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Abstract

The communist norm requires that scientists widely share the re-
sults of their work. Where did this norm come from, and how does it
persist? Michael Strevens provides a partial answer to these questions
by showing that scientists should be willing to sign a social contract
that mandates sharing. However, he also argues that it is not in an
individual credit-maximizing scientist’s interest to follow this norm.
I argue against Strevens that individual scientists can rationally con-
form to the communist norm, even in the absence of a social contract
or other ways of socially enforcing the norm, by proving results to
this effect in a game-theoretic model. This shows that the incentives
provided to scientists through the priority rule are in many cases suffi-
cient to explain both the origins and the persistence of the communist
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norm, adding to previous results emphasizing the benefits of the in-
centive structure created by the priority rule.

1 Introduction

The social value of scientific work is highest when it is widely shared. Work
that is shared can be built upon by other scientists, and utilized in the wider
society. Work that is not shared can only be built upon or utilized by the
original discoverer, and would have to be duplicated by others before they
can use it, leading to inefficient double work.1

To put the point more strongly, work that is not widely shared is not really
scientific work. Insofar as science is essentially a social enterprise, represent-
ing the cumulative stock of human knowledge, work that other scientists do
not know about and cannot build upon is not science (cf. the distinction
between Science and Technology in Dasgupta and David 1994). The sharing
of scientific work is thus a necessary condition not merely for the success of
science, but in an important sense for its very existence.

The sociologist Robert Merton first noticed that there exists an insti-
tutional norm in science that mandates widely sharing results. He called
this the communist norm, according to which “[t]he substantive findings of
science. . . are assigned to the community. . . The scientist’s claim to ‘his’ intel-
lectual ‘property’ is limited to that of recognition and esteem” (Merton 1942,
p. 121). Subsequent empirical work by Louis et al. (2002) and Macfarlane
and Cheng (2008) confirms that over ninety percent of scientists recognize
this norm of sharing. Moreover, most scientists (if not as many as ninety
percent) consistently conform to the communist norm.

The existence of this norm raises two questions. Where did it come from?
1Of course scientific work is often duplicated by others even when it is shared (so-called

replications). But this is not inefficient in the same way, as after the replication is shared
the work is known by all to be more certainly established than if only one or the other
instance was shared.
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And how does it persist? In light of what I said above, these are important
questions. A good understanding of what makes the communist norm persist
tells us which aspects of the institutional (incentive) structure of science can
be changed without affecting the communist norm. Understanding its origins
might allow us to reinstate the communist norm if it disappeared for whatever
reason. Insofar as we value the existence and success of science, these are
things we should want to know.

Strevens (forthcoming) gives what he calls a “Hobbesian vindication” of
the communist norm by showing that scientists should be willing to sign a
contract that enforces sharing. The claim is that, from a credit-maximizing
perspective, it is not beneficial for an individual scientist to share her work
(which would help other scientists more than her), but every scientist is
better off if everyone shares than if no one shares.

As Strevens is well aware, this only partially answers the question of
the persistence of the communist norm, and says little about its origins.
In contrast, I argue that in many circumstances sharing is rational from a
credit-maximizing perspective for an individual scientist. If my argument is
successful, it provides a much more detailed account of both the origins and
the persistence of the communist norm. It also adds to a tradition of work
in philosophy and economics that has emphasized how individual scientists’
“selfish” desire to receive credit for their work furthers the aims of science
(e.g., Kitcher 1990, Dasgupta and David 1994, Strevens 2003).

Because the existence of a norm can itself change what is in scientists’
interests to do, the sense of “rational” in the above needs to be clarified.
For this purpose, I rely on the terminology for social norms developed by
Bicchieri (2006). I explain this terminology in section 2 and use it to state
Strevens’ position more precisely.

Section 3 sets out my own position by explaining how the idea that sci-
entists can publish and claim credit for intermediate results can be used to
establish the rationality of sharing. Section 4 makes this more precise by
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describing a game-theoretic model of scientists working on a research project
needing to decide whether to share their intermediate results.2

I then show that rational credit-maximizing scientists should indeed be
expected to share under a range of conditions (section 5). Section 6 discusses
the assumptions and limitations of this formal result. In section 7 I use
these results to give an explanation of the persistence of the communist
norm, and I consider some objections. I extend my explanation to include
the origins of the norm in section 8, which involves considering boundedly
rational scientists and some historical evidence. A brief conclusion wraps up
the paper.

2 Social Norms and Communism

The question that this paper focuses on is whether it is in a scientist’s interest
to behave in accordance with the communist norm. More specifically, would
it be in scientists’ interest to share their work even in the absence of a norm
telling them to do so? To clarify the question, I use some terminology defined
by Bicchieri (2006). She defines a social norm as follows:

Let R be a behavioral rule for situations of type S, where S can
be represented as a mixed-motive game. We say that R is a social
norm in a population P if there exists a sufficiently large subset
Pcf ⊆ P such that, for each individual i ∈ Pcf:

Contingency: i knows that a rule R exists and applies to situa-
tions of type S;

Conditional preference: i prefers to conform to R in situations of
type S on the condition that:

2The idea of using game theory to get a better understanding of norms in science goes
back at least as far as Bicchieri (1988).
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(a) Empirical expectations: i believes that a sufficiently large sub-
set of P conforms to R in situations of type S;

and either

(b) Normative expectations: i believes that a sufficiently large
subset of P expects i to conform to R in situations of type S;

or

(b′) Normative expectations with sanctions: i believes that a suf-
ficiently large subset of P expects i to conform to R in situations
of type S, prefers i to conform, and may sanction behavior. (Bic-
chieri 2006, p. 11)

The crucial feature of this definition is the requirement of normative ex-
pectations. This says that an individual’s preference to conform to the norm
is conditional on others’ expectations (possibly enforced by sanctions). For
example, norms surrounding the sharing of food are plausibly social norms:
in the absence of others expecting them to share, many people might prefer
not to share even if they knew most other people shared. In contrast, if an
individual knows that in a particular country most people drive on the right
side of the road, she would probably prefer to do the same even if others had
no expectations about her behavior.

The language of game theory is useful to sharpen these ideas. Recall
that conforming to a behavioral rule R constitutes a (Nash) equilibrium if
no individual has an incentive to deviate unilaterally, i.e., everyone prefers
to conform given that everyone else does.

If knowledge of R and empirical expectations (that others will conform
to R) are sufficient to make an individual prefer to conform to R, then
according to this definition R is an equilibrium of the underlying game that
is being played in situations of type S. But if normative expectations are
required, that is, if individuals only prefer to conform to R if others expect
them to conform (and, possibly, are willing to back this up with sanctions),
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then R is not an equilibrium of the “original” game: it is only made into an
equilibrium by the existence of the norm itself. So the existence of a social
norm transforms the underlying game by changing people’s preferences, thus
creating a new equilibrium (Bicchieri 2006, pp. 25–27).

