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Abstract

This paper gives an explicit presentation of Newtonian gravitation on the back-

drop ofMaxwell spacetime, giving a sense inwhich acceleration is relative in grav-

itational theory. However, caution is needed: assessing whether this is a robust or

interesting sense of the relativity of acceleration depends upon subtle questions

over how to identify the spacetime structure of a theory.

The following two observations are well-known to philosophers of physics:

1. Newtonian gravitation admits, in addition to the well-known velocity-boost and

potential-shift symmetries, a “gravitational gauge symmetry” inwhich the grav-

itational �eld is altered.

2. Newtonian gravitation may be presented in a “geometrised” form known as

Newton-Cartan theory,1 in which the dynamically allowed trajectories are the

geodesics of a non-�at connection.

Moreover, it is widely held that these two observations are intimately related. How-

ever, aspects of this relationship remain somewhat obscure. In particular, there is
1Due originally to [Trautman, 1965].
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widespread disagreement over the sense in which the symmetry of observation 1 mo-

tivates the move from a non-geometrised formulation to the geometrised formulation

of observation 2; and over the extent towhich suchmotivation ought to be regarded as

analogous to the use of the velocity-boost symmetry to motivate the move from New-

tonian to Galilean spacetime, or to the use of the potential-shift symmetry to motivate

the move from a formulation in terms of gravitational potentials to a formulation in

terms of gravitational �elds.

In this paper, I seek to clarify this relationship. First, I consider the symmetry from

point 1 above, in the context of Newtonian gravitation set on Galilean spacetime. I

then brie�y review the geometrised formulation of the theory, and discuss some puz-

zling aspects concerning the relativity of acceleration. This motivates an exploration

of Maxwell spacetime, and—the main contribution of this paper—the presentation of

a Newtonian theory of gravitation set onMaxwell spacetime. I then show that there is

a natural sense in which this theory may be regarded as equivalent to Newton-Cartan

theory. I conclude with some discussion of how this illuminates the conceptual issues

we began with, and how it relates to the broader literature.

Iwill assume familiaritywith the di�erential-geometric architecture standardly used

to present classical gravitational theories.2 All the theories we will consider postu-

late at least as much structure as that of Leibnizian spacetime, which comprises data

(M, ta, h
ab): here, M is a di�erential manifold which is di�eomorphic to R4; ta is a

smooth, curl-free 1-form, of signature (+, 0, 0, 0); and hab is a smooth, symmetric rank-

(0, 2) tensor, of signature (0,+,+,+). ta and hab are orthogonal, i.e., they satisfy

tah
ab = 0 (1)

Given our topological assumptions, ta induces a foliation ofM into three-dimensional

2See [Friedman, 1983], [Earman, 1989], and—especially—[Malament, 2012].
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hypersurfaces; we require that each such hypersurface is di�eomorphic to R3. hab in-

duces a three-dimensional metric on each hypersurface. We require that each hyper-

surface is complete relative to this inducedmetric, and that the inducedmetric is �at.3

We will use L to denote a Leibnizian spacetime. If L = 〈M, ta, h
ab〉 is a Leibnizian

spacetime, then a connection ∇ on M is said to be compatible with L just in case it

satis�es

∇atb = 0 (2a)

∇ah
bc = 0 (2b)

We will only consider compatible connections in this paper.

A Galilean spacetime is a Leibnizian spacetime equipped with a �at compatible con-

nection. The �rst theory we will consider is that of Newtonian gravitation on Galilean

spacetime—for short, “Galilean gravitation”. Each model of such a theory comprises

the following data:

• A Galilean spacetime 〈L,∇〉

• A spacelike vector �eld Ga

• A scalar �eld ρ

• A unit timelike vector �eld ξa

satisfying the following equations:

∇aG
a = −4πρ (3a)

∇[cGa] = 0 (3b)

ξn∇nξ
a = Ga (3c)

3For more detail on the above, see [Malament, 2012, §4.1].
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The scalar �eld ρ represents the mass density, the vector �eld Ga represents the

gravitational �eld, and the vector �eld ξa represents the tangents to the trajectories of

material bodies. Given a model of Galilean gravitation, we will refer to the integral

curves of ξa as the dynamical trajectories. The gravitational �eld is related to the mass

density by the source equation for this theory, equation (3a), whilst the dynamical

trajectories must obey the equation of motion for this theory, equation (3c). I have

chosen to work with a gravitational �eld, rather than the gravitational potential. This

is simply in order to remove the gauge symmetries of the potential, so that we can

focus on those symmetries that alter the �eld itself. Equation (3b), the condition that

the gravitational �eld is twist-free, ensures that this decision is harmless: given our

assumptions about the topology of L, it holds ofGa if and only if there is a scalar �eld

ϕ such thatGa = ∇aϕ.4 It will be helpful to have a term for a structure 〈L,∇, Ga, ρ, ξa〉

which does not necessarily satisfy equations (3).5 We will refer to such a structure as

a model-candidate for Galilean gravitation.6

This theory is a toy theory: the mass density ρ is just represented as a phenomeno-

logical background, in the sense that there is nothing constraining the motion of the

matter whose density ρ allegedly represents—in particular, nothing requiring that it

�ow along dynamical trajectories. The most straightforward way to correct this is to

4See [Malament, 2012, Proposition 4.1.6]. Note that this is analogous to the role played the equation
∇×E = 0 in electrostatics.

