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The prospects of a causal interpretation of probability are examined. Various accounts both 4 

from the history of scientific method and from recent developments in the tradition of the 5 

method of arbitrary functions, in particular by Strevens, Rosenthal, and Abrams, are briefly 6 

introduced and assessed. I then present a specific account of causal probability with the 7 

following features: (i) First, the link between causal probability and a particular account of 8 

induction and causation is established, namely eliminative induction and the related 9 

difference-making account of causation in the tradition of Bacon, Herschel, and Mill. (ii) 10 

Second, it is shown how a causal approach is useful beyond applications of the method of 11 

arbitrary functions and is able to deal with various shades of both ontic and epistemic 12 

probabilities. (iii) Furthermore, I clarify the notion of causal symmetry as a central element of 13 

an objective version of the principle of indifference and relate probabilistic independence to 14 

causal irrelevance. According to the proposed account, probability distributions are 15 

interpreted in terms of causal symmetries in the circumstances rather than relative 16 

frequencies. 17 
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1. Introduction 12 

Research on probabilistic causality has been a thriving enterprise since about the 1980s 13 

addressing the mainly methodological question how causality can be inferred from statistical 14 

data. By contrast, this article is about causal probability, i.e. the conceptual question how 15 

probability can be integrated into a general framework of induction and causation.  16 

In recent discussions on the foundations of probability, a novel class of objective 17 

interpretations has been proposed that is distinct from the more familiar propensity and 18 

frequency accounts (Strevens 2006, 2011; Rosenthal 2010, 2012; Abrams 2012). The 19 

interpretations essentially stand in the tradition of an approach by 19
th

-century methodologist 20 

Johannes von Kries and of related work on the method of arbitrary functions. For reasons that 21 

will soon become clear, I subsume these and similar approaches under the notion of causal 22 

probability. Two common features are particularly important: (i) First, causal interpretations 23 

replace or supplement the principle of insufficient reason by an objective version of the 24 

principle of indifference
2
 that refers to physical or causal symmetries. This distinguishes 25 

causal interpretations both from frequentist approaches, which exclusively refer to relative 26 

frequencies as fundamental evidence for probabilities, and from logical accounts, which base 27 

probabilities on ignorance via the principle of insufficient reason, i.e. a purely epistemic 28 

reading of the principle of indifference. As we will see, the objective variant of the principle 29 

of indifference is not troubled by the central objections brought forth against the principle of 30 

insufficient reason, in particular the ambiguities in its application called Bertrand’s paradox. 31 

(ii) Second, causal interpretations employ a notion of probability in terms of the ratio between 32 

favorable conditions and all conditions. This is another subtle but crucial difference to 33 

frequency interpretations which define probability in terms of the ratio between the number of 34 

events leading to a certain outcome and the total number of events. As will be shown in 35 
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Section 3, rendering probability relative to the conditions determining an ensemble or 1 

collective provides for a simple solution to a specific version of the reference class problem.  2 

Note that propensity interpretations also frame probability in terms of circumstances or 3 

conditions and they sometimes make the link to causation. In fact, the proposed account owes 4 

in many ways to various versions of the propensity interpretation, but it also differs in 5 

important respects. First of all, propensity accounts rely on a distinct ontological category, 6 

namely propensities in the sense of tendencies or dispositions. The relation with causality is 7 

not always clarified, but if it is, as in Karl Popper’s later work, then propensities are often 8 

considered to be more general than causation. By contrast, the causal interpretation presented 9 

in Sections 3 to 6 tries to situate probability within a framework of causal reasoning. While 10 

propensity accounts focus conceptually on dispositions or tendencies and rather casually 11 

remark upon the parallel with causation, the interpretation proposed here starts with a detailed 12 

and specific account of causation and then examines how probability fits into the picture. 13 

Furthermore, a number of concepts are central to the causal approach that are not usually 14 

evoked in the exposition of propensity interpretations, in particular the notion of causal 15 

symmetry leading to an objective version of the principle of indifference (Section 4) and the 16 

causal construal of probabilistic independence based on judgments of causal irrelevance 17 

(Section 5).  18 

In Section 2, I discuss various proponents of a causal
3
 approach to probability from the 19

th
 19 

century as well as more recent developments in the tradition of the method of arbitrary 20 

functions. The latter are mainly due to Michael Strevens, Jacob Rosenthal, and Marshall 21 

Abrams, and are henceforth abbreviated as SRA-approach. I briefly indicate how causal 22 

probability resolves several objections against other interpretations of probability, e.g. the 23 

problem of distinguishing between accidental and necessary relations in the frequentist 24 

approach, or problems regarding the principle of indifference in the logical approach. I then 25 

point out some shortcomings of the SRA-approach. Besides some technical difficulties, it 26 

makes no connection with a general framework of induction and causation. Also, it cannot 27 

handle indeterminism and epistemic probabilities. Later in the article, I suggest how causal 28 

probability can deal with these issues.  29 

Starting from Section 3, I will develop a specific account of causal probability, according to 30 

which probabilities are understood as degrees or grades of causal determination of a 31 

phenomenon by a given set of circumstances or conditions, which can be considered both in 32 

direction from causes to effects and vice versa to avoid Humphreys’ paradox. First, two 33 

fundamental inductive frameworks are outlined, enumerative and eliminative induction. For 34 

each, I show how probability can be integrated. Enumerative induction leads to a naïve 35 

frequency view of probability, which suffers from the familiar problems, in particular that it 36 

cannot distinguish between law-like and accidental frequencies. Eliminative induction 37 

resolves this issue by carefully keeping track of all conditions under which a phenomenon 38 

happens. The corresponding account of probability, which carefully distinguishes different 39 

types of conditions, is termed causal probability. What I will call the collective conditions 40 
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determine the possibility space of a probabilistic phenomenon, i.e. all possible outcomes. The 1 

outcomes are categorized and the classes are labeled, where the labels are called attributes
4
. 2 

The range conditions (together with the collective conditions) then determine exactly which 3 

of the attributes occurs, at least in deterministic contexts. While the collective conditions 4 

remain constant for a probabilistic phenomenon, the range conditions will vary. A measure 5 

over the input space, spanned by the range conditions, is also fixed by the collective 6 

conditions, more exactly by symmetries in the causal set-up. One could say that symmetrism 7 

replaces frequentism. Via the mathematical theorem, called the law of large numbers, the 8 

measure denotes the limiting relative frequency with which the different input states are 9 

instantiated. Causal probability then is calculated as the fraction of outcome states, weighted 10 

with the measure, that pertain to a certain attribute. Rendering probability relative to 11 

collective conditions and measure resolves the mentioned technical problems of the SRA-12 

approach while adding an irreducible epistemic element. 13 

Section 4 introduces the notion of a causal symmetry which allows inferring probabilities 14 

without taking recourse to relative frequencies of input states or of outcome events. A causal 15 

symmetry basically consists in a possible relabeling of the outcome space that does not affect 16 

the causal structure responsible for the probability distribution. The concept leads to an 17 

objective version of the principle of indifference, which I term principle of causal symmetry. 18 

In the simplest case, two attributes that exhibit a causal symmetry are assigned equal 19 

probability. Furthermore, I argue that the epistemic principle of insufficient reason yields the 20 

same results as the principle of causal symmetry, whenever the resulting probabilities are 21 

predictive, i.e. essentially whenever these probabilities correspond to the actual limiting 22 

frequencies. If the relevant causal symmetries are not epistemically accessible, as is often the 23 

case, relative frequencies can be consulted as a weaker type of evidence for predictive 24 

probabilities.  25 

In Section 5, the notion of probabilistic independence is explicated at some length 26 

establishing its relationship with causal irrelevance as determined by eliminative induction. 27 

Independence guarantees randomness in the sequence of input states and consequently of 28 

attributes. Since many theorems in probability theory like the law of large numbers 29 

presuppose independence of trials, a causal construal of independence is another crucial 30 

ingredient of the causal interpretation of probability. It broadly corresponds to the notion of 31 

randomness in frequentism and exchangeability in the subjectivist approach to probability. 32 

Furthermore, I outline how a probability measure can be established and interpreted based on 33 

arguments of symmetry and irrelevance without having to take recourse to relative 34 

frequencies. To sum up, the definition of probability in Section 3b, the principle of causal 35 

symmetry, and the causal rendering of probabilistic independence should be considered as a 36 

coherent package of the account of causal probability proposed in this essay. 37 

Finally, various ontic and epistemic aspects in probability statements are identified in Section 38 

6, and it is shown how the framework of causal probability can cover a wide range of 39 
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 The terms ‘attribute’ (translated from the German ‘Merkmal’) and ‘range’ (German ‘Spielraum’) are used in 
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applications from indeterministic phenomena to probabilities from causal symptoms to the 1 

probabilities of hypotheses. 2 

 3 

2. Predecessors and contemporary debate 4 

2a. Historical proponents: Cournot, Mill, von Kries 5 

The two main ingredients of a causal interpretation as sketched in the introduction and 6 

elaborated later on in the article can be found with a variety of writers until the end of the 19
th

 7 

century. As already indicated, the viewpoint is rather rare in the 20
th

 century presumably due 8 

to a widespread hostility towards inductive or causal approaches in science. 9 

The distinction between an epistemic principle of insufficient reason and an objective 10 

principle of causal symmetry may be foreshadowed already in Laplace’s classic 11 

‘Philosophical Essay on Probabilities’: “The theory of chance consists in reducing all events 12 

of the same kind to a certain number of cases equally possible, that is to say, to such as we 13 

may be equally undecided about in regard to their existence, and in determining the number of 14 

cases favorable to the event whose probability is sought.” (Laplace 1902, 6-7; see also 15 

Strevens, Ch. 3.2) Of course, Laplace has in mind what was later called the classical 16 

definition of probability, i.e. the ratio of favorable to all possible cases. But everything hinges 17 

on the exact interpretation of equal possibility and how it is determined. Curiously, Laplace 18 

alludes to both epistemic and objective aspects, though these are not clearly held apart in his 19 

writing. In the quote given above, equal undecidedness implies an epistemic reading of equal 20 

possibility. But a later discussion of a loaded die evokes objective connotations in that 21 

Laplace distinguishes between judgments with respect to the knowledge of the observer and 22 

the presumably objective bias manifest in the coin. Laplace adds that the determination of 23 

respective possibilities is “one of the most delicate points of the theory of chances” (p. 11). 24 

Other authors have been more explicit in drawing the distinction between epistemic and 25 

objective versions of the principle of indifference. One of the clearest expositions is due to 26 

Antoine-Augustin Cournot, who in the following quote delineates a principle of insufficient 27 

reason, which cannot establish objective probabilities: “If, in an imperfect state of our 28 

knowledge, we have no reason to believe that one combination is realized rather than another, 29 

even though in reality these combinations are events that may have unequal mathematical [i.e. 30 

objective] probabilities or possibilities, and if we understand by the probability of an event the 31 

ratio of the number of combinations that are favorable to the event to the total number of 32 

combinations that we put on the same line, this probability could still serve, in lack of a better 33 

option, to fix the conditions of a bet […]; but this probability would not anymore express the 34 

ratio that really and objectively exists between things; it would take on a purely subjective 35 

character and could vary from one individual to the other depending on the extent of her 36 

knowledge.”
5
 (1843, 438, my translation)  37 

                                                 
5
 “Si, dans l’état d’imperfection de nos connaissances, nous n’avons aucune raison de supposer qu’une 

combinaison arrive plutôt qu’une autre, quoiqu’en réalité ces combinaisons soient autant d’événements qui 

peuvent avoir des probabilités mathématiques ou des possibilités inégales, et si nous entendons par probabilité 



 

6 

 

Cournot also sketches the role of frequencies with respect to objective probabilities leading to 1 

the following colloquial statement of the law of large numbers: “If one considers a large 2 

number of trials of the same chance process, the ratio of the number of trials where the same 3 

event happens to the total number, becomes perceptibly equal to the ratio of the number of 4 

chances favorable to the event to the total number of chances, or what one calls the 5 

mathematical probability of an event.”
6
 (437, my translation) According to Cournot, the 6 

chances are measured in terms of the possibilities that certain conditions occur together to 7 

produce a particular type of event. Obviously, he employs a notion of probability distinct 8 

from relative frequencies referring to the ratio of favorable to all conditions or circumstances.  9 

Thus, Cournot’s account shows both ingredients of causal probability that were identified in 10 

the introduction: the distinction between an epistemic and an objective version of the principle 11 

of indifference and a definition of probability that refers to the number of favorable 12 

conditions, not instances.  13 

The basic idea of an objective causal interpretation distinct from a frequentist approach is 14 

present with several other authors in the 19
th

 century, for example in the writings of John 15 

Stuart Mill: “The probability of events as calculated from their mere frequency in past 16 

experience affords a less secure basis for practical guidance than their probability as deduced 17 

from an equally accurate knowledge of the frequency of occurrence of their causes.” (1886, 18 

355) Mill also recognizes the distinction between an epistemic and an objective reading of the 19 

principle of indifference. For example, he criticizes the alleged purely epistemic reading by 20 

Laplace: “To be able […] to pronounce two events equally probable, it is not enough that we 21 

should know that one or the other must happen, and should have no grounds for conjecturing 22 

which. Experience must have shown that the two are of equally frequent occurrence.” (351) 23 

Mill sketches several options how the latter could happen, e.g. for the case of a coin toss: “We 24 

may know [that two events are of equal occurrence] if we please by actual experiment; or by 25 

the daily experience which life affords of events of the same general character; or deductively, 26 

from the effect of mechanical laws on a symmetrical body acted upon by forces varying 27 

indefinitely in quantity and direction.” (351) Here, Mill introduces the important distinction 28 

between evidence in terms of frequencies and in terms of causal symmetries to establish 29 

objective equipossibility (cf. Section 4d). On this basis, he roughly formulates the notion of 30 

causal probability referring not to the frequency of events, but to causal conditions: “We can 31 

make a step beyond [the frequentist estimation of probabilities] when we can ascend to the 32 

causes on which the occurrence of [an event] A or its non-occurrence will depend, and form 33 

an estimate of the comparative frequency of the causes favourable and of those unfavourable 34 

to the occurrence.” (355) 35 

                                                                                                                                                         
d’un événement le rapport entre le nombre des combinaisons qui lui sont favorables, et le nombre total des 

combinaisons mises par nous sur la même ligne, cette probabilité pourra encore servir, faute de mieux, à fixer les 

conditions d’un pari, d’un marché aléatoire quelconque; mais elle cessera d’exprimer un rapport subsistant 

réellement et objectivement entre les choses; elle prendra un caractère purement subjectif, et sera susceptible de 

varier d’un individu à un autre, selon la mesure de ses connaissances.” 
6
 “Lorsque l’on considère un grand nombre d’épreuves du même hasard, le rapport entre le nombre des cas où le 

même événement s’est produit, et le nombre total des épreuves, devient sensiblement égal au rapport entre le 

nombre des chances favorables à l’événement et le nombre total des chances, ou à ce qu’on nomme probabilité 

mathématique de l’événement.” (437) 
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Curiously, Mill eventually retreats from this position that he so clearly formulated in the first 1 

edition of his ‘Logic’, adding the following comment in later editions: “I have since become 2 

convinced that the theory of chances, as conceived by Laplace and by mathematicians 3 

generally, has not the fundamental fallacy which I had ascribed to it [essentially referring to 4 

the epistemic reading of the principle of indifference].” (351) Mill claims that probability is 5 

fundamentally an epistemic notion and that probabilistic statements have no objective 6 

meaning anyways, because in a deterministic world any future event is fully determined by 7 

preceding conditions. 8 

It remains somewhat unclear where Mill is heading with these remarks. Does he just want to 9 

rehabilitate the epistemic reading of the principle of indifference or does he want to deny the 10 

distinction between epistemic and objective readings altogether? From the viewpoint of this 11 

essay, Mill is correct that in a deterministic world, there is an epistemic element to any 12 

probabilistic statement, but he apparently fails to recognize that a fairly
7
 objective meaning of 13 

probability nevertheless remains feasible: if one always relates probability to a causally 14 

determined collective (as elaborated in Section 3b). In any case, it is quite remarkable to 15 

observe how even an ingenious thinker like Mill struggles with the concept of probability. 16 

Finally, the approach of Johannes von Kries should be mentioned (as summarized in his 1886, 17 

vii-viii).
8
 His account was highlyinfluential on 20

th
-century philosophy, both on discussions 18 

within the Vienna Circle (Waismann, Wittgenstein) and on recent proposals regarding a novel 19 

class of objective probabilities (Strevens, Rosenthal, Abrams). Central to von Kries’ notion of 20 

probability is the spielraum
9
 concept denoting the range of initial conditions that lead to a 21 

certain result. In principle, probability is determined by the ratio of the measure of the 22 

spielraum leading to a specific outcome to the measure of the entire spielraum. Based on this 23 

idea, von Kries formulates three conditions for numerical probabilities: (i) the different 24 

possibilities must correspond to comparable (‘vergleichbar’) spielräume
10

. In particular, it 25 

should be feasible to establish the equality in terms of measure of the various spielräume 26 

leading to different outcomes. (ii) Furthermore, the spielräume should be original 27 

(‘ursprünglich’), i.e. the equality of the spielräume must not cease to be the decisive criterion 28 

for our expectations when tracing the further history of the conditions making up the 29 

spielräume. (iii) Third, von Kries requires that the spielräume be indifferent (‘indifferent’), i.e. 30 

only the size of the spielräume and no other logical conditions should be relevant for the 31 

probability. According to von Kries, the most important criterion in this respect is that a small 32 

change in conditions may already lead to a different outcome. The various outcomes are 33 

supposed to alternate rapidly when continuously changing the conditions. 34 

It is mainly this last criterion that establishes the parallel with the method of arbitrary 35 

functions, a term coined by Henri Poincaré (1912, p. 148). The French mathematician is 36 

                                                 
7
 depending on whether the various epistemic elements discussed in Section 6 are present. Certainly, causation 

has to be interpreted objectively as well. 
8
 For a recent discussion consult the edited volume by Rosenthal & Seck (2016). In an interesting contribution, 

Helmut Pulte (2016) elaborates von Kries’ conceptions of natural laws and nomological knowledge as a 

conceptual background for his approach to probability and examines to what extent these are rooted in the 

historical context of his time.  
9
 Spielraum translates to ‘range of possibilities’. 