Is the communist norm a social norm in this sense, i.e., are normative
expectations a necessary ingredient to make it in scientists’ interest to share
their work? In order to answer this question, an account of scientists’ in-
terests is needed that is independent of the communist norm, so that the
question can be asked whether a self-interested scientist would share her
work in the absence of a normative expectation.

A scientist’s achievements create for her a stock of credit. This credit
is the means by which she advances her career, which determines both her
income and her status in the profession. Insofar as a scientist is someone
who is interested in building a career in science, it is then in her interest to
maximize credit. This claim has been defended by philosophers and sociol-
ogists as diverse as Hull (1988, chapter 8), Kitcher (1990), Strevens (2003),
Merton (1957, 1969), and Latour and Woolgar (1986, chapter 5).

This is not to deny that a scientist may have other interests, either as
a scientist (e.g., to advance human knowledge) or apart from being a sci-
entist (e.g., to have time for other pursuits). But these are idiosyncratic.
Credit maximization is an interest that all scientists share. This makes it a
particularly powerful tool to explain scientists’ behavior.

The institutions of science put a premium on originality. Credit is award-
ed to the first scientist to publish some particular result or discovery. This
feature of science is known as the priority rule, and the extent to which it
shapes scientists’ behavior is well-documented (Merton 1957, 1969, Kitcher
1990, Dasgupta and David 1994, Strevens 2003).

By rewarding only the first scientist, the priority rule encourages scientists
to work and publish quickly (Dasgupta and David 1994). In this way, it
seems that the priority rule creates an incentive for scientists to share their
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work. However, “the same considerations give you a powerful incentive not
to share your results before you have extracted every last publication from
them” (Strevens forthcoming, p. 2). If results were shared before publication,
this would improve other scientists’ chances of scooping important discoveries
for which those results are relevant. So, Strevens argues, there is a split in
the motivations provided by the priority rule:

The priority rule motivates a scientist to keep all data, all technol-
ogy of experimentation, all incipient hypothesizing secret before
discovery, and then to publish, that is to share widely, anything
and everything of social value as soon as possible after discovery
(should a discovery actually be made). The interests of soci-
ety and the scientist are therefore in complete alignment after
discovery, but before discovery, they appear to be diametrically
opposed. (Strevens forthcoming, pp. 2–3)

Thus, at the crucial stage at which scientific progress can be sped up
by sharing, the priority rule provides no incentive to do so, according to
Strevens.

Strevens then goes on to show that a social contract, in which all scientists
agree to widely share their work (even before discovery), would be beneficial
to all scientists. Putting this all together, Strevens has effectively claimed
that the problem of sharing has the structure of a Prisoner’s Dilemma: every
scientist would be better off if every scientist shared, but each individual
scientist has an incentive not to share. The communist norm is thus a social
norm on Strevens’ view: without normative expectations to transform the
game (into something that looks more like a Stag Hunt), widely sharing
scientific work is not an equilibrium.

Strevens is not the only one to make this claim. For example, Resnik
(2006, p. 135) observes that “the desire to protect priority, credit, and
intellectual property” can motivate scientists to keep scientific results se-
cret. Claims like this are also made by Dasgupta and David (1994, p. 500),
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Arzberger et al. (2004, p. 146), Borgman (2012, p. 1072), and Soranno et al.
(2015, p. 70), among others.

3 Communism and Intermediate Results

In this paper I argue that, given the priority rule, it is often in a scientist’s
own interest to share her work widely. In other words, in many realistic
situations sharing widely is an equilibrium of the relevant game even in the
absence of normative expectations. The problem of sharing is thus not like
a Prisoner’s Dilemma: the role of the communist norm is not to change
scientists’ preferences to make sharing attractive (at least not primarily). It
merely describes a rule of behavior that it is often in scientists’ own best
interests to follow.

An important part of my argument is the insight that major discoveries
can often be split into multiple smaller discoveries. Boyer (2014, p. 18 and
p. 21) gives some examples: the construction of the first laser can be split
into a theoretical development and the actual construction based on that
theory, and the experimental test of the EPR thought experiment by Aspect
et al. (1982) was preceded by a number of papers defining and refining the
experiment.

In these cases each of the smaller discoveries was published as soon as
it was done, rather than after the major discovery was completed. It is not
obvious that the scientists involved were acting in their own best interest.
While credit can be claimed when a smaller discovery is published, the advan-
tage that the smaller discovery gives on the way toward the major discovery
is thereby lost. In fact, Schawlow and Townes seem to have lost the race to
build the first working laser at least partially because their publication of the
theoretical idea spurred on other teams.

Boyer (2014) provides a model to analyze this tradeoff. In his model the
benefits of sharing intermediate results outweigh the costs, with costs and
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benefits both measured in credit assigned via the priority rule. Although
Boyer does not specifically discuss the communist norm, his result could be
used to argue that normative expectations are not necessary to explain it:
the priority rule encourages wide sharing of scientific work even before the
potential of future discoveries based on this work has been exhausted.

The key claim is that, contra Strevens (forthcoming), a social contract
may not be needed to enforce sharing. The reason for this is the possibility
to claim credit for intermediate results.

One may worry that Boyer’s result is not general enough to support claims
about the origins or persistence of the communist norm. By his own admis-
sion, he only shows that “there exist simple and plausible research situations
for which the [credit] incentive to publish intermediate steps is sufficient”
(Boyer 2014, p. 29). I aim to show that in fact many if not most research
situations are such that there is a credit incentive to publish intermediate re-
sults, which requires a more general model. I relax Boyer’s assumptions that
there are only two scientists, that the scientists are equally productive, that
different intermediate results are equally hard to achieve, and that scientists
share either all or no intermediate reuslts.

The second worry questions the relevance of equilibria. This worry has
two sides. One side claims that showing that sharing is an equilibrium is not
sufficient to show that one should expect real scientists to share, especially
when there are also other equilibria (this is known as the equilibrium selection
problem). The other side claims that showing that sharing is an equilibrium
is not necessary; observed behavioral patterns need not be the equilibrium
of some underlying game. I alleviate both of these worries by showing that
sharing is an equilibrium that one should expect to be realized by both fully
rational and boundedly rational scientists. Thus, the particular equilibrium
considered here has behavioral implications.
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4 A General Game-Theoretic Model of Inter-
mediate Results

The game-theoretic model I develop in this section is intended to investigate
scientists’ incentives when they are working on a project that can be divided
into a number of intermediate stages.3 An intermediate stage is a part of the
project which, when completed successfully, yields a publishable intermediate
result in the sense of Boyer (2014, section 2). I assume that stages can only
be completed in one order.4 The number of intermediate stages of the project
is denoted k.