5That is, what in e.g. [Belot, 2007] is referred to as a “kinematical possibility”.
6The metaphysically inlined may think of model-candidates as representing worlds which are meta-
physically possible according toGalilean gravitation (they contain the right ontological ingredients),
and of models as representing worlds which are physically possible according to Galilean gravita-
tion (they contain the right ontological ingredients, arranged in the right way).
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supplement the equations (3) with some form of continuity equation,7 such as

ξa∇aρ+ ρ(∇aξ
a) = 0 (4)

As wewill see, the analysis of this paper applies equally well to the toy theory (3), and

to the theory obtained by supplementing (3) with (4).

Our concern in this paper is with a certain transformation one canmake of themod-

els of this theory (whether or not (4) is included)—speci�cally, one obtained by alter-

ing the connection and gravitational �eld as follows:

∇ 7→ (∇, ηatbtc) (5a)

Ga 7→ Ga + ηa (5b)

where ηa is any spacelike vector �eld such that ∇aηb = 0. The notation (∇, ηatbtc) fol-

lows Malament: [Malament, 2012, Proposition 1.7.3] shows that given any connection

∇ on a manifold M , any other connection ∇′ may be expressed in the form (∇, Ca
bc)

(for some symmetric tensor �eld Ca
bc), meaning that for any tensor �eld T a1...arb1...bs

onM :

∇′
cT

a1...ar
b1...bs

=∇cT
a1...ar
b1...bs

− Ca1
cnT

na2...ar
b1...bs

− · · · − Car
cnT

a1...ar−1n
b1...bs

+ Cn
cb1
T a1...arnb2...bs

+ · · ·+ Cn
cbsT

a1...ar
b1...bs−1n

(6)

It is straightforward to show that the transformation (5) is a symmetry of Galilean

gravitation, in the following sense: if ∇′ = (∇, ηatbtc) and G′a = Ga + ηa are substi-

tuted into the equations (3), we get the same equations out again; the same goes for
7Alternatively, one could represent thematter by amass-momentum�eld T ab, and derive equation (4)
by requiring that T abtatb > 0whenever T ab 6= 0, and that∇aT

ab = 0 (see [Malament, 2012, pp. 265–
266]). I have not done that here, because I want to keep the equation of motion (3c) and the conti-
nuity equation (4) logically independent from one another: employing a mass-momentum density,
however, leads to the derivation of both the continuity equation and the equation of motion.
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the continuity equation (4). Consequently, any model-candidate 〈L,∇, Ga, ρ, ξa〉 is a

model of Galilean gravitation if and only if 〈L,∇′, G′a, ρ, ξa〉 is also amodel of Galilean

gravitation.

Now, if we read the theory literally, then these two models would appear to repre-

sent distinct possibilities (since the two models are not isomorphic to one another).

That is, if all the mathematical structures present in the models are taken to represent

physical structure, then the two models disagree over what the world is like: they

disagree over the magnitude of the gravitational �eld, for instance, and over the ac-

celeration of matter. Yet this is a problematic judgment, since it seems that two such

possibilities would be epistemically indistinguishable from one another: all seemingly

observationally accessible quantities, such as relative distances, are the same in the

two models. Such epistemic underdetermination gives us some reason to think that

we should seek another theory which, read literally, does not give rise to such a prob-

lem (whilst still capturing the “good” content of Galilean gravitation, i.e., the content

that is invariant under (5)).8

The standard view is that such a theory is provided byNewton-Cartan gravitation. A

Newton-Cartan spacetime consists of a Leibnizian spacetime, together with a (compati-

ble) connection ∇̃ obeying the homogeneous Trautman conditions:

R̃ab
cd = 0 (7a)

R̃a c
b d = R̃c a

d b (7b)

8The above kind of argument is an instance of a more general one: the claim that that the di�er-
ences between symmetry-related models of a theory are (in some sense) not di�erences that should
be taken seriously, and which should motivate us either to interpret the theory in such a way
that it is not committed to that structure, or to replace the theory by a more parsimonious one
(for discussion, see [Møller-Nielsen, 2016]). However, it is controversial both how exactly the no-
tion of “symmetry” should be de�ned, and how (or whether) this general interpretational maxim
should apply (see [Saunders, 2003], [Brading and Castellani, 2003], [Baker, 2010], [Dasgupta, 2014],
[Dewar, 2015], [Caulton, 2015], and references therein). Since the general debate is tangential to our
purposes, I pass over it here.
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Note that all �at connections obey the conditions (7); as such, Galilean spacetime is a

