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Abstract

The debate between Fraser and Wallace (2011) over the foundations of

quantum field theory (QFT) has spawned increased focus on both the axiomatic

and conventional formalisms. The debate has set the tone for future foundational

analysis, and has forced philosophers to “pick a side”. The two are seen as

competing research programs, and the major divide between the two manifests in

how each handles renormalization. In this paper I argue that the terms set by the

Fraser-Wallace debate are misleading. AQFT and CQFT should be viewed as

complementary formalisms that start from the same physical basis. Further, the

focus on cutoffs as demarcating the two approaches is also highly misleading.

Though their methods differ, both axiomatic and conventional QFT seek to use the

same physical principles to explain the same domain of phenomena.
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1 Introduction

Foundational invesitgation into quantum field theory (QFT) has emerged as a flourishing

enterprise in philosophy of science, thanks largely to work done in axiomatic QFT

(AQFT), particularly the C∗-algebraic approach enocoded by the Haag-Kastler axioms

(Haag and Kastler 1964). Despite the methodological disconnect with ‘conventional’

approaches to QFT (CQFT), AQFT has been defended by Fraser (2009) as supplying a

firmer foundation from which to conduct philosophical analyses. Though this is one of

few explicit defenses of AQFT, the widespread use of algebraic methods in philosophical

literature on QFT would lead one to believe that Fraser is merely making explicit the

assumptions in her field. Recently, Wallace (2006; 2011) has questioned the focus on

AQFT, arguing that CQFT is the better candidate for analysis. Since CQFT is the

theory that has been emprically successful—the Standard Model of particle physics is

built from CQFTs—and AQFT has yet to reproduce these results, Wallace argues that

we should focus analysis on CQFT rather than AQFT. Fraser’s (2011) reply has set up

what is now known as the Fraser-Wallace debate over the foundations of QFT. The

debate has set the tone for future foundational analysis, and seems to force philosophers

to “pick a side”—you either work in AQFT or CQFT. The two are seen as competing

research programs, and the major divide between the two manifests in how each handles

renormalization. AQFT requires strict Poincaré covariance at arbitrarily small length

scales, while the renormalization group (RG) methods in CQFT allow for a small-scale

cutoff, below which QFTs needn’t be well-defined.

In this paper I argue that the terms set by the Fraser-Wallace debate are misleading.

One needn’t view AQFT and CQFT as rival research programs; in fact, this view is
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detrimental to understanding the history and methodology of QFT. AQFT and CQFT

should be viewed as complementary formalisms that start from the same physical basis.

Further, the focus on cutoffs as demarcating the two approaches is also highly

misleading: AQFT can accommodate cutoffs and RG methods, and CQFT does not

explicitly require cutoffs. The focus on cutoffs as essential to CQFT could mistakenly be

taken to mean that CQFT depends on cutoffs actually being physical, in the same way

that cutoffs are physical in condensed matter physics (CMP). I will argue that this is not

the case: cutoffs needn’t be physical in any sense. Even if cutoffs are physically

significant, that does not entail that the cutoffs are themselves physical. Specifically, RG

methods provide no principled grounds for thinking that cutoffs are “real” in the sense of

signifying a breakdown of field theories generally. Since Wallace (2011) set the terms of

the debate, the bulk of the arguments in this paper will be in reference to that paper. I

do not claim that Wallace holds all (or even most) of the views against which I argue;

rather, I use his paper to clarify potential misconceptions that could arise from the

debate. Renormalization is not central to the physical content of QFT, and the different

ways of handling renormalization do not mark AQFT and CQFT as different research

programs. We should instead view the formalisms as complementary: though their

methods differ, both seek to use the same physical principles to explain the same domain

of phenomena.