10
 I am using the German plural Spielräume. 
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usually seen as the originator of this tradition, although many ideas are already present in the 1 

mentioned work by von Kries (1886; later proponents are von Smoluchowski 1918, Hopf 2 

1936; for a philosophical-historical overview, see von Plato 1983). In general, proponents of 3 

the method of arbitrary functions aim to establish objective probability for deterministic 4 

phenomena. Building on physical instability, they argue that any sufficiently regular 5 

distribution over the initial conditions leads to roughly the same ratio of occurrences in 6 

macroscopic outcomes. Primary applications are games of chance like roulette, which already 7 

Poincaré discussed in much detail, or the throwing of dice and coins. 8 

Von Kries’ account can broadly be classified as causal probability because the two criteria 9 

outlined in the introduction are present in his theory as well. First, his treatise on probability 10 

contains one of the most insightful assessments of the principle of insufficient reason in the 11 

history of probability (1886, Ch. 2). Second, he defines probability not in terms of frequencies 12 

of events but in terms of the ratio between different spielräume, i.e. conditions. 13 

The outlined accounts are meant to be exemplary, a deeper look into 19
th

-century discussions 14 

on probability would presumably reveal that similar causal viewpoints were widespread.
11

 In 15 

the first half of the 20
th

 century, the ideas of von Kries were picked up and developed into an 16 

objective interpretation of probability by Friedrich Waismann (1930/1931), who claims in 17 

turn to have been influenced by Wittgenstein.
12

 These accounts are somewhat similar to 18 

independent suggestions elaborated in recent years by Michael Strevens, Jacob Rosenthal, and 19 

Marshall Abrams, to which we will turn now. 20 

2b. Contemporary debate: Abrams, Rosenthal, Strevens 21 

Apparently, the history of causal interpretations of probability before the 20
th

 century is quite 22 

rich and it seems plausible that the demise of this perspective more or less parallels the rise of 23 

causal skepticism in the beginning of the 20
th

 century. At the same time, the distinction 24 

between frequentist evidence for objective probabilities and evidence in terms of causal 25 

symmetries largely disappears from the debate leading to a purely frequentist view of 26 

objective probabilities. Furthermore, only the epistemic version of the principle of 27 

indifference remains as a centerpiece of the logical interpretation, while the objective reading 28 

is largely abandoned. A notable exception in the latter respect are the writings of John 29 

Maynard Keynes who clearly recognizes a difference between ascribing equal probabilities on 30 

the basis of no evidence as opposed to evidence in terms of frequencies or relevant 31 

circumstances. He believes that the distinction is gradual and introduces the notion of weight 32 

of argument to account for it (1921, Ch. VI). But the idea has not caught on in 20
th

-century 33 

literature on probability.
13

  34 

In recent years, one can observe a revival of objective interpretations that go beyond the 35 

frequency account by making explicit reference to initial conditions as well as system 36 

                                                 
11

 In fact, already Jacob Bernoulli in his Ars conjectandi interpreted equipossibility in a causal manner: “All 

cases are equally possible, that is to say, each can come about as easily as any other” (1713, 219; cited in 

Hacking 1971, 344). 
12

 For a historical overview, see Heidelberger (2001). 
13

 As Keynes himself stated, he was influenced by von Kries in framing the notion of weight of argument (cp. 

Fioretti 1998). 
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dynamics and thus bear resemblance to the historical accounts depicted in the previous 1 

section. This type of objective interpretations, which has been more or less independently 2 

developed by Marshall Abrams, Jacob Rosenthal, and Michael Strevens, substantially relies 3 

on ideas from the method of arbitrary functions.
14

 4 

The best-known account in this modern tradition is Michael Strevens’ microconstant 5 

probability (2011; see also 1998, 2006, 2013). In part, his approach is inspired by Maxwell’s 6 

derivation of the molecular velocity distribution in an ideal gas which was carried out without 7 

empirical data about those velocities, i.e. without frequency data. Strevens elaborates in much 8 

detail the distinction between an objective and an epistemic reading of the principle of 9 

indifference (2013, Ch. 3). In his recent book ‘Tychomancy’, he lays out the most important 10 

principles for applying the objective version, which he terms equidynamics, by analyzing 11 

exemplary processes such as stirring or shaking (Ch. 5-8).  12 

In one recent article, Strevens defines microconstant probability as an objective physical 13 

probability for deterministic systems along the lines of the method of arbitrary functions: 14 

“The event of a system S’s producing an outcome of type e has a microconstant probability 15 

equal to p if (1.) the dynamics of S is microconstant with respect to e, and has strike ratio p, 16 

(2.) the actual initial conditions of nearly all long series of trials on systems of the same type 17 

as S make up macroperiodically distributed sets, and (3.) the macroperiodicity of the initial 18 

conditions is robust.” (2011, 359)  19 

Apparently, the crucial notions are microconstancy and macroperiodicity. The former refers 20 

to the premise that “within any small but not too small neighborhood, the proportion of initial 21 

conditions producing a given outcome is [approximately] the same” (2013, 11). This 22 

proportion is called strike ratio and it essentially determines the probability modulo 23 

substantial problems concerning the limiting process to infinitesimal neighborhoods and thus 24 

to exact probability values. Macroperiodicity denotes a certain smoothness in the probability 25 

distribution over initial conditions, such that neighboring initial conditions leading to different 26 

results should occur with approximately the same frequency in long series of trials.
15

 This 27 

uniformity together with microconstancy leads to stable strike ratios and thus probabilities 28 

that are largely independent of the exact probability distribution over initial conditions. 29 

Finally, robustness in Strevens’ third premise refers to counterfactual robustness, i.e. that 30 

counterfactual and predictive statements about frequencies are sufficiently reliable. Typical 31 

applications for microconstant probability are games of chance like roulette or playing dice, 32 

but Strevens believes that the notion also covers scientific applications from statistical 33 

physics
16

 to the theory of evolution. Obviously, Strevens’ approach features both 34 

characteristics of causal probability mentioned in the introduction. 35 

                                                 
14

 One should also mention the work of Richard Johns, who proposed a causal account of chance: “the chance of 

an event is the degree to which it is determined by its cause” (2002, 4). Moreover, propensity accounts are 

related to the causal approach, as already pointed out in the introduction and discussed further in Section 3c. 
15

 In ‘Tychomancy’, Strevens replaces the term by the “in essence identical” (2013, 58) notion of 

microequiprobability that the probability density is approximately uniform over any small contiguous interval or 

region in the initial state space (2013, 246). 
16

 For a related discussion, cf. Myrvold 2011. 
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A further prominent account in the tradition of the method of arbitrary functions is Marshall 1 

Abrams’ far-flung frequency (FFF) mechanistic probability (2012). His approach, although 2 

independently developed, bears close resemblance to the accounts of both Strevens and 3 

Rosenthal. In particular, he relies on the same concepts of microconstancy and 4 

macroperiodicity as coined by Strevens. Abrams introduces the idea of a causal map device, 5 

which maps the input space to the outcome space, and partitions the outcome space into basic 6 

outcomes. A bubble is defined as a region in the input space containing points leading to all 7 

possible outcomes. A partition of the entire input space into bubbles he calls a bubble 8 

partition. Probability then is determined in the following manner: “There is a bubble partition 9 

of the [causal map] device’s input space, such that many ‘far flung’ large natural collections 10 

of inputs together determine an input measure which makes most of the collections 11 

macroperiodic (and such that moderately significant changes in the spatiotemporal range 12 

across which natural collections are defined don’t significantly affect outcome probabilities).” 13 

(Sec. 6) For lack of space, I won’t go into details what exactly Abrams understands by “‘far 14 

flung’ large natural collections of inputs”, but essentially they fulfill two conditions: they are 15 

microconstant and they reflect actual input patterns in the world (Sec. 4.2). Abrams 16 

emphasizes that he intends an objective probability interpretation that can account for a wide 17 

range of applications in games of chance, statistical mechanics and perhaps also the social and 18 

biological sciences (Sec. 6). 19 

Finally, Rosenthal presents a very clear and thoroughly argued account of an objective 20 

probability interpretation largely construed around the notion of arbitrary functions, which he 21 

terms natural range conception in reminiscence of von Kries’ spielraum-concept. He 22 

formulates two equivalent versions, one in terms of an integral over those initial states that 23 

lead to a desired outcome and the other referring to the ratio of ranges in the initial state 24 

space. I will focus on the second explication, which Rosenthal frames as follows: “Let E be a 25 

random experiment and A a possible outcome of it. Let S be the initial-state space attached to 26 

E, and SA be the set of those initial states leading to A. We assume that S and SA are 27 

measurable subsets of the n-dimensional real vector space R
n
 (for some n). Let μ be the 28 

standard (Lebesgue-)measure. If there is a number p such that for each not-too-small n-29 

dimensional (equilateral) interval I in S, we have 30 

𝜇(𝐈 ∩  𝐒𝐴)

𝜇(𝐈)
≈  p 

then there is an objective probability of A upon a trial of E, and its value is p.” (2012, 224) 31 

Thus, Rosenthal explicitly frames his account as an objective probability interpretation for 32 

deterministic systems (2010, Sec. 5.3). In summary, the idea is that the probability of an 33 

outcome is proportional to that fraction of the initial-state space leading to the outcome, as 34 

determined by the Lebesgue measure. Since Rosenthal aims to develop an account for 35 

deterministic chance, i.e. he wants to eliminate epistemic aspects as far as possible, he has to 36 

require that in the initial-state space the conditions leading to the different outcomes are 37 

everywhere equally distributed, at least when looking with sufficient coarse-graining. This 38 

implies that any sufficiently smooth density function over the initial-state space will lead to 39 

approximately the same probability, which establishes the connection to the approach of 40 



 

11 

 

arbitrary functions and the close relatedness with Strevens’ microconstant probability relying 1 

on the notions of microconstancy and macroperiodicity. Of the three accounts discussed in 2 

this section, Rosenthal’s definition remains closest to the original ideas of von Kries’ 3 

spielraum conception by referring explicitly to a specific measure over the initial space. 4 

Without this element, the method of arbitrary functions could also be understood in terms of a 5 

frequentist approach with respect to the occurrence of initial states. 6 

Rosenthal discusses a central objection against his own approach which comes in two slightly 7 

differing versions (2012, Sec. 4; 2010, Sec. 5.5). First, an eccentric distribution over initial 8 

states might be realized in nature leading to observed frequencies deviating substantially from 9 

p. Rosenthal suggests that at least in some such cases a nomological factor has been 10 

overlooked that determines the eccentric distribution. According to the second variant of the 11 

objection, there usually exist various ways in which the initial-state space could be 12 

reformulated such that it loses the characteristics required for Rosenthal’s definition of 13 

probability. In particular, the Lebesgue measure might cease to be an appropriate choice to 14 

account for observed frequencies. Thus, one has to motivate why a certain formulation of 15 

initial conditions suitable for the natural-range conception is superior to others that are not 16 

suitable. Rosenthal essentially acknowledges that these are open problems for his approach.  17 

Note that they are equally troublesome for Strevens’ and Abrams’ account since the concepts 18 

of microconstancy and macroperiodicity already presuppose a choice of measure. As a 19 

solution, Strevens suggests to always use standard variables, measured in standard ways. 20 

Because these tend to be macroperiodically distributed, microconstancy with respect to 21 

standard variables is meaningful. While Strevens’ account is quite sophisticated in this respect 22 

(2006, Sec. 2.5; 2013, Ch. 12), I believe that the rejoinder eventually fails due to the 23 

blurriness and context-dependence of the notion of standard variable. After all, most 24 

phenomena can be accounted for in a large number of ways and it is just not plausible that all 25 

formulations will always yield microconstancy and macroperiodicity to the same extent.  26 

A related problem concerns the various imprecisions and approximations figuring in the 27 

definition of probability of all three accounts. For example, Rosenthal’s definition refers to 28 

“not-too-small” intervals and that the ratio of ranges only approximately determines the 29 

probability “≈ p”. In fact, the strike ratio will in general slightly fluctuate between different 30 

regions of the initial-state space. Thus, all theorems concerning microconstancy and 31 

macroperiodicity also hold only approximately. Especially, when aiming at a purely objective 32 

interpretation, these features are troublesome.
17

 In Section 3b, I suggest how the outlined 33 

technical problems can be avoided by rendering probability measure-dependent. 34 

Due to the close similarity of the accounts developed by Strevens, Rosenthal, and Abrams, I 35 

will in the following refer to them as the SRA-approach to objective probability. 36 

                                                 
17

 In personal communication, Michael Strevens has suggested as a response to consider microconstant 

probability as objective, but slightly indeterminate. 
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2c. Some praise 1 