Newton-Cartan spacetime. A model of Newton-Cartan gravitation then comprises

• A Newton-Cartan spacetime 〈L, ∇̃〉

• A scalar �eld ρ : L→ R

• A unit timelike vector �eld ξa

satisfying the following equations:

R̃bd = 4πρtbtd (8a)

ξn∇̃nξ
a = 0 (8b)

Again, this theorymay be supplemented by the continuity equation (4), if a more real-

ist dynamics for the matter is desired. The relationship between Galilean gravitation

and Newton-Cartan gravitation is captured in what are known as the geometrisation

and recovery theorems.9 The former states that from anymodel of Galilean gravitation,

one can obtain a unique model of Newton-Cartan gravitation: namely, that given by

taking ∇̃ = (∇, Gatbtc). Note that twomodels of Galilean gravitationwhich are related

by the transformation (5) will generate the samemodel of Newton-Cartan gravitation.

The latter asserts that given a model of Newton-Cartan gravitation, there is a model

of Galilean gravitation related to it by ∇̃ = (∇, Gatbtc); several models, in fact, related

by (5). It is in this sense that Newton-Cartan gravitation captures the invariant con-

tent of Galilean gravitation: there is a systematic one-to-one correspondence between

models of Newton-Cartan gravitation and equivalence classes of (5)-related models

of Galilean gravitation.

At the same time, however, there is something potentially puzzling about this case.

As mentioned above, the acceleration of the matter represented by ξa is not invariant
9See [Malament, 2012, Propositions 4.2.1, 4.2.5], [Trautman, 1965].
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under the transformations (5). If models related by such a transformation correspond

to the same physical situation, then the natural reading would seem to be that ac-

celerations are not a real, or objective, or absolute feature of the world (according to

Newtonian gravitational theory). This notion is supported by re�ection on the tran-

sition from setting Newtonian gravitation on Newtonian spacetime (wherein there

is a standard of absolute rest) to setting it on Galilean spacetime. Here, we observe

that applying a “boost” transformation is a symmetry of the dynamics. In Newto-

nian spacetime, trajectories have (absolute) velocities, relative to absolute space; but

those velocities are not invariant under boosts. This is generally taken to licence the

claim that such velocities are not real, or objective, or absolute features of the world

(according to the best interpretation of the theory). This claim is supported by the

fact that we can set the theory instead on Galilean spacetime, in which there is not

the structure required to impute absolute velocities to trajectories. So if this transi-

tion involves the repudiation of absolute velocities (since they are not invariant under

boosts), analogous reasoning would suggest that the move from Galilean gravitation

to Newton-Cartan gravitation should involve the repudation of absolute accelerations

(since they are not invariant under (5)).

However, the orthodox view is that this is decisively not the case. The reason for

this is straightforward: any model of Newton-Cartan gravitation does have enough

structure tomake pronouncements on the accelerations of trajectories, since it contains

a privileged connection ∇̃. As such, in transitioning from Galilean to Newton-Cartan

gravitation,

We eliminate the notions of absolute acceleration and rotation relative to∇,

butwe replace themwith newnotions of absolute acceleration and rotation

relative to ∇̃. Hence, the move from [Galilean gravitation] to [Newton-

Cartan gravitation] does not involve a relativization of acceleration parallel
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to the relativization of velocity [. . . ]10

Why is this? The essence of the disanalogy is as follows. In performing a boost

transformation, we only transform the spatiotemporal structure (or, equivalently, only

transform all the non-spatiotemporal structure). Hence, the structure common to any

two boost-related models of gravitation on Newtonian spacetime is just the dynam-

ical structure, together with whatever aspects of Newtonian spacetime structure are

invariant under boosts. Those aspects are exactly the structure of Galilean spacetime.

By contrast, the transformation (5) transforms both a piece of spatiotemporal struc-

ture (the connection) and a piece of “material” or “dynamical” structure (the gravita-

tional �eld). Thus, some piece of structure can be common to any pair of (5)-related

models of Galilean gravitation, and yet go beyond the structure of Galilean spacetime

which is invariant under (5). And indeed, this is exactly what happens. To make this

clearer, let us look in more detail at what aspects of Galilean spacetime are invariant

under (5).