Competition plays a central role in the model. Merton (1961) argued
for the ubiquity of multiple discoveries in science, which suggests that scien-
tists should almost always expect other scientists to be working on the same
project. I thus assume that n ≥ 2, where n is the number of scientists (or
research groups) working on the project. Note that “scientist” may refer to
someone working in the natural sciences, the social sciences, the humanities,
or any other field where the priority rule applies.

Whenever a scientist completes an intermediate stage, she has to make a
choice: she can either publish the result, or keep it to herself.5 Publishing
benefits the scientist, because she thereby claims credit for completing that
intermediate stage as well as any preceding stages that remain unpublished,
in accordance with the priority rule. The amount of credit is given by the
parameter cj > 0 for each stage j, with C = ∑k

j=1 cj denoting the total credit
available. Publishing also benefits the scientific community: other scientists

3Although it was developed independently, the model turns out to be essentially iden-
tical to the model studied by Banerjee et al. (2014). In section 6 I discuss their results,
which are roughly speaking weaker results in a more general model. Banerjee et al. do
not, however, give a detailed defense of the assumptions, or the application to explaining
the communist norm.

4This ordering assumption may seem restrictive and unrealistic, but in section 6 I give
reasons to think relaxing it will not affect my results.

5By assumption, the result is publishable, i.e., if she decides to publish it, it will be
accepted by a journal.

10



no longer need to work independently on the stages that have been published.
Publishing thus “expedites the flow of knowledge”. I use E to denote this
strategy.

If the scientist keeps her result secret instead, she can start working on
the next stage before anyone else can. This improves her chance of being
the first to successfully complete the next stage, thus allowing her to claim
credit for more stages later. Holding onto a discovery until a more expedient
time might thus be beneficial to the scientist. Call this strategy H.

When a scientist completes the last stage she always publishes, claiming
credit for all unpublished stages and completing the research project.

An interesting feature of the priority rule is its uncompromising nature.
According to the priority rule, there are no second prizes, even if the time
interval between the two discoveries is very small. This feature was noted
by Merton (1957, p. 658), who quotes the French scientist François Arago as
saying: “‘about the same time’ proves nothing; questions as to priority may
depend on weeks, on days, on hours, on minutes.”6

To incorporate this feature in the model, it needs to be able to distinguish
arbitrarily small time intervals. This suggests a continuous-time model: a
model using discrete time units might place two discoveries in the same time
unit even though in reality one of them happened (slightly) earlier than the
other.

This means that a continuous-time probability distribution is needed to
model the waiting time: the time it takes a given scientist to complete an
intermediate stage. For this purpose I use the exponential distribution, the

6Merton (1957, pp. 658–659) goes on to argue that this is a pathological extreme:
when the interval between two discoveries is so small, “priority has lost all functional
significance.” I agree with Strevens (2003, section IV.1) that this is not obviously correct.
A version of the priority rule which gives shared credit when the time interval between
discoveries is below a certain threshold would create a different incentive structure for
scientists, and it is an open question whether that incentive structure would be better or
worse. In any case, here I simply take the uncompromising version of the priority rule as
given.
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only candidate that has significant empirical support behind it (Huber 2001,
more on this below).

To be precise, the time scientist i takes to complete stage j follows an
exponential distribution with parameter λij > 0. The parameter can be in-
terpreted as the speed at which the scientist works. In particular, 1/λij is
the expected time scientist i needs to complete stage j. The speed parame-
ter may vary by scientist and by stage, allowing for differences in difficulty
between stages and differences in talent, skill, resources, or specialization
between scientists.

The assumption that waiting times are exponential is equivalent to the
assumption that scientists’ productivity is a (nonstationary) Poisson process.
Empirical work has shown that scientists’ productivity fits a Poisson distri-
bution quite well. Huber (1998a,b) has established this for the rate at which
patents are produced by inventors, Huber and Wagner-Döbler (2001a) for
publications in mathematical logic, Huber and Wagner-Döbler (2001b) for
publications in 19th century physics, and Huber (2001) for publications in
modern physics, biology, and psychology.

Under this assumption the probability that it will take scientist i more
than t time units to complete stage j is exp{−tλij}.7 This distribution
has some formal features that I will make use of (Norris 1998, section 2.3).
First, it is “memoryless”. This means that after a certain amount of time
has passed and the waiting time has not ended yet, the distribution of the

7Compare this with Boyer’s assumption that there is a fixed probability λ that a given
scientist will solve a given stage in a given time unit. As noted above, by using discrete
time units this model provides no way of applying the priority rule when two scientists
finish the same stage in the same time unit. To address this, suppose each time unit
is divided into x equal parts, and in each part the scientist completes the stage with
probability λ/x. The probability that the scientist has not completed the stage at time t
(where t is measured in the original time units) is (1−λ/x)tx. A continuous-time model is
obtained by taking the limit as x goes to infinity. Then the probability that the scientist
has not completed the stage at time t is limx→∞(1− λ/x)tx = exp{−tλ}. So, in addition
to being independently empirically justified, exponential waiting times naturally arise as
the limiting case of Boyer’s model with continuous time.
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remaining waiting time is equal to the original distribution of the waiting
time. Second, if scientist i is working on stage ji then the waiting time until
one of the scientists finishes the stage she is working on is exponentially
distributed with parameter

σj1j2···jn =
n∑

i=1
λiji

.

In the special case where all scientists are working on the same stage I will
write σj = ∑n

i=1 λij. Third, the probability that scientist i is the first one to
finish the stage she is working on is λiji

/σj1j2···jn .
In general, whether there is an incentive to share intermediate results in

this model depends on the amount of credit given for each stage and the speed
with which the different scientists can solve them. The results presented in
the next section require the following assumption.

Assumption 4.1 (Proportional Credit). The speed parameters and the credit
rewards stand in the following relation: for every scientist i and for each pair
of stages j < j′,

cjλij ≥ cj′λij′ .

This assumption states that the credit given for each stage is either pro-
portional to its difficulty, or earlier stages are awarded more credit than later
ones (relative to their difficulty). I discuss the import of this assumption, as
well as other limitations of the model, in section 6.

5 The Incentive to Share in the Model

The previous section described a game-theoretic model of scientists working
on a project that requires some number of intermediate stages to be com-
pleted. The game consists of a sequence of (probabilistic) events, in which
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the scientists can intervene at specific points through their choice of strat-
egy by publishing their work (E) or keeping it secret (H). Each scientist
attempts to maximize her credit.