The causal approach referring to initial or boundary conditions can resolve a number of 2 

problems for traditional accounts of probability. These issues are discussed extensively by the 3 

authors mentioned in the previous section, so I will not delve into details. Let me just briefly 4 

comment on a few points. 5 

According to Strevens, the “fundamental flaw” of the frequency account is that it cannot 6 

distinguish between meaningful and arbitrary frequencies and thus cannot reliably ground 7 

counterfactual statements and predictions in probabilities (2011, Sec. 2). The issue largely 8 

parallels the standard problem of induction. In reply, the causal account offers as a criterion 9 

that frequencies are only meaningful, when they result from a collective determined by causal 10 

conditions. Of course, this solution can only get off the ground given a defensible notion of 11 

causation, a topic that will be addressed in Section 3. 12 

A further major advantage in comparison with frequency theories is that causal interpretations 13 

can establish probability independently of observed frequencies, for example by referring to 14 

symmetries or by rendering probabilistic phenomena largely independent of the probability 15 

distribution over initial states. Among other things, this allows for a non-circular reading of 16 

the law of large numbers if probabilities are not themselves defined in terms of limiting 17 

frequencies (e.g. Abrams 2012, Sec. 1.1; Rosenthal 2010, Sec. 5.2). 18 

By relying on some version of the principle of indifference, causal probabilities bear 19 

resemblance to logical interpretations of probability. However, the principle of insufficient 20 

reason referring to ignorance, as it is used in the logical approach, is notoriously flawed by 21 

challenging objections—in particular Bertrand’s paradox, which highlights ambiguities in the 22 

application of this principle (Bertrand 1889; van Fraassen 1990, Ch. 12). The causal approach 23 

resolves these ambiguities by introducing an objective variant of the principle of indifference, 24 

later referred to as principle of causal symmetry in the specific account of causal probability 25 

to be developed in Sections 3 to 6 (cp. esp. Section 4c). 26 

2d. Critical reflections 27 

While clearly being a major step in the right direction, the recent attempts to develop an 28 

objective account of probability in the tradition of the method of arbitrary functions suffer 29 

from a number of shortcomings. There are the technical objections already pointed out 30 

towards the end of Section 2b. In addition, there are three more general issues, which I will 31 

delineate in the following. 32 

First, the SRA-approach tries to establish that probabilities are largely independent of the 33 

measure over the input space. But this does not eliminate the need to interpret the measure in 34 

a way that does not refer to relative frequencies which would lead us back to essentially a 35 

frequency interpretation. To solve this problem, I argue in Section 5b that the measure can be 36 

interpreted in terms of symmetries in the circumstances determining a probabilistic 37 

phenomenon. 38 
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Second, the objective accounts of the SRA-approach mostly fail to clarify the relation to 1 

epistemic probabilities and therefore implicitly subscribe to an in my view misguided sharp 2 

distinction between ontic and epistemic probabilities. Instead, I will pin down in Section 6 3 

several epistemic features that can but need not be present in the assignment of probabilities. I 4 

will sketch how the various shades of epistemic and ontic probabilities can all be accounted 5 

for in terms of a single causal interpretation. Thus, the range of application is widely extended 6 

beyond cases in which the method of arbitrary functions can be employed.  7 

Third, the mentioned accounts all rely on physical or causal laws determining the dynamics of 8 

the considered phenomena largely without explaining the origin of these laws. In the worst 9 

case, they need to be established inductively leading us back to the problem of distinguishing 10 

between meaningful and arbitrary relations, which the SRA-approach aimed to resolve in the 11 

first place. Thus, a major task for any approach to probability is to clarify how it fits into a 12 

more general framework of induction and causation. This will be attempted in the following. 13 

 14 

3. Induction, causation, and probability 15 

In the previous section, a shortcoming of the SRA-approach was identified that the 16 

probabilities rely on physical knowledge in terms of dynamics and laws of motion but fail to 17 

make a connection with a specific account of induction and a corresponding notion of 18 

causation. In the following, I try to ameliorate the situation by comparing two distinct 19 

accounts of induction, namely enumerative and eliminative, and by examining how in each 20 

case a notion of probability could be integrated. Enumerative induction leads to a naïve 21 

frequency account of probability that must be rejected in particular for failing to draw a 22 

distinction between accidental and lawlike regularities. By contrast, eliminative induction 23 

offers a solution to this problem in terms of a difference-making account of causation, while 24 

of course some amount of uncertainty remains for any inductive inference. Trying to 25 

implement probability in eliminative induction will lead to an account of causal probability 26 

that resembles those presented in Sections 2a and 2b. From now on, the terms ‘causal 27 

interpretation of probability’ and ‘causal probability’ more narrowly refer to the specific 28 

account to be developed in the remainder of the essay. According to the proposed viewpoint, 29 

probabilities are understood as degrees or grades of causal determination by a given set of 30 

circumstances or conditions. It should be added that such determination may be considered 31 

both in the direction from causes to effects and from effects to causes (for the latter cp. in 32 

particular Section 6d).
18,19

   33 

                                                 
18

 One referee has suggested that the proposed notion of probability should be interpreted as an abstract 

framework into which every causal interpretation of probability has to fit. In principle, I am happy with such a 

pluralistic reading in terms of a class of interpretations rather than a single one. In particular, there certainly is 

some room for allowing different understandings of causality. 
19

 Marshall Abrams, in an interesting recent paper (2015), formulates a notion of causal probability that is strictly 

speaking neither an interpretation nor a class of interpretations. Rather, he considers the causal nature an 

additional feature of some interpretations of probability including long run propensities and his own 

‘mechanistic probability’ (2012). Broadly speaking, Abrams terms probabilities causal when a change in 

properties of a chance set-up affects the relative frequencies of outcomes. For a more exact definition, he 

employs Woodward’s interventionist framework. While Abram’s approach is certainly related, the proposal in 
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3a. Enumerative induction and the frequency theory 1 

Enumerative induction is the rather naïve view that general laws can be deduced from the 2 

observation of mere regularities: If in all observations, one finds two events, objects, 3 

properties, etc. A and B always conjoined then there supposedly exists a causal connection 4 

between A and B. This basic idea is shared by all naïve regularity conceptions of natural laws 5 

and causation.  6 

The generalization to statistical laws is straight-forward although some technical 7 

complications arise due to possible fluctuations in the observed frequencies. Basically, if in a 8 

sequence of events of type A one finds a more or less constant ratio p for another type of 9 

event B, then one can conclude to a statistical law connecting A and B with probability p. For 10 

example, if a coin lands heads in approximately one half of all trials, then the probability of 11 

this event probably is somewhere close to one half. Serious problems arise because the true 12 

value of the probability is usually identified with the limiting frequency in an infinite number 13 

of trials. The naïve frequency view thus grants epistemic access only to observed frequencies 14 

but not to the underlying probabilities themselves. Therefore, it exhibits considerable 15 

difficulties dealing with cases, where the frequencies by pure coincidence deviate from the 16 

actual probabilities. 17 

However, at this point we can neglect the problems arising in this regard since the naïve 18 

frequency view falls prey to a much more fundamental flaw, the same as the naïve regularity 19 

conception of laws and causation: it cannot distinguish between accidental and lawlike 20 

statistical relationships, i.e. between those that can ground predictions and successful 21 

manipulations and those that cannot (cp. Strevens 2011, Sec. 2; as already discussed in 22 

Section 2c). For example, the naïve frequency view cannot handle the following situation of 23 

an exchanged coin. Consider a sequence of throws, during which the coin is exchanged at 24 

some point with another one looking very much alike. Presumably, the naïve frequentist 25 

would have to derive predictions about future events from the whole sequence. He cannot 26 

make the crucial distinction between the case, where both coins are structurally similar, and 27 

the case, where the coins are structurally distinct, e.g. one fair the other loaded. As we will see 28 

shortly, such distinctions can be systematically established only within the context of 29 

eliminative induction. In other words, the naïve frequency view leads to an essentially 30 

unresolvable reference class problem since it lacks clear rules how to determine structural 31 

similarity. 32 

In comparison, the causal interpretation elaborated in this essay accepts that any single event 33 

can be attributed to different collectives, which in general imply different probabilities for the 34 

event. In other words, there is an ambiguity in the choice of reference class, which however is 35 

not fatal to the causal interpretation, since causal probability is defined with respect to a 36 

collective. This dissolves what Alan Hájek has termed the metaphysical reference class 37 

                                                                                                                                                         
the present paper ascribes a much more central role to causality extending to a number of fundamental concepts 

in probability theory like probabilistic independence or the principle of indifference. Causal probability therefore 

should be understood as a specific interpretation of probability in its own right (or at least a class of 

interpretations determined by different accounts of causation) that is conceptually incompatible with other 

interpretations. For a discussion of those differences, see in particular Section 3c. 
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problem (2007). Note that an epistemic agent acting on the basis of probabilities should use 1 

the collective that is as specific as possible in terms of causally relevant conditions under the 2 

additional constraint that the agent has epistemic access to some evidence for the 3 

corresponding probabilities in terms of symmetries or relative frequencies. By contrast, the 4 

fatal reference class problem for the naïve frequentist is that he may construct an ensemble of 5 

seemingly similar events, which are however structurally dissimilar, and therefore the 6 

resulting frequencies are not predictive. This problem is avoided in the causal approach 7 

because the collective conditions are by definition causally relevant for the considered 8 

phenomenon and must remain constant during all trials, while the range conditions are 9 

supposed to vary randomly.  10 

3b. Eliminative induction and the causal conception of probability 11 

Eliminative induction is distinguished from enumerative induction in that it examines not the 12 

mere repetition of phenomena but rather phenomena under varying circumstances or 13 

conditions. Eliminative methods determine the causal relevance or irrelevance of conditions 14 

for a certain phenomenon. The main methods are the method of difference and the strict 15 

method of agreement. The first establishes causal relevance of a condition C to a phenomenon 16 

P from the observation of two instances which are alike in all conditions that are causally 17 

relevant to P except for C. If in one instance both C and P are present and in the other both C 18 

and P are absent, then C is causally relevant to P. The strict method of agreement establishes 19 

causal irrelevance in much the same manner, except that the change in C has no influence on 20 

P.
20

 According to this view of eliminative induction, causal (ir-)relevance is a three-place 21 

notion: Condition C is causally (ir-)relevant to P with respect to a background B consisting of 22 

further conditions that remain constant if causally relevant to P or that are allowed to vary if 23 

causally irrelevant. For further details, see Pietsch (2014). 24 

The outlined approach to induction has a counterpart in an account of causation that broadly 25 

stands in the counterfactual tradition and that was elsewhere termed difference-making 26 

account.
21

 It is distinguished from conventional counterfactual approaches, in particular that 27 

of David Lewis, by the following characteristics: a notion of causal irrelevance is introduced; 28 

all causal relationships are rendered background-dependent; and counterfactual propositions 29 

are not evaluated in terms of possible worlds but on the basis of refined versions of the 30 

method of difference and the strict method of agreement and therefore by referring to 31 

instances in the actual world.  32 

The main ingredients of this difference-making account are (i) counterfactual definitions of 33 

the fundamental notions of causal relevance and causal irrelevance: ‘in a context B, in which 34 

a condition C and a phenomenon P occur, C is causally relevant (irrelevant) to P, iff the 35 

following counterfactual holds: if C had not occurred, P would also not have occurred (if C 36 

had not occurred, P would still have occurred)’; (ii) obviously, these definitions implement 37 

background- or context-dependence, an idea roughly taken from John Mackie’s work: in 38 

principle, a background or context is defined by conditions that must remain constant and 39 

                                                 
20

 Note that as a complication, judgments of causal irrelevance depend on measurement accuracy. 
21

 In the following I can only provide a very brief sketch of the account. A basic outline can be found in Pietsch 

(2015, Sec. 4.1), a detailed defense in Pietsch (2016). 
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others that are allowed to vary; (iii) finally, an account of counterfactuals is employed that 1 

takes its inspiration directly from the method of difference: ‘“If C were not the case, P would 2 

not be the case” is true with respect to an instance in which both C and P occur in a context B, 3 

if first, at least one instance is realized in which neither C nor P occurs in the same context B 4 

and second, if B guarantees homogeneity.’ The latter is the case, iff only conditions that are 5 

causally irrelevant to P can change, except for C itself and conditions that are causally 6 

relevant to P in virtue of C being causally relevant to P, i.e. in particular conditions that lie on 7 

a causal chain through C to P. Let me emphasize again that the definitions of causal relevance 8 

and irrelevance correspond directly to the method of difference and the strict method of 9 

agreement, respectively. 10 

How does probability fit into this picture of induction and causation? Note first that both 11 

principal methods of eliminative induction and the corresponding definitions of causal 12 

relevance and irrelevance presuppose determinism, i.e. that P is fully determined by causal 13 

conditions (Pietsch 2014, Sec. 3f). Consequently, we will in the following delineate an 14 

essentially epistemic probability conception for deterministic phenomena, while 15 

indeterministic probabilities can be integrated later on, as discussed in Sections 6a and 6b. 16 

Let me begin with a simple example to outline the basic idea of the proposed causal 17 

interpretation of probability. Consider a wheel of fortune with four different areas of equal 18 

size, which are labeled, say, as green, blue, red, and yellow. Let a blindfolded person 19 

determine the moment, when to stop the wheel. Apparently, certain conditions remain 20 

constant in different instances or trials of this set-up, for example the mentioned distribution 21 

of labels on the wheel, maybe also the velocity with which the wheel is turning etc. These 22 

constant conditions in probabilistic phenomena shall be called collective conditions. A 23 

number of other conditions may change from trial to trial, in particular the moment and the 24 

position at which the wheel starts turning and the moment when the blindfolded person stops 25 

the wheel. Let these conditions be called range conditions. Obviously, collective and range 26 

conditions taken together causally fix the specific event that will happen.  27 

The range conditions span an outcome space and each point in this space is labeled in terms of 28 

the resulting attribute, which in the discussed example is the color at which the wheel stops. 29 

In the next step, one is interested in the distribution of attributes in the outcome space. 30 

According to the proposed interpretation, this issue is tackled using symmetry arguments, e.g. 31 

by examining the dynamics of the probabilistic phenomenon. And indeed it turns out that the 32 

considered causal structure is invariant under permutation of the different colors, which 33 

implies that all colors appear in the outcome space to the same extent, i.e. they all have equal 34 

measure. Note that at this point the measure does not yet have to be a probability measure, 35 

e.g. it can follow from a regular dynamics, but it has to be characteristic of the extent in which 36 

the various attributes are realized, in order to eventually establish the connection with 37 

frequencies. In the example, we know that the color sequence of the rotating wheel of fortune 38 

follows a perfectly regular pattern with each color appearing an equal amount of time.  39 

Thus, an additional argument is needed to establish the measure as a probability measure. In 40 

particular, it has to be shown that different trials are independent of each other. Generally, this 41 

can be guaranteed based on causal irrelevance. Roughly, since the person stopping the wheel 42 
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is blindfolded and the wheel is turning at considerable speed, we know on the basis of fairly 1 

simple scientific laws that the rotational state of the wheel is causally unrelated with the 2 

moment when the blindfolded person stops the wheel. Given that the measure designates how 3 

often an attribute is realized and that in addition independence of trials can be established by 4 

means of arguments from causal irrelevance, the ratios of the various attributes in the outcome 5 

space weighted by the measure can be interpreted as probabilities. Also, since the main 6 

premises for the law of large numbers are fulfilled, a link to relative frequencies can be 7 

established. 8 

Let me now introduce the formal framework. In developing a probability concept for 9 

eliminative induction, the focus must lie on the variation of conditions, which constitutes the 10 

crucial change in perspective compared with enumerative induction which focuses on the 11 

number of instances (cp. Federica Russo’s variational epistemology for causation, e.g. Illari & 12 

Russo 2014, Ch. 16). In particular, a careful distinction between various types of 13 

circumstances or conditions needs to be introduced.  14 

We are interested in the impact of a number of potentially relevant conditions C1, …, CM on a 15 

statistical
22

 phenomenon P with respect to a background B. Since P is statistical, it must be 16 

linked to a space O of possible outcome states, which may be continuous and many-17 

dimensional, but will for the sake of simplicity from now on be assumed as discrete and one-18 

dimensional. No additional conceptual difficulties arise in the former case. The outcome space is 19 

divided into mutually exclusive regions covering the whole space. These regions are labeled 20 

and the labels are called attributes M1, …, MN.
23

 Note that the labels are introduced in 21 

addition to the parameters spanning the outcome space for reasons that will become clear later 22 

on when the notion of causal symmetry is defined. 23 

Let me now introduce various types of conditions, in particular the distinction between 24 

collective
24

 conditions and range
25

 conditions. Both types are causally relevant (in the sense 25 

of difference-making) to P. When examining a particular probabilistic phenomenon, the 26 

collective conditions must remain constant, while the range conditions are allowed to vary. 27 

The collective conditions fix the occurrence of the class P but do not determine which of the 28 

attributes M1, …, MN will actually happen, i.e. these conditions determine the probability 29 

space regarding the various manifestations of the phenomenon P. Note that the collective 30 

conditions include all causally relevant conditions in the background or context B. Collective 31 

and range conditions together causally fix the exact outcome state and thereby also which 32 

event MX of the M1, …, MN will actually happen in a specific instance or trial. Furthermore, a 33 

measure W needs to be introduced denoting the probability with which certain combinations 34 

of range conditions appear and thus the probability of the corresponding outcome states. In 35 

principle, this measure is determined by the collective conditions as further discussed in 36 

Section 4. It is normalized over the whole outcome space and should, via the various laws of 37 

                                                 
22

 ‚Statistical phenomenon‘ here is not identical with ‚probabilistic phenomenon‘ as defined below, but is more 

broadly understood as a phenomenon that is not fully determined by the considered circumstances or conditions. 
23

