix offers possibly the best argument of
his 1928 book to show that gravitation is a universal force, though electromagnetism is not. The
gravitational-to-inertial-mass ratio mg/mi is a constant, but the charge-to-mass ratio e/m is
not; thus, pace Reichenbach, it is extremely cumbersome to impose a geodesic equation upon
electromagnetism, and in this sense, to geometrize the latter. One can easily construe an affine
connection in which one type of particle with a certain e/m travels on geodesics. However, if one
wants to have all charged particles moving on geodesics under the influence of the electromagnetic
field, there is no other way than to introduce a separate connection for each value of e/m. One can
in principle proceed in this way (Droz-Vincent, 1967). Given a connection (say the Levi-Civita
connection), one can obtain a new connection simply by adding a suitable three-rank tensor
with two lower indices, and so on. If the latter depends on e/m, then one would have as many
connections as one needs.44 However—if I am allowed to borrow my punchline—the situation
became “not unlike that in alchemy where a new ‘essence’ is invented to explain any phenomena
not covered by the previous ‘essence’” (Earman and Friedman, 1973, 357).45

matter whether we ascribe these predictions to the physical effect of gravitational fields to a curvature of space
and time” (Weinberg, 1972, 147). The opposition between the geometrization of physics vs. the physicalization of
geometry was also discussed by Peter G. Bergmann (Bergmann, 1979), Einstein’s former assistant in Princeton
and one of the major relativists of his time.

44This approach was suggested, e.g., by Philippe Droz-Vincent (1967), and is astonishingly similar to that of
Reichenbach (although Droz-Vincent must have been unaware of Reichenbach’s Appendix). Just like Reichenbach,
Droz-Vincent resorts to a non-symmetric affine connection which is the sum of the Christoffel symbols and a
(1,2) tensor, which depends on the electromagnetic field and the four-velocity, and the charge-to-mass ratio of the
particle: P ρ

αβ
= kF ραuβ (one can easily recognize Reichenbach’s definition behind the slightly different notation).

The covariant derivatives of the metric tensor are supposed to vanish, just like in Reichenbach’s theory. The
consequence (the same one Reichenbach was forced to acknowledge) is that the “affinity is not an ‘external’
property of space, independent of the particle” (Burman, 1970); in particular, it depends on the charge-to-mass
ratio (and also on the four-velocity of every particle). On the problem of incorporating the particle properties
into the space-time geometry, see Cohn, 1972; Quale, 1972; see Vargas, 1991 on the problem of velocity-dependent
connections. An alternative might be to use a particular case of the Finsler metric, the so called Randers metric
(Randers, 1941) ds =

√
gµνdxµdxν + e/mϕµdxµ (where ϕµ is the electromagnetic potential). Geodesics δ

∫
ds

in a Randers space are not geodesics in a Riemannian space, so that charged particles of different types can
have different Riemannian paths (Stephenson and Kilmister, 1953). In this setting there is only one connection;
however, the metric depends explicitly on e/m and thus one needs (again) different metrics for each type of
particle. The only way to avoid this multiplication of geometrical structures is to move to higher dimensions. In
Kaluza-Klein-type theories, the motion of any particle with an arbitrary value of e/m is associated with the same
geodesic in the five-dimensional space, but with different four-dimensional projections of the latter (Leibowitz and
Rosen, 1973). An attempt in six dimensions has been made by Bown, 1970. An opposite thought experiment might
be to try to transform the geodesic equation of general relativity into a force equation as in the case of teleparallel
gravity (Aldrovandi and Pereira, 2013). This might be useful in the case where the equivalence principle turns
out to be violated. In this case geometrized gravity would not make much sense precisely for the reason we have
suggested: “test particles with different relations mg/mi would require connections with different curvatures to
keep all equations of motion given by geodesics” (Aldrovandi and Pereira, 2013, 120).

45Earman and Friedman refer to Droz-Vincent (1967); see previous footnote.
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