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Abstract

Accuracy-based arguments for conditionalization and probabilism
appear to have a significant advantage over their Dutch Book rivals.
They rely only on the plausible epistemic norm that one should try to
decrease the inaccuracy of one’s beliefs. Furthermore, it seems that
conditionalization and probabilism follow from a wide range of mea-
sures of inaccuracy. However, we argue that among the measures in
the literature, there are some from which one can prove conditional-
ization, others from which one can prove probabilism, and none from
which one can prove both. Hence at present, the accuracy-based ap-
proach cannot underwrite both conditionalization and probabilism.

A central concern of epistemology is uncovering the rational constraints
on an agent’s credences, both at a time and over time. At a time, it is typi-
cally maintained that an agent’s credences should conform to the probability
axioms, and over time, it is often maintained that an agent’s credences should
conform to conditionalization. How could such norms be justified? The tra-
ditional approach is to show that if your credences violate these norms, then
there is a set of bets, each of which you consider fair, but which collectively
are such that if you accept them all you will lose money whatever happens.
Since you do not want to be a “money pump”, you should adopt coherent cre-
dences. However, this Dutch book strategy rests on controversial assumptions
concerning prudential rationality and its connection to epistemic rationality.

The prudential elements may not be essential to the Dutch book approach
(Vineberg 2012). But even so, it would be better to be able to derive prob-
abilism and conditionalization from a clearly epistemic basic norm. A more



recent approach seeks to do precisely that: to derive probabilism and condi-
tionalization from the intuitive epistemic norm that you should endeavor to
make your credences as accurate—as close to the truth—as possible. Drawing
on the work of Joyce (1998; 2009), Greaves and Wallace (2006) and Predd et
al. (2009), Pettigrew (2013) argues that the accuracy-based approach vindi-
cates both probabilism and conditionalization. We argue that this conclusion
is too strong: at present, the accuracy-based approach can vindicate either
conditionalization or probabilism, but not both.

Our argument turns on the features of various proposed measures of accu-
racy. The accuracy-based approach is predicated on the assumption that the
accuracy of your credences can be measured. Pettigrew (2013, 905) argues
that it is a strength of the accuracy-based approach that conditionalization
and probabilism follow from a wide range of measures, so that it doesn’t
matter which measure is used to assess the accuracy of an agent’s credences.
Our counter-argument is that it does matter: of the known measures, some
vindicate conditionalization, and some vindicate probabilism, but there is
no known measure of inaccuracy from which both conditionalization and
probabilism can be derived.

1 Accuracy and conditionalization

First, let us briefly run through the argument via which conditionalization
and probabilism are claimed to follow from considerations of accuracy, start-
ing with conditionalization. Suppose you have credences b = (b1, ba, ..., b,)
in propositions X = (X1, Xy, ..., X,), where the propositions form a parti-
tion, i.e. they are exhaustive and mutually exclusive, so that exactly one of
them is true. The accuracy approach takes it that your primary epistemic
goal is having credences that are as accurate as possible, where complete ac-
curacy is a credence of 1 in the true proposition and a credence of 0 in each
of the false propositions. The closer your credences are to complete accuracy,
the better.

For this epistemic goal to make sense, we need a measure of closeness. In
what follows we will discuss several such measures, expressed as measures of
inaccuracy: the larger the measure, the further your credences are from the
truth. Hence your goal is to minimize the value of this inaccuracy measure.
By far the dominant measure in the literature is the quadratic rule or Brier
rule, which takes the square of the difference between your credence in each



proposition and its truth value, and sums the results. So for a partition, if
I;(b) is the inaccuracy of credences b when proposition X; is true, then the
Brier rule can be expressed as follows:!

Simple Brier rule: I;(b) = (1 —b;)* + 3., b7.

The Brier rule has been defended by epistemologists (Joyce 2009, 290; Leitgeb
and Pettigrew 2010, 219), and is frequently cited as the prime example of an
inaccuracy measure (Greaves and Wallace 2006, 627; Pettigrew 2013, 899).