3



2 Renormalization and the relationship between AQFT and

CQFT

Wallace (2011) emphasizes the ineliminable dependence on cutoffs in CQFT, along with

the success of RG methods for providing a physical motivation for cutoffs, as the wedge

which drives AQFT and CQFT apart. For Wallace, AQFT cannot deal with physical

cutoffs. Since RG methods have physically legitimized cutoffs, AQFT and CQFT have

differing physical content and must therefore be considered a different research program

(2011, Sec. 2). I disagree with this characterization on two fronts. First, AQFT has the

resources to incorporate RG methods when needed. Though typical axioms make no

metion of scaling behaviour, even the most rigid of axiomatic approaches—algebraic

QFT as codified in the Haag-Kastler axioms—can incorporate something like RG flows.1

Second, the calculational dependence on cutoffs in CQFT may not signal the physical

existence of cutoffs.

So, are cutoffs really that problematic for AQFT? Many axiomatic approaches to QFT

make no recourse to cutoffs, either explicitly or implicitly. An explicit forbidding of

cutoffs would mean that one of the axioms/postulates of the theory claimed that the

theory is empirically adequate at all spacetime length scales. Even if any axiomatization

contained such an axiom (none do), it would be hard to imagine what sort of work it

would do in derivations. Presumably, such a system could be modified to remove the

guilty axiom, without spoiling any physically useful theorems. One should therefore not

be concerned with an explicit ban on cutoffs in AQFT.

The more interesting case is when cutoffs are implicitly rejected by a particular theory.

1See Buchholz and Verch (1995) for an example of scaling algebras playing the role of RG flows.
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There are two common assumptions in AQFT that are problematic for handling cutoffs:

strongly continuous implementations of Lorentz invariance, and the association of

algebras with arbitrarily small open bounded regions of spacetime. Though the latter is

not common to all axiomatic QFTs (the Wightman axioms deal directly with quantum

fields, rather than algebras), the dominant axiomatization in terms of C∗ algebras—the

Haag-Kastler axioms—define QFTs in terms of algebras of observables corresponding to

open, bounded regions of spacetime.2 It is implicit that for any open bounded spacetime

region, no matter how small, one can define an algebra of observables satisfying the other

axioms defining QFT. If cutoffs are physical, one might conclude that there should be a

principled limit to the size of regions on which we can define algebras corresponding to

observables in QFT. If the cutoff scale is physically relevant, and only CQFT predicts its

existence, we might be tempted to conclude that the two are different, competing

theories. However, there are several possibilities for reconciling AQFT and cutoffs, which

I will outline below. These remedies are largely independent of one another, and

organized in terms of increasing foundational disagreement with Wallace’s view of

cutoffs. The “quick fixes” proposed first lead to further conceptual worries, and I

therefore endorse the option in Sec. 2.3, which is the biggest departure from taking

cutoffs as physical in CQFT. Nevertheless, all the options sketched below are

more-or-less viable. Section 2.4 outlines reasons for thinking that both AQFT and CQFT

suffer the same conceptual challenges if cutoffs really are physical.

2Since algebraic QFT is prima facie the most problematic, I will deal primarily with algebraic QFT in
this paper. The reader can take AQFT to stand for axiomatic QFT or algebraic QFT for the remainder
of this paper. The reader should also note that constructive QFT is another important strand of rigorous
QFT. Though it is conceptually distinct from AQFT, the two projects often overlap.
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2.1 Possibilities for cutoffs in AQFT

Just because we need to associate an algebra with any arbitrary open bounded region of

spacetime, we are not therefore compelled to make this algebra interesting. One way

that cutoffs could be introduced into AQFT is to specify that regions smaller than some

4-volume Λ are to be uniformly assigned trivial algebras, i.e., algebras containing only

multiples of the identity. Such assignments would be consistent with the demand that all

open bounded regions of spacetime be assigned an algebra, but it would make the cutoff

physically relevant, since no information about local parameters would be contained in

regions smaller than Λ.