 In reverence to von Mises who used the German term ‘merkmal’ that translates to feature, attribute, 

characteristic. 
24

 Again, we rely on the terminology of von Mises. 
25

 The terminology here is of course in reverence to von Kries. 
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large numbers, correspond to the limiting frequencies with which the outcome states of a 1 

specific probabilistic phenomenon will be instantiated. The exact interpretation of this 2 

measure constitutes a crucial challenge for the causal account mainly for two reasons: (i) there 3 

is an immediate threat of conceptual circularity if the measure is itself explicated in 4 

probabilistic terms; (ii) in particular, if the measure is interpreted in terms of relative 5 

frequencies we are thrown back on a frequentist interpretation of probability. The suggested 6 

solution in the framework of the causal approach is to establish the measure quantitatively on 7 

the basis of causal symmetries in the collective conditions and to identify it as a probability 8 

measure that corresponds to limiting frequencies by arguments based on causal irrelevance. In 9 

other words, the measure is interpreted in terms of causal symmetries and causal irrelevance 10 

(cf. Section 5b).
26

  11 

Sometimes, when it is possible to clearly specify the process determining the measure, it may 12 

make sense to distinguish between two types of collective conditions: set-up conditions 13 

determining the possible combinations of range conditions; and measure conditions, which fix 14 

the measure over the space spanned by the range conditions and thus the probabilities of the 15 

outcomes.
27

 Note that in the exceptional case of indeterministic phenomena, there are no 16 

range conditions that vary. The measure therefore becomes dispensable, and the probabilities 17 

directly result from the system’s indeterministic dynamics.
28

 18 

This leads to the notions of a probabilistic phenomenon and of causal probability (definition 19 

1): 20 

A probabilistic phenomenon P is determined by collective conditions C that remain 21 

constant; range conditions R that are allowed to vary and that span an outcome space 22 

O; as well as a probability measure W over the outcome space. The causal probability 23 

of a specific attribute MX, combining a set of possible outcomes of the phenomenon P, 24 

is given by the fraction of outcome states pertaining to attribute MX, weighted
29

 with 25 

the measure W.
 30

  26 

As already said, the measure is in principle determined by causal symmetries in the collective 27 

conditions (cf. Section 4) and the nature as a probability measure (i.e. a measure that 28 

corresponds to the actual limiting frequencies) must be established in terms of causal 29 

irrelevance (Section 5). In summary, probabilities according to the proposed view denote 30 

degrees of causal determination of the attributes by the collective conditions. 31 

In some situations, it may be useful to add more structure to the probabilistic phenomenon by 32 

introducing an input space of possible input states S1, …, SQ, which is now spanned by the 33 

range conditions, as well as a causal mapping S 
𝐶
→ O. Again, we assumed a discrete, one-34 

                                                 
26

 Like the frequentist interpretation this constitutes an operationalist approach, only on the basis of symmetries 

rather than relative frequencies. 
27

 There is often a normative component to the measure and thus also to the collective conditions, since it is 

partly a matter of choice which events to include in a collective and which not.  
28

 We will return to this topic in Section 6a.  
29

 Henceforth, I will speak of the ‘weighted fraction of outcome states’. 
30

 I claim that this is the notion of probability that many of the classical thinkers mentioned in Section 2a had in 

mind. Strevens (2006) makes a similar suggestion, but sees it as a special kind of probability, namely ‘complex 

probability’, in contrast with ‘simple probabilities’ that appear in or depend on fundamental laws of nature. 
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dimensional input space for the sake of simplicity, a generalization would add no further 1 

difficulties. Most importantly, this extra structure of the probabilistic phenomenon allows to 2 

better show the connection with the method of arbitrary functions and the SRA framework 3 

(definition 2):  4 

A probabilistic phenomenon P is determined by collective conditions C, range 5 

conditions R spanning the input space S, a probability measure W over the input space 6 

and a causal mapping S 
𝐶
→ O of the input space on the outcome space O. The causal 7 

probability of a specific attribute MX, combining a set of possible outcomes of the 8 

phenomenon P, is given by the fraction of input states leading to attribute MX, 9 

weighted with the measure W. 10 

Obviously, this second definition is a special case of the first. 11 

According to both definitions, probability is always relative to collective conditions—which 12 

is very much in the spirit of von Mises’ famous statement “first the collective—then the 13 

probability” (1981, 18).
31

 Sometimes, when the range conditions and the measure over those 14 

conditions are not explicitly known, one may express a probabilistic phenomenon in terms of 15 

the attribute space, but a constant collective is nevertheless always required. Note finally that 16 

the basic axioms of probability will be satisfied since the definitions are based on fractions 17 

referring to a normalized measure. 18 

Let me briefly elaborate on the issue, why the presented approach merits to be called ‘causal’. 19 

Most importantly, the collective conditions causally determine the probabilistic phenomenon 20 

P, and collective
32

 and range conditions taken together causally determine a specific 21 

manifestation of P. While sophisticated frequency accounts like von Mises’ approach also 22 

require a collective, they do not consider it fixed strictly by causal conditions, but presumably 23 

other types of conditions may also appear, e.g. these accounts lack the important distinction 24 

between causal variables and proxy variables as discussed in Section 6c. Note that this 25 

constitutes the decisive step with respect to frequency accounts to solve the problem of 26 

properly distinguishing between arbitrary and meaningful frequencies. 27 

In the following sections, I will introduce several further concepts that are central to the 28 

causal interpretation. The notion of causal symmetry, referring to invariance of causal 29 

structure with respect to attribute permutations, and the related principle of causal symmetry, 30 

as explicated in Section 4, allow establishing the measure to an extent that the probability 31 

distribution of the attributes can be fixed without relying on relative frequencies as evidence. 32 

In Section 5, a causal construal of the notion of independence will be provided ensuring that 33 

sequences of outcome states will be random. Without independence (or related concepts like 34 

exchangeability), one could hardly speak of a probabilistic phenomenon, since many theorems 35 

of probability theory like the various laws of large numbers justifying the convergence of 36 

relative frequencies to the actual probabilities rely on independence of subsequent events.  37 

                                                 
31

 “we shall not speak of probability until a collective has been defined” (ibid.) 
32

 more exactly, the set-up conditions, if these can be distinguished from the measure conditions 
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The notions of causal symmetry and the causal construal of independence further underline 1 

the causal nature of the proposed account of probability. The definition of probability given 2 

above, the principle of causal symmetry, and a causal construal of the notion of independence 3 

should be seen as one package making up causal probability. The connection with eliminative 4 

induction can be understood in terms of a coarse-grained formulation. Instead of examining 5 

particular instances, where specific R and O are realized, statistical phenomena P as a whole 6 

can be considered—determined by certain collective conditions and an attribute distribution, 7 

e.g. an ideal gas in a box or a long sequence of throws with a die. The causal relations how 8 

changes in collective conditions affect the respective statistical phenomena within this macro-9 

perspective can again be established by the method of difference and the strict method of 10 

agreement. Predictions and counterfactual statements can thus be derived. 11 

Let me illustrate the proposed notion of probability with another simple example regarding 12 

the throw of a coin (P). The attributes partitioning the outcome space are heads-up (M1) or 13 

tails-up (M2). The collective conditions are the causal conditions of the set-up, e.g. concerning 14 

the type of coin, the allowed types of throwing, the types of surface on which the coin lands, 15 

etc. These conditions are held fix in all instances of the phenomenon. The range conditions 16 

are also causally relevant to the outcome but randomly vary from throw to throw: including 17 

the exact initial state of the coin before the throw, the initial speed, direction, and torque of 18 

the throw, etc. Assuming determinism, the attribute is fixed by the range conditions. Finally, 19 

the measure W denotes the probability, with which the various range conditions occur. In 20 

principle, W is fixed by causal symmetries in the collective conditions. In particular, the 21 

dynamics of the throw as well as the process determining the initial state of the coin might 22 

both be invariant with respect to exchanging the labels on the coin. It should be added that it 23 

generally suffices that the instructions how to throw the coin determine the measure over 24 

range conditions to an extent that the attribute distribution is fairly stable. In other words, the 25 

measure is seldom fixed to full extent. This is the lesson learned from the method of arbitrary 26 

functions. Note finally that the range conditions can usually be formulated in different ways 27 

for a probabilistic phenomenon, which requires a complementary adjustment of the measure. 28 

As long as the collective for the throws remains the same, including that the initial states vary 29 

sufficiently, long-run frequencies will almost always closely approximate the actual 30 

probabilities according to the mathematical theorem called the law of large numbers. This 31 

solves the problem of the exchanged coin of Section 3a. As long as both coins are structurally 32 

similar, e.g. fair, the collective conditions stay the same when the coin is exchanged, and 33 

therefore predictions based on combined frequencies can be expected to hold. If one coin is 34 

fair and the other loaded, then the instances do not form a collective, because a causally 35 

relevant condition has changed and therefore predictions based on relative frequencies will in 36 

general fail to hold (though there may be ways of formulating a combined collective, see 37 

Section 6b). 38 

Another classic application of probability concerns population statistics, e.g. the question 39 

whether a certain person will die at a given age. Regarding this type of problem Mill has 40 

claimed that probability lacks an objective meaning since for every individual death is 41 

supposedly a matter of deterministic fact (cf. Section 2a). With respect to single-case 42 
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probabilities in deterministic settings, this assessment is certainly correct. However, there is a 1 

fairly objective meaning to probability if relating it to a specific collective as required by the 2 

definition of causal probability given above (regarding a discussion of various epistemic 3 

elements in causal probabilities, cf. Section 6).  4 

To determine the probability whether someone will die at a specific age we thus first have to 5 

fix a collective specifying causally relevant circumstances, for example the gender of a 6 

person, certain habits, e.g. whether he/she smokes, is active in sports, or has pre-existing 7 

diseases. The collective conditions leave open the two possibilities of interest that the person 8 

dies at a given age or not. Probabilities result from the range conditions and a measure over 9 

the space spanned by the range conditions, although these need not—and often cannot—be 10 

made explicit. While admittedly it is impossible to list all the relevant causal conditions for 11 

phenomena with a complex causal structure like the death of a person, in principle the 12 

construction of a collective according to the definition above is possible assuming 13 

determinism. And the fact that insurance companies manage to arrive at fairly stable 14 

probability distributions suggests that they have some epistemic access to appropriate 15 

collectives. 16 

In combination, collective and range conditions causally determine whether a person will die 17 

or not. Of course, the exact boundary between collective and range conditions is usually quite 18 

arbitrary. In the case of population statistics, the collective is mostly determined by choosing 19 

a certain group of the total population, for example white male living in New York State. 20 

Since epistemic access to causal symmetries is implausible for phenomena of such 21 

complexity, the required information about range conditions and measure is derived from past 22 

frequency data—under the assumption that this data is representative of the group and that the 23 

collective conditions will approximately stay the same for the time period that is to be 24 

predicted. Note again that the collective should generally be chosen in such a way that it 25 

includes all conditions that are known to be causally relevant in a considered instance, if one 26 

wants to act on the basis of the resulting probabilities. For example when someone is known 27 

to have prostate cancer, this information should be included in the collective conditions 28 

concerning an imminent death, if, of course, there is also sufficient frequency data available to 29 

determine the corresponding probabilities. 30 

3c. A brief comparison with other accounts 31 

In the introduction, I had already pointed out the main differences between the causal 32 

approach and the logical as well as the frequentist accounts. With respect to the former, the 33 

causal approach relies on an ontic and not on an epistemic version of the principle of 34 

indifference. With respect to the latter, the causal approach defines probability in terms of the 35 

ratio of favorable boundary or initial conditions and not in terms of relative frequencies of 36 

events.
33

 37 

                                                 
33

 One should also mention best-systems interpretations originating with Lewis (1994); Hoefer (2007) is a more 

recent development in this tradition. These interpretations pursue a different aim compared with causal 

interpretations bytrying to situate probability within a framework of  Lewisian metaphysics. Let me further 



 

22 

 

The account proposed in Section 3b is conceptually closest to the SRA-approach and to the 1 

propensity theory. It is therefore worthwhile to briefly address the most important differences 2 

in each case. Without any loss of generality, I will rely on definition 2 in the following 3 

discussion. With respect to the SRA-approach based on the method of arbitrary functions, a 4 

crucial difference is that causal probability
34

 is always relative to the collective conditions and 5 

thereby also to the measure over the input space while the SRA-approach tries to establish 6 

that probabilities are independent of the choice of measure. Rendering probability relative to 7 

the measure resolves in a simple manner the central objection against the natural-range 8 

conception that was described towards the end of Section 2b. Concerning the first situation, 9 

i.e. the problem of eccentric distributions over initial states, the causal perspective is the 10 

following. If the collective conditions determine an eccentric distribution, the measure must 11 

reflect this distribution. By contrast, if an eccentric sequence of initial states occurs by 12 

coincidence given a non-eccentric measure, then the eccentric sequence must be attributed to 13 

chance. 14 

The second situation, Rosenthal worries about, is that reformulations of the initial conditions 15 

lead to a change in probabilities. Indeed according to his natural range conception, which 16 

relies on the Lebesgue measure over the initial-state space, reformulations could easily imply 17 

probabilities in contradiction with observed frequencies. Rosenthal suggests excluding such 18 

“unphysical” descriptions, but it remains completely unclear how to construe a suitable notion 19 

of unphysicality. Rather, the various debates on conventionality in physics have shown that 20 

supposedly unphysical descriptions are often feasible and empirically adequate. Furthermore, 21 

opinions about physicality habitually change over the course of history. This difficulty is also 22 

resolved in a simple manner by the account of causal probability. Essentially, any change in 23 

the formulation of the range conditions has to be compensated by a complementary change in 24 

measure in order to stay consistent with the collective conditions and the observed 25 

frequencies. Obviously, this option is not available to Rosenthal since he insists on using the 26 

Lebesgue measure as probability measure. Note again that the same difficulties which 27 

Rosenthal makes explicit are hidden in the conditions of microconstancy and 28 

macroperiodicity in Strevens’ and Abrams’ account which presuppose a measure. Strevens’ 29 

response in terms of standard variables was already described in Section 2b and is largely 30 

equivalent to Rosenthal’s proposal. 31 

Furthermore, there is no need for approximations or imprecisions in the causal account in 32 

contrast with Rosenthal’s definition of probability or the related definitions of microconstancy 33 

and macroperiodicity in Strevens’ and Abrams’ accounts (cf. the end of Section 2b). Rather, 34 

the probability according to the causal interpretation corresponds exactly to the weighted 35 

fraction of outcome states. Again, this move is possible since the causal account renders 36 

probability relative to the measure, but also because the causal construal of independence 37 

ensures randomness in the sequence of initial conditions and thus convergence of relative 38 

frequencies to the causal probabilities by the law of large numbers. 39 

                                                                                                                                                         
briefly point to an interesting recent attempt to combine a spielraum approach with a best-systems interpretation 

by Claus Beisbart (2016). 
34

 Remember that the terms ‘causal interpretation’ and ‘causal probability’ now refer exclusively to the account 

developed in Section 3b. 
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The price to pay is that probability becomes relative to the essentially epistemic choice of a 1 

collective (cf. Section 6), which thwarts the project of a purely objective probability 2 

interpretation in deterministic settings. On the other hand, I don’t see why accepting some 3 

epistemic aspects in probability is problematic except if one adheres to an overly realist view 4 

of science. And again, this very step enables the causal interpretation to cover a wide range of 5 

applications from indeterministic probabilities to probabilities of hypotheses as described in 6 