In the simplest version of the game there are two scientists (n = 2) and
the research project has two stages (k = 2). The extensive form of the game
is given in figure 5.1.
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Figure 5.1: Extensive form of the game of perfect information with n = 2
and k = 2.

At the root node Nature decides which of the two scientists is the first
one to complete the first stage of the project with the indicated probabilities.
This leads to one of two decision nodes marked with a number indicating
which scientist makes a decision at this node.

The scientist can choose one of two strategies (E or H), then Nature
decides who is the next scientist to complete the stage she is working on, and
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so on until one of the scientists completes the second stage. At this point
the game ends, with payoff pairs indicating credit awarded to each scientist.

It is implicitly assumed in figure 5.1 that each scientist knows when an-
other scientist completes a stage, even when she keeps the result secret. Is it
realistic to assume that scientists have this kind of information? It depends.
In small fields where everyone knows what everyone else is working on word
gets around when one of the labs has solved a particular problem, even when
they manage to keep the details to themselves. Or with pre-registration of
clinical trials becoming more common, scientists might know that some other
scientist knows, say, whether a particular drug is effective, without knowing
whether the answer is yes or no.
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Figure 5.2: Extensive form of the game of imperfect information with n = 2
and k = 2.

But in other fields this kind of information might not be available. If this
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assumption is dropped scientists are unable to distinguish between certain
decision nodes, indicated by so-called information sets (see figure 5.2). This
yields a game of imperfect information. In contrast, the version of the game
in which scientists can make these distinctions (as in figure 5.1) is a game of
perfect information. I analyze both versions of the game.

Recall that I am interested in finding equilibria of these games. One way
to find an equilibrium in a game of perfect information is by backwards induc-
tion. This involves identifying what a rational scientist will do at a terminal
decision node, and then going backwards through the tree, identifying ratio-
nal actions for the scientists by assuming other scientists will play rationally
downstream.

In figure 5.1 it is rational for the scientists at the two lower decision nodes
to play strategy E: this yields either the same payoff or a higher payoff than
playing strategy H. Assuming that the scientists play E at the lower nodes,
and assuming Proportional Credit, it is also rational for the scientists at the
two higher nodes to play strategy E. Thus, under Proportional Credit the
backwards induction solution of this game is for both scientists to play E at
both of their decision nodes.

The following theorem shows that this backwards induction analysis also
goes through when there are more than two scientists and/or more than
two stages (for a proof, see appendix A). Moreover, any other equilibrium
of the game is behaviorially indistinguishable from the backwards induction
solution. That is, while there may be other equilibria, these differ only in
that some scientists make different decisions at decision nodes that will not
actually be reached in the game.

Theorem 5.1. Consider the game with perfect information with n ≥ 2 sci-
entists and k ≥ 1 stages, and assume Proportional Credit.

(a) This game has a (unique) backwards induction solution in which all
scientists play strategy E at every decision node.
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(b) There are no equilibria (in pure or mixed strategies) that are behav-
iorally distinct from the backwards induction solution.

An equilibrium analysis thus yields a unique prediction for the game of
perfect information. How about the game of imperfect information? Back-
wards induction does not apply to this type of game. But equilibria can
still be identified by analyzing the normal form of the game. Table 5.1 gives
the expected credit for each scientist in two examples, one in which the first
scientist is thrice as fast as the second, and one in which the second stage
can be completed thrice as quickly as the first stage. Note that because
the scientists cannot distinguish between their two decision nodes, only two
(pure) strategies are available to them.

E H
E (24, 8) (261

4 , 5
3
4)

H (231
4 , 8

3
4) (27, 5)

E H
E (16, 16) (15, 17)
H (17, 15) (16, 16)

Table 5.1: Normal form of the game of imperfect information with scien-
tist 1’s strategy as the rows and scientist 2’s strategy as the columns. On
the left, λ11 = λ12 = 3, λ21 = λ22 = 1, and c1 = c2 = 16. On the right,
λ11 = λ21 = 1, λ12 = λ22 = 3, and c1 = c2 = 16.

Since the credit given for each stage is equal in both cases, the example
on the left satisfies Proportional Credit while the example on the right does
not. On the left, the only equilibrium is the one in which both scientists play
strategy E, and this is a strict equilibrium (a scientist who deviates is strictly
worse off). On the right, both scientists play strategy H in the unique and
strict equilibrium.

The features of the example on the left generalize for different numbers
of scientists and stages (see appendix A for a proof).

Theorem 5.2. Consider the game with imperfect information with n ≥ 2
scientists and k ≥ 1 stages and assume Proportional Credit.
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(a) This game has an equilibrium in which all scientists play strategy E at
every information set.8

(b) There are no other equilibria (in pure or mixed strategies).

(c) The equilibrium is strict.

What do theorems 5.1 and 5.2 say about what it is rational for a scien-
tist to do when working on a research project where Proportional Credit is
satisfied? They say that if not every scientist immediately shares any stage
that she completes, there is at least one scientist who is irrational in the sense
that she would have had a higher expected credit if she had played a different
strategy. So the only way these scientists can all be rational is if they all
share every stage. In other words, if all scientists are rational expected credit
maximizers they will all share.

6 Limitations of the Formal Results

I have shown using a formal model that scientists have a credit incentive
to share their intermediate results in a range of circumstances. In order to
show this I had to make certain assumptions. This section discusses how
these assumptions limit the applicability of my theorems. Sections 7 and 8
discuss how the theorems may explain the communist norm.

A key assumption is Proportional Credit. It states that, relative to their
difficulty, earlier stages must be rewarded with at least as much credit as later
stages. As one of the examples in section 5 illustrated, if this assumption is
violated there may not be an equilibrium in which scientists share.

Is Proportional Credit likely to be violated in practice? It may seem
reasonable to reward scientists proportional to the difficulty of their contri-
butions. On the other hand, Strevens (2003) and Heesen (2016) have argued

8This result is a corollary of Banerjee et al. (2014, theorem 2.1). See the discussion in
section 6.
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that scientific contributions should be rewarded based on their social value,
which may not always correlate with difficulty. Additionally, in practice it
may happen that the scientist who finishes the last stage (“puts it all to-
gether”) gets a relatively large share of the credit.

From a descriptive perspective, these might be the kinds of cases where
scientists do not share their intermediate results, and my model suggests
why. From a normative perspective, perhaps the appropriate conclusion is
that Proportional Credit should be enforced. If scientists are rewarded pro-
portionally to difficulty, without extra credit for completing the last stage of
a research project, then sharing is incentivized.

Enforcing Proportional Credit may be hard if the difficulty of scientific
contributions is unclear. Banerjee et al. (2014) show that there may still be
an equilibrium in which scientists share if Proportional Credit is enforced
with some limited degree of error, depending on the scientists’ speed param-
eters.9 But Banerjee et al. show neither uniqueness10 nor strictness of the
equilibrium. Since my explanation of the communist norm relies on these
features, it is not clear how helpful this limited degree of robustness of the
equilibrium is.