Suppose you obtain evidence E that is consistent with some but not
all of the propositions X. How should you distribute your credence over
the remaining propositions? If your goal is to minimize your inaccuracy,
presumably the best you can do is to minimize your expected inaccuracy
given your prior credences b. So suppose that after you learn E, you shift
your credence in proposition X; from b; to x. If X; is true, the contribution
of this new credence to your overall inaccuracy is (1 — z)?, and if X; is false,
the contribution is z2. Given your prior credences b, you judge that the
chance that X is true is b;, and the chance that X is false is ) . . b;, where
the notation E — 7 indicates that the sum is over all propositions consistent
with E except X;. That is, the total contribution C' of this new credence to
your expected inaccuracy is given by:

C = (1 — l’)2 bz -+ 513'2 ZE‘fi bj.
Your goal is to minimize C'. So consider where dC'/dz = 0:

dcC

% = _2(1_$)b1+2$ZE—zb]

= —Zbl + Ql'ZEbj,

where the sum in the last line is now over all propositions consistent with F£.
This expression is zero when

ZE bj .

'We call the version of the Brier rule applicable to a partition the simple Brier rule
only for ease of reference (and similarly for the simple log rule and simple spherical rule
to be introduced later).
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But note that this value for x is just your prior credence in X; conditional
on E:

c(E) >pbi
That is, conditionalizing on F minimizes your expected inaccuracy.? So if
your epistemic goal is to minimize inaccuracy, you should conditionalize on
new evidence.

Greaves and Wallace (2006) generalize this proof to cover measures of
inaccuracy other than the Brier rule. In particular, they show that condi-
tionalization minimizes expected inaccuracy for any measure of inaccuracy
I;(b) satisfying strict propriety:

c¢(XG|E) =

Strict propriety: For any distinct probabilistic credences b and b’, Y. b,1;(b) <

> bidi(b).

Strict propriety says that the expected inaccuracy of your current credences
b is lower than the expected inaccuracy of any alternative credences b’ you
might adopt, where the expectation is calculated according to your current
credences. If it fails, then the injunction to minimize inaccuracy makes your
beliefs pathologically unstable: you can lower your expected inaccuracy by
shifting your credences, even in the absence of new evidence. Hence strict
propriety serves as a reasonable constraint on measures of inaccuracy. The
Brier rule is strictly proper, as are several other proposed inaccuracy mea-
sures to be discussed below.

Greaves and Wallace begin by introducing some terminology. They say
that a set of credences b recommends a set of credences b’ iff the expected
inaccuracy of b’ is at least as low as the expected inaccuracy of b, where the
expectation is calculated using credences b:

Recommendation: b recommends b’ iff Y. b;1;(b) > > . b;1;(b")

Note that if the inaccuracy measure I;(b) satisfies strict propriety, then b
only recommends itself.

They further define quasi-conditionalization as a belief updating rule
that stipulates that your credences on learning E' should be some set rec-
ommended by your prior credences conditional on E. They then prove

2This proof is a simplified version of the one in Leitgeb and Pettigrew (2010).



that quasi-conditionalization is always optimal: whatever measure of inac-
curacy you choose, strictly proper or not, the expected inaccuracy of quasi-
conditionalizing is at least as low as the expected inaccuracy of any other
updating rule. Then if your measure of inaccuracy is strictly proper, con-
ditionalization itself is optimal, since for strictly proper measures, credences
only recommend themselves. In fact, since the inequality in strict propriety
is strict, conditionalization is strictly better than any other updating rule:
it uniquely minimizes expected inaccuracy. As Pettigrew (2013, 905) notes,
this is a strong result: any inaccuracy measure satisfying strict propriety can
be used to vindicate conditionalization, and strict propriety is a constraint
we would expect any reasonable inaccuracy measure to obey anyway.