Section 6—compared with the rather narrow range of applications of the SRA-approach 7 

requiring microconstancy and macroperiodicity.  8 

Of course, phenomena accessible to the method of arbitrary functions can be treated within 9 

the causal approach as well. In such cases, the collective conditions
35

 and the measure need to 10 

be fixed only to the extent that the probability distribution is approximately stable. As an 11 

example, consider the throw of a die. The probability distribution does not depend much on 12 

the exact instructions for the collective, e.g. concerning the original position of the die, the 13 

way it is thrown etc. Generally speaking, the exact choice of collective conditions and 14 

measure is largely irrelevant, if the dynamics of the system is sufficiently complex—a topic 15 

that is discussed today mainly in the domain of ergodic theory.  16 

On a deeper level, the introduction of measure-dependence in the causal approach calls for 17 

new concepts that are not central to the SRA-approach. First, the measure over input states 18 

must be determinable independently of relative frequencies in the causal approach—otherwise 19 

we would be thrown back on frequentism. To this purpose, the principle of causal symmetry 20 

is introduced in the next Section 4. Second, when the condition of microconstancy is dropped, 21 

it cannot be assumed anymore that the occurrence of attributes will be sufficiently random 22 

due to slight variations in initial conditions. Therefore, in the causal interpretation randomness 23 

has to be established by other means leading to the causal construal of independence proposed 24 

in Section 5. By referring to causal symmetries in the collective conditions and to causal 25 

irrelevance establishing probabilistic independence, the causal interpretation resolves one of 26 

the fundamental problems of the SRA-approach, namely how to interpret the measure over 27 

input space (cp. Section 5b). 28 

The causal approach also owes considerably to various versions of the propensity 29 

interpretation. Most importantly, they share the broad (and important) idea that probabilities 30 

arise from circumstances or conditions. However, a direct comparison is rendered somewhat 31 

difficult by the enormous spectrum of propensity accounts in the literature (a good recent 32 

overview can be found in Berkovitz 2015). In fact, the various accounts differ so substantially 33 

that some scholars subsume under the notion of propensity any objective approach that is not 34 

a frequency interpretation (Gillies 2000a, 114). The most fundamental distinction is between 35 

long-run and single-case propensity theories: “A long-run propensity theory is one in which 36 

propensities are associated with repeatable conditions, and are regarded as propensities to 37 

produce, in a long series of repetitions of these conditions, frequencies which are 38 

approximately equal to the probabilities. A single-case propensity theory is one in which 39 

propensities are regarded as propensities to produce a particular result on a specific occasion.” 40 

(Gillies 2000a, 126) One crucial problem of single-case propensity interpretations, especially 41 

                                                 
35

 in particular the measure conditions, if these can be separated from the set-up conditions 
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those in which probabilities depend on the whole state of the universe at a given time (the 1 

later Popper, David Miller), is to establish a connection between propensities and relative 2 

frequencies. On the other hand, long-run propensity interpretations run the risk of collapsing 3 

into a frequency interpretation, since relative frequencies are invoked on a fundamental 4 

conceptual level. By contrast, the proposed account of causal probability does not rely on 5 

relative frequencies but on symmetries to establish probability distributions on a fundamental 6 

level, while at the same time making a connection with relative frequencies via the law of 7 

large numbers, if probabilistic independence can be shown by arguments of causal 8 

irrelevance. 9 

There are a number of crucial differences between propensity theories and the proposed 10 

account. The first point concerns ontology. If the proponents of propensities were thinking of 11 

causal determination, why not call it causation? Why use a rather obscure term like 12 

propensity? Popper and other proponents of propensity accounts seem to have felt the need to 13 

introduce a novel ontological category to account for probabilistic phenomena. In later years, 14 

Popper considered causation to be a special case of propensities, namely when the propensity 15 

equals one. As another example, Donald Gillies claims that non-causal correlations for 16 

example between a low barometer reading and subsequent rainfall also constitute propensities 17 

(2000b, 829-830). Other proponents of a propensity interpretation like D.H. Mellor reject the 18 

view that chance is a sort of “weak or intermittently successful causal link” maintaining that 19 

“causal talk is not really illuminating in statistical contexts” (Mellor cited in Berkovitz 2015, 20 

657). To resolve this confusing disagreement concerning the relationship between causation 21 

and probability, the approach proposed in this essay tries to situate probability within a 22 

specific framework of causation. While in general propensity accounts focus conceptually on 23 

dispositions or tendencies and rather casually remark upon the parallel with causation, the 24 

interpretation proposed here starts with a detailed and specific concept of causation as 25 

difference making and examines how probability fits into the picture.  26 

On a more methodological level, causal probability is relative not only to the collective 27 

conditions but—unlike propensities—also to the measure over the space spanned by the range 28 

conditions. Relatedly, propensity approaches are often silent on the question how exactly the 29 

circumstances determine the probabilities. They typically lack the notion of causal symmetry, 30 

the ontic version of the principle of indifference, and the causal construal of probabilistic 31 

independence. With respect to the last issue, the randomness of subsequent events is often 32 

considered as implicit in the notion of tendency in propensity accounts.  33 

Finally, the fact that propensities are framed in a language of tendencies or dispositions 34 

appears to explicitly exclude the formulation of inverse probabilities, i.e. evidential 35 

probabilities or the probabilities of hypotheses (for an elaboration of this criticism, cp. 36 

Humphreys 1985).
36

 How causal probabilities as proposed in this essay can be inversed is 37 

briefly indicated in Section 6d. Furthermore, while influential propensity theorists like Popper 38 

have argued that inductive concepts like confirmation are not explicable in terms of 39 

probabilities at all, the causal interpretation explicitly establishes the link with an inductive 40 

                                                 
36

 Various responses from propensity theorists to this so-called Humphreys’ paradox can be found in Berkovitz 

(2015, Sec. 5). Several scholars like Mauricio Suarez conclude that propensities cannot be probabilities (2013). 
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framework. Part of the project of a causal interpretation is to show how the basic idea that 1 

probabilities arise from circumstances can be extended to epistemic probabilities like the 2 

probabilities of hypotheses (cp. Sec. 6).  3 

 4 

4. Causal symmetries and the principle of causal symmetry 5 

4a. Causal symmetries 6 

I will now argue that given full knowledge of the causal setup, the measure over different 7 

combinations of range conditions can always be determined by means of symmetry 8 

considerations without taking recourse to relative frequencies. More exactly, the symmetries 9 

must fix the measure only to the extent that a stable probability distribution results. Note also, 10 

that in this section the measure does not yet have to be considered a probability measure, e.g. 11 

it can result from perfectly regular dynamics. How the random nature of the attribute 12 

sequence can be established in addition will then be discussed in the next section. That 13 

symmetries and invariances play a crucial role in the determination of probabilities is of 14 

course quite obvious, just think of games of chance or Maxwell’s derivation of the velocity 15 

distribution in an ideal gas. Of course, for many phenomena the underlying symmetries may 16 

not be fully known, which then requires resorting to relative frequencies as a weaker kind of 17 

evidence. Referring to the examples of the previous section, population statistics constitutes a 18 

typical case of a frequentist approach to the measure, while the die is a good example for a 19 

symmetry approach. 20 

But how exactly the notion of symmetry must be framed in a probabilistic context is not 21 

entirely clear from the relevant literature. Let me therefore define as the most basic, if not yet 22 

fully general notion of a causal symmetry:  23 

A causal symmetry with respect to a probabilistic phenomenon exists if the probability 24 

distribution, as determined by the weighted fractions of outcome states, is invariant 25 

under a permutation
37

 of the attribute space—corresponding to a mere relabeling of 26 

the outcome space while the collective conditions determining the causal structure of 27 

the probabilistic phenomenon remain unchanged. 28 

In other words, a causal symmetry consists in a possible relabeling of the attribute space that 29 

leaves the relevant causal structure unchanged. The idea that invariance under reformulations 30 

can fix a probability distribution has long been used with respect to epistemic symmetries in 31 

belief states, reaching back at least to the work of Bolzano (1837/1972, § 161; see also e.g. 32 

Jaynes 2003, Ch. 12; Norton 2007). Above, the same kind of reasoning was employed with 33 

respect to objective causal symmetries.  34 

Only causal symmetries—in contrast to symmetries in belief states—imply the truth of 35 

counterfactual statements, such as: If trials of a probabilistic phenomenon were carried out 36 

with a different labeling, the probability distribution would remain the same, i.e. any event 37 

MX according to the old labeling would have the same probability as the event MX according 38 

                                                 
37

 A generalization to continuous attribute spaces is straightforward. 
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to the new labeling. With respect to the account of eliminative induction sketched in Section 1 

3b, counterfactual invariance is established by showing the irrelevance of a change in 2 

circumstances, in this case of the relabeling of the outcome space, for the causal structure of 3 

the probabilistic phenomenon as determined by the collective conditions.  4 

The definition of a causal symmetry directly implies a principle of causal symmetry as an 5 

objective variant of the principle of indifference: 6 

In the case of a causal symmetry regarding the exchange of two attributes, these 7 

attributes have equal probability.
38

  8 

Admittedly, the principle verges on tautology, given the previous definition of a causal 9 

symmetry. However, the crucial point is that causal symmetries can often be established non-10 

probabilistically, e.g. on the basis of the laws of classical mechanics as in the paradigmatic 11 

cases of throwing dice and coins or of a roulette wheel.  12 

As a simple example, consider the fair throw of a fair die. The attribute space consists in the 13 

numbers 1 to 6, located on the different sides of the die. Now, a well-established physical 14 

symmetry exists that the numbers on the sides can be permuted in arbitrary ways without 15 

affecting the probability distribution, given typical processes of choosing initial conditions 16 

and of throwing the die. This symmetry can be justified by referring to well-known laws of 17 

classical mechanics, e.g. concerning the mixing of trajectories in certain dynamical systems. 18 

Given the principle of causal symmetry, it follows immediately that all attributes must have 19 

the same probability 1/6. It is straightforward to apply this type of reasoning to more complex 20 

geometrical structures, e.g. a triangular prism with three congruent rectangular sides and two 21 

congruent equilateral triangles. Clearly, one can deduce from the corresponding symmetry 22 

transformations of the attribute space —without having to refer to relative frequencies—that 23 

the triangles and the rectangles all have the same probabilities respectively, while not much 24 

can be said about the relative probability between rectangles and triangles, except of course 25 

that they must add up to one. 26 

The notion of causal symmetry can be extended to more complex transformations of the 27 

attribute space including attributes with different probabilities. Such transformations consist 28 

in a permutation of the attributes while taking into account the weighted fractions of outcome 29 

states with the respective attributes. Let {𝑀} = {𝑀1, 𝑀2, … , 𝑀𝑛} be the attribute space, with 30 

𝑃(𝑀𝑖) denoting the probabilities given by the weighted fractions of outcome states with 31 

attributes Mi. Furthermore, let 32 

{𝑀′} = {𝑀′1, 𝑀′2, … , 𝑀′𝑛} = 𝑇({𝑀}) = {𝑀𝑇(1), 𝑀𝑇(2), … , 𝑀𝑇(𝑛)} be the relabeled attribute 33 

space, where T() denotes a permutation of the original attribute space {M}. Let 𝑃′(𝑀′𝑖) 34 

denote the probability of attribute M’i. Under these circumstances, we can define:  35 

A generalized causal symmetry with respect to a probabilistic phenomenon exists, if 36 

for the probability distribution of the permuted attribute space {M’} we have: 37 

                                                 
38

 Note that any permutation can be reconstructed from a sequence of exchanges of attributes. In the case of a 

continuous attribute distribution and invariance under a certain transformation, the principle of causal symmetry 

states that an attribute has the same probability as the attribute that it is mapped on. 
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𝑃′(𝑀′𝑖) = 𝑃′(𝑀𝑇(𝑖)) = 𝑃(𝑀𝑇(𝑖)) ∗ 𝑤(𝑀𝑖 → 𝑀𝑇(𝑖)) = 𝑃(𝑀𝑖), where 𝑤(𝑀𝑖 → 𝑀𝑗) 1 

denotes the ratio of weighted fraction of outcome states with attribute Mi to weighted 2 

fraction of outcome states with attribute Mj.  3 

To avoid circularity, the relative weights 𝑤(𝑀𝑖 → 𝑀𝑗) should again be established non-4 

probabilistically, e.g. by means of the laws of mechanics or by causal irrelevance arguments. 5 

A corresponding principle of indifference results:  6 

In case of a generalized causal symmetry, we have: 𝑃(𝑀𝑇(𝑖)) ∗ 𝑤(𝑀𝑖 → 𝑀𝑇(𝑖)) =7 

𝑃(𝑀𝑖).  8 

Obviously, the simpler version of a causal symmetry formulated at the beginning of this 9 

section results if w =1. Again a generalization to continuous attribute distributions and their 10 

invariance under certain transformations is straight-forward.  11 

Consider as an example of a generalized symmetry a die that is labelled ‘1’ on one side and 12 

‘6’ on all other five sides. The attribute space is {𝑀} = {1,6} with {𝑃} = {
1

6
,

5

6
}. If the 13 

attributes are exchanged {𝑀′} = {6,1} we can calculate as expected 𝑃′(6) = 𝑃(6) ∗14 

𝑤(1 → 6) =
5

6
∗

1

5
= 𝑃(1) and 𝑃′(1) = 𝑃(1) ∗ 𝑤(6 → 1) =

1

6
∗ 5 = 𝑃(6). Of course, the 15 

tricky part is to non-probabilistically establish the causal symmetry and to non-16 

probabilistically determine the relative weights of the attributes w(). In the described case of a 17 

die, this is rather simple, since the mechanical symmetry with respect to the six sides is fairly 18 

obvious, but certainly most applications will be more complex than that. 19 

Instead of transforming the attribute space one could also introduce a complementary 20 

mapping of the space spanned by the range conditions, which leads to a further rendering of 21 

the notion of causal symmetry, for example: 22 

A causal symmetry with respect to a probabilistic phenomenon exists if there is a 23 

mapping of the space spanned by the range conditions onto a different space, which is 24 

still consistent with the collective conditions, leading to a permutation of the attribute 25 

space. The attributes that are thereby mapped onto each other have the same 26 

probability.
39

 27 

Consider for example the throw of a fair coin with a certain set of input states and a measure. 28 

Now, by physical reasoning we know: (i) if for every input state the coin is rotated by exactly 29 

180°, then the attributes after the throw will be exchanged: heads  tails; (ii) this mapping of 30 

the input space is measure-preserving, since for every throw in the original input space there 31 

is a corresponding one with equal weight in the mapped input space. Of course, the mapped 32 

input space is still consistent with the collective conditions for the fair throw of a fair coin. 33 

Finally, let me stress again that causal symmetries are not epistemic judgments in lack of 34 

knowledge, but statements concerning the irrelevance of attribute transformations—or, 35 

                                                 
39

 It is again straight-forward to extend this idea to more complex causal symmetries, where attributes have 

different weights. 
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equivalently, transformations of the space spanned by the range conditions—for the causal 1 

structure of a phenomenon and in particular for the probability distribution.  2 

4b. Further examples 3 

Let us look at more examples of causal symmetries to show that the notion can be applied 4 

widely. An interesting case in point is Maxwell’s derivation of the equilibrium distribution for 5 

molecular velocities in an ideal gas from symmetry considerations. Here, the attributes are 6 

labels corresponding to different velocities 𝒗 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) and positions in space 𝒔 =7 

(𝑠𝑥, 𝑠𝑦, 𝑠𝑧). Various symmetry assumptions enter in the derivation (Maxwell 1860; cp. 8 

Strevens 2013, Ch. 1): (i) homogeneity in space, i.e. there is a causal symmetry with respect 9 

to all measure-preserving transformations (relabeling) of the considered spatial volume. It 10 

follows that the probability distribution is independent of the spatial coordinates within the 11 

considered container (and zero outside the container); (ii) isotropy, i.e. there is a causal 12 

symmetry with respect to all rotations (and reflections at the origin) of the velocity space. 13 

This symmetry implies that all velocities with the same absolute value √|𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2| have 14 

the same probability;
40

 (iii) independence of the one-dimensional velocity distributions along 15 

the three Cartesian axes: 𝑃(𝒗) = 𝑓𝑥(𝑣𝑥)𝑓𝑦(𝑣𝑦)𝑓𝑧(𝑣𝑧) = 𝑓(𝑣𝑥)𝑓(𝑣𝑦)𝑓(𝑣𝑧). Strictly speaking, 16 

only the second equality relies on causal symmetry, the first on probabilistic independence.
41