Though this solution is available, it is admittedly somewhat ad hoc. Even worse, it

violates one of the crucial Haag-Kastler axioms: that of weak additivity. The axiom of

weak additivity states that, for every closed, bounded region O of Minkowski spacetime

M, the C∗ norm closure of the algebras A(O + α) for α ∈ R4 is just the quasilocal

algebra for the whole spacetime, A(M).3 There are two reasons why this is a problem

for introducing cutoffs in the way described above. First, we run into the problem that

the quasilocal algebra corresponding to the whole of M can be constructed from any

algebra corresponding to any closed, bounded region O. The norm closure of extensions

of a trivial algebra will not produce any interesting algebra as a result, so regions smaller

than the cutoff Λ will violate weak additivity. Second, extensions of an arbitrary region

O by some α < Λ should not be physical if Minkowski spacetime breaks down at scales

below Λ. In the spirit of the first ad hoc axiom modification, weak additivity could be

modified to exclude regions Osmall < Λ, and arbitrary extensions αsmall < Λ. However,

3See Ruetsche (2011), especially chapters 4 and 5 for an introduction to algebraic QFT. For a more
comprehensive review of algebraic QFT, see Halvorson and Müger (2007).
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there seems to be no principled reason for choosing a specific value of Λ, and one may

question the naturalness of such axioms. This makes the solution of simple axiom

modification less tempting, and forces us to admit that AQFT—at least in its current

guise—is in conflict with approaches to QFT that take cutoffs as physically meaningful,

since the basic axioms are currently in direct conflict with the introduction of cutoffs. If

we admit that there is currently no room in the formalism of AQFT for cutoffs, are we

doomed to take AQFT as (incorrectly) positing its own validity at all energy scales?

2.2 No cutoffs? No problem

If QFT methods are only applicable up to some cutoff energy, and we expect QFT to

incorporate this fact, we are saying that a good theory should signal its own demise. The

formal necessity of cutoffs in the formalism of CQFT has lead to the idea that our best

theories will continue to be an increasing hierarchy of effective field theories. Each field

theory requires cutoffs to be implemented at a certain energy scale, and this signals the

field theory’s domain of applicability. If supplanted by a successor field theory, one

expects that the new theory’s low energy regime reduces to the old theory, and further

that the new theory will itself have a higher energy cutoff. Following this approach, the

conventional formalism of field theories would allow us to climb higher and higher up the

ladder of energy scales, but we would never reach the top. We would require a theory of

a fundamentally different formal type in order to end the ladder of cutoffs. This is

presumably the view that Wallace holds, as he claims that if we replace one field theory

with another applicable at higher energies, “that field theory in turn will need some kind

of short-distance cutoff” (2011, p. 118).

As great as it may be to have a framework in which theories limit their own domain of
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applicability, this is certainly not a necessary condition that any good formalism need

satisfy. Even if AQFT does not contain cutoffs explicitly, this does not make it at odds

with CQFT. Many theories that have been useful in the past do not signal their ultimate

demise; on the contrary, most are mathematically well-defined well beyond their domain

of applicability. For example, classical theories of fluid dynamics treat fluids as classical

continua, and these continua are uniform to arbitrary precision. Classical continuum

fluid dynamics is a useful theory, and compatible with classical point mechanics, even

though classical point mechanics leads one to believe that the continuum is only an

approximation—at some point fluid dynamics must break down. There is nothing within

the formalism of fluid mechanics that signals its eventual breakdown; rather, the physical

systems we model using classical fluid dynamics, as well as the complementary formalism

of classical point particles, give us a physical motivation for the eventual breakdown of

the formalism. Deeper theories, such as quantum mechanics, also provide grounds for

believing in the limited applicability of both of the complementary classical formalisms.

Similarly, we can view AQFT as a complementary picture to the formalism of CQFT.

Both formalisms rely on the same general physical principles, though they are

implemented in different ways. Though the AQFT formalism does not demarcate its

domain of applicability in the form of explicit cutoffs, the necessity of some form of

cutoff in CQFT provides reason to believe that the AQFT formalism is only

approximately mapping the actual physics. Further, whatever extratheoretical grounds

we have for taking cutoffs to be physical—typically in the guise of speculative physics

beyond the Standard Model—can inform the scale at which we lose faith in the

predictions of both the AQFT and CQFT formalisms. When one does not view AQFT

and CQFT as rival research programs, the two can work together to provide a deeper
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physical understanding of high energy physics, and the role of cutoffs is made clearer.