Given a Galilean spacetime 〈L,∇〉, the structure which is invariant under a trans-

formation of the form (5a) goes by the moniker of Maxwell spacetime.11 Intuitively, the

idea is that a Maxwell spacetime contains a “standard of rotation”, but no “standard

of acceleration”. More precisely,12 we say that a pair of connections∇ and∇′ compati-

ble with a given Leibnizian spacetime are rotationally equivalent if, for any unit timelike

�eld θa on L, ∇[aθb] = 0 i� ∇′[aθb] = 0. Then, aMaxwell spacetime comprises

• A Leibnizian spacetime L

• A standard of rotation [∇]: an equivalence class of rotationally equivalent �at a�ne

connections (compatible with L)

10[Friedman, 1983, p. 122]; I have modi�ed Friedman’s notation to �t with that used in this paper.
11[Earman, 1989, chap. 2]
12This de�nition follows [Weatherall, 2015b].
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The following proposition demonstrates the invariance of Maxwell spacetime under

(5a):

Proposition 1. Let 〈L, [∇]〉 be a Maxwell spacetime, and consider any ∇ ∈ [∇]. For

any other connection ∇′, ∇′ ∈ [∇] (i.e. ∇′ is �at and rotationally equivalent to ∇) i�

∇′ = (∇, ηatbtc), for some spacelike �eld ηa such that∇aηb = 0.

Proof. The “only if” direction follows immediately from the proof of Proposition 3 in

[Weatherall, 2015b].

So given a pair of models of Galilean gravitation related by (5), the structure shared

by their Galilean spacetimes 〈L,∇〉 and 〈L,∇′〉 is that of their commonMaxwell space-

time 〈L, [∇]〉; yet, the process of fusing the Galilean connection and gravitational �eld

into a Newton-Cartan connection yields the same results in both models, as the ge-

ometrisation theorem demonstrates. So in this sense, the Newton-Cartan connection

is invariant under (5), even though it is not part of the structure of Galilean spacetime

invariant under (5).

Recently, however, [Saunders, 2013] has queried whether we really should regard

Newton-Cartan theory as the spacetime theory that properly encodes the lessons of

the symmetry canvassed above: he argues that we can “interpret [Newton’s] laws [. . . ]

directly as concerning the relative motions of particle pairs”,13 and hence, as describ-

ing a theory set on Maxwell spacetime rather than Galilean spacetime.14 Saunders’

analysis concerns the point-particle formulation ofNewtonian gravitation, but he con-

tinues:

There remain important questions, above all, moving over to a manifold

formulation: What is the relation between a theory of gravity (and other

13[Saunders, 2013, p. 41]
14Strictly, against the backdrop of a spacetime structure equivalent to it, which Saunders refers to as

“Newton-Huygens spacetime”.
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forces) formulated inMaxwell space-time andone based onNewton-Cartan

space-time?15

Obviously, assessing that relationship requires us to �rst present such a theory set

on Maxwell spacetime in the required fashion. I now do so, although the theory to be

presented is only a theory of gravity, rather than of other forces. Extending it to include

non-gravitational interactions would be valuable, but is not something I undertake

here.

Without further ado, then, a model ofMaxwell gravitation comprises

• A Maxwell spacetime 〈L, [∇]〉

• A scalar �eld ρ

• A unit timelike vector �eld ξa

satisfying the following equations:

∇a(ξ
n∇nξ

a) = −4πρ (9a)

∇c(ξn∇nξ
a)−∇a(ξn∇nξ

c) = 0 (9b)

where ∇ is an arbitrary element of [∇]. This is only well-speci�ed if the choice of ∇

is indeed arbitrary; the following proposition shows that it is. It also shows that the

theory obtained by including the continuity equation (4) is similarly well-de�ned.

Proposition 2. Let 〈L, [∇], ρ, ξa〉 be a model-candidate for Maxwell gravitation, and

consider any ∇,∇′ ∈ W . Then equations (9) and (4) hold with respect to ∇ i� they

hold with respect to∇′.

15[Saunders, 2013, p. 46]
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Proof. By Proposition 1, ∇′ = (∇, ηatbtc), for some spacelike �eld ηa such that ∇aηb =

0. It follows that

ξn∇′
nξ

a = ξn∇nξ
a − ηa (10)

So �rst, by equations (10) and (6),

∇′
a(ξ

n∇′
nξ

a) = ∇′
a(ξ

n∇nξ
a − ηa)

= ∇a(ξ
n∇nξ

a − ηa)− ηatatr(ξn∇nξ
r − ηr)

= ∇a(ξ
n∇nξ

a)−∇aη
a

Since ∇aηb = 0, ∇aη
b = taθ

n∇nη
b, where θn is any future-directed unit timelike �eld;

it follows that ∇aη
a = 0.16 So (9a) holds with respect to ∇ i� it holds with respect to

∇′. Second,

∇′c(ξn∇′
nξ

a) = ∇′c(ξn∇nξ
a − ηa)

= ∇c(ξn∇nξ
a − ηa)− hdcηatdte(ξn∇nξ

e − ηe)

= ∇c(ξn∇nξ
a)

And so equation (9b) also holds with respect to∇ i� it holds with respect to∇′.

Finally, consider equation (4). Since

∇′
aξ
a = ∇aξ

a − ηatatrξr

= ∇aξ
a

and∇′
aρ = ∇aρ, it is immediate that (4) holdswith respect to∇ i� it holdswith respect

to∇′.