2 Accuracy and probabilism

Now let us turn to the arguments that your credences at a time should obey
the probability axioms. So far, we have been assuming that the propositions
we are interested in form a partition. But the probability axioms include
constraints on your credences in disjunctions, and to model such constraint
we need to allow that more than one of the propositions you are considering
can be true. To that end, suppose that you have credences b = (b, ba, .. ., by,)
in propositions X = (X3, Xs,...,X,,), where now the set of propositions
forms a Boolean algebra, i.e. it is closed under negation and disjunction. So
now we can no longer model a possible world simply as an index (picking
out the unique true proposition); instead, we need to label each proposition
separately as either true or false. That is, a possible world is specified by
w = (wy,ws,...wy,), where w; = 1 when X is true and w; = 0 when X is
false. In this context, the Brier rule can be rewritten as follows:

Symmetric Brier rule: /(w,b) =) (b, — wi)”.

As before, the inaccuracy of your beliefs according to the Brier rule is given
by the sum of the squares of the distance of each belief from the relevant
truth value. That is, the Brier rule is symmetric, in the sense that distance
from the truth for a true proposition plays the same role as distance from
falsity plays for a false proposition. This property will be important later.
The general strategy for defending probabilism based on accuracy goes as
follows. Suppose that your current credences are incoherent—that is, they



Figure 1: De Finetti’s construction for a two-element partition (Joyce 1998,
582).

violate the probability axioms. Then one can appeal to a measure of inaccu-
racy to show that there are coherent credences that dominate your current
credences—that are more accurate than your current credences whatever the
truth values of the propositions concerned. If your goal is to minimize in-
accuracy, this gives you a clear reason to avoid incoherent credences: there
are always coherent credences that are more accurate, whatever the world is
like.

De Finetti (1974, 87) constructs a dominance argument of this kind based
on the Brier rule.® For illustration, consider the simple case of a proposi-
tion and its negation: that is, the propositions under consideration are just
(X, —X). In this case the space of possible credences forms a plane, as shown
in figure 1: your credence in X is the horizontal coordinate, and your credence
in =X is the vertical coordinate. The two possible worlds are represented by
the points (1,0) and (0, 1), and your credences obey the probability axioms if
and only if they lie on the straight line that connects these two points, since
along this line your credences in X and =X sum to 1.

Suppose that your credences are incoherent: they are represented by a
point ¢ = (c1,c2) that lies off this diagonal. And suppose first that the

3 As Joyce (1998, 580) notes, de Finetti sets up this argument in terms of bets. However,
as Pettigrew (2013, 901) points out, it can be redescribed as an accuracy-based argument.



actual world is represented by the bottom-right corner (1,0)—i.e. X is true
and —X is false. Then the inaccuracy of your credences according to the
Brier rule is I(w,¢) = (1 — ¢1)% + (¢2)°. Note that this is just the square of
the Euclidean distance between (c1, ¢2) and (1,0). That is, every point on the
circle segment C has the same inaccuracy as c, and every point between C'
and (1,0) has a lower inaccuracy. Now suppose instead that the actual world
is represented by the top-left corner (0,1)—i.e. X is false and —X is true.
Then the inaccuracy of your credences is I(w,c) = (¢1)? + (1 — ¢)*—the
square of the Euclidean distance between (¢, c2) and (0,1). That is, every
point on the circle segment C” has the same inaccuracy as c, and every point
between C' and (0, 1) has a lower inaccuracy.

Consider the area enclosed by the circle segments C' and C’. The cre-
dences represented by the points in this area have a lower inaccuracy than c
if X is true and —X false, and a lower inaccuracy than c if X is false and =X
true. That is, they have a lower inaccuracy whatever the world is like. And
this area includes part of the diagonal that represents coherent credences.
So for any incoherent set of credences, there is a coherent set that is less
inaccurate whatever the world is like. In this simple case, accuracy gives you
a motive to adopt coherent credences.

In the general case, the space of possible credences is n-dimensional, where
there are n propositions in the Boolean algebra. Each possible assignment
of truth values to the n propositions is represented by a point in this space,
and the set of coherent credences consists of these points plus the points
on the straight lines that connect them, the points on the straight lines
that connect those latter points, and so on. This set is called the convex
hull VT of the possible truth value assignments V. Via a generalization
of the construction of figure 1, de Finetti shows that if your credences are
represented by a point that lies outside V', then there are points in V'
that are more accurate (according to the Brier rule) whichever point in the
space represents the actual truth values of the propositions. Hence if you
have incoherent credences, there are always coherent credences with a lower
inaccuracy as measured by the Brier rule.