A different limitation is the assumption that the stages can only be com-
pleted in one order. In reality, there might be different ways to complete
a research project. This could be incorporated by modeling the stages as a
directed graph with different “paths” to complete the project. Banerjee et al.
(2014, theorem 3.3) show that under Proportional Credit sharing interme-
diate results is an equilibrium of this generalized version of the game. The
same caveat applies—Banerjee et al. do not show uniqueness or strictness—
but here I think there is some reason to believe that the equilibrium they

9More precisely, Banerjee et al. (2014, theorem 2.1) show that in the game of imperfect
information there is an equilibrium in which every scientist plays strategy E at every
information set if for every scientist i and for each pair of stages j < j′, cj(σj−λij)

cj′ (σj′−λij′ ) ≥
λij′

σj′
.

10Banerjee et al. only prove uniqueness for a case in which some of the scientists commit
to sharing before the game starts (so-called Stackelberg agents). Theorem 5.2 above does
not require this.
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find is indeed unique and strict. This is because this adaptation of the model
seems to only make sharing more attractive, because sharing is less likely to
help a scientist’s competitors (who may be on a different path).

A difference between my model and the one given by Strevens (forthcom-
ing) is that my model is zero-sum. This is because I have implicitly assumed
that the scientists eventually complete the research project.11 Hence when
the game ends a total of C units of credit have been divided among the sci-
entists, and so any change in strategy that leads to some scientist improving
her (expected) credit must lower another’s.

In contrast, Strevens’ model explicitly leaves room for the scenario in
which the research project is never completed by anyone. By sharing their
progress, Strevens assumes, the scientists improve each other’s chances of
completing the research project. In fact this appears to be the main driving
force behind his result that scientists should be willing to sign a social con-
tract that enforces sharing: in his model sharing improves the overall chance
that any credit is awarded at all, and as long as this “extra” credit is divided
in such a way that everyone benefits at least a little (in expectation), it is
clear that everyone will be better off if everyone shares.

On this point, Strevens’s model is arguably more realistic, as research
projects sometimes fail to reach their goal. It would be interesting to study
a model which incorporates both a positive probability of failure and credit
for intermediate results. Whether there would be an incentive to share in-
termediate results under conditions similar to those I have found here is a
question I leave for future research.

There are other ways to change the model that would make it no longer
zero-sum. For example, Boyer-Kassem and Imbert (2015, section 4) argue
that one should consider credit per unit time (rather than “total credit” which
I use). Then sharing benefits all scientists to some extent by decreasing the

11More precisely: the scientists complete all k stages in finite time with probability one.
The models of Banerjee et al. (2014), Boyer (2014), and Boyer-Kassem and Imbert (2015)
have the same feature.
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expected completion time of the research project; Boyer-Kassem and Imbert
call this a “speedup effect”. For present purposes it makes no difference: my
theorems still hold if credit is measured per unit time (see appendix A).

7 Explaining the Persistence of the Commu-
nist Norm

I take the results from section 5 to give an explanation for the persistence
of the communist norm, i.e., the fact that scientists do in fact publish their
intermediate results in a large range of cases. The explanation runs as follows.

Suppose scientists are generally sharing their intermediate results. If a
given scientist withholds an intermediate result, she thereby lowers her ex-
pected credit (this is just what it means for sharing to be a strict equilibrium).
Hence the scientist has a credit incentive to return to conforming to the norm.
So credit incentives can correct small deviations from the norm.

Note that I do not claim that real scientists are rational credit-maximizers.
All that follows for real scientists is that they have a credit incentive to
conform to the norm (even when they fail to act on it). This fact, combined
with the fact that real scientists are at least somewhat sensitive to credit
incentives, constitutes my explanation of the persistence of the norm.

In the remainder of this section I point out a number of peculiar features
of my explanation and consider some objections based on those features.

My explanation relies on three basic principles: scientists’ sensitivity to
credit incentives, intermediate results being given sufficient credit as specified
in Proportional Credit, and the priority rule as the mechanism for assigning
credit. These ingredients are sufficient to explain the persistence of the norm.
In particular, there is no need for a social contract, normative expectations,
or altruism.

This leads to a potential objection. On my construal, the communist
norm is not a social norm in Bicchieri’s sense, as normative expectations have
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no role in the explanation. But the available evidence seems to refute this:
scientists (normatively) expect other scientists to conform to the communist
norm (Louis et al. 2002, Macfarlane and Cheng 2008). This appears to be
at odds with my model: since the game is zero-sum, other scientists actually
benefit when a given scientist deviates from the norm, so from a credit-
maximizing perspective they should be encouraging each other to deviate.

But the model considers only those scientists who are directly competing
on a given research project. While those scientists may stand to gain if
their competitors fail to share their intermediate results, the wider scientific
community stands to lose, as it will take longer to complete the research
project. I claim that this wider community is the source of any normative
expectations regarding sharing behavior. The normative expectations can
then also be explained from self-interest, as the completion of the research
project may benefit other scientist’ research.12

This yields an empirical prediction that might be used to help decide be-
tween Strevens’ explanation and mine. On Strevens’ explanation withholding
an intermediate result is a breach of a social contract which most directly im-
pacts the immediate competitors of the scientist within the research project,
who may legitimately regard it as unfair. On my explanation withholding
actually benefits the immediate competitors; the most direct negative im-
pact is on those scientists who work on nearby projects. An examination
of which scientists (direct competitors or those working on nearby projects)
tend to most vocally object when other scientists fail to share may thus help
decide, in a given case, whether sharing is happening out of self-interested
credit-maximization or as the result of a social contract.

The scope of my explanation is restricted to the sharing of “intermediate
results”, i.e., results that are significant enough to be publishable in their

12Alternatively or additionally, normative expectations may arise simply because ev-
eryone in the community is in fact behaving in a certain way. Bicchieri points out that
“[s]ome conventions may not involve externalities, at least initially, but they may become
so well entrenched that people start attaching value to them” (Bicchieri 2006, p. 40).
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own right. Strevens points out a limitation of this view: “nothing will be
shared until something relevant is ready for publication, and worse, it is
only what characteristically goes into the journals that gets broadcast, so
details of experimental or computational methods and raw data will remain
hidden” (Strevens forthcoming, p. 5). This constitutes an objection to my
explanation, as according to Strevens the communist norm requires that any
and all results should be shared, regardless of their credit-worthiness.