 17 

As elaborated in Section 5b, probabilistic independence can be established by showing the 18 

irrelevance of one attribute distribution for the other. For the sake of simplicity, let us assume 19 

just two dimensions x and y. A condition for irrelevance is that the probability fy(vy) for any 20 

vy has no influence on the probability fx(vx) for any vx. This holds, since in equilibrium the 21 

number of collisions with vy for one of the particles before the collision and vx for one of the 22 

particles after the collision should be equal to the number of collisions with vx for one of the 23 

particles before the collision and vy for one of the particles after the collision. Due to this 24 

relation, which follows from the constancy of the distribution in equilibrium and from 25 

symmetry considerations, changing fx(vx) has no influence on fy(vy) and vice versa. That the 26 

probability distribution is the same f(.) for all coordinates again follows from isotropy. 27 

Somewhat surprisingly, these relatively weak conditions (i)-(iii) already hint at the correct 28 

probability distribution.  29 

Another causal symmetry is evoked in a later derivation of the equilibrium velocity 30 

distribution by Maxwell (1867, 63). In equilibrium one should have the following equality for 31 

the probability distributions before and after collisions between two particles: 𝑃(𝒗𝟏)𝑃(𝒗𝟐) =32 

𝑃(𝒗𝟏′)𝑃(𝒗𝟐′) under the assumption that momentum and kinetic energy is conserved, e.g. 33 

                                                 
40

 Maxwell argues: “the directions of the coordinates are perfectly arbitrary, and therefore [the probability] must 

depend on the distance from the origin alone” (Maxwell 1860, 153). This reasoning is criticized by Strevens 

(2013, 14) on the grounds that Maxwell’s remark supposedly holds for any probability distribution over 

velocities, which would be an absurd consequence. However, if one understands ‘arbitrary’ in the sense that the 

choice of coordinates is irrelevant for the probability distribution, then Maxwell’s reasoning is basically correct, 

evoking a causal symmetry as we had defined it in the previous section. 
41

 As pointed out by Strevens (2013, 14), Maxwell’s own reasoning in this regard is not entirely convincing, 

although Maxwell does appeal to independence: “the existence of velocity x does not in any way affect the 

velocities y or z, since these are all at right angles to each other and independent” (1860, 153).   
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𝑣1
2 + 𝑣2

2 = 𝑣′1
2 + 𝑣′2

2 and 𝒗𝟏 + 𝒗𝟐 = 𝒗′𝟏 + 𝒗′𝟐 if all particle masses are the same. Here, 1 

primed quantities refer to the velocities after the collision and unprimed before the collision. 2 

Again, the relation is not justified by frequency data but by physical reasoning. In fact, it 3 

essentially follows from the definition of equilibrium, i.e. the requirement that collisions 4 

between particles shall not change the probability distribution: “When the number of pairs of 5 

molecules which change their velocities from [𝒗𝟏, 𝒗𝟐] to [𝒗′𝟏, 𝒗′𝟐] is equal to the number 6 

which change from [𝒗′𝟏, 𝒗′𝟐] to [𝒗𝟏, 𝒗𝟐], then the final distribution of velocity will be 7 

obtained, which will not be altered by subsequent exchanges.”
 42

 (Maxwell 1867, 63) The 8 

equality 𝑃(𝒗𝟏)𝑃(𝒗𝟐) = 𝑃(𝒗𝟏′)𝑃(𝒗𝟐′) can be interpreted as a generalized causal symmetry 9 

with respect to transformations of the attribute space 𝒗𝟏 ↔ 𝒗′𝟏. It yields direct access to the 10 

relative measure 𝑤(𝒗𝟏 → 𝒗′𝟏) =
𝑃(𝒗𝟐′)

𝑃(𝒗𝟐)
. Since supposedly the Maxwell distribution is the only 11 

plausible function satisfying the equality, the argument allows establishing this distribution 12 

merely by appeal to physical symmetries.
 

13 

A further notable example of causal symmetries concerns the ubiquitous binomial distribution 14 

for the calculation of k successes in n trials of an event with probability p: 𝑃𝑛,𝑝(𝑘) =15 
𝑛!

𝑘!(𝑛−𝑘)!
𝑝𝑘(1 − 𝑝)𝑛−𝑘. For the sake of simplicity let us focus on the special case p = 1/2. A 16 

physical process that generates the corresponding distribution is the Galton board. The 17 

essential mechanical symmetry of the Galton board is that at each pin there is no difference 18 

between a ball going right or left. Therefore, there is a causal symmetry for each pin i that the 19 

probability distribution will not change if one exchanges the labels left l and right r. It follows 20 

from the principle of causal symmetry for all i: P(l|i) = P(r|i) = 1/2. Based on this insight, the 21 

distribution of balls at each level n of the Galton board can be calculated in a purely 22 

combinatorial manner by tracing the possible trajectories of the balls through the board. The 23 

resulting recursive formula denotes a rather complex causal symmetry that allows to 24 

completely determine the binomial distribution at each level 𝑃𝑛(𝑘) =
1

2
[𝑃𝑛−1(𝑘 − 1) +25 

𝑃𝑛−1(𝑘)] with 𝑃0(0) = 1, 𝑃𝑛(−1) = 𝑃𝑛(𝑛 + 1) = 0. Let me stress again that in deriving the 26 

probability distribution for the Galton board we need not make reference to any frequency 27 

data whatsoever. 28 

Note that the mentioned complex symmetry does not immediately fit into the framework 29 

described in the previous Section 4a, since the recursive formula relates distributions for 30 

different levels n. But it is straight-forward to reformulate it in a way that it fits with the form 31 

of generalized causal symmetries 𝑃(𝑀𝑇(𝑖)) ∗ 𝑤(𝑀𝑖 → 𝑀𝑇(𝑖)) = 𝑃(𝑀𝑖). Special cases follow 32 

directly from further mechanical symmetries of the physical set-up, e.g. 𝑃𝑛(𝑘) = 𝑃𝑛(𝑛 − 𝑘). 33 

A generalization to 𝑝 ≠
1

2
 is also straight-forward if one can establish a causal symmetry of 34 

the form 𝑃(𝑙|𝑖)𝑝 = 𝑃(𝑟|𝑖)(1 − 𝑝). 35 

To conclude, let me stress again that the reasoning in these examples does not rely on an 36 

epistemic principle of indifference but rather on an objective principle of causal symmetry. 37 

Causal symmetries do not refer to lack of knowledge, but follow from the invariance of the 38 
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causal structure determining the probability distribution under certain transformations of the 1 

attribute space. 2 

4c. The principle of causal symmetry 3 

In Section 4a, I defined the notion of causal symmetry and based on it a principle of causal 4 

symmetry as an objective version of the principle of indifference. In its simplest form the 5 

principle of causal symmetry states that given a causal symmetry one should ascribe equal 6 

probabilities to the corresponding attributes. 7 

How does the epistemic version of the principle of indifference fit into the picture, i.e. the 8 

principle of insufficient reason that we should ascribe equal probability when our knowledge 9 

about a process does not favor one or the other outcome? Note that there seem to be clear-cut 10 

examples, where this epistemic version is employed, for example in Laplace’s treatment of 11 

the loaded coin: In lack of evidence regarding the way in which the coin is loaded, so the 12 

reasoning goes, we should ascribe equal probability to both sides (cp. Section 2a). 13 

Several authors like Cournot or Strevens suggest grounding the distinction between epistemic 14 

and ontic probabilities on whether they have been established by an epistemic or an objective 15 

version of the principle of indifference, respectively. By contrast, I will now argue that 16 

apparent applications of the principle of insufficient reason yield the same results as the 17 

principle of causal symmetry whenever the resulting probabilities are predictive.
43

 The key 18 

idea lies in constructing an adequate collective so that the principle of causal symmetry can be 19 

applied. Here, predictiveness requires two things, (i) that the causal structure in terms of 20 

collective conditions is sufficiently specified to warrant an unambiguous ascription of causal 21 

probabilities according to the definitions given in Section 3b and (ii) that these collective 22 

conditions are compatible with the actual conditions realized in the considered event(s). By 23 

means of the law of large numbers, predictiveness then implies certain limiting frequencies to 24 

be realized in the world for the specified collective.  25 

As an example, assume that we know to which extent a coin is loaded, say p=2/3, but do not 26 

know in which direction. As mentioned, it seems a straight-forward application of the 27 

principle of insufficient reason, when one ascribes probability 1/2 to both heads and tails 28 

before the first throw. However, we can also construe an adequate collective to subsume the 29 

reasoning under the principle of causal symmetry. The collective conditions should include 30 

the premise that the coin is loaded, while the measure ascribes equal weight to both 31 

possibilities p(heads)=1/3 and p(heads)=2/3. The set-up corresponds to a probabilistic 32 

phenomenon, where we are given two coins that are loaded in opposite ways, randomly pick 33 
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 One may be tempted to speak of a reduction of the principle of insufficient reason to the principle of causal 

symmetry whenever the probabilities are predictive, but such a formulation can be misleading. The starting point 

of the present section is the question how the principle of insufficient reason could be supplemented or changed 

such that the notorious Bertrand type ambiguities disappear. A clear criterion how much causal structure is 

necessary for this task is given in terms of causal symmetries. Of course, this strategy is somewhat opposed to 

the original idea and spirit of the principle of insufficient reason, namely to assign probabilities on the basis of 

ignorance, no matter how little we know about a phenomenon. Such a universal principle of insufficient reason is 

not sensible according to the proposed approach. By contrast, if one insists on the latter, which is of course 

possible (Shackel 2007 is an example, referring himself to van Fraassen), as a consequence one will always be 

stuck with Bertrand type ambiguities. 
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one of them, and throw it. With respect to this collective and measure, a probability 1/2 for 1 

both heads and tails results.  2 

When we know what we don’t know in terms of causal influences on the probability 3 

distribution, i.e. when the lack of knowledge can be expressed in terms of causal conditions, 4 

one can always proceed in this manner, i.e. construct a collective that accounts for the lack of 5 

knowledge and determine the corresponding probability distribution. Of course, lack of 6 

knowledge can come in different degrees. For example, it might be the case that we are only 7 

given a probability distribution for the extent to which the coin is loaded. But again, this 8 

knowledge already determines the measure and thus an appropriate collective.  9 

Apparently, there are two types of situations, (i) when the collective refers only to conditions 10 

that are known to be realized in the considered event(s) and (ii) when for some conditions it is 11 

unknown whether they are realized and thus they have to be postulated (cp. also Section 6b). 12 

As an example, the two coins that are loaded in different directions could both really exist, 13 

e.g. lie on a table before us. Or, there could be just a single coin of which we do not know in 14 

what direction it is loaded and the origin of which is unclear. In the latter case, the process of 15 

randomly choosing between two coins has to be postulated to avoid contradictions, since 16 

otherwise a collective and measure cannot be assigned. Certainly, the resulting probabilities 17 

are only predictive, if the postulated collective conditions are compatible with the partly 18 

unknown actual conditions of the considered event. One might be tempted to ground the 19 

distinction between the epistemic principle of insufficient reason and the ontic principle of 20 

causal symmetry on this difference between an actual and a postulated collective. But note 21 

that conventionally the principle of insufficient reason does not require constructing a causal 22 

collective. Also, the mentioned distinction is certainly not sharp but rather blurry, since 23 

clearly it is somewhat contextual whether one considers a collective actual or postulated. In 24 

any case, the distinction cannot serve to establish a substantial difference between epistemic 25 

and ontic probabilities. 26 

Are there applications of the principle of insufficient reason that cannot be accounted for in 27 

terms of the principle of causal symmetry? These must be instances where the collective is not 28 

sufficiently specified to warrant the ascription of probabilities. In other words, we do not 29 

know what we don’t know in terms of causal influences on the probability distribution. But if 30 

collective and measure are underdetermined then we are immediately confronted with 31 

Bertrand-type paradoxes. Consider the notorious example concerning the probabilities of 32 

different colors, e.g. red, blue, and green. Do red and non-red have the same probability 33 

according to the principle of insufficient reason? That cannot be since it would be 34 

incompatible with the analogous case that blue and non-blue have the same probability. 35 

According to the perspective of this essay, such contradictions arise because the causal 36 

context is not specified in terms of collective conditions, range conditions and measure 37 

insofar as they are relevant to the probability distribution of attributes. Without the causal 38 

context, the principle of indifference leads to contradictions and thus cannot be meaningfully 39 

applied. 40 

Thus, Bertrand-type paradoxes are resolved by rendering probabilities relative to a collective, 41 

i.e. essentially by the requirement that the causal set-up is sufficiently specified. Consider 42 
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another classic example dating back to Joseph Bertrand himself (1889, 4-5): What is the 1 

probability that the length of a random chord in a circle is shorter than the side of an 2 

equilateral triangle inscribed in the same circle? Bertrand points out that there are various 3 

incompatible answers depending on which measure one chooses, e.g. equal measure for the 4 

distance of the middle of the chord to the center of the circle, equal measure for the angle 5 

between chord and the corresponding tangent to the circle, or equal measure for the surface 6 

element into which the middle of the chord falls. Again, the ambiguity is resolved by 7 

sufficiently specifying the causal process that determines the location of the chord, e.g. the 8 

way a stick is dropped on a circle drawn on the floor. 9 

When the causal context is sufficiently specified in terms of collective conditions, then the 10 

corresponding probabilities are automatically predictive about the respective probabilistic 11 

phenomenon. Also, under such circumstances, every supposed application of the epistemic 12 

principle of insufficient reason can be reconstructed as an application of the principle of 13 

causal symmetry.
44

 By contrast, probabilities resulting from applications of the principle of 14 

insufficient reason that cannot be rendered in terms of the principle of causal symmetry are in 15 

general not predictive because the causal structure is not sufficiently specified to allow an 16 

unambiguous ascription of probabilities. 17 

Note finally that the principle of causal symmetry is not affected by another standard 18 

objection against the principle of insufficient reason that it supposedly derives something 19 

from nothing, namely probabilities from ignorance. Rather, the principle of causal symmetry 20 

presupposes considerable knowledge in terms of causal circumstances in order to establish 21 

probabilities that are predictive for a specific probabilistic phenomenon. Henceforth, we 22 

suggest excluding from the theory of probability all cases where the relevant context in terms 23 

of collective conditions is not specified and therefore predictiveness cannot be guaranteed. 24 

 25 

5. Causal irrelevance and probabilistic independence 26 

5a. Independence 27 

As indicated in Section 4, symmetry arguments primarily establish equal measure for the 28 

realization of different attributes. However, in order to definitely identify this measure as a 29 

probability measure, the independence of trials has to be shown in addition. In the following, I 30 

will argue that the causal approach can also throw some light on the notion of independence—31 

an issue that has been called “one of the most important problems in the philosophy of the 32 

natural sciences”
45

 by Kolmogorov. In a recent paper, Strevens essentially concurs and adds 33 

that the “matter has, however, received relatively little attention in the literature” 34 

(forthcoming, 3). The notion of independence is a major issue in the controversy between 35 
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 In this respect, the viewpoint of this essay resembles the position of North (2010), who also denies that there 

exist distinct objective and epistemic versions of the principle of indifference. 
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 “one of the most important problems in the philosophy of the natural sciences is—in addition to the well-

known one regarding the essence of the concept of probability itself—to make precise the premises which would 

make it possible to regard any given real events as independent. This question, however, is beyond the scope of 

this book.” (Kolmogorov 1956, 9) 
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subjectivist and objectivist readings of probability. For example, Bruno de Finetti, as a main 1 

proponent of subjectivism, aimed to eliminate the essentially objectivist concept of 2 

independence altogether and to replace it with exchangeability. In the following, a causal 3 

construal of independence will be sketched linking it to causal irrelevance.  4 

For further discussion, it is helpful to distinguish two notions of independence, (i) the 5 

independence of consecutive trials of the same probabilistic phenomenon and (ii) 6 

independence of random variables associated with different probabilistic phenomena. 7 

Roughly speaking, independence of two variables A and B means that (a) one outcome does 8 

not affect the other P(A|B)=P(A) or, equivalently from a mathematical point of view, that (b) 9 

the corresponding probabilities factorize P(A,B)=P(A)P(B).
46

 Independence is often defined 10 

in terms of such factorization, for example by Kolmogorov (1956, §5). But certainly this does 11 

not solve the difficult methodological question how to determine independence in the world. 12 

Why, for example, are two consecutive draws from an urn generally considered independent 13 

in case of replacement and otherwise not? 14 

Let us take up a widespread intuition and relate independence to irrelevance. In Section 3b, I 15 

argued for a link between eliminative induction and the notion of causal probability. Now, 16 

eliminative induction as introduced there also provides a framework for determining causal 17 

irrelevance in the sense of difference-making with respect to background conditions. 18 