Predd et al. (2009) generalize this proof strategy to cover a wider range
of inaccuracy measures. Their proof relies on two assumptions. The first is
additivity:

Additivity: I(w,b) can be expressed as ) ., s(w;, b;), where s is a continuous
function of your credence in proposition X; and its truth value.



Additivity states that the inaccuracy of your beliefs in a set of propositions is
just the sum of your inaccuracies in the propositions taken individually—that
is, s(wy, b;) is the inaccuracy of your belief in proposition X;, and I(w,b) is
just the sum of these inaccuracies for all the propositions you are considering.
Note that it also contains the requirement that the inaccuracy measure should
be continuous. The Brier rule is obviously additive, since it is expressed as
a sum over propositions.

The second assumption is a version of strict propriety. For an additive
inaccuracy measure, strict propriety can be expressed in terms of your inac-
curacy function for a single proposition s(b;,w;) as follows:

Strict propriety (for an additive measure): b;s(x, 1)+ (1—b;)s(z,0) is
uniquely minimized at = = b;.

Predd et al. (2009) prove that any additive, strictly proper inaccuracy
measure entails probabilism. De Finetti’s construction appeals to the natural
distance measure implicit in the Brier rule—the Euclidean distance between
two points in the space of your possible credences. But in the current case
we have no explicit measure of inaccuracy, so Predd et al. appeal to a
generalized “distance” measure? called the Bregman divergence, defined for
a strictly convex function ®(x) as de(y,x) = ®(y) — ®(x) — VO(x) - (y — x).
They show that if the inaccuracy measure s(b;,w;) for a single proposition
X, is strictly proper, then the function ¢(b;) = —b;s(b;, 1) — (1 — b;)s(b;,0)
is strictly convex. In terms of this function, Predd et al. show that for
any additive, strictly proper inaccuracy measure, [ (w,b) = dg(w, b), where
B(w) = ¥, plw;) and B(b) = ¥, o(by).

The set of coherent credences forms a closed, convex subspace V* of
the space of all possible credences. It is a fact from the theory of Bregman
divergences that for any point ¢ outside V', there is a unique point ¢* in
V* such that dg(c*, ¢) < dg(y,c) for all y in V. That is, c* is the unique
closest point in V't to ¢, using the Bregman divergence as a distance measure.
It is a further fact that dg(y,c*) < de(y,c) — de(c*,c) for all y in VT and
c outside V*. Note in particular that V' contains every possible world w,
since a consistent truth value assignment is also a coherent set of credences.
So setting y = w, we have dg(w,c*) < do(w,c) — de(c*,c). Since dg is a
positive-valued function, dg(c*,c) > 0, so de(w,c*) < de(w,c), and hence

4The reason for the scare quotes is that the Bregman divergence is not symmetric, and
distance measures are typically symmetric.



I(w,c*) < I(w,c). That is, for any incoherent set of credences c, there is a
coherent set c* that is less inaccurate than c in every possible world.

As Pettigrew (2013, 905) notes, this is a strong result: any inaccuracy
measure satisfying strict propriety and additivity can be used to vindicate
probabilism, and while additivity is perhaps not forced on us in the way
that strict propriety is, it is certainly intuitive. As we shall see, there are
several available measures satisfying additivity and strict propriety, so it
initially looks like the accuracy-based program can justify both probabilism
and conditionalization based on minimal premises. Our purpose in this paper
is to argue that matters are not so straightforward.