I reply that it is not clear that the communist norm makes such strong
requirements. When the material under consideration is too little or too
detailed to be considered publishable, scientists’ actual compliance with a
putative norm of sharing drops off steeply (Louis et al. 2002, Tenopir et al.
2011). If Strevens’ aim is to explain a norm of sharing for these cases, he
may be trying to explain something that does not exist.

This leaves the question of what to do if one wants to encourage sharing
work below publishable size, especially in the kinds of cases where sharing
is currently not standard practice. Strevens’ contribution is to show that
scientists’ have a common interest in establishing a norm of sharing for such
cases.

My contribution, in contrast, is in providing a suggestion for how such
a norm could be established. If getting scientists to share these minor re-
sults or crucial details is a goal that scientists and policy makers consider
important, the model gives clear directions on how to get there: give credit
for smaller publications and for sharing crucial details (Tenopir et al. 2011,
Goring et al. 2014). Modern information technology readily suggests ways
in which this can be done without overburdening existing scientific journals
(Piwowar 2013).

23



8 Explaining the Origins of the Communist
Norm

Above I argued that the results from section 5 explain the persistence of the
communist norm. It could be argued that they also explain the origins of
the norm: the uniqueness clauses in theorems 5.1 and 5.2 guarantee that
behavior in accordance with the communist norm is the only pattern that
rational credit-maximizing scientists could settle on (in cases where their
assumptions are satisfied).

But such an argument would make stringent demands on the scientists’
rationality which real scientists are unlikely to satisfy. This section investi-
gates the question whether less than perfectly rational scientists would also
learn to share their intermediate results, thus giving a more robust account
of the origins of the communist norm.

To answer this question I consider a boundedly rational learning rule that
makes only minimal assumptions on the cognitive abilities of the scientists.
In particular, it requires only that the scientists know which strategies are
available to them and that they can compare the credit earned under different
strategies.

The rule I consider is probe and adjust. Suppose the game of imperfect
information is played repeatedly. A scientist using probe and adjust follows
a simple procedure: on each round (one instance of the game), play the same
strategy as the round before with probability 1−ε, or “probe” a new strategy
with probability ε (with 0 < ε < 1; ε is usually “small”). In case of a probe,
pick a new strategy uniformly at random from all possible strategies. After
playing this strategy for one round, the probe is evaluated: if the payoff in
the probing round is higher than the payoff in the previous round, keep the
probed strategy; if the payoff is lower, return to the old strategy; if payoffs
are equal, return to the old strategy with probability q ∈ (0, 1) and retain
the probe with probability 1− q.
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Consider a population of n ≥ 2 scientists using probe and adjust to deter-
mine their strategy in the game of imperfect information with the number of
stages k ≥ 1 fixed. Assume all scientists use the same values of ε and q (this
assumption can be relaxed, see Huttegger et al. 2014, pp. 837–838). Then
the following result can be proven (see appendix A).

Theorem 8.1. For any probability p < 1, if the probe probability ε > 0 is
small enough there exists a T such that on an arbitrary round t with t > T , all
scientists play strategy E at every information set with probability at least p.

If, on a given round, all scientists play strategy E at every information
set, they may be said to have learned to share their intermediate results. The
theorem says that the probability of this happening can be made arbitrarily
high by choosing a small enough probe probability. Moreover, the theorem
says that once the scientists learn to share their intermediate results they
continue to do so on most subsequent rounds. So even on this cognitively
simple learning rule both the origins and the persistence of the communist
norm can be explained on the basis of credit incentives in a large range of
cases.

Having already shown the same to be the case for highly rational scientists
in section 5, I suggest that similar results should be expected for intermediate
levels of rationality.13 Conforming to the communist norm is then shown to
be incentive-compatible for credit-maximizing scientists regardless of their
level of rationality.

How historically plausible is my claim that credit incentives are respon-
sible for the origins of the communist norm? It is not entirely clear how one
should evaluate this question. But a necessary condition for my explana-
tion to be correct is that credit for scientific work, and in particular credit
awarded in accordance with the priority rule, predates the communist norm.

13Because the equilibrium in the game of imperfect information is both strict and unique,
various other learning rules and evolutionary dynamics can be shown to converge to it.
Examples include fictitious play, the best-response dynamics, and the replicator dynamics.
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As Merton (1957) points out, scientists’ concern for priority goes back at
least as far as Galileo. In 1610, he used an anagram to report seeing Saturn
as a “triple star” (the first sighting of the rings of Saturn). The device of the
anagram served “the double purpose of establishing priority of conception
and of yet not putting rivals on to one’s original ideas, until they had been
further worked out” (Merton 1957, p. 654).

The communist norm, on the other hand, was not established as a norm
of science until around 1665. At the time, “many men of science still set
a premium upon secrecy” (Zuckerman and Merton 1971, p. 69). The first
scientific journals—the Journal des Sçavans and the Philosophical Transac-
tions, both founded in 1665—were instrumental “for the emergence of that
component of the ethos of science which has been described as ‘communism’:
the norm which prescribes the open communication of findings to other sci-
entists” (Zuckerman and Merton 1971, p. 69).

9 Conclusion

In the introduction I argued that the sharing of scientific results (mandated
by the communist norm) is important to the success of science and indeed
to the existence of science as we know it. My results show that the priority
rule gives scientists an incentive to share intermediate results whenever these
are awarded credit proportional to their difficulty. These results can be
used to explain both the origins and the persistence of the communist norm,
answering the questions I raised in the introduction.

If my explanation is accepted, the crucial features of the social structure
of science that maintain the communist norm are seen to be the fact that
scientists respond to credit incentives, the priority rule, and intermediate re-
sults being awarded sufficient credit. Tinkering with these features thus risks
undercutting one of the most central aspects of science as a social enterprise.

By emphasizing credit incentives moderated by the priority rule, this
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paper falls in the tradition of Kitcher (1990), Dasgupta and David (1994),
and Strevens (2003). Like those papers, I have picked one aspect of the social
structure of science, and shown how the priority rule has the power to shape
that aspect to science’s benefit.

I take my results to show that no special explanation (using, e.g., nor-
mative expectations and/or a social contract) is required for the communist
norm, contra Strevens (forthcoming). However, this only applies to what-
ever is sufficiently rewarded with credit. Sharing scientific work that is too
insignificant to be published is not incentivized in the same way. But inso-
far as this is a problem it suggests its own solution: give sufficient credit for
whatever one would like to see shared, and scientists will indeed start sharing
it.

A A Unique Nash Equilibrium

The remainder of this section is used to prove theorem A.4, which is then
used to prove the results in the main text.

Let n ≥ 2 be the number of scientists and k ≥ 1 the number of stages.
Let Gp

n,k denote the game of perfect information and let Gm
n,k denote the game

of imperfect information, as described in sections 4 and 5.
As is commonly done in game theory, I use ui(si, s−i) to denote the payoff

(expected units of credit at the end of the game) to scientist i if si gives her
strategy and s−i gives the strategies of all scientists other than i (call this an
“incomplete strategy profile”).