2.3 Physical significance versus being physical

Are cutoffs really that central? The arguments in the previous section assume that the

cutoffs required to generate predictions in CQFT are physical, in the sense that they

signal a breakdown of QFT. The fact that perturbative calculations within a particular

model diverge when the integrals are unbounded does not entail that field theoretic

methodology loses physical significance near these bounds. Undoubtedly we have

extratheoretical reasons for supposing that the QFTs making up the Standard Model are

not accurate to arbitrary energies—at some point gravity will surely play an important

role, to say nothing for possible unknown physics at higher energy scales—but this

needn’t signify a breakdown of QFTs in general beyond a cutoff. Nor is this notion built

in to the conceptual apparatus of RG methods, as Wallace claims.4 It remains entirely

possible that a QFT built with more terms in its Lagrangian could describe all relevant

physics and be well-defined at all energy scales. In fact, the renormalization group

procedure presupposes a theory given in terms of a Lagrangian or Hamiltonian with an

arbitrary number of terms. These terms are shown to go to zero in the low energy limit

(Wilson and Kogut 1974). We know—using the RG methods to determine the flow of

coupling constants—that for non-Abelian gauge theories, interactions become weaker at

higher energy scales. Total asymptotic freedom would be one way to eliminate cutoffs at

4“Wilsons explanation of the renormalisation procedure relies upon the failure of the QFT to which it
is applied at very short distances. It is then intriguing to ask how to put on a firm conceptual footing
a theory which relies for its mathematical consistency on its own eventual failure”. (Wallace 2006, 34,
emphasis added) Again, this passage can be read in a way that agrees with the arguments of this section.
I am attempting to argue against a naive reading, which takes the failure of one QFT (i.e., a single form
of interaction, encoded in a particular Lagrangian) to signal the failure of QFT methods in general.
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high energies. A successor QFT, such as a grand unified theory or supersymmetry, could

therefore unite the strong and electroweak coupling constants, while remaining

well-defined to arbitrarily high energies.5 All that RG methods rely on conceptually is

the ability to average out behaviour at high energy scales, and this is compatible with

many options for high-energy behaviour. First, our theories could be low-energy

approximations that break down at higher energy scales. This could be due to a

fundamental granularity or discreteness in the more fundamental theory, or due to the

absence of terms in the Lagrangian modelling high energy dynamics. Second, we could

have a well-defined high energy dynamics that is unimportant at the energy scales with

which we are concerned. In any case, RG methods provide no principled grounds for

thinking that cutoffs are “real” in the sense of signifying a breakdown of field theories

generally. Unlike the breakdown of classical fluid mechanics—for which we have a more

fundamental successor theory (quantum mechanics) providing grounds to reject the

continuum as merely an approximation—there is as of yet no (empirically successful)

fundamental successor theory for which QFT can be considered a continuum

approximation.

One of the major reasons for thinking that cutoffs in QFT mark a regime beyond which

the methods of QFT can no longer be applied is the success of RG methods originating

from CMP (Wallace 2011, Sec. 1). RG methods were initially developed to investigate

long range correlations in materials approaching a phase transition. Long range

interactions are those most relevant to global transitions of a material, and so RG

5Whether a theory can be made well defined for arbitrarily high energies is a distinct issue from the
accuracy of that theory’s predictions at high energies. It may turn out that Standard Model QFTs can
be extended in a consistent way, but that the high energy predictions turn out to be false. This is the
case that is argued in Section 2.2 regarding AQFT.
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methods average out the unimportant short range behaviour near a critical point. The

apparatus of non-relativistic QFT (i.e., functional integrals using Galilean invariant

Lagrangians) is used in CMP as an approximation to the discrete atomic (or ionic)

physical makeup of bulk systems. Given the the CMP field theories are explicitly

constructed as approximations to a known underlying lattice model, we know that the

field theoretic methods must break down within CMP. RG flow equations are derived by

separating field variables ϕ into low- and high-momentum components ϕ = ϕlow + ϕhigh

(where the cutoff from low to high is chosen arbitrarily) and averaging over the high

momentum modes. The resulting Lagrangian L′(ϕlow) is then manipulated to fall into

the same form as the original Lagrangian L(ϕ). This process is repeated and generates

discrete recursive relations between the rescaled coupling parameters in the (n+ 1)th

Lagrangian in terms of the nth one. In the limit where the rescalings are continuous,

these become differential equations determining the flow of coupling constants under RG.