3 Measures of inaccuracy

Let us return to the argument for conditionalization. This argument restricts
inaccuracy measures to those that are strictly proper. Note that strict pro-
priety is only a condition on expected inaccuracy. But expected inaccuracy is
calculated on the basis of the actual inaccuracy that the measure in question
ascribes to credences, and presumably there are a number of constraints any
such measure must obey if it is to genuinely measure epistemic inaccuracy
rather than something else. For example, if one of your credences shifts to-
wards the truth, while your other credences stay the same, then clearly your
actual inaccuracy should decrease. We wish to focus on one such constraint.

The constraint can be motivated by thinking about elimination cases.
Suppose you are considering a set of mutually exclusive and exhaustive
propositions, and suppose that your credences are coherent and that you
conditionalize on evidence. You acquire some evidence that eliminates one
false proposition—your credence in it becomes zero—but is uninformative
regarding the other hypotheses—your credences in them remain in the same
proportions. How does this affect the accuracy of your credences?

It seems obvious that your beliefs have become more accurate. If you
believe that Tom, Dick or Harry might be the murderer (when in fact Tom
did it), and you eliminate Harry while learning nothing about Tom or Dick,
then you have made epistemic progress towards the truth, or at least away
from falsity. It is true that your credence in the false proposition “Dick did
it” goes up, but only by the same proportion that your credence in the true
proposition “Tom did it” goes up.

Unfortunately, the simple Brier rule does not always concur. Let X; be



“Tom did it”, X5 be “Dick did it”, and X3 be “Harry did it”, where unknown
to you X is true. Suppose that your initial credences in (X7, X5, X3) are
b = (1/7,3/7,3/7). Then according to the simple Brier rule, your initial
inaccuracy is 54/49 = 1.10. Now suppose you acquire some evidence that
eliminates X3, but is uninformative regarding X; and X,. That is, your
credence in X3 becomes 0 and your credences in X; and X, stay in the
same proportions, so that your final credences are b* = (1/4,3/4,0). Then
according to the simple Brier rule, your final inaccuracy is 18/16 = 1.13.
That is, the Brier rule erroneously says that the inaccuracy of your beliefs
has gone up.

For a measure to genuinely measure the actual inaccuracy of your beliefs,
it should not be susceptible to counterexamples of this kind; it should count
elimination cases as epistemically positive. That is, measures of inaccuracy
should obey the following principle:

M: For coherent credences over a partition, if b assigns a zero credence
to some false proposition to which b’ assigns a non-zero credence, and
credences in the remaining propositions stay in in the same ratios, then
b is epistemically better than b’.

The simple Brier rule, as the example shows, violates M, and hence does not
plausibly measure the actual inaccuracy of your beliefs.?

Fortunately, though, there are alternative inaccuracy measures for parti-
tions we can appeal to. The two most frequently mentioned are the simple
log rule and the simple spherical rule:

Simple log rule: I;(b) = —Inb;

Simple spherical rule: ;(b) =1—1b;/,/>b3.

As before, I;(b) is the inaccuracy of credences b when proposition X is true.
Both of these measures satisfy M, and hence are not susceptible to elimination
counterexamples.® Hence each can plausibly be claimed to measure epistemic
inaccuracy. Furthermore, each is strictly proper, and so each can be used to

®One might reasonably think that acceptable measures of accuracy should obey a
stronger principle than M; see (reference removed).

This is trivial for the log rule, and easily proven for the spherical rule. See (reference
removed).
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underwrite conditionalization via the above argument strategy. So there
are some inaccuracy measures that vindicate conditionalization, but not all
strictly proper measures do so. In particular, the simple Brier rule cannot
be used to vindicate conditionalization.

But what about probabilism? The simple log rule and simple spherical
rule are not applicable to a Boolean algebra, and so cannot be used to prove
probabilism as they stand. Perhaps the most straightforward way to general-
ize them is simply to sum the contribution given by the simple rule for each
true proposition in the Boolean algebra, while ignoring the false propositions
in the algebra:

Asymmetric log rule: /(b,w) = ). F(w;,b;), where F(0,b;) = 0 and
F(1,b) = —Inb;.

Asymmetric spherical rule: I(b,w) = >, F(w;,b;), where F(0,b;) = 0
and F/(1,b;) =1—1b;/1/>; 3.