One strategy is of particular interest. Let sE
i denote the strategy for

scientist i in which she plays E (that is, shares and claims credit for her
most recently completed stage) at every decision node in Gp

n,k or at every
information set in Gm

n,k.14 Let sE
−i denote the incomplete strategy profile (in

14This is an abuse of notation because I use sEi to denote two distinct strategies: one
for each game. But the proofs below rely almost exclusively on features they share. I will
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either game) where every scientist i′ other than scientist i plays strategy sE
i′ .

Let SE denote the strategy profile (in either game) in which every scientist i
plays strategy sE

i .
Let Wj denote the waiting time until some scientist shares the solution

to stage j. In particular, Wk is the waiting time until the research project is
completed. These waiting times may depend on the scientists’ strategies and
so I write Wj(S) for the waiting time until stage j is shared under strategy
profile S.

Lemma A.1. Let S 6= SE be some arbitrary strategy profile. In the case
of Gp

n,k, add the further assumption that this involves a deviation on the
equilibrium path relative to SE, i.e., there is a positive probability of reaching
a decision node where some scientist plays strategy H. Then in both Gp

n,k

and Gm
n,k

E (Wj′(S)) ≥ E
(
Wj′(SE)

)
=

j′∑
j=1

1
σj

,

with strict inequality if j′ = k.

Proof. Under SE, the time it takes the scientists to solve and share stage j is
exponentially distributed with parameter σj (cf. section 4). So the expected
time to solve and share stage j is 1/σj. This establishes the equality.

Under S, scientists may make discoveries that are not shared. This may
reduce the waiting time for particular stages (for example, if all scientists
play strategy H at stage j−1 then the waiting time between stage j−1 and
stage j is zero with probability one) but this is always compensated by an
increase in the waiting time for one or more preceding stages. On average,
Wj′ can only increase if some scientists are keeping results secret (cf. Banerjee
et al. 2014, section 4).

By the assumptions of the lemma, there is a positive probability of reach-
ing a decision node where some scientist, say scientist i, plays strategy H.
explicitly note when this is not the case.
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Then there is a positive probability that scientist i′ 6= i is the next scientist
to share the solution to some stage. It follows that scientist i′ has shared
at least one stage that scientist i had already solved but not shared. Since
events like this occur with positive probability,

E (Wk(S)) > E
(
Wk(SE)

)
.

Lemma A.2. In both Gp
n,k and Gm

n,k, under the strategy profile SE (i.e., every
scientist always shares any stages she completes immediately) the payoff to
scientist i is

ui

(
sE

i , s
E
−i

)
=

k∑
j=1

cjλij

σj

.

Proof. If scientist i plays strategy sE
i she always immediately shares her

intermediate results. Hence, she is always working on the stage immediately
after the most recently shared stage and so always only takes credit for one
stage at a time. Under these circumstances, scientist i can be viewed as
a nonstationary reward process producing payoff at a rate of cjλij units of
payoff per unit time if j is the current stage.15 Since the expected amount
of time spent in each stage is 1/σj by lemma A.1, this gives the desired
result.

Note that the preceding lemmas do not require Proportional Credit; they
are true for all (positive) productivity rates and for all (positive) credit re-
wards. The next lemma shows that under Proportional Credit, if not every

15Note that this is true despite the fact that scientist i may not be the first to solve
stage j and hence may not end up getting those particular cj units of credit. This is due
to the separability of independent Poisson processes. This way of looking at the game
is crucial to my proof of lemma A.3 below, but the present lemma can also be proven
without relying on this separability:
Scientist i is the first to complete stage 1 with probability λi1/σ1. If she does she

immediately claims c1 units of credit. If any other scientist completes stage 1 before
scientist i, that scientist immediately claims c1 units of credit. Thus scientist i’s expected
credit from the first stage is c1λi1/σ1. Then all scientists simultaneously start working on
the next stage. By the same reasoning, scientist i’s expected credit from stage j is cjλij/σj .
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scientist always shares, scientists who always share get a higher payoff than
they do in lemma A.2.

Lemma A.3. Let i be a scientist and assume Proportional Credit. Let s−i

denote any incomplete strategy profile such that at least one scientist i′ plays
some strategy other than sE

i′ (this can be either a different pure strategy, or
any mixed strategy which plays strategy sE

i′ with probability less than one). In
the case of Gp

n,k, add the further assumption that this involves a deviation on
the equilibrium path, i.e., on the (complete) strategy profile (sE

i , s−i) there is
a positive probability of reaching a decision node where some scientist plays
strategy H. Then in both Gp

n,k and Gm
n,k

ui

(
sE

i , s−i

)
> ui

(
sE

i , s
E
−i

)
.

Proof. Let S denote the strategy profile (sE
i , s−i). Just like in the proof of

lemma A.2, it is useful to view scientist i as a nonstationary reward process.
When she is working on stage j, she produces payoff at a rate of cjλij units
of payoff per unit time. Call this the reward rate, denoted ri,j = cjλij. The
overall expected payoff to scientist i is found by multiplying these rates by
the expected time spent on each stage (setting W0(S) = 0 for notational
convenience):

ui (S) =
k∑

j=1
ri,jE (Wj(S)−Wj−1(S)) .

By Proportional Credit, ri,j′ ≥ ri,j′+1 ≥ . . . ≥ rik > 0, so the differences
between them are nonnegative: ri,j′−ri,j′+1 ≥ 0. For notational convenience,
write ri,k+1 = 0. Then

ui (S) =
k∑

j=1

k∑
j′=j

(ri,j′ − ri,j′+1)E (Wj(S)−Wj−1(S)) .

Interchanging the sums yields
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ui (S) =
k∑

j′=1

j′∑
j=1

(ri,j′ − ri,j′+1)E (Wj(S)−Wj−1(S))

=
k∑

j′=1
(ri,j′ − ri,j′+1)E (Wj′(S))

>
k∑

j′=1
(ri,j′ − ri,j′+1)

j′∑
j=1

1
σj

,

where the inequality uses the following facts: ri,j′ − ri,j′+1 ≥ 0 for all j′ (by
Proportional Credit), ri,k−ri,k+1 = ri,k > 0, E(Wj′(S)) ≥ ∑j′

j=1 1/σj for all j′

by lemma A.1, and E(Wk(S)) > ∑k
j=1 1/σj by lemma A.1.

Interchanging the sums again yields the desired result:

ui (S) >
k∑

j=1

k∑
j′=j

(ri,j′ − ri,j′+1)
1
σj

=
k∑

j=1

ri,j

σj

= ui(SE).