Regarding the first notion of independence (i), consider two trials with the same collective 19 

conditions and the same measure. A sufficient criterion for probabilistic independence is: 20 

Two trials are probabilistically independent, if the range conditions in one trial are 21 

causally irrelevant
47

 for the collective conditions in the other trial and thereby for the 22 

probability distribution of range conditions in the other trial.
48

 23 

In other words, arguments based on causal irrelevance shall establish that whatever range 24 

conditions are realized in one trial, the probability distribution in the other trial will be the 25 

same—which corresponds to the usual framing of independence. 26 

As outlined in the beginning of Section 3b, causal irrelevance can be understood in 27 

counterfactual terms: if the range conditions had been different in one trial, the collective 28 

conditions and in particular the process determining the range conditions in the next trial 29 

would not have changed. In many situations, we have fairly reliable intuitions about such 30 

counterfactual statements which are usually evaluated based on the absence of plausible 31 

causal influences, as e.g. in the case of a blind-folded person drawing from an urn with 32 

replacement or stopping a wheel of fortune several times in a row. 33 

One might object to the above definition that causal irrelevance is not sufficient since there 34 

could still be correlations between the range conditions of the first trial and the collective 35 

conditions of the second trial that do not result from a direct causal relationship. In particular, 36 
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 Note that this covers also the first notion of independence (i), if one interprets the consecutive trials as 

different probabilistic phenomena. 
47

 i.e. irrelevant with respect to a causal background constituted by the collective conditions of the first trial. 
48

 This definition assumes the absence of a definitional connection between the range conditions of the first trial 

and the collective conditions of the second trial. 
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there might be a common cause that influences the range conditions in both trials. However, 1 

the notion of causal irrelevance from Section 3b excludes such cases.  2 

To recall, in a context B, in which a condition C and a phenomenon P occur, C was defined as 3 

causally irrelevant to P, iff the following counterfactual holds: if C had not occurred, P would 4 

still have occurred. Now, in cases with a common cause for C and P, the mentioned 5 

counterfactual generally does not have a determined truth value. After all, there are situations 6 

in which P would not have occurred if C had not occurred, namely exactly those, in which C 7 

and P are due to a common cause. In those situations, the absence of the common cause 8 

implies the absence of both C and P. Thus, whenever a common cause exists, there is no 9 

causal irrelevance and consequently no independence of trials.  10 

Note that this line of reasoning is itself not obvious, but depends intricately on the specific 11 

understanding of counterfactuals that is employed. David Lewis, for example, would disagree 12 

with the above assessment on the basis of his possible-worlds approach to counterfactuals. 13 

For reasons that are beyond the scope of this essay, Lewis in his analysis excludes so-called 14 

backtracking counterfactuals of the type that if the effect had not happened then the cause 15 

would not have happened either. Thus, in the case of a common cause for C and P but in the 16 

absence of a direct causal connection between C and P, Lewis would generally claim that if C 17 

had not happened, P would still have happened implying causal irrelevance between C and P. 18 

Therefore, a different analysis of counterfactuals is required that was very briefly delineated 19 

in the beginning of Section 3b. According to this approach which takes inspiration from the 20 

method of difference, backtracking counterfactuals are true if the context fulfills the 21 

requirement of homogeneity as also defined in Section 3b. Given homogeneity, the absence of 22 

an effect must result from the absence of the considered cause. 23 

Thus, the proposed definition for probabilistic independence of trials excludes correlations 24 

due to direct causal relevance but also due to common causes. Now what about other kinds of 25 

correlations? A further important type does not result from causal dependencies, but rather 26 

from definitional relationships. After all, if there is a definitional connection between C and P, 27 

of course, there could be correlations as well. But in the case of such relationships, a 28 

completely analogous treatment in terms of a counterfactual analysis is possible. After all, the 29 

mentioned counterfactual would not be true either, only that a different kind of necessity is 30 

involved compared with the case of causal irrelevance.
49

 31 

Last not least, there may be correlations that are neither due to causal nor due to definitional 32 

connections between C and P. However, in such cases, it is plausible to assume that the 33 

correlations are purely accidental, i.e. that they are merely fluctuations in the observed 34 

frequencies that may of course always occur in probabilistic phenomena, even in the case of 35 

probabilistic independence. Thus, the proposed account of causal probability again manages 36 

to draw the correct distinction between correlations that are meaningful and those that are not. 37 
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Now, the independence of random variables (ii) concerns different probabilistic phenomena 1 

that can have different collective conditions. Each random variable is associated with a 2 

specific probabilistic phenomenon. A sufficient criterion for independence is: 3 

Two random variables are probabilistically independent, if the range conditions in 4 

one probabilistic phenomenon are causally irrelevant
50

 for the collective conditions in 5 

the other probabilistic phenomenon, in particular for the probability distribution of 6 

range conditions in the other probabilistic phenomenon. 7 

This criterion broadly stands in the tradition of definition (a) for independence, but it also 8 

differs in important respects. Most importantly, it makes reference not to the attribute 9 

distribution but to the usually more fine-grained distribution of range conditions. Thus, the 10 

evaluation of the criterion is more intuitive since it makes explicit reference to the processes 11 

that are causally responsible for the probability distributions of attributes. As an example the 12 

throw of a coin and the probability of rain tomorrow are independent, because there is no 13 

causal connection between the corresponding processes determining the range conditions in 14 

each case. On the other hand, the probability of smoking and the probability of getting lung 15 

cancer are in general not independent in an individual, because there is a plausible causal 16 

influence from the range conditions of smoking to those of getting lung cancer. 17 

Note again that with respect to the conventional definition of independence the criteria given 18 

above are only sufficient but not necessary. As an example, consider two consecutive draws 19 

of a ball with replacement. The first ball is drawn arbitrarily from one of two urns B and W 20 

both of which have the same ratio of black and white balls. The second draw depends on the 21 

result of the first draw. If the ball is black, the next one is drawn from urn B, otherwise from 22 

urn W. Now, even though there is some causal relevance of the range conditions in the first 23 

draw for the collective conditions of the second draw, the draws are still independent in the 24 

conventional sense: for the attribute distribution black/white in the second draw the attribute 25 

of the first draw does not matter. The trick is of course that while there is causal dependence, 26 

this has no influence on the probability distribution in the second draw. 27 

Thus, one could conceptually distinguish probabilistic independence as framed above in terms 28 

of irrelevance of the range conditions from the conventional concept of probabilistic 29 

independence referring to the irrelevance of attributes. Of course, the former implies the 30 

latter—simply because the attributes are defined on the outcome space spanned by the range 31 

conditions. A sufficient and necessary criterion for independence in the conventional sense is:  32 

Two trials are probabilistically independent iff the attributes in one trial are causally 33 

irrelevant
51

 for the probability distribution of attributes in the other trial. 34 

Thus, there may be causal relevance for the collective conditions in the other trial, as long as 35 

the resulting collective conditions imply the same probability distribution as in the first trial. 36 

For example, in cases, where the method of arbitrary functions can be applied, there may be 37 

                                                 
50

 i.e. irrelevant with respect to a causal background constituted by the collective conditions of the first 

phenomenon. 
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 i.e. irrelevant with respect to a causal background constituted by the collective conditions of the first trial. 
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causal relevance between subsequent initial conditions on a macroscopic scale, which 1 

however will be irrelevant for the probability distribution due to microconstancy. Equally:  2 

Two random variables are probabilistically independent in the conventional sense iff 3 

the attributes in one probabilistic phenomenon are causally irrelevant
52

 for the 4 

probability distribution of attributes in the other probabilistic phenomenon. 5 

Essentially, this is only the familiar requirement P(A|B)=P(A), while specifying that the 6 

criterion is to be understood in terms of causal irrelevance according to eliminative induction. 7 

An example was discussed in Section 4b concerning the mutual independence of velocity 8 

distributions along different coordinate axes in an ideal gas at equilibrium. 9 

Note finally that the notions of independence and randomness are closely related. Most 10 

importantly: If subsequent trials are independent, then the sequence of outcomes will be 11 

random. Certainly, this perspective on randomness within the causal approach differs 12 

considerably from traditional explications, where randomness has mostly been defined with 13 

respect to certain mathematical or formal properties in the sequence of attributes. Von Mises’ 14 

notion of irregularity, essentially that all subsequences chosen without reference to the 15 

attributes must exhibit the same attribute distribution as the sequence itself, and 16 

Kolmogorov’s work on algorithmic complexity are just two examples in this respect. 17 

In summary, we have suggested how probabilistic independence could be derived from causal 18 

irrelevance of probabilistic phenomena as determined by eliminative induction. Of course, 19 

these few sketchy ideas cannot fully account for the enormous complexity of the notion. 20 

5b. Interpreting the measure  21 

In one article, Rosenthal describes as the “main problem of the range approach” (2010, 81) 22 

that it inherits the circularity of the classical approach to probability in that the measure 23 

determining the weights of certain combinations of range conditions itself requires 24 

justification in terms of probabilities, i.e. probabilities of initial conditions. For authors like 25 

Rosenthal, who argue on the basis of the method of arbitrary functions, the solution is to 26 

establish that for certain phenomena, most choices of measure lead to roughly the same 27 

probabilities. However, as pointed out towards the end of Section 2b, a number of problems 28 

result from this approach. Most importantly, the equivalence of different measures holds only 29 

approximately and there are even some measures for which the probability distribution is far 30 

off from the correct result. These problems were resolved in the causal approach by rendering 31 

probability relative to collective conditions and thereby to the measure over the state space 32 

spanned by the range conditions (cf. Section 3b). 33 

For the causal approach the challenge remains to give an interpretation of the measure without 34 

having to refer to other concepts of probability, in particular to relative frequencies, which 35 

essentially would throw us back on a frequentist account of probability. However, we now 36 

have the necessary conceptual tools to tackle this problem. Essentially, the probability 37 

measure over range conditions can be construed in terms of causal symmetries in the 38 
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collective conditions
53

 and in terms of independence of different trials resulting from causal 1 

irrelevance. By means of symmetry arguments, the measure can be quantitatively determined. 2 

It is often a measure in time resulting from the system dynamics, which notably may be 3 

deterministic and even quite regular. Arguments from causal irrelevance then allow 4 

establishing the independence of range conditions in different trials and thereby interpreting 5 

the measure as a probability measure. Given the existence of a measure and independence of 6 

trials, which constitute the main premises for the various laws of large numbers, the link to 7 

limiting relative frequencies can be made via those laws. Note that the second-order 8 

probabilities occurring in these laws are not problematic for the causal approach. Rather, they 9 

can be interpreted in a straightforward manner in terms of different copies of the same causal 10 

set-up as determined by the collective conditions. 11 

Independence of subsequent trials is usually guaranteed by allowing two processes that are 12 

causally irrelevant for each other to interfere within the same probabilistic phenomenon, 13 

where, as argued before, causal irrelevance excludes direct causal relevance as well as 14 

common causes. All probabilistic phenomena (except those with indeterministic dynamics) 15 

appear to have such an element that seems required to ensure the random nature of the 16 

attribute sequence. Causal irrelevance allows establishing counterfactual statements of the 17 

following type: if the range conditions realized in one of the mentioned processes would have 18 

been different, the distribution of range conditions of the other process would still have been 19 

the same. 20 

A good example is the wheel of fortune as already discussed in Section 3b. The dynamics of 21 

the wheel, which is perfectly regular, establishes the measure for the different outcome states 22 

of the wheel, in particular equal measure in time for all four colors. Also, the initial conditions 23 

determining the rotation of the wheel are causally irrelevant for the moment when the wheel is 24 

stopped. To ensure this the person stopping the wheel is blind-folded and all information 25 

concerning speed and state of the wheel is withheld from her. Again, the causal irrelevance 26 

can be informally tested by evaluating the counterfactual, whether the person would have 27 

picked another moment when to stop the wheel had the initial conditions of the wheel been 28 

different. 29 

Applications of the method of arbitrary functions can be explained in the same manner. Take 30 

the roulette wheel as an example. The assumption of microconstancy requires that slight 31 

changes in initial conditions may already lead to a change in attribute. Again, the process 32 

determining the measure over initial conditions has to be causally irrelevant for the resulting 33 

probability distribution of attributes. Obviously, this is the case when for example we look at 34 

what is happening in casinos around the world. The rotation of the roulette wheel is too fast 35 

and the dynamics of the ball on the roulette wheel too irregular that the croupier could 36 

influence the result by letting the ball enter in a certain way. The advantage of phenomena 37 
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conditions as should be obvious from the definitions in Section 4a.  
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falling under the method of arbitrary functions is that the resulting probability distributions 1 

are robust, i.e. there is a broad range of processes how to choose the initial conditions of ball 2 

and wheel that fulfills the requirement of irrelevance for the probability distribution. Thus, the 3 

present analysis does not identify as decisive element in those examples microconstancy or 4 

macroperiodicity, but rather the interference of two causally unrelated processes, the rotation 5 

of the wheel and the entering of the ball. Again, microconstancy and macroperiodicity just 6 

guarantee, that this result is fairly stable across a wide variety of processes. But they are not 7 

decisive for the probabilistic nature of the phenomenon. 8 

By contrast, consider the following example originally due to Richard von Mises which for 9 

him explicitly does not constitute a probabilistic phenomenon. Let there be a sequence of 10 

posts along a road, a large always following a small and vice versa. Certainly, collective 11 

conditions can be formulated, e.g. regarding someone driving along the road and writing 12 

down the sequence of posts. Also, a symmetry exists with respect to large and small posts. 13 

However, at this stage one is not dealing with a probabilistic phenomenon since it lacks the 14 

feature of randomness. But again, the latter could be implemented by adding a further 15 

causally unrelated process, e.g. a process that puts a person on the road at an arbitrary location 16 

to then determine the size of the nearest post.  17 

Thus, the short answer to the problem of circularity is that the measure over different 18 

combinations of range conditions designates a probability measure but that it can be construed 19 

conceptually in terms of causal symmetries in the collective conditions which quantitatively 20 

determine the measure and in terms of causal irrelevance implying the independence of 21 

subsequent realizations of range conditions or at least attributes.  22 

 23 

6. Ontic and epistemic probabilities 24 

6a. Single-case probabilities and indeterminism 25 

Indeterministic phenomena can easily be integrated into the suggested framework of causal 26 

probability. For a fully indeterministic phenomenon, there are no hidden variables, i.e. no 27 

range conditions that determine outcome and attribute. More exactly, with respect to 28 

definition 2 of Section 3b, there is only one input state determined by the collective conditions 29 

and the measure over input space thus becomes trivial. With respect to the terminology 30 

introduced in Section 3b, there are no measure conditions and the collective conditions consist 31 

only of set-up conditions, which by means of the indeterministic dynamics S 
𝐶
→ O fix a 32 

measure over the outcome space and thus the probability distribution for the attributes. This 33 

distribution is given by definition 1 of Section 3b referring to a probability measure over the 34 

outcome space instead of the input space. 35 

The orthodox interpretation of quantum mechanics provides a prime example. Via the 36 

Schrödinger equation, the collective conditions determine the wave function and thereby the 37 

probability distribution upon measurement for certain attributes like position or momentum. 38 