Both these rules are asymmetric, in the sense that inaccuracy is calculated
differently for true and false propositions. These rules satisfy principle M:
for coherent credences, if your credence in a false proposition goes down and
your remaining credences stay in the same ratios, then your credence in each
true proposition goes up, and so your inaccuracy according to the relevant
asymmetric rules goes down. Hence the asymmetric log and spherical rules
are immune from elimination counterexamples.

But these rules do not satisfy the combination of additivity and strict
propriety required for the proof of probabilism. The asymmetric spherical
rule is not additive: F'(1,b;) is not a function of b; alone. The asymmetric
log rule is additive, but it is not strictly proper in the required sense: F'(1,b;)
is strictly proper, but F(0,b;) is not. Indeed, it is straightforward to show
directly that these rules cannot be used as the basis of a dominance argu-
ment for probabilism. Consider, for example, a two element partition, and
the incoherent credence assignment (1,1). The asymmetric log rule counts
these incoherent credences as perfectly accurate (since the credence in the
false proposition is ignored), so no coherent credences can dominate them.
According to the asymmetric spherical rule, multiplying all credences by a
constant has no effect on inaccuracy, so this assignment has the same inaccu-
racy as the coherent credence assignment (1/2,1/2). If coherent assignments
cannot be dominated, then neither can the initial incoherent assignment.
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But if coherent assignments can be dominated then the dominance proof of
probabilism fails anyway.

So the asymmetric versions of the log rule and the spherical rule cannot
be used to prove probabilism. But for a Boolean algebra, the log rule and
the spherical rule are usually given a formulation that is symmetric between
truth and falsity:

Symmetric log rule: /(w,b) =) . —In|(1 —w;) — b,

Symmetric spherical rule: [(w,b)=>.1— (= ws) |

N/ TR BE

(see e.g. Joyce 2009, 275). These measures are additive, and each term in
the sum is individually strictly proper, so they can each be used to prove
probabilism via the proof of Predd et al.

But unfortunately, in their symmetric forms all three rules—Brier, log and
spherical—are subject to elimination counterexamples. For the Brier rule, the
counterexample is the same as before, since the symmetric Brier rule reduces
to the simple Brier rule when applied to a partition.” That is, consider a
credence shift from b = (1/7,3/7,3/7) to b* = (1/4,3/4,0) when X, is true.
According to the symmetric Brier rule, your initial inaccuracy is 1.10, and
your final inaccuracy is 1.13, so your inaccuracy goes up. And this example
works equally well against the symmetric spherical rule: according to this
rule, your initial inaccuracy is 1.24 and your final inaccuracy is 1.37, so your
inaccuracy goes up. This particular counterexample does not work against
the symmetric log rule, but a similar one does. Suppose your initial credences
are b = (1/13,6/13,6/13), and your final credences are b* = (1/7,6/7,0).
Then according to the symmetric log rule your initial inaccuracy is 3.80, and
your final inaccuracy is 3.89: your inaccuracy goes up. Hence the symmetric
measures all violate principle M, and so none of them can be used to prove
conditionalization.

"Strictly, applying these rules to a Boolean algebra requires including credences in the
negations X7, =X, and —X3, plus the tautology X; V X5 V X3 and the contradiction
—(X1 V X3V X3). But for coherent credences the inaccuracies of the tautology and the
contradiction are zero, and for symmetric rules the inaccuracy of =X, is the same as that
of Xj;, so the inaccuracy calculated over the entire Boolean algebra is simply twice the
inaccuracy over the partition (X7, Xs, X3).
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4 The extent of the problem

Let us sum up. The simple Brier rule cannot be used to prove conditionaliza-
tion, but the simple log and spherical rules can. The obvious generalizations
of the simple log and spherical rules to a Boolean algebra—the asymmetric
log and spherical rules—cannot be used to prove probabilism. The symmet-
ric Brier, log and spherical rules can be used to prove probabilism, but none
of them underwrites conditionalization. So we have found no measure that
can be used to prove both conditionalization and probabilism.