Theorem A.4. Let S be any strategy profile for Gm
n,k other than SE, or let S

be any strategy profile for Gp
n,k that involves deviations on the equilibrium path

relative to SE. Under Proportional Credit there exists at least one scientist i
playing strategy si 6= sE

i such that she would be strictly better off playing
strategy sE

i :

ui

(
sE

i , s−i

)
> ui (si, s−i) .

Proof. Recall that the game is zero-sum: regardless of strategies, there are
C units of credit to be divided, and so if one scientist’s payoff increases,
another’s decreases. Combined with lemmas A.2 and A.3 this yields the
theorem. Distinguish three cases:

1. There is only one scientist i playing a (pure or mixed) strategy si 6= sE
i .

Then every scientist i′ other than scientist i is playing strategy sE
i′

and so by by lemma A.3 is getting a payoff greater than ui′(sE
i′ , s

E
−i′).
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Because the game is zero-sum, it follows that ui(si, s−i) < ui(sE
i , s

E
−i).

By lemma A.2, ui(sE
i , s−i) = ui(sE

i , s
E
−i), and the result follows.

2. There is at least one scientist i′ playing strategy sE
i′ and at least two sci-

entists playing some other strategy. Then any scientist i′ who is playing
strategy sE

i′ is getting a payoff greater than ui′(sE
i′ , sE

−i′) by lemma A.3.
Because the game is zero-sum, at least one of the remaining scientists,
say scientist i, must be getting a payoff less than ui(sE

i , s
E
−i). But if

scientist i changed her strategy to sE
i , by lemma A.3 she would get a

payoff ui(sE
i , s−i) > ui(sE

i , s
E
−i), establishing the result.

3. Every scientist i′ is playing some strategy si′ 6= sE
i′ . Because the

game is zero-sum, it is impossible for every scientist i′ to be getting
a greater payoff than ui′(sE

i′ , sE
−i′). So there is at least one scientist,

say scientist i, such that ui(si, s−i) ≤ ui(sE
i , s

E
−i). By lemma A.3,

ui(sE
i , s−i) > ui(sE

i , s
E
−i), and the result follows.

Theorem A.4 may be used to prove theorems 5.1 and 5.2.

Proof of theorem 5.1. Consider the game Gp
n,k. In any profile (of pure or

mixed strategies) at least one scientist has an incentive to change her strategy,
unless every scientist i plays strategy sE

i or a strategy that deviates from
sE

i only off the equilibrium path. Thus no profile is a Nash equilibrium
unless every scientist i plays strategy sE

i or a strategy that deviates from sE
i

only off the equilibrium path. But since the backwards induction solution
is a Nash equilibrium, it follows that in the backwards induction solution
(which is guaranteed to exist for any finite game of perfect information)
every scientist i must play strategy sE

i or a strategy that deviates from sE
i

only off the equilibrium path. (A direct proof that in the backwards induction
solution every scientist plays strategy E at every decision node—including
those off the equilibrium path—is available from the author upon request.)
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Proof of theorem 5.2. Let S be any profile (of pure or mixed strategies) for
the game Gm

n,k. If S 6= SE, then at least one scientist has an incentive to
change her strategy, and so S is not a Nash equilibrium.

That SE is a Nash equilibrium, and in fact a strict Nash equilibrium, also
follows from theorem A.4 by considering the special case where s−i = sE

−i.
This shows that a scientist i who deviates unilaterally makes herself strictly
worse off.

To prove theorem 8.1, some terminology and a result from Huttegger
et al. (2014) are needed. Define a weakly better reply path to be a sequence of
profiles (S1, . . . , S`) such that for any j < `, profile Sj differs from profile Sj+1

only in one scientist’s strategy, say scientist i (so sj
−i = sj+1

−i ), and ui(Sj+1) ≥
ui(Sj), i.e., scientist i changes to a strategy that is a (weakly) better reply
to the other scientists’ strategies. Define a weakly better reply game to be
a game in which for every profile S there exists a weakly better reply path
from S to a strict Nash equilibrium.

Let G be a weakly better reply game with n scientists. Assume the
scientists play G repeatedly, adjusting their strategy using probe and adjust
and using the same values of ε and q. Let St be the profile of strategies
played on round t.

Theorem A.5 (Huttegger et al. (2014)). For any probability p < 1, if the
probe rate ε > 0 is sufficiently small, then the profile St is a strict Nash
equilibrium of G for all sufficiently large t with probability at least p.

Theorem 8.1 is a corollary of theorems 5.2, A.4 and A.5.

Proof of theorem 8.1. By theorem 5.2, the strategy profile in which every
scientist plays strategy E at every information set is the only strict Nash
equilibrium of the game. If Gm

n,k is a weakly better reply game, the desired
result follows from theorem A.5.

That the game is a weakly better reply game follows from theorem A.4.
At any strategy profile, for at least one scientist i whose strategy differs from
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sE
i switching to strategy sE

i is a better reply for her. This switch leads to
a profile which is either the strict Nash equilibrium or in which the same is
true for some other scientist. The result is a path of length at most n from
any profile to the strict Nash equilibrium, in which at each step along the
path one scientist i switches her strategy to sE

i , and improves her payoff by
doing so.

Finally, I show that my results do not depend on the fact that payoff is
measured in total credit rather than credit per unit time.

Let Gpt
n,k denote the adapted version of the game with perfect information.

That is, in Gpt
n,k scientists know when other scientists solve stages even if the

results are not shared and the (utility) payoff is measured in units of credit per
unit time. Similarly, Gmt

n,k is the adapted version of the game with imperfect
information.

Theorem A.6. Let S be any strategy profile for Gmt
n,k other than SE, or let S

be any strategy profile for Gpt
n,k that involves deviations on the equilibrium path

relative to SE. Under Proportional Credit there exists at least one scientist i
playing strategy si 6= sE

i such that she would be strictly better off playing
strategy sE

i :

ui

(
sE

i , s−i

)
> ui (si, s−i) .

Proof. By theorem A.4 there exists a scientist i whose total expected credit
from the research project is higher under strategy profile (sE

i , s−i) than under
(si, s−i). But (by reasoning similar to that given in the proof of lemma A.1)
it is also clear that the expected time to complete the research project can
only decrease if scientist i switches to strategy sE

i , i.e.,

E
(
Wk(sE

i , s−i)
)
≤ E (Wk(si, s−i)) .

But then it follows immediately that scientist i’s expected credit per unit
time must also be higher under (sE

i , s−i):
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ui

(
sE

i , s−i

)
> ui (si, s−i) .

Theorem A.6 may be used to prove analogous versions of the main results
found above for the adapted version of the model. The proofs are exactly as
given above.
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