The orthodox interpretation explicitly excludes range conditions which would correspond to 39 

hidden variables rendering the phenomenon deterministic. 40 
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These remarks can also help to clarify the role for single-case probabilities according to the 1 

perspective of this essay. In principle, there are no probabilities without collective. However, 2 

fully indeterministic events could be viewed as single-case probabilities, since for these a 3 

natural choice of collective conditions exists, namely those that maximally determine the 4 

probability distribution. Thus, the collective is to some extent already implied by the 5 

description of a single event. Note further that according to the causal approach of this essay 6 

one can speak of the probability of an event, even though the corresponding probabilistic 7 

phenomenon may have occurred only once. As long as one has epistemic access to the 8 

measure over outcome space, the phenomenon need not even be repeatable. This distinguishes 9 

the causal approach from the naïve frequency view which obviously has to rely on a sufficient 10 

number of instantiations. 11 

6b. Epistemic and ontic probabilities 12 

The discussion of indeterminism in the previous section directly leads to one of the basic 13 

themes in the debate on interpreting probability, namely the distinction between epistemic and 14 

ontic probabilities. As emphasized before, unlike the SRA-approach, the causal framework 15 

delineated in this article is meant to extend to cases of indeterminism and also to epistemic 16 

probabilities such as probabilities of hypotheses. In fact, causal probability is intended to 17 

cover all applications of the probability axioms in which probability is predictive, i.e. in 18 

which the main premises for the law of large numbers hold, in particular existence of a 19 

measure and independence of trials. 20 

The definitions from Section 3b allow identifying different types of probabilities along the 21 

ontic-epistemic spectrum. (i) Purely ontic probabilities are those for which a specific 22 

collective is singled out by the statistical event. The typical example concerns indeterminism 23 

as discussed in Section 6a, e.g. the decay of a radioactive atom according to the orthodox 24 

interpretation of quantum mechanics. In the case of indeterminism, collective conditions exist 25 

that maximally determine an event in question with a probability unequal to one, in contrast to 26 

deterministic settings where, obviously, the conditions that maximally determine an event 27 

yield probability one. 28 

(ii) When the event does not single out the collective conditions (as in the case of 29 

indeterminism just discussed), there will automatically be an epistemic element in the choice 30 

of these conditions. Most importantly, there remains some leeway, which causal 31 

circumstances to consider as collective conditions and which as range conditions, usually 32 

implying a change in probabilities. Notably, different probability measures may result from 33 

different choices of collective conditions.  These epistemic aspects are not problematic for the 34 

causal approach since it always relates probability to a specific collective. In this sense, we 35 

could still speak of objective probabilities. Note that the mentioned epistemic aspects in 36 

principle also exist for the deterministic probabilities established by the method of arbitrary 37 

functions, if somewhat less pronounced.  38 

(iii) A further epistemic element concerns the distinction between a situation, where the 39 

collective conditions are known to be realized in one or more instances in the world, and 40 

situations, where the known conditions of a specific event do not suffice to unambiguously 41 
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assign a probability and thus additional conditions have to be imagined or postulated in order 1 

to construct an appropriate collective. With respect to the example of the two coins that was 2 

already discussed, does one actually choose between two coins that are loaded in different 3 

ways—or is there only one coin and is the ensemble of two coins just imagined as a subjective 4 

range of alternatives? These two situations roughly correspond to the distinction between an 5 

objective and an epistemic reading of the principle of indifference, as introduced in Section 6 

4c. In the case that some conditions have to be imagined or postulated, we must resort to 7 

statements like: ‘if such and such collective conditions are compatible with the considered 8 

instance(s), which we do not know for sure, then the resulting probability distribution is 9 

predictive with respect to this collective.’  10 

As noted before, the distinction is not sharp and depends considerably on context. But of 11 

course, the fewer conditions are known about a phenomenon, the more flexibility exists how 12 

to construct the collective—corresponding to a more pronounced subjective element in the 13 

assignment of probabilities. 14 

In the following, I will discuss two further variants of epistemic probabilities, first concerning 15 

predictions that rely on symptoms instead of the actual causes and second probabilities of 16 

hypotheses. 17 

6c. Probabilities from causal symptoms 18 

Sometimes, the space spanned by the range conditions is parametrized not in terms of causes 19 

of the probabilistic phenomenon, but rather in terms of symptoms or proxy variables that are 20 

somehow causally related. Without loss of generality, this problem is best discussed in terms 21 

of definition 2 of Section 3b. A typical example concerns the correlation between barometer 22 

and weather. One can quite reliably predict the weather by referring to a barometer reading, 23 

but of course the barometer reading is not a cause of the weather. Rather, air pressure is a 24 

common cause that influences both barometer and weather. Since air pressure is not easily 25 

accessible epistemically, one might be tempted to postulate a probabilistic phenomenon that 26 

has as input space the barometer reading and as outcome space a certain parametrization of 27 

the weather. While in practice such probabilities predicting from symptoms or proxies of 28 

common causes are widespread, let us briefly examine if they are consistent with the 29 

viewpoint of causal probability. 30 

Formally, we have an outcome space O, a space spanned by the parametrization of the 31 

symptoms I, and an unknown input space S that causally determines the outcome space. In the 32 

example above, O would be the weather, I would be the barometer reading, and S would be 33 

spanned by some microparameters determining the weather, including air pressure. Two 34 

situations need to be distinguished: (i) the symptoms I are fully determined by S; (ii) there are 35 

other causes of I that are not in S. 36 

In the first case, probabilities from symptoms easily fit into the framework of causal 37 

probability in the following manner. For the sake of simplicity, assume that to any S can be 38 

attributed an I. The symptoms I can then be considered as labels of the input space and thus as 39 

a reparametrization of the input space, which allows to establish a probability distribution 40 



 

41 

 

over the attributes based on the symptoms. Note that the mapping I → O will in general not be 1 

fully deterministic, i.e. the same value of I can lead to different values of O. 2 

By contrast, such a probability distribution does not exist in the second case, because there are 3 

other unrelated causes for I. For example, someone may mechanically interfere with the 4 

barometer reading or the spring in the barometer may break. If such external causes are 5 

possible, then a probability distribution for the attributes based on symptoms cannot be given. 6 

The situation can only be resolved, if one includes in the parametrization of the input space S 7 

all possible external causes of I and if one knows the probability measure over those causes. 8 

In that case, we can again interpret the symptoms I as a reparametrization of the extended 9 

input space and a meaningful probability distribution results for the attributes. 10 

In summary, probabilities from symptoms are only meaningful if they can in principle be 11 

reduced to causal probabilities as defined in Section 3b. 12 

6d. Probabilities of causal hypotheses 13 

Thus far, we have treated probabilities of events or types of events as determined by their 14 

causal circumstances. But the inductive framework of Section 3b can also cover inverse 15 

probabilities, i.e. probabilities of hypotheses regarding possible causes generating the given 16 

evidence. The reason is that the eliminative logic underlying causal probability works in both 17 

directions—from given causes to possible effects and from given effects to hypotheses about 18 

causes. This resolves Humphreys’ paradox for the proposed account in a way that corresponds 19 

quite closely to a suggestion by Donald Gillies (2000a, 131-133). 20 

Consider again a probabilistic phenomenon determined by certain collective conditions, an 21 

input space, a measure W over the input space and a causal mapping from input space to 22 

outcome space. When determining the probability of hypotheses, a labelling of the input states 23 

must be introduced, which allots these to the different hypotheses H1, …, HN (i.e. each 24 

hypothesis is about a certain cause being active in some of the input states to bring about a 25 

certain outcome). This labelling must be mutually exclusive and must cover the whole input 26 

space. If, for the sake of simplicity, it is assumed that the causal mapping is bijective
54

, a 27 

corresponding labelling of the outcome space results. The causal mapping also determines a 28 

measure WO over the outcome space from the measure over the input space. Relevant 29 

evidence leading to an adjustment of the probabilities of the various hypotheses can concern 30 

the input space and the outcome space. We can now define: 31 

The probability of a causal hypothesis HX, combining a set of input states of the 32 

probabilistic phenomenon P, is given by the fraction of input states weighted with 33 

measure W carrying the label HX or, equivalently, by the fraction of outcome states 34 

weighted with measure WO carrying the label HX.
55
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 Generalizations are straightforward, e.g. to indeterministic mappings or when it is only surjective. In the latter 

case, the probabilities have to be calculated in the input space, of course.  
55

 Note that the probabilities of hypotheses can be interpreted in terms of probabilities of events, when it is 

possible to look up which of the hypotheses is actually realized in the world. For example, in the Monty Hall 

problem discussed below, the corresponding event would consist in opening all doors to verify where the car is. 
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Let us look at the Monty Hall problem as a simple example for probabilities of causal 1 

hypotheses generating a given evidence. In a quiz show, a candidate is presented with three 2 

doors A, B, C, behind one of which is a car, behind the two others there are goats. The 3 

candidate chooses one of the doors, e.g. A. At the beginning, the evidence conveyed by the 4 

quizmaster does not favor any of the hypotheses HA, HB, HC that the car is behind the 5 

respective door. In other words, there is a causal symmetry in the set-up of the game with 6 

respect to permutations of the doors A, B, C. Consequently, the labels are equally distributed 7 

in both weighted input and weighted outcome space, resulting in equal probability for all three 8 

hypotheses. Here, the input space is determined by different instances in which the game is 9 

originally set up, while the output space is determined by corresponding instances how the 10 

game is ended by the candidate. 11 

Now, the quizmaster opens a door, e.g. C, of which he knows that there is a goat behind it and 12 

which is not the one chosen by the player. Thereby, new information E is conveyed—which 13 

can be accounted for in terms of an additional collective condition. In light of this new 14 

condition, the input states which are incompatible with E have to be erased. In particular, all 15 

input states associated with hypothesis HC have to be eliminated, because the truth of HC is 16 

incompatible with the evidence. Furthermore, half of the input states of hypothesis HA have to 17 

be eliminated, namely those, in which the quizmaster would have opened door B. By contrast, 18 

none of the input states of HB are deleted because all of them already imply that the 19 

quizmaster opens door C. This leads to the familiar result that in light of the new evidence we 20 

have P(HA)=1/3 and P(HB)=2/3.  21 

Obviously, this result can also be calculated via Bayes’ Theorem: 𝑃(𝐻𝑋|𝐸) =
𝑃(𝐸|𝐻𝑋)𝑃(𝐻𝑋)

∑ 𝑃(𝐸|𝐻𝑖)𝑃(𝐻𝑖)𝑁
𝑖=1

. 22 

The quantities on the right side refer to the old collective, P(HX|E) on the left side is 23 

equivalent to the probability P(HX) relative to the new collective incorporating evidence E. In 24 

summary, the change in collective conditions due to novel evidence corresponds to a process 25 

of Bayesian updating. 26 

Another example concerns the loaded coin as already discussed in previous sections—except 27 

that this time we are not interested in the event of throwing the coin, but in the probability of 28 

the two hypotheses H1 and H2 that the coin is loaded P(heads)=2/3 or P(heads)=1/3, 29 

respectively. Before the coin is thrown for the first time, the evidence does not favor any of 30 

the hypotheses and therefore both hypotheses have equal probability 1/2 with respect to a 31 

suitably constructed collective. After the first throw, the situation ceases to be symmetric 32 

since there is now evidence in which way the coin might be loaded. Again, this evidence can 33 

be integrated in the collective conditions leading to a change in measure and thus a new 34 

probability distribution over the causal hypotheses. For example, if the result is ‘head’, then 35 

all those input states have to be eliminated that would have led to ‘tail’ in the first throw, i.e. 36 

1/3 of the input states belonging to H1 and 2/3 of the input states belonging to H2. The new 37 

probabilities are consequently P(H1)=2/3 and P(H2)=1/3, which is exactly the result given by 38 

Bayes’ Theorem. From the causal perspective, Bayesian updating can be interpreted as 39 

describing how in light of new evidence, which leads to additional constraints in the collective 40 

conditions, the measure over the hypothesis space has to be adapted. 41 
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Also in the case of probabilities of hypotheses, the ascription of probabilities is predictive 1 

only if one specifies collective and measure, i.e. in particular if one knows the complete set of 2 

(mutually exclusive) causal hypotheses and if one knows or assumes a measure over these 3 

hypotheses that is determined by the collective conditions. Of course, one also needs to know 4 

with which probabilities the different hypotheses lead to various pieces of evidence, i.e. 5 

essentially the causal mapping of the input to the outcome space. These requirements 6 

delineate a fairly restricted range of application for probabilities of hypotheses—excluding for 7 

example several ‘standard’ applications of subjective Bayesianism like the probabilities of 8 

abstract scientific theories or hypotheses. Since the range of alternatives is not known in these 9 

cases, it seems implausible to construct a collective and relatedly the measure remains 10 

undetermined. If one requires probabilities to be predictive, the range of hypotheses to which 11 

probabilities should be ascribed is thus rather restricted.
56

 12 

We are therefore in the position to assess the plausibility of the various Bayesian programs 13 

from the perspective of causal probability. Sometimes, the hypothesis space and the measure 14 

are objectively determined by the causal set-up. Consider for example the following 15 

experiment with three urns, each containing both black and white balls but in different ratios, 16 

e.g. 1:2, 1:1, 2:1, corresponding to three hypotheses. Now, one of these urns is randomly 17 

chosen and then balls are drawn with replacement. Given a certain sequence of draws as 18 

evidence, e.g. w-w-b, a probability for each of the three hypotheses can be calculated, whether 19 

it holds for the chosen urn. In this specific situation, an objective Bayesian approach is 20 

feasible because all relevant elements are determined by the physical set-up: the hypothesis 21 

space, the initial probability measure over the hypothesis space, and the probability of 22 

evidence given a certain hypothesis is true. 23 

In other circumstances, we might not be so lucky. We may for example be confronted with 24 

limited information about a single urn, e.g. that the colors of the balls are only black and 25 

white and that there are no more than five balls in the urn. In this case, the hypothesis space is 26 

determined by the set-up but there is flexibility in the choice of measure since the actual 27 

process with which the urn was prepared is unknown. In analogy to the discussion in point iii) 28 

of Section 6b, the Bayesian can now construct in her mind a collective to which the urn is 29 

attributed, e.g. an ensemble in which every ratio of balls has equal prior probability. With 30 

respect to such a collective, the posterior probabilities of the various hypotheses can then be 31 

calculated taking into account additional evidence. However, the Bayesian might just as well 32 

have chosen a different measure over the hypothesis space and would have come up with a 33 

different result for the posterior probabilities. There is no contradiction, since strictly speaking 34 

the probabilities only hold relative to the respective collective and if the collective conditions 35 

are compatible with the partly unknown conditions of the considered instances. In cases, 36 

where the measure is underdetermined by given knowledge and somewhat arbitrarily 37 

construed with respect to an imagined collective, we may plausibly speak of subjective 38 

Bayesianism. 39 
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 An argument in this direction was already given by Popper, who claimed in a reductio ad absurdum that given 

an infinite number of alternatives, the probabilities of scientific theories would always be zero. See also Pietsch 

(2014) for a different argument against ascribing probabilities to scientific theories or abstract scientific 

hypotheses. 
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Of course, much more should be said how Bayesianism is to be integrated into the framework 1 

of causal probability. But the brief discussion above already suggests how the notion of causal 2 

probability allows determining the limits of a Bayesian approach.  3 

 4 

7. Conclusion 5 

We have proposed a specific account of causal probability that ties in with recent work on 6 

objective probabilities in the tradition of the method of arbitrary functions and with earlier 7 

accounts mainly from the 19
th

 century, for example by Cournot, Mill, or von Kries. The 8 

causal probability of the present essay broadly fits with eliminative induction and the 9 

corresponding difference-making account of causation. Probability is interpreted as degree of 10 

causal determination of a phenomenon by a given set of conditions. The proposed notion of 11 

probability is the following: The causal probability of a specific attribute MX of a 12 

probabilistic phenomenon P is given by the fraction of outcome states pertaining to attribute 13 

MX, weighted with the probability measure W. 14 

As a further constraint, we required that one should speak of probabilities only when the 15 

respective weighted ratios are predictive, i.e. when the causal structure in terms of collective 16 

conditions is sufficiently specified such that probabilities can be unambiguously determined 17 

and if the causal structure corresponds to an actual structure in the world. This delineates the 18 

range of application for probabilities both of events and of hypotheses. It also allows for a 19 

refined version of the principle of indifference, which was termed principle of causal 20 

symmetry. Note again that the principle of causal symmetry does not fall prey to Bertrand-21 

type ambiguities exactly because it requires that the causal context is sufficiently specified. 22 

Regarding the difficult notion of probabilistic independence a suggestion was sketched how to 23 

connect it to causal irrelevance. On this basis, randomness in the attribute sequence generated 24 

by a probabilistic phenomenon can be established. The mentioned definition of probability, 25 

the notion of causal symmetry, and the causal construal of probabilistic independence should 26 

be considered as a coherent conceptual package making up causal probability. In a way, 27 

causal probability constitutes an extension of the essentially deterministic framework of 28 

eliminative induction and the corresponding difference-making account of causation to 29 

statistical and indeterministic contexts. 30 
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