Could there be such a measure? Perhaps, although it is worth noting
that one can prove that any inaccuracy measure that satisfies additivity,
strict propriety and a plausible symmetry principle is subject to elimina-
tion counterexamples. The symmetry principle is precisely the one discussed
above—that the inaccuracy measure treats truth the same as falsity, in the
sense that it is a function of the distance between each credence and its
respective truth value. For an additive inaccuracy measure, the symmetry
principle can be expressed in terms of the inaccuracy function for a single
proposition s(w;, b;) as follows:

Symmetry: s(w;,b;) = s([1 —wil,[1 = bi).

It is certainly highly plausible that this is part of what it means for s to
measure your distance from the truth, and as discussed above, the typical
Boolean algebra forms of the Brier rule, log rule and spherical rule all satisfy
it.

Let us see how this symmetry principle, together with additivity and strict
propriety, lead to elimination counterexamples. Consider a single proposition
X; in which your credence is b; = 1/2. According to strict propriety, the
quantity (1/2)s(1,z) + (1/2)s(0, ) must be uniquely minimized at z = 1/2.
In particular, the value of this expression for z = 1/2 must be lower than its
value for z = 1:

(1/2)s(1,1/2) + (1/2)s(0,1/2) < (1/2)s(1,1) + (1/2)s(0,1),
and for x = O:
(1/2)s(1,1/2) + (1/2)s(0,1/2) < (1/2)s(1,0) + (1/2)s(0,0).
Adding these:
s(1,1/2)+5s(0,1/2) < (1/2)s(1,1)+(1/2)s(0,1)+(1/2)s(1,0) +(1/2)s(0,0).
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But by symmetry, s(1,1/2) = s(0,1/2), s(1,1) = s(0,0) and s(0,1) = s(1,0).
Substituting:
25(0,1/2) < s(0,1) + 5(0,0).

Now consider your credences in three exhaustive and mutually exclusive
propositions X = (Xj, X3, X3). Consider in particular the credence shift
from m = (0,1/2,1/2) to b = (0,1,0) for truth values w = (1,0,0). By
separability, /(w, m) = s(1,0) + 2s(0,1/2), and I(w,b) = s(1,0) + s(0,1) +
5(0,0). So since 2s5(0,1/2) < s(0,1) + s(0,0) it follows that I(w,m) <
I(w,b): your inaccuracy goes up. But the shift from m = (0,1/2,1/2) to
b = (0, 1,0) is an elimination case: a false proposition is eliminated, and your
credences in the remaining hypotheses stay in the same proportions. And lest
one worry about the fact that your initial credence in the true proposition
is zero, we can modify the example. Consider the credence assignments
m = (6/(2+6),1/(2+0),1/(2+9)) and b’ = (§/(1 4+ §),1/(1 +6),0). For
small ¢ these are close to m and b, and hence by the continuity clause of
additivity, the inaccuracy of m’ remains lower than that of b’. Again, the
transition from m’ to b’ is an elimination case, and now your credence in the
true proposition is non-zero.

So elimination counterexamples afflict any inaccuracy measure that satis-
fies additivity, strict propriety and symmetry. That is, any symmetric mea-
sure that satisfies the assumptions of Predd et al.’s proof of probabilism
violates principle M, and hence cannot be used to prove conditionalization.
Symmetry is not a premise in the Predd argument, so it is possible that an
asymmetric measure might allow the derivation of both probabilism and con-
ditionalization. But the only plausible asymmetric measure in the literature
is the log rule (Bernardo 1979), and we have seen that the asymmetric log
rule does not vindicate probabilism.

5 Conclusion

Pettigrew notes that conditionalization and probabilism follow from a wide
range of measures of inaccuracy, and the implication is that it doesn’t much
matter which measure you pick. But we think it does matter. There are mea-
sures that vindicate conditionalization, and there are measures that vindicate
probabilism, but nobody has yet identified a measure that vindicates both.
Hence the accuracy-based approach does not, as yet, give us the justification
we might want for the constraints on our credences.
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