As the flows are taken to zero frequency—equivalent to the infinite spatial limit—only

those parameters relevant to phase transitions will remain in the renormalized

Lagrangian. One of the most qualitatively interesting features of successively averaging

out short distance (and therefore high energy) degrees of freedom is that, no matter how

complicated the initial field dynamics are (encoded as a Lagrangian), only the

renormalizable terms will contribute to the low energy dynamics of the theory. This

implies that a very broad class of higher energy Lagrangians can “reduce” to the relevant

dynamics at lower energy scales.

The success of RG methods in CMP lead to their quick application in QFTs (Wilson

1983)6, since the relevant formalism is shared between the two disciplines. If we choose

6Wilson even forms the QFT/statistical mechanics analogy explicitly, though the source analog in that
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to endow the RG methods with similar physical significance in QFT, then we can

interpret the high energy cutoffs required as marking the domain at which we expect

new physics to occur. The problem is that, because RG flows tell us that our low-energy

(effective) QFTs are largely insensitive to the dynamical details at higher energies, they

provide little insight our guidance into the high energy physics. Though the path to the

successor theory isnt apparent given our current QFTs, the up side is that our best

QFTs are protected from the details of our ignorance of high energy dynamics.

Where Wallace might be read to err is in the jump from believing that cutoffs have

physical relevance in QFTs to believing that cutoffs are physical :

“This, in essence, is how modern particle physics deals with the

renormalization problem: it is taken to presage an ultimate failure of

quantum field theory at some short lengthscale, and once the bare existence

of that failure is appreciated, the whole of renormalization theory becomes

unproblematic, and indeed predictively powerful in its own right” (Wallace

2011, p. 119).7

The difference is subtle. Cutoffs can be physically relevant in that they signal the

breakdown of the particular theory or model beyond a certain energy scale, but whether

cutoffs themselves are physical depends on the precise nature of the breakdown. If the

case is a classical Ising model (Wilson and Kogut 1974). Fraser (2016) has provided an in-depth analysis
of the elements of the analogies between QFT and the Ising model, as well as the process of describing
RG flow.

7Or at least this is a jump he is sometimes guilty of. In other places he is more careful to elaborate
on this view, and it appears that he at least appreciates the fact that field theoretic methods may not
break down at all (Wallace 2006, pp. 43-4). As mentioned in the introduction, this paper is not a critique
of Wallace’s view explicitly, but of the misleading way of framing AQFT and CQFT as rivals based on
their differing treatments of the arbitrarily small; for this reason I aim to clarify the mistakes in a “naive”
reading of Wallace.
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breakdown can be remedied by adding new terms in the Lagrangian—effectively

changing the particular theory, but retaining the field theoretic framework—then the

cutoffs signal new physics, but are not themselves physical. If the breakdown is due to

the inapplicability of field theoretic methodology beyond that scale, then the cutoffs are

themselves physical.8 Even if one takes the cutoffs to have physical significance, cutoffs

needn’t be physical in this stronger sense.