16This observation is adapted from [Malament, 2012, p. 277].
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Wenow consider the relationship betweenMaxwell gravitation andNewton-Cartan

gravitation. First, we say that a connection is compatible with a given Maxwell space-

time if it is compatiblewith the Leibnizian substructure of theMaxwell spacetime, and

rotationally equivalent to the members of [∇]. We now prove an intermediate propo-

sition, giving the relationship between di�erent Newton-Cartan connections compat-

ible with a given standard of rotation.

Proposition 3. Let 〈L, [∇]〉 be a Maxwell spacetime, and let ∇̃ be any Newton-Cartan

connection compatible with [∇]. Then for any other connection ∇̃′, ∇̃′ is a Newton-

Cartan connection compatible with [∇] if and only if ∇̃′ = (∇̃, ηatbtc), for some space-

like �eld ηa such that ∇̃[aηb] = 0.

Proof. First, suppose that ∇̃′ = (∇̃, ηatbtc) for such a �eld ηa. Then for any timelike θa,

∇̃′[aθb] = hn[a∇̃′
nθ

b]

= hn[a∇̃nθ
b] − hn[aηb]θmtmtn

= ∇̃[aθb]

So clearly, ∇̃′[aθb] = 0 i� ∇̃[aθb] = 0, i.e., ∇̃ and ∇̃′ are rotationally equivalent. It remains

to show that ∇̃′ satis�es the homogeneous Trautman conditions (7). Applying the

standard condition relating two Riemann tensors,17 we obtain

R̃′a
bcd = R̃a

bcd + 2tbt[d∇̃c]η
a (11)

It is then a straightforward computation to show that

R̃′ab
cd = R̃ab

cd (12)

17[Malament, 2012, Equation 1.8.2]

13



So clearly, R̃′ab
cd = 0 i� R̃ab

cd = 0.

Next, suppose that R̃a c
b d = R̃c a

d b. Again, a straightforward computation (together

with the twist-freedom of ηa) yields

R̃′a c
b d = R̃′c a

d b (13)

where the third equality uses our supposition, and the twist-freedom of ηa. Showing

that if R̃′a c
b d = R̃′c a

d b then R̃a c
b d = R̃c a

d b proceeds similarly.

The converse half of the proof is adapted from [Weatherall, 2015b]. Suppose that ∇̃′

is a Newton-Cartan connection compatible with [∇]. Since ∇̃ and ∇̃′ are both compati-

blewithL, there is some antisymmetric tensor �eldκab such that ∇̃′ = (∇̃, 2hant(bκc)n).18

Now let θa be some unit timelike �eld such that ∇̃[aθb] = 0 (some such �eld is guar-

anteed to exist, since ∇̃ obeys the homogeneous Trautman conditions).19 Using the

fact that ∇̃′[aθb] = 0, we can show that ∇̃′ = (∇̃, ηatbtc) for some spacelike �eld ηa (see

[Weatherall, 2015b, p. 91] for details of the computation).

It remains to show that ηa is twist-free. By using equation (11), we obtain

R̃′a c
b d = R̃a c

b d + 2tbtd∇̃cηa (14)

So by exchange of indices, and applying the second homogeneous Trautman condi-

tion,

tbtd∇̃cηa = tbtd∇̃aηc (15)

Since ta 6= 0, ∇̃[cηa] = 0.

We can now show that there is an intimate relationship between Maxwell gravita-

tion and Newton-Cartan gravitation: more speci�cally, that each model of Newton-

18[Malament, 2012, Proposition 4.1.3]
19See [Malament, 2012, Proposition 4.3.7].
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Cartan gravitation is naturally associatedwith a uniquemodel ofMaxwell gravitation,

and vice versa. This provides a sense in which the two theories might be regarded as

equivalent, since the mutual pair of associations might be regarded as showing how

the two theories are intertranslatable with one another.20

Proposition 4. Let 〈L, ∇̃, ρ, ξa〉 be amodel ofNewton-Cartan gravitation. Then there is

a unique standard of rotation [∇] such that ∇̃ is compatible with [∇]; and 〈L, [∇], ρ, ξa〉

is a model of Maxwell gravitation.

Proof. First, de�ne [∇] as consisting of all and only those connections which are �at,

and which are rotationally equivalent to ∇̃. By the Trautman recovery theorem, there

is at least one such connection, so [∇] is nonempty. Hence, it is indeed a standard of

rotation with which ∇̃ is compatible—and it is manifestly unique in this regard.