One possible reason for thinking that cutoffs are physical is based off of reading too

much into the analogy with CMP. We know that field theoretic methods are

approximations in bulk matter systems—the atomic theory implies that macroscopic

matter is composed of discrete components. The analogy between QFT and CMP is

based on the use of the same field theoretic formalism in both disciplines, not on a

well-grounded physical similarity.9 Cutoffs are physical in CMP field theory because field

theoretic methods have been introduced as an approximation. Given that discrete

quantum mechanics of 1023 particles is intractable, we sacrifice (a surprisingly small

amount of) precision in order to apply the more soluble methods developed in QFT. But

the fact that cutoffs signal the breakdown of field approximations in CMP does not

imply that the same is true in QFT. The reasons we treat cutoffs as physical in CMP are

absent in QFT; there is no empirically successful theory that claims QFT breaks down

due to an underlying discreteness of physics near cutoff scales. Speculative physics may

posit some underlying structure for which quantum fields are merely an approximation,

8Presumably, the failure of field theoretic methodology in general would require some physical granu-
larity at high energies. This is what I mean by the cutoff being physical and is in direct analogy with the
case of non-relativistic QFT in CMP.

9Fraser (2016) and Fraser and Koberinski (2016) provide two concrete examples of fruitful formal
analogies between QFT and CMP. In the former case, it is the RG flow that is formally analogous,
while the latter deals with the formal similarities between spontaneous symmetry breaking within the two
theories.
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but until any of these theories make successful empirical predictions their significance for

interpreting QFTs must be limited.

2.4 Why physical cutoffs are also a problem for CQFT

Even though, as I have argued, there is currently no physically motivated reason for

supposing cutoffs to be physical, it may be the case that we find such a reason in the

future. Perhaps we will need radically different methods from those of field theory to

describe physics beyond the Standard Model. There is no shortage of candidates that

claim to radically alter our picture of the world—from 11-dimensional string theory to

discrete spacetime to the emergent spacetime of loop quantum gravity. Though

experimental support for any of these speculative theories would mean that the axioms

of any AQFT must be at best only approximations, this does not mean that CQFT

would escape unscathed. Any observed violation of Lorentz invariance would signal bad

news for both AQFT and CQFT, and the extent to which we choose to reject or salvage

the former, we should do the same for the latter.

Though its importance is not encoded in a set of axioms, Poincaré invariance is of

central importance to the physical content of CQFT. In constructing QFTs, one starts

by writing down a classical Lagrangian to encode the physical content of the theory. The

two major constraints on the form of candidate Lagrangians are renormalizability (dealt

with above) and Poincaré invariance. Since the Lagrangian is a scalar, it must remain

strictly invariant under the action of the Poincaré group on its component fields. All of

the fundamental forces—as described by the Standard Model—are encoded in

Lagrangians obeying strict Poincaré invariance. If anything qualifies as physically

relevant to CQFT, the Lagrangian certainly does; it is the starting point for building a
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QFT, and determines the types of fields, their masses, and the particulars of their

interactions. A violation of Poincaré invariance at a more fundamental level—be it in a

particular physical process or in the structure of some new spacetime picture—undercuts

to the same extent the physical significance of any and all theories that depend on

Poincaré invariance for their formulation. Thus, despite the lack of rigid and precise

axioms demanding Poincaré invariance, the physical content of CQFT stands or falls

with AQFT.10

Once again, the major difference between AQFT and CQFT lies in the formalism.

Though the physical content of CQFT is built upon Poincaré invariance11, the formalism

is indifferent to the constraints placed upon the Lagrangian. The success of field

theoretic methods in CMP is evidence of the flexibility of the formalism; in CMP the

Galilean group is taken as the appropriate symmetry group, given the low energies dealt

with. In contrast, the formalisms of various AQFTs are constructed around the axioms.

Any theorems that rely on exact Poincaré invariance will only hold in the real world if

nature is Poincaré invariant.12 The greater precision of the formalism in AQFT makes it

more rigid in this regard.

If violations of Poincaré invariance are problematic for all variants of QFT, should

investigators into the foundations of QFT fret if such violations are experimentally

10CQFT methods could still be useful, but the theoretical framework of CQFT—as encoded in the
Standard Model—depends on Poincaré invariance.

11Depending on how one views Poincaré invariance, this may seem odd. The specific transformation
properties of scalars, vectors, and tensors under the Poincaré group are undoubtedly formal properties
of the particular field representations. However, the physical symmetries represented in this way have a
physical basis (e.g., rotation invariance implies that the physical system can be modelled the same way
when rotated).