It remains to show that 〈L, [∇], ρ, ξa〉 is a model of Maxwell gravitation. Let∇ be an

arbitrary element of [∇]. ∇ is a Newton-Cartan connection,21 and is evidently compat-

ible with [∇]; so by Proposition 3, ∇̃ = (∇, ηatbtc)where ∇̃[aηb] = 0. Since ∇̃ and∇ are

rotationally equivalent, we also have that∇[aηb] = 0. By equations (8b) and (10),

ηa = ξn∇nξ
a (16)

So, �rst,

∇c(ξn∇nξ
a)−∇a(ξn∇nξ

c) = ∇[cηa]

= 0

20cf. [Glymour, 1970], [Glymour, 1977], [Barrett and Halvorson, MS].
21As remarked earlier, any �at connection trivially satis�es the homogeneous Trautman conditions.
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So equation (9b) is satis�ed. Second, using equations (8a) and (11),

4πρtbtd = R̃bd

= 2tbt[a∇d]η
a

= −tbtd∇a(ξ
n∇nξ

a)

Since ta 6= 0, it follows that equation (9a) is satis�ed.

Proposition 5. Let 〈L, [∇], ρ, ξa〉 be a model of Maxwell gravitation. Then there is a

unique Newton-Cartan connection ∇̃ compatible with [∇] such that 〈L, ∇̃, ρ, ξa〉 is a

model of Newton-Cartan gravitation.

Proof. First, we show existence. Let∇ be an arbitrary element of [∇], and de�ne

∇̃ = (∇, tbtcξn∇nξ
a) (17)

First, we show that this is well-de�ned, i.e., that it is independent of the choice of ∇.

So let ∇′ ∈ [∇], and consider ∇̃′ = (∇′, tbtcξ
n∇′

nξ
a). By Proposition 1, ∇′ = (∇, ηatbtc)

for some ηa such that∇aηb = 0. Then for any vector �eld ζa,

∇̃′
aζ
b = ∇′

aζ
b − ζk(ξn∇′

nξ
b)tatk

= ∇aζ
b − ζkηbtatk − ζk(ξn∇nξ

b − ηb)tatk

= ∇aζ
b − ζk(ξn∇nξ

b)tatk

= ∇̃aζ
b

A similar computation shows that for any 1-form ωa, ∇̃′
aωb = ∇̃aωb. So ∇̃′ = ∇̃, and so

(17) is independent of the choice of ∇.

Second, we show that ∇̃ is a Newton-Cartan connection compatible with [∇]. For

this, given Proposition 3, it su�ces to observe that ξn∇nξ
a is a spacelike �eld which is
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twist-free (by equation (9b)).

Finally, we show that 〈L, ∇̃, ρ, ξa〉 is a model of Newton-Cartan gravitation. First, by

equations (11) and (9a),

R̃bd = −tbtd∇a(ξ
n∇nξ

a)

= 4πρtbtd

Second, by equation (10),

ξn∇̃nξ
a = ξn∇nξ

a − ξn∇nξ
a

= 0

Thus, equations (8) are satis�ed.

We now prove uniqueness. Suppose that ∇̃ and ∇̃′ are two Newton-Cartan con-

nections, compatible with [∇], such that ξn∇̃nξ
a = ξn∇̃′

nξ
a = 0. By Proposition (3),

∇̃′ = (∇̃, ηatbtc), where ∇̃[aηb] = 0. But then by equation (10), ξn∇̃nξ
a = ξn∇̃′

nξ
a − ηa.

So by our supposition, ηa = 0, and so ∇̃′ = ∇̃.

Extending these proofs to the versions of Maxwell and Newton-Cartan gravitation

including the continuity equations is straightforward: amodel 〈L, ∇̃, ρ, ξa〉 ofNewton-

Cartan gravitation will satisfy its associated continuity equation i� the corresponding

model 〈L, [∇], ρ, ξa〉 of Maxwell gravitation does so.

Proof. By Proposition 3, for any ∇ ∈ [∇], there is some spacelike �eld ηa such that

∇̃ = (∇, ηa). So ∇̃aξ
a = ∇aξ

a, and hence equation (4) holds with respect to ∇̃ i� it

holds with respect to ∇.

The �rst direction (that any model of Newton-Cartan gravitation gives rise to a

uniquemodel ofMaxwell gravitation) is not terribly surprising. What is more surpris-
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ing, perhaps, is the other direction. It is non-trivial that we are able to give (relatively

simple) conditions such that, if a timelike vector �eld ξa on Maxwell spacetime obeys

those conditions, there exists a Newton-Cartan connection with respect to which ξa is

a geodesic �eld. Moreover, it is non-trivial that the connection so picked out is unique.

In general, a single congruence of curves is nowhere near enough data to single out

a unique connection; the only reason it is so in this case is because of the extra re-

quirements that the connection obeys the homogeneous Trautman conditions and is

compatible with the background Maxwell spacetime.