12Though it isn’t always possible, proofs of the form “If Minkowski spacetime then x” are strengthened
and made more robust by also showing “If approximately Minkowski spacetime then approximately x.
Given that our best current theories lead us to believe that spacetime is only locally Minkowski, these are
the results for which we can have a high degree of confidence in their robustness.
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confirmed? No; the experimental success of QFT implies that the world is at least

approximately Poincaré invariant, and any evidence revealing the limits of that

approximation has no bearing on the theory itself. We have good reason to believe that

the QFTs in the Standard Model are not the final story: General Relativity implies that

strong gravitational effects distort spacetime, and that our spacetime is only ever

Minkowski in small patches where gravity is negligible. Though this approximation

seems to hold for experiments at the LHC, if we want a theory that gets spacetime

symmetries exactly correct, QFTs relying on Poincaré invariance will not do the trick.

Rather than abandoning foundations of QFT for being approximate at best,

investigation should proceed given that QFTs are highly successful within the energy

domain currently testable. To this extent, we are justified in viewing the world as

approximately described by QFTs, and should content ourselves with investigating an

incomplete (though highly accurate) picture of nature. Whether we are dealing with a

formalism that encodes Poincaré invariance into its axiomatic framework, or a formalism

in which Poincaré invariance has been used indirectly to construct empirically successful

theories, we should not take violations of Poincaré invariance as signalling the failure of

either approach. Any robust results obtained within either formalism will still hold

approximately, and should be equally subject to foundational analysis.

3 Conclusions

I have tried to show that cutoffs do not provide physical grounds for separating AQFT

and CQFT as rival research programs. First, RG methods can be incorporated into

AQFT without major issue, and cutoffs can be introduced as well—though explicit
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cutoffs provide a more pressing conceptual revision to AQFT. Second, we needn’t take

AQFT to be an exact description of the world. In the same way that classical fluid

dynamics is compatible with classical point mechanics, AQFT defined to arbitrary

precision can be compatible with a CQFT that requires cutoffs. The apropriate lesson is

that we should take AQFT to be approximately true in sufficiently low energy domains.

Finally, even if cutoffs are of physical significance, they don’t require a breakdown of

continuum methods in general. This idea stems from pushing an analogy with CMP,

which appears to be unjustified.

Though the Fraser-Wallace debate has spawned increased investigations into the

foundations of QFT, it has set the boundaries of the debate in such a way as to create a

false dichotomy: one is forced to choose whether to immerse oneself in the AQFT or

CQFT formalisms. When we discard the false dichotomy and recognize AQFT as

complementary to CQFT, we open the door to the synthesis of axiomatic methods with

Lagrangian QFT. In this way the general features of QFTs can be investigated rigorously

in AQFT, and we can be confident that—insofar as the axioms of AQFT capture the

physical assumptions of CQFT—the results carry over to CQFT.

Though it is true that there do not yet exist AQFT models that incorporate interactions

in four-dimensional spacetime, the successes of AQFT have been compatible with

CQFT. Free field theories and φ4
2 interaction theories constructed in AQFT give

predictions in agreement with comparable CQFTs. Insofar as AQFT is a successful

formalism, its results should be thought of as complementary to those of CQFT: one

uses the same physical principles to construct differing formalisms.

In essence, I advocate for a position similar to Wallace’s earlier view (though note that

in this passage he refers only to specific results of AQFT, such as the spin-statistics
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theorem):

the foundational results which have emerged from AQFT have been of

considerable importance in understanding QFT and in general they apply

also to Lagrangian QFTs. This paper should be read as complementary to,

rather than in competition with, these results (2006, p. 35).

The particular choice of formalism will depend on the scope of the foundational

investigation. If the goal is to prove general results applicable to any relativistic QFT,

then AQFT is the appropriate formalism; if the goal is to determine the consequences of

specific physical interactions, then CQFT should be used.
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