Armed with these technical results, we can now return to the conceptual issues. As

one would have hoped, Saunders’ analysis is not dependent on the use of the point-

particle rather than �eld-theoretic formulation of gravitational theory: one can ex-

punge a privileged connection from the latter, just as from the former. Proposition 5

does raise some problems for Saunders’ assertion that the connection of Newton-

Cartan spacetime “is dispensable, to be derived, if at all, by �xing of gauge.”22 The

connection is dispensable, in the sense that one can expunge it from every model of

the theory without a loss of empirical content—indeed, without a loss of theoretical

content, insofar as Propositions 4 and 5 encode an equivalence between the theories

of Newton-Cartan and Maxwell gravitation. However, Saunders’ claim that the con-

nection is gauge structure is not correct, at least on the analysis here: for any given

model of Maxwell gravitation, a unique connection can be reconstructed, without any

appeal to conventional choices of gauge.23

That said, I suspect that the availability of such a unique reconstruction may be a

happy accident of this particular way of doing things, rather than a really robust fea-

ture of theories of this kind. More speci�cally, I conjecture that if the matter �elds (ρ

22[Saunders, 2013, p. 46]
23It is of course true that the reconstruction of a �at connection, together with a gravitational �eld, is

something that can only be performed by choosing a gauge (although boundary conditions may
make some such conditions especially natural or unnatural).
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and ξa) vanish somewhere, then one cannot reconstruct a unique connection. In sup-

port of this claim, note that the proof of Proposition 5 relies upon the fact that ξa is

nowhere-vanishing. At any point where ξa = 0, then contra equation (10), ξn∇′
nξ

a =

0 = ξn∇nξ
a, and so the proof of the uniqueness part of Proposition 5 fails. This would

mean that my account and Saunders’ are not in tension, since the point-particle setup

contains large regions of empty space(time). Note that if this conjecture is correct,

then if such �eldswere admitted it would no longer be so natural to interpretMaxwell

gravitation as equivalent to Newton-Cartan gravitation: one could have several non-

isomorphic Newton-Cartan models corresponding to the same Maxwell model. That

said, it would not necessarily be impossible. To do so would essentially mean re-

garding the Newton-Cartan connection as “surplus”, non-physical structure, so that

models of Newton-Cartan gravitation can be physically equivalent even if they carry

di�erent connections.24

These re�ections gives us a better handle on the question of whether acceleration

is absolute or relative. To claim that acceleration is relative in Maxwell gravitation

would mean taking the spacetime structure in a model 〈L, [∇], ρ, ξa〉 to be given by

the Maxwell spacetime 〈L, [∇]〉, rather than the Newton-Cartan structure 〈L, ∇̃〉 de-

�nable within the model. In favour of this interpretation, note that L and [∇] are the

only primitive geometrical structures in any model of Maxwell gravitation; so on a

view which identi�es spacetime structure as just the primitive geometrical structure

of a theory, it would be very natural to read this theory as a theory with merely rel-

ative acceleration. On the other hand, if one has a di�erent conception of spacetime

structure, then it may well be that the Newton-Cartan connection is properly identi-

�ed as spatiotemporal structure—the fact that it is derived from material dynamical

structures (i.e., ξa) notwithstanding. In particular, Knox’s “spacetime functionalism”25

24cf. [Weatherall, 2015a].
25[Knox, 2014]
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holds that the spacetime structure in a theory is whatever structure encodes the rele-

vant notion of inertial frame in that theory. There are good grounds for thinking that

this role is played by the Newton-Cartan connection—and hence, for the spacetime

functionalist to maintain that acceleration in Maxwell gravitation is absolute. Thus,

this case provides an (admittedly partial) illustration of the so-called “dynamical ap-

proach to spacetime geometry”,26 in which one seeks to characterise spacetime geom-

etry as a codi�cation of the behaviour of dynamical structures.27

Note that if the conjecture above is correct (i.e., if one cannot reconstruct a unique

Newton-Cartan connection from somewhere-vanishingmatter �elds), then admitting

such �elds will shift the dialectic again: under those circumstances, even the space-

time functionalist would admit that acceleration in Maxwell gravitation would be

relative rather than absolute. This would be in contrast to the situation in Newton-

Cartan gravitation, and so the question of whether acceleration is relative will depend

upon which theory the spacetime functionalist prefers as their theory of gravitation:

Newton-Cartan or Maxwell gravitation.

[Weatherall, 2015b]’s analysis is very similar to that given here. His key result is

the following (where I have modi�edWeatherall’s notation, to match that used in this

paper):

Let {γ}ρ be the collection of allowed trajectories for a given mass distribu-

tion ρ in Maxwell-Huygens [i.e., Maxwell] space-time 〈L, [∇]〉 [. . . ]. Then

there exists a unique derivative operator ∇̃ such that (1) {γ}ρ consists of the

timelike geodesics of ∇̃ and (2) 〈L, ∇̃〉 is a model of Newton-Cartan theory

for mass density ρ.28

The similarity to Proposition 5 above is obvious. The only di�erence is that Proposi-

26[Brown, 2005], [Stevens, 2015]
27[Wallace, MS] discusses these issues in more depth.
28[Weatherall, 2015b, Proposition 4]
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tion 5 assumes only a single congruence of curves, rather than the whole collection

of allowed trajectories; as already discussed, however, there are reasons to think that

in general (i.e. if the matter �elds vanish somewhere), reconstructing the connection

will require the full class of curves, not just a single congruence.

The more signi�cant di�erence is in how one arrives at the collection of allowed

trajectories. Weatherall writes the following (again, with the notationmodi�ed to that

of this paper):

[. . . ] given a Maxwell-Huygens [i.e., Maxwell] space-time 〈L, [∇]〉, for any

∇ ∈ [∇], there exists some scalar �eld φ such that (1)∇a∇aφ = 4πρ, where

ρ is the mass density distribution of space-time; and (2) the allowed trajec-

tories of bodies are curves γ whose acceleration (relative to ∇) is given by

ξn∇nξ
a = ∇aφ. [. . . ]

What is the invariant physical structure in this theory? For one, as we have

seen, there is the standard of rotation shared between the derivative oper-

ators. This gives the sense in which this is a theory in Maxwell-Huygens

space-time. The other invariant structure, however, is the collection of al-

lowed trajectories for bodies. These are calculated in di�erent ways de-

pending on which representative one chooses from [∇], and the accelera-

tion associated with each such curve varies similarly. So we do not have

the structure to say that these curves are accelerating or not. But however

they are described, that is, whatever acceleration (if any) is attributed to

them, the curves themselves are �xed. Indeed, given some distribution of

matter in space-time, it is these curves that form the empirical content of

Newtonian gravitational theory.29

I interpretWeatherall here asmaking the following observation (expressed in terms
29[Weatherall, 2015b, pp. 88–89]
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of gravitational �elds rather than gravitational potentials): given aMaxwell spacetime

equipped with a mass density, 〈L, [∇], ρ〉, there is a collection of curves {γ} such that

for any ∇ ∈ [∇], there exists a spacelike vector �eld Ga
∇ such that:

• 〈L, [∇], ρ, Ga
∇〉 satis�es equations (3) and (3b); and

• {γ} consists of all and only those curves which satisfy ξn∇nξ
a = Ga

This, in turn, leads toWeatherall’smethod for characterising themodels of gravitation

onMaxwell spacetime: 〈L, [∇], ρ, {γ}〉 is amodel if and only if (i) for any∇ ∈ [∇], there

is some spacelike �eld Ga
∇ such that 〈L,∇, Ga

∇, ρ, {γ}〉 is a model of Galilean gravita-

tion; and (ii) {γ} is appropriatelymaximal, i.e., if γ′ is a curve such that ξ′n∇nξ
′a = Ga

∇,

then γ′ ∈ {γ}. Thus, it is to models picked out in this fashion that Weatherall’s Propo-

sition 4 (quoted above) is addressed. It is not hard to show that 〈L, [∇], ρ, {γ}〉 satis�es

these conditions just in case for any vector �eld ξa whose integral curves are all mem-

bers of {γ}, 〈L, [∇], ρ, ξa〉 is amodel ofMaxwell gravitation (i.e., satis�es equations (9)).

Hence, I am getting at essentially the same point as Weatherall—but, I claim, there

is value to having a set of equations which more simply and directly pick out the

models of Maxwell gravitation. In particular, it helps us see a little more clearly the

reason why the theory may be set onMaxwell spacetime, but not on anything weaker.

If the game is just that of picking out a certain class of models, then we can set a

gravitational theory on Leibniz spacetime just as easily as upon Maxwell spacetime.

For consider the following theory, of “Leibniz gravitation”: a triple 〈L, ρ, {γ}〉 is a

model of Leibniz gravitation if and only if for some∇ compatiblewithL, there is some

spacelike �eld Ga
∇ such that 〈L,∇, Ga

∇, ρ, {γ}〉 is a model of Galilean gravitation; and

(ii) {γ} is appropriately maximal. We can prove a reconstruction theorem for Leibniz

gravitation of just the same sort asWeatherall gravitation: given anymodel of Leibniz

gravitation 〈L, ρ, {γ}〉, there is a unique derivative operator ∇̃ such that 〈L, ∇̃, ρ, {γ}〉
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is a model of Newton-Cartan gravitation.30

Yet Leibniz gravitation is a blatant pseudo-theory—“arrant knavery”, as Belot rightly

derides it.31 Why is it knavery? Because rather than universally quantifying over con-

nections compatible with the background structure, we existentially quanti�ed over

them. The fact that Maxwell gravitation is a legitimate theory, whereas Leibniz grav-

itation is not, is hard to see when both are presented merely as classes of models. By

contrast, if we insist that the class of models be picked out by a set of equations, then

we can more easily keep ourselves honest.32

I conclude by remarking on some directions for further work. First, there is the con-

jecture mentioned above: that the reconstruction of the connection is only possible if

the matter �elds vanish nowhere. Second, there is the question of what happens if

non-gravitational interactions are included in the theory. Finally, it would be interest-

ing to know how these issues play out in the relativistic case: that is, whether there

is some way of presenting general relativity as a theory set upon some appropriate

relativistic analogue of Maxwell spacetime. I leave these issues for the